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Abstract. A new primal-dual algorithm is proposed for the minimization of non-convex objective functions
subject to general inequality and linear equality constraints. The method uses a primal-dual trust-region model
to ensure descent on a suitable merit function. Convergence is proved to second-order critical points from
arbitrary starting points. Numerical results are presented for general quadratic programs.

1. Introduction

In this paper, we consider algorithms for solving general (perhaps, non-convex), con-
strained, differentiable optimization problems. We shall distinguish between linear
equality constraints and general inequality constraints. We thus consider the problem

minimize f(x)
subjecttoAx =b Q)
and c(x) > 0,

where f is a real valued function of the variablgse IR", A is anm x n matrix,
b is a vector of IR, c(x) a function from IR into IRP and the inequalities are meant
componentwise. An important instance of this problem is wd{gh = x, in which case
the inequality constraints reduce to bound constraints. If furtherrflayds quadratic,
we obtain general quadratic programs, which is the framework in which we will present
numerical results. Thus throughoutthe paper general (nonlinear) equality constraints are
excluded. Most likely they would be best handled using augmented Lagrangian terms
or one of the alternative penalty function terms designed for equality constraints.

At variance with our previous paper for the case) = x, (Conn, Gould and Toint,
1999), we shall assume that we have a strictly feasible startingxagiie. strictly with
respect to the inequalities. Thus we require that

A.R. Conn: IBM T.J. Watson Research Center, P.O.Box 218, Yorktown Heights, NY, USA,
e-mail: arconn@watson.ibm.com

N.I.M. Gould: Rutherford Appleton Laboratory, Computational Science and Engineering Departement,
Chilton, Oxfordshire, England, e-maii:gould@rl.ac.uk

D. Orban:CERFACS 42 Avenue Gaspard Coriolis, 31057 Toulouse Cedex 1, France,
e-mail: Dominique.Orban@cerfacs.fr

Ph.L. Toint: Facultés Universitaires Notre-Dame de la Paix, 61, rue de Bruxelles, B-5000 Namur, Belgium,
e-mail: Philippe.Toint@fundp.ac.be



216 Andrew R. Conn et al.

There is anxg such thatAxy = b andc(xo) > O.

We do this for anumber of reasons. In our experience, good primal-dual methods applied
to the pure feasibility (phase-1) problem, when the only general nonlinear constraints
are bound constraints, are usually very effective. Either a point satisfying AS.1 is rapidly
determined in this case, or when this is not so, this is because the feasible region is small
and thus the resulting point is close to its optimal value — of course, AS.1 may not hold,
either because there is no feasible point, which will be detected by the phase-1 algorithm,
or the feasible region has no relative interior, in which case it is sometimes possible to
remove one or more offending constraints. More importantly, knowing a strictly feasible
point leads to considerable simplifications over our previous algorithm. Indeed, most of
the complications were due to the need to balance feasibility and objective improvement.
Furthermore, by staying on the manifofds = 0, it is easier to ensure that the natural
curvature of the problem (that is, the projected Hessian in the corresponding null-space)
is reflected in the direction-finding subproblems.

Besides covering general nonlinear inequality constraints instead of simply bounds
on the variables, this paper differs from its predecessor in another, significant way. The
algorithm considered in our previous paper is of the linesearch variety. That is, a search
direction is computed from the current estimate of the solution, and a suitable step then
taken along this direction with the aim of reducing a merit function. The approach we
consider here is an iterative trust-region method, in which the computation of search
direction and step are combined. While in practice the two approaches often behave
very similarly, a trust-region algorithm combines simplicity with strong convergence
properties. In particular, trust-region methods can often be shown to be convergent to
second-order critical points. It is these convergence guarantees that we find particularly
attractive for non-convex problems.

Readers of our previous paper will also notice that we shall make a stronger distinc-
tion between the “outer” iteration, in which the parameters which define the particular
meritfunction used are changed, and the “inner” iteration, in which a trust-region method
is used to approximately minimize the merit function for a particular choice of the para-
meters. The distinction we use here makes it easier to distinguish the convergence of
the inner iterates from the overall convergence of the method.

Not surprisingly, given the success of primal-dual interior point methods in linear
programming, there has been considerable interest in extending such approaches to
the general nonlinear case. However, the non-convex problem is considerably more
difficult. A good discussion of some of the issues that arise in the non-convex case is
given in Wright (1992, Sect. 3.4). We mention here some of the more recent work.
Because of the increased complexity, details are important. In particular, the role of
the merit function, treatment of indefinite Hessians and the implementation are criti-
cal. Yamashita, Yabe and Tanabe (1997), use a trust-region method with exact second
derivatives. Equality constraints are handled vid apenalty and simple bounds by
means of a log-barrier. Inequalities are converted to equalities with slack/surplus vari-
ables. They motivate taking a trust-region approach by the need to handle indefinite
Lagrangian Hessians. By contrast, Forsgren and Gill (1998) take a linesearch approach
that uses a classical quadratic penalty and log-barrier term to handle general equality and
inequality constraints respectively, but augmented by terms that measure the proximity
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to the central path. Directions of negative curvature are determined via inertia con-
trolling symmetric indefinite factorizations. Bakry, Tapia, Tsuchiya and Zhang (1996)
use a linesearch framework and handle inequalities with slack/surplus variables. Their
computational results are given with a merit function that id sheorm of the residual

for the first-order necessary conditions. Because of the tendency of this approach to
converge to critical points that are not minima, Vanderbei and Shