PERFORMANCE OF A MULTIFRONTA]L, SCHEME
FOR PARTIALLY SEPARABLE OPTIMIZATION

(Revised)

by A.R. Conn! N.IM. Gould? M, Lescrenier3
and Ph.L. Tojnt4

Report 88/4 January 11, 1989

PERFORMANCE OF A MULTIFRONTAL SCHEME
FOR PARTIALLY SEPARABLE OPTIMIZATION

by A.R. Conn!, N.I.M. Gould?, M. Lescrenier3
and Ph.L. Toint*

January 11, 1989

Abstract. We consider the solution of partially separable minimiza-
tion problems subject to simple bounds constraints. At each iteration, a
quadratic model is used to approximate the objective function within a
trust region. To minimize this model, the iterative method of conjugate
gradients has usually been used. The aim of this paper is to compare the
performance of a direct method, a multifrontal scheme, with the conju-
gate gradient method (with and without preconditioning). To assess our
conclusions, a set of numerical experiments, including large dimensional

problems, is presented.

! Department of Combinatorics and Optimization, University of Waterloo, Ontario, Canada.
2 Computer Science and Systems Division, Harwell Laboratory, Oxfordshire, England.

% Belgian National Fund for Scientific Research, F.U.N.D.P. Namur, Belgium.

4 Department of Mathematics, F.U.N.D.P. Namur, Belgium.

Keywords : partially separable optimization, multifrontal Gaussian elimination.

This report is issued simultaneously at Harwell Laboratory, England and the Department of

Combinatorics and Optimization, University of Waterloo, Ontario, Canada.

1 Introduction.

for example ﬁnite—elements, network problems anq others. The formalism was first introduced by
Griewank and Toint [8] and methods using this particular structure have proved to be extremely

computing directiong of negative curvature, However, they realize that a more sophisticated
strategy like the Levenberg-Marquard algorithm (see [11]) or an attempt to solve the tryst

min f(z) (1)

subject to the bounds
a; < z; < bj (2)

where z is a vector of R™ and [is a so called partially separable function, that is a function of
the form

1@=3 i(z) ®)

where the element functions fi(z) have Hessian matrices of low rank compared with n, the
dimension of the problem.

A typical case is when each element function only depends on small subset of the variables
called the elemental varigbles of that element. It is also frequently the case that, for some
elements, the number of elemental variables can be further reduced by applying, for each one of

these elements, a linear transformation of its elemental variables in its internal variables. For
every element, that is for 1 — 1,...,m, the complete transformation from the original variables

of the problem (the vector z) to elemental or (when applicable) to internal variables is then given
by
¥ = Uiz, (4)

where the matrix U; has fewer than n rows. For instance, given the partially separable function
(n=3)

f(2) = 21+ (21— 22)? + (22 — 23)?, (5)
we have that

fiz) =121, fi(z) = (21 — 22)? and f3(z) = (22 — z3)?, (6)

where the sets of elemental variables corresponding to the elements are given by {z1}, {z1, 22}
and {z3,z3}. These sets can be further reduced for elements 2 and 3 by defining two l-component

vectors y; and ys of internal variables by
yzz(l -1 O)zandy3=(0 1 —l)x. (7)
For the first element, the elemental and internal variables coincide, and we have that
y1:(1 0 O)x. (8)
Equations (7) and (8) in our example correspond to (4), and hence
UI:(IOO) Up=(1 -1 0) andU3=(01—1). (9)

The adaptability of partially separable methods to large problems comes mainly from a com-
pact storage scheme for the Hessian approximation and the corresponding updating technique.

The change of variables (4) allows us to consider new element functions fi such that
fi(=) = filw). (10)
The gradients of f; and f, satisfy
9i(z) = U gi(w), (11)
while the Hessian approximations at z satisfy
Hi(z) = U A, (v:)Us. (12)

The so called partitioned updating technique consists in storing and accessing only the gradients
and Hessian approximations in internal variables, that is, the §;(y;) and H; (vi) from (11) and (12)
respectively. The advantage clearly comes from the fact that the number of internal variables is
much smaller than the total dimension of the problem and that the matrix approximating the
Hessian of f

H(z) = i_nj Hy(z) (13)

1s never explicitly assembled.

Finally, only the non empty columns of U; (and pointers to the variables relevant to each
column) are needed. For many practical problems, sets of the U; differ only in the elemental
variables that they select, see for instance U, and Us in (9). We would not therefore envisage
storing each U, merely a set of variable-to-column pointers and require that commonly occuring
operations, such as the products

u=Uv and u=yTy (14)

be performed by a user provided subroutine.

3 A trust region algorithm for partially separable pProblems.

The algorithm we propose for solving problem (1)—(2) is of trust region type and belongs to the
class of methods described by Conn, Gould and Toint in [3].

At each iteration, we suppose that we have a feasible point x("), the gradient ¢g(¥) of the
objective function (3) at this point and a suitable Symmetric approximation A (k) to the Hessian
of f at z(¥), In the remainder of this paper, by “Hessian” we will always mean an approximation
of the true Hessian. This approximation may be computed by a secant updating formula such
as the Broyden-Fletcher-Goldfarb—Shanno or the symmetric rank-one update for instance (see
[5]). The gradient and Hessian of the partially separable function f are stored as described in
Section 2. We approximate the objective function by a quadratic mode]

1
m(")(:c(k) +8) = f(a:(k)) + sTgk) 1 ESTH(’C)S, (15)

In a region surrounding the current iterate defined by its radius A(%) This region, called the
trust region, is of the form
lz - z®)|| < AR, (16)

It is convenient to choose the infinity norm, for then the shape of the trust region is aligned with
the simple bounds of the problem (1)-(2). If we define

i® e max|a;, =) _ A(k)], “Ek) = min[b,-,z,(k) + A(k)]’ (17)

) t
region problem

subject to the bounds

w) — _f(@W) — rz0 4 s™))
- f(x(k)) — m(k)(x(k) + s(k))

and set
2b+1) _ { z(®) 4 g(k) ¢ p*) >y (21)
z(k) if p(k) < u,
and
70A® if 50 <)
Alk+) Ak) if u < plk) < n, (22)
1AW if o) >
where 75 < 1 < 72, 4 and 7 are appropriate numbers,
It remains now to describe our approximate solution of (18)-(19). We first compute the
Generalized Cauchy Point :z:gc) » Which is defined ag the first local minimizer of the univariate
function

(Pl — g4 (23)
Wwith respect to ¢ ¢ R, where P[] is the Projection operator computed componentwise ag

T 1®),
Ple)i = ¢ o i g > o0, (24)
Zj otherwise.

Piecewise linear arc defined by Projecting the steepest descent direction into the feasible domajn
of problem (1)-(2). We then choose z(k) + s(k) = zgc) it the reduced model’s gradient at this
point is smaller in norm than a fraction of the norm of the reduced model’s gradient at :c(k), that

126 VmE @) < yo) 2t o, Iz IO jze@)rgey (5

where Z (z)7 is the orthogonal Projector onto the linear subspace corresponding to variables that
are not at their bound at z. If the test (25) fails, we define I(zgc),l("),u(")) as the active set of
a:gc) Wwith respect to the bounds I(*) apq u("), that is the set of indices of the variables at the
GCP violating or lying on a constraint of (19). We also define C’(xgc)) as the linear subspace of
the variables that are free at the GCP, that is

C(=¥)) = spanfe; | i ¢ I(zP,10 (0, (26)

where ¢; is the i-th vector of the canonical basis of R, Ip order to find () + s(k), we then
compute a better approximation than the GCP to the solution of sub-problem (18)—(19) with
the restriction that s S C(xg')), so that the variables in the active set remain fixed at their value
at the GCP. This gives us the trial point and can be calculated using an iterative or a direct
method. This is the subject of the next two Sections.

If the Hessian A ("), restricted to the subspace C’(:cgc)), is positive definite and the bounds of
sub-problem (18)—(19) that are Inactive at the Cauchy point remain inactive, the solution of
(18)—(19) may be obtained as the solution of a system of linear equations. However, this may

the resulting linear system as efficiently as possible. To date, iterative schemes (in particular,
truncated, preconditioned conjugate gradient methods) seem to have been the most popular
approach for approximately solving the sub-problem, as reflected in the works of Toint [14]
Steihaug [12], or Stoer [13].

Two main reasons explain this interest. The first one is that a truncated strategy that

3

asymptotically takes the exact quasi-Newton step can save a significant amount of computation
during the early iterations, when we are still far from the optimum. The second reason and

entries but only require matrix-vector products. This calculation, which represents the major
cost of the algorithm, can be efficiently performed when the sparsity pattern of the matrix is
taken into account. In the context of partially separable optimization, the matrix is the Hessian
of the objective function, and the matrix-vector product does not require the assembly of the
Hessian since it can be computed as

(- H)d= 307 vy (21)

The conjugate gradient algorithm is applied, starting from z = a:gc) » b0 the sub-problem (18)-
(19) with the restriction that the variables in the set I (:t:gc i (), u(®)) are kept fixed throughout
the process. Our algorithm optionally uses a preconditioner given by the Moore-Penrose pseudo-
inverse of the diagonal matrix whose entries are the diagonal entries of the restricted Hessian.
The algorithm is terminated at the point z if

1. the norm of the restricted gradient of the model, that is HZ(::)TVm(")(x)H, is less than n(),
for some r)(’“);

2. one or more of the unrestricted variables violate one of the bounds (19). The point z is
then the point at which the first offending bound(s) is (are) encountered;

3. a direction of negative curvature is found, in which case 7 is chosen as the last point along
this direction that still satisfies the bounds.

restricted model’s gradient at the final point to that at z(*) tends to zero as the iterates approach
a Kuhn-Tucker point for the problem and the matrices A (¥) restricted to the set of variables
active at the solution satisfy the Dennis-Moré condition (see [5]). A suitable choice for n*) in
order to satisfy the first condition is given by the definition of n®) in (25).

5 Minimization of the quadratic model by a direct method.

Let us now consider the solution by a direct method of the sub-problem (18)-(19) with the
additional constraint that variables that are at their bound at the GCP remain fixed.

Symmetric positive-definite systems of linear equations

a,-_,- = a,-j = \aa (30)
do not have to wait for all the assembly steps
aij = a;; + bg) (31)

larity between (29) and (13). The class of frontal methods includes several algorithms for varying
structure in the matrix 4 (for instance, band, arrowhead, .. .). As we were interested in a gen-

thus refer to it as the “multifrontal” method.

However, this scheme does not apply to indefinite matrices. To overcome this difficulty, Duff
and Reid (7] followed Bunch and Parlett [1], using a mixture of 1x 1 and 2 x 2 pivots chosen during
the numerical factorization of A, allowing stable Symmetric Gaussian elimination for indefinite
systems. The method has been implemented by Duff and Reid [6] as a set of Fortran subroutines,
currently available through the Harwell library under the name MA27, and is the one we used
for our implementation.

One must point out however, that the current version of MA27 does not assume a finite-
element representation for the matrix A but requires instead its storage in compact form. Con-
sequently, for our experimental code, one had to assemble the Hessian, even though this type of
method does not require it. This does not affect the viability of the frontal approach, or alter
our conclusions. Moreover there are plans to introduce a new version of MA27 that will allow an
elemental representation of the coefficient matrix (Tain Duff, private communication).

Given the Bunch-Parlett factorization of the Hessian (restricted to the free variables)

ch)TH(k)ch) _ L(k)D(k)L(lc)T’ (32)

where Zg‘)T =4 (zg’))T is the orthogonal projector onto C’(:zr:gc)), we check the 1x1 and 2x2 pivots
stored in D*) to decide whether it is positive definite, indefinite, or singular. Different strategies
will be applied in these different cases.

If the restricted Hessian is positive definite, we can solve the Newton equations
ZC(}I:)TH(k)Zék)z = ~ch)T [g(k) 4 H(k)(zgc) _ x(k))] _ _ch)Tvm(k)(zgﬂ)) (33)

for the direction 2 C’(:z:gc)), using the MA27 solver.

If ch)TH (k)ch) is indefinite, the solution of (33) is no longer that of the sub-problem (18)-
(19) restricted to C’(:z:gc)) Fortunately, the decomposition (32) allows us to compute a direction
of negative curvature for this sub-problem.

To compute such a direction, we first chose A, the most negative eigenvalue of D(¥) and
computed the corresponding eigenvector v € C (:t:g‘))- The direction z would then be given at the

cost of the backward substitution
z=r1®T, (34)

and the corresponding curvature would be
L2ITEE Z8)2, (35)

Numerical experiments indicate a drawback of this method. When the restricted Hessian
remains indefinite over a number of successive iterations, the directions often lie in the same
subspace and the number of iterations required to reach optimality is unacceptably high. To
avoid this defect, when successive directions of negative curvature are encountered, instead of

choosing the most negative eigenvalue of D("), we cycle through its negative eigenvalues. By

most negative again.

The last case to consider is when the restricted Hessian is singular and positive semidefinite,
although we noticed that it occurs very rarely in practice. The strategy used is the one described
by Conn and Gould [2], which consists of solving the linear system (33) if it is consistent, or
finding a descent direction z otherwise, satisfying

Zg‘)TH(")Zg‘)z =0 and zTZ((;k)Tvm(k)(x(c{c)) <0. (36)

Once z is known, the step s(¥) is finally computed as
sk) = :z:g‘) — k) 4 min(1, a(k)][Z((;k)T]""z, (37)

where [ch)T]"' is the Moore-Penrose generalized inverse of ch)T (that is the operator that
completes a vector in C (:::gc)) with zeros to obtain a vector in R"), and where a(¥) jg the largest
admissible steplength for which the bounds (19) are satisfied at the point z(*) 4 g(k),

6 Numerical experiments.

The test problems we used for our experiments come mainly from the set of functions used by
Toint for testing partially separable codes. They are fully described in [15] and the numbering
we use here refers to that paper. We considered the problems 10 (Rosenbrock function), 11
(Linear minimum surface), 16 (Boundary value problem), 17 (Broyden tridiagonal), 22 (Diagonal
quadratic), 31 (Extended ENGVL1), 33 (Extended Freudenstein) and 36 (Cube problem). For
these problems, we used the starting points as defined in [15]. We also considered five additional
problems, described in the appendix to this paper, so as to allow for other sparsity structures in
our test set. These problems are chosen as representative of a larger set used by the authors.
All the experiments were performed on the CRAY 2 supercomputer of Harwell Laboratory.
Our code, called hereafter SBMIN, is written in Fortran 77 and compiled using the CFT77 Fortran
compiler. All timings reported are CPU seconds.
The initial trust region radius was A(0) — 0.1/g)||5, and we chose kb = 025, n = 0.75,
Yo = 1/4/10 and Y2 = V/10. The stopping criteria we used was based on the order of magnitude
of the gradient (projected on the feasible domain); we required its norm to be smaller than 10-6.
In the tables, the symbol * indicates that the trust region radius has become too small and that
the routine has consequently decided to stop. One must point out, however, that in those cases,
the projected gradient norm was of order 10™*, or even 107, and the failure should be attributed
to numerical rounding errors preventing the accurate calculation of the ratio p (equation (20)).
For each test problem, we consider three different methods, conjugate gradients (cg), di-
agonally preconditioned conjugate gradients (pcg) and multifrontal (multif), to obtain an ap-
proximate solution to the sub-problem (18)—(19). We also consider three ways of computing
the element Hessians: exact derivatives (exact), the Broyden-Fletcher-Goldfarb-Shanno update
(BFGS) and the symmetric rank-one update (rk1). Specifically, in the latter two cases the i-th

element Hessian, A }k) , stored in terms of its internal variables, is updated from the BFGS formula

(8 g (BT I’_.*,i(k)g'(k)é\t(k)Tﬁi(k)

fr(k+1) _ a(k) | Y, _
H" = HY + POLHD ST FRPCIE (38)
or from the rank-one formula
b)) _ p() | FIRET

Here (¥ and j)(k) are, respectively, the change in the internal variables U;(z(k+1) — z(k)), and

t T

the change in the elemental gradient g’ifkﬂ) - ﬁfk), and ffk) is defined as g’.(k) — f}i(k)égk). The

8

Is satisfied. The rank-one update is only made whep the correction has norm smaller than 108,
Le. when

171 < 1085007500,

The initial estimate of each element Hessjap f?{(o) 1s set to the identity matrix when updating
schemes are used. This chojce 1s considered satisfactory as the test problems are reasonably we]]

The figures we report in each Table are the number of function evaluations (f calls), the
number of gradijent evaluations (g calls), and the overall CPU-time (total cpu). Under the label
“linear System stats” we give the number of conjugate gradient iteratjong In the case of the
iterative method or information of the type pd ne sc [ratio) for the direct methods. Here pd is

Table 1 Presents the performance of the different methods on a set of 13 problems. Each
problem wag specified with 100 variables.

pb Hessian method
10

g calls linear System stats totq] cpu

259 2133
272 512 11 0 (1.00) 12.11

BFGS cg 617 380 2883 9.44
pcg 603 368 2016 7.65

multif 348 279 34200 (1.00) 8.70

rk1 cg 1047 617 3037 12.18

pcg 1089 1755 11.27
562 1054 102 (1.00)
80 0.62

31 71 0.85

multif 15 14 1500 (1.89) 0.44

BFGS cg 17 18 154 0.65

pcg 21 19 135 0.80
multif 17 18 1700 (1.89) 0.56
rkl cg 65 35 178 1.35

pcg 53 85 1.32
1878 0 (1.89)

multif

pb Hessian method f calls g calls linear system stats total cpu
16 exact cg 3 4 254 0.94
pcg 4 5 377 1.45

multif 3 4 300 (1.00) 0.11

BFGS cg 20 20 2604 9.80

pcg 17 17 2189 8.40

multif 21 21 20 0 0 (1.00) 0.78

rk1 cg 14 11 836 3.21

pcg 8 7 329 1.38

multif 6 6 410 (1.00) 0.20

17 exact cg 7 8 29 0.17
pcg 6 g 28 0.21

multif 5 6 500 (1.00) 0.17

BFGS cg 11 9 30 0.24

pcg 11 9 32 0.32

multif 11 9 900 (1.00) 0.35

rkl cg 15 9 40 0.32

pcg 11 9 35 0.33

multif 26 9 8 16 0 (1.00) 0.83

22 exact cg 6 7 8 0.05
pcg 2 3 1 0.02

multif 3 4 100 (1.00) 0.04

BFGS cg 22 15 76 0.37

pcg 33 18 77 0.49

multif 25 16 19 0 0 (1.00) 0.69

rkl cg 10 8 10 0.11

pcg 10 8 4 0.10

multif 4 100 (1.00) 0.08

31 exact cg 9 21 0.07
pcg 9 13 0.06

multif 8 500 (1.00) 0.13

BFGS cg 13 11 31 0.15

pcg 13 11 25 0.15

multif 11 9 700 (1.00) 0.22

rk1 cg 13 10 27 0.14

pcg 25 10 25 0.20

multif 15 10 6 5 0 (1.00) 0.31

10

’?b Hessian method fcalls gecalls linear System stats total cpu
33 exact cg 11 12 25 0.10
pcg 7 8 18 0.07
multif 10 11 400 (1.00) 0.13
BFGS cg 19 15 26 0.19
pcg 17 13 23 0.18
multif 17 13 60 0 (1.00) 0.24
rkl cg 17 13 28 0.17
pcg 18 13 27 0.18
multif 37 14 7200 (1.00) 0.73
36 exact cg 1029 618 7827 17.81
pcg 1023 504 4030 11.74
multif 944 562 932 7 0 (1.00) 22.42
BFGS cg 1515 963 9143 25.48
pcg 1410 928 4449 17.00
multif 1189 812 1176 1 0 (1.00) 29.75
rkl cg 3152 1824 9037 35.79
pcg 3087 1804 4616 28.52
multif >10000 - - =
55 exact cg 5 6 4 0.03
pcg 5 6 4 0.04
multif 5 6 200 (1.00) 0.08
BFGS cg 12 9 2 0.09
peg 13 10 9 0.12
multif 13 10 300 (1.00) 0.17
rkl cg 22 10 14 0.15
pcg 15 10 11 0.13
multif 22 10 1200 (1.00) 0.20
56 exact cg 12 13 14 0.16 |
peg 12 13 0 0.22
multif 12 13 110 0 (1.00) 0.39
BFGS cg 19 20 430 1.80
pcg 19 20 452 2.06
multif 19 20 1300 (I.OO) 0.59
rk1 cg 39 25 17 0.69
pcg 32 22 26 0.70
| multif 33 22 1220 (1.01) 0.98

11

m Hessian method f calls g calls linear system stats total cpu
57 exact cg 107 68 1380 5.83
pcg 94 57 741 3.94

multif 15 16 11 0 0 (1.00) 0.47

BFGS cg 75 53 942 4.56

pcg 332 230 741 9.34

multif 24 22 16 0 0 (1.00) 0.82

rkl cg 81 58 1382 6.28

pcg 238 168 605 6.99

multif 24 22 16 0 0 (1.00) 0.83

59 exact cg 8 7 16 0.12
pcg 10 9 18 0.16

multif 12 9 450 (2.68) 0.45

BFGS cg 13 12 21 0.29

pcg 13 12 14 0.28

multif 13 12 1200 (2.68) 0.70

rk1 cg 18 8 31 0.33

pecg 13 10 7 0.24

multif 21 10 611 0 (2.75) 0.94

61 exact cg 13 14 56 0.35
pcg 11 12 25 0.21

multif 11 12 10 0 0 (1.00) 0.54

BFGS cg 33 25 136 1.05

pcg 26 20 66 0.70

multif 26 20 18 0 0 (1.00) 1.19

rk1 cg 45 22 131 1.23

pcg 56 25 45 1.08

multif 116 69 20 88 0 (1.00) 6.18

Table 1 : Performance of the methods on test problems with 100 variables.

This table indicates the viability of the multifrontal method in the context of partially sep-
arable optimization and more than that, we already see that the method seems to be really
competitive with the iterative schemes in some cases. It is not rare that the number of function
and gradient evaluations is significantly reduced and this can lead to significant improvements in
terms of computation time.

Two special points in these results are worth more comment.

1. We first observe that, on problem 22 with the multifrontal solver, BFGS requires the so-
lution of 19 linear systems while rk1 only requires 1! This behaviour is explained by the
conjunction of the quadratic termination properties of the rk1 update and the particular
structure of problem 22. This structure is such that all element Hessians are constant

diagonal 3 x 3 matrices. Because rk1l needs at most p steps to obtain an exact p X p con-

12

stant Hessian, the exact Hessian is obtained after 3 steps in problem 22. These first 3
steps did not require the complete solution of (33) because the test (25) was satisfied. A
fourth iteration and a single linear system solution are then all that is needed to minimize
the quadratic objective exactly. Since the BFGS update does not enjoy similar quadratic
termination properties, more iterations are required to form a good approximation of the
Hessian and to converge.

We also note that, for problem 36 using BF GS, the multifrontal method finds one indefinite
system. This is very surprising, as the BFGS update ensures positive definiteness of the
Hessian approximations. This last property, although true in exact arithmetic, can however
be violated due to rounding errors in the case where the matrix to update has a condition
number of the order of the inverse of machine precision. This is what happens in problem 36:

the conditioning of some element Hessian matrices gradually builds up and finally exceeds
1017

When this situation occurs, it seems inadvisable to keep on updating an indefinite matrix
with the BFGS update. We therefore decided to reinitialize the element Hessian approxima-
tions to the identity matrix, in effect restarting the algorithm. We are well aware that this
technique is merely a “quick fix”, and that a more sophisticate procedure is desirable. Find-
ing such a procedure might however be difficult, because one may wish to detect the bad
conditioning of the element Hessians before negative curvature is actually produced, while
maintaining an unfactored element Hessian representation, as needed in the partitioned
updating framework.

In order to investigate more carefully the relative performance of the methods, we increased

the dimension n up to a maximum of 5000. The results of those experiments are given in Tables 2

to 7 for a subset of our test problems. The problems were chosen as being fairly representative

of the larger set.

13

pb Hessian method f calls gcalls linear System stats total cpu '
961 exact cg 507 453 860 84.4-‘?{

pcg 179 130 327 42.39

multif 26 20 2600 (4.17) 12.53

BFGS cg 52 38 565 25.30

pcg 117 80 550 41.01

multif 26 21 2600 (4.17) 13.37

rkl cg 613 379 771 156.38

pcg 450 280 349 104.35

multif - - - >1200

4900 exact cg = = - >1200

pcg 574 435 848 713.70

multif 36 29 3600 (6.43) 108.26

BFGS cg 133 97 1422 352.69

pcg - - - >1200

multif 32 25 3200 (6.43) 104.66

rk1 cg - -~ - >1200

pcg - - - >1200

multif - - - >1200

Table 2 : Performance of the methods on the test problem 11 for increasing dimensions.

Table 3 :

pb Hessian method f calls gcalls linear system stats total cpﬂ
1000 exact cg 2 3 256 9.18
pcg 2 3 612 22.31
multif 5 6 500 (1.00) 1.75
BFGS cg 15 15 10770 1938.77
pcg - - - >1200
multif 37 32 351 0 (1.00) 14.53
rk1 cg 12 8 823 31.97
pcg 7 6 3085 117.50
multif 11 11 370 (1.00) 4.07
5000 exact cg 2 3 1151 204.75
peg 2 3 1830 332.50
multif 7 8 700 (1.00) 12.19
BFGS cg - - - >1200
pcg - - - >1200
multif - - - >1200
rk1 cg 14 9 184 43.07
pcg 18 10 124 39.07
multif 58 34 11461 (1.01) 105.62

14

Performance of the methods on the test problem 16 for Increasing dimensions.

pb Hessian method f calls g calls linear system stats total cpu
1000 exact cg 13 14 0 1.23
pcg 13 14 0 2.33

multif 13 14 000 (-) 1.23

BFGS cg 21 22 1453 54.41

pcg 21 22 2628 99.46

multif 21 22 12 0 0 (1.00) 5.97

rk1 cg 36 24 17 6.38

pcg 35 26 30 7.81

multif 42 27 030 0 (1.00) 21.10

5000 exact cg 14 15 0 6.62
pcg 14 15 0 12.49

multif 14 15 000 (-) 6.56

BFGS cg 22 23 2170 396.23

pcg - - - >1200

multif 22 23 1100 (1.00) 28.81

rkl cg 36 25 13 29.79

pcg 38 28 35 42.60

multif - - - >1200

Table 4 : Performance of the methods on the test problem 56 for increasing dimensions.

pb Hessian method f calls g calls linear system stats total cpu
1000 exact cg 143 93 1964 81.67
pcg 206 128 955 64.91

multif 17 18 10 0 0 (1.00) 9.45

BFGS cg 210 147 2177 102.33

pcg 560 410 860 134.44

multif 19 17 15 0 0 (1.00) 14.28

rkl cg 218 152 2103 100.51

pcg 673 476 911 152.97

multif 19 17 15 0 0 (1.00) 14.18

5000 exact cg 146 94 1774 382.91
pcg 154 99 735 248.88

multif 18 19 10 0 0 (1.00) 158.42

BFGS cg 289 205 3235 751.54

pcg = = - >1200

multif 20 18 16 0 0 (1.00) 259.90

rkl cg 222 158 2329 559.15

pcg = - = >1200

multif 20 18 16 0 0 (1.00) 252.50

15

Table 5 : Performance of the methods on the test problem 57 for increasing dimensions.

pb Hessian method f calls g calls linear system stats total cpu
1000 exact cg 10 7 23 1.59
pcg 14 11 31 2.31
multif 40 24 6 31 0 (12.13) 52.28
BFGS cg 14 13 44 3.51
pcg 12 11 10 2.33
multif 13 12 1100 (12.13) 15.97
rk1 cg 24 17 12 5.02
pcg 16 13 6 2.82
multif 36 17 2 24 0 (12.04) 36.00
5000 exact cg 19 12 44 15.62
pcg 10 8 16 7.10
multif 16 10 410 0 (52.39) 488.78
BFGS cg 15 14 49 19.93
pcg 13 12 15 14.05
multif 15 14 1400 (51.98) 447.67
rk1 cg 38 19 17 51.98
pcg 19 13 6 16.35
multif 40 21 2290 (52.34) 1070.8ij

Table 6 : Performance of the methods on the test problem 59 for increasing dimensions.

pb Hessian method f calls g calls linear system stats total cpu
1000 exact cg 14 15 64 4.10
pcg 11 12 24 2.32

multif 12 13 1000 (1.00) 10.81

BFGS cg 36 25 151 12.19

pcg 29 22 61 *7.80

multif 28 22 1800 (1.00) 22.37

rkl cg 57 27 175 15.50

pcg 46 25 44 *9.42

multif - - - >1200

5000 exact cg 14 15 56 * 23.58
pcg 11 12 23 16.03

multif 12 13 1000 (1.00) 171.92

BFGS cg 41 29 119 * 62.12

pcg 28 21 67 42.90

multif - - - >1200

rk1 cg 40 24 93 53.55

pcg 75 34 100 82.58

multif - - - >1200

Table 7 : Performance of the methods on the test problem 61 for increasing dimensions.

16

When exact derivatives are available, the multifrontal method seems competitive with respect
to the conjugate gradient type algorithms in many cases. It appears to be also the case when the
Broyden-Fletcher-Goldfarb-Shanno update is applied. If the symmetric rank-one update is used
however, conjugate gradient methods are preferable.

We observe the excellent performances of the multifrontal method when the quadratic model
is convex (see Table 5 for instance). However, if the fill-in of the factorization is too high, the
number of operations for the Gaussian elimination is dominant and the multifrontal scheme is
no longer competitive. A good example of this is shown in Table 6 where the sparsity pattern of
the Hessian is randomly generated.

We observe particularly poor performances of the direct method when directions of negative
curvature are taken. This happens, obviously, more often with the symmetric rank-one update of
the Hessian. Illustration of this behaviour can be found in Tables 3 and 6. The proposed strategy
seems to be clearly inefficient and other strategies must definitely be found to handle such cases,
if direct methods are to be used.

We note that the negative curvature directions generated by the rank-one update are always
taken into account when using our multifrontal approach, in contrast with the (preconditioned)
conjugate gradient technique. This last calculation only considers the first few Krylov subspaces
spanned by the gradient and its successive images by the Hessian approximation, especially in
the early iterations when this approximation may be quite poor and the trust region radius small.
The comparison of the performance of the rank-one update with the (preconditioned) conjugate
gradient and multifrontal schemes, in cases where negative curvature is encountered, tends to
show that this possible neglect of negative curvature in the early stages of the computation
might be advantageous.

We also wanted our algorithm to converge to a local minimum from any starting point. We
therefore ran several additional tests using the same objective functions as before, but with
different starting points. These experiments did not affect the conclusions above.

Finally, in Conn, Gould and Toint [4], the simplest of the updating schemes, the symmetric
rank-one method, appeared to perform better than the BFGS method for many of the problems
tested. In the context of partial separability, this conclusion does not appear to apply. One
could attempt to explain this phenomenon by the fact that it is not uncommon for the projection
of successive search directions into the range space of certain elements to be close to linear
dependence, despite the independence of the overall search directions. Linear dependence of the

search directions can be highly undesirable for the rank-one update.

7 Conclusions.

The numerical experiments show that the use of a direct method instead of an iterative one can
sometimes lead to very significant improvements in terms of computation time. They also clearly
demonstrate that the improvements can be achieved only in cases where the quadratic model
of the function at the current iterate is convex (or at least not too often non-convex) and the
structure of the Hessian is sufficiently regular to avoid high fill-in during the factorization.

When the approximation of the function Hessian is indefinite, the use of directions of negative

17

provide such a code through the Harwell library in the future.

Acknowledgements.

Test problem 55
(a) fi(z) = (zF +22)% — 42, 4 3, (f1=1,..,n— 1).

(c) z=(1,1,...,1).

Test problem 56
(a) fi(z) = (z; + Tip1)e T2 (Zitaip) (f=1,...,n— 2).
(b) z; >0, (i=1,...,n)

(c) :c=(1,1,...,1)

Test problem 57

(a) fi(z) = (i + zigq + z,)t, (i = L...,n-2)
fn-1(z) = (z1 — z,)2,

fn(z) = (xn—l = zn)z-

(c) z= (1,—1,1,——1,...).

18

Test problem 59

(a) fi(z) =gl (i=1,...,n),

filz) =22 % (i=n+1,... ,2n),
where the indices j; are randomly generated between 1 and n in order by subroutine FA04BS
of the Harwell Subroutine Library, starting with the default seed, but with the provision

that any 7; equal to 7 is rejected and the next random number in the sequence taken.

(c) z=(1,-1,1,-1,...).

Test problem 61

(a) f.-(z)=(z?+2z?+1+3m?+2+4x?+3+5z3,)2—4x.~+3, (t=1,...,n—4).

(&} @={L; ey 1)

References

1]

2]

8]

[5]

[6]

(9]

Bunch, J.R. and Parlett, B.N. (1971). Direct methods for solving symmetric indefinite sys-
tems of linear equations. SIAM J. Numer. Anal. 8, 639-655.

Conn, A.R. and Gould, N.LM. (1984). On the location of directions of infinite descent for
nonlinear programming algorithms. SIAM J. Numer. Anal., Vol. 21, No. 6, 302-325.

Conn, A.R., Gould, N.I.M. and Toint, Ph.L. (1988). Global convergence of a class of trust
region algorithms for optimization with simple bounds. SIAM J. Numer. Anal., Vol. 25, No.
2, 433-460.

Conn, A.R., Gould, N.I.M. and Toint, Ph.L. (1988). Testing a class of methods for solving
minimization problems with simple bounds on the variables. Mathematics of Computation,
vol. 50(182), pp. 399-430.

Dennis, J.E. and Schnabel, R.B. (1983). Numerical methods for unconstrained optimization

and nonlinear equations. Prentice-Hall, New Jersey.

Duff, I.S. and Reid, J.K. (1982). MA2T7 - A set of Fortran subroutines for solving sparse sym-
metric sets of linear equations. Report HL82/2225 (C13), Harwell Laboratory, Oxfordshire,
England.

Duff, I.S. and Reid, J.K. (1983). The multifrontal solution of indefinite sparse symmetric
linear equations. ACM Transactions on Mathematical Software, Vol. 9, No. 3, 302-325.

Griewank, A. and Toint, Ph.L. (1982). Partitioned variable metric updates for large struc-
tured optimization problems, Numerische Mathematik, vol. 39, 119-137.

Griewank, A. and Toint, Ph.L. (1984). Numerical experiments with partially separable op-
timization problems, in Numerical Analysis: Proceedings Dundee 1983 (D.F. Griffiths,ed.),
Lecture Notes in Mathematics 1066, Springer Verlag, Berlin, 203-220.

19

[10] Irons, B.M. (1970). A frontal solution program for finite-element analysis. Int. J. Numer.
Meth. Eng. 2, 5-32.

[11] Moré, J.J. (1977). The Levenberg-Marquardt algorithm : implementation and theory. Nu-
merical Analysis, G.A. Watson, ed., Lecture Notes in Math. 630, Springer-Verlag, Berlin,
105-116.

[12] Steihaug, T. (1983). The conjugate gradient method and trust regions in large scale opti-
mization. SIAM Journal on Numerical Analysis, Vol.20, No. 3, 626-637.

[13] Stoer, J. (1983). Solution of large linear systems of equations by conjugate gradient type
methods, in Mathematical Programming : The State of the Art (Bonn 1982), A. Bachem,
M. Grétschel and B. Korte (eds.), Springer Verlag, Berlin, 540-565.

[14] Toint, Ph.L. (1981). Towards an efficient sparsity exploiting Newton method for minimiza-
tion, in Sparse Matrices and their Uses (I. S. Duff, ed.), Academic Press, London.

[15] Toint, Ph.L. (1983). Test problems for partially separable optimization and results for the
routine PSPMIN. Report 83/4 of the FUNDP, Namur.

20

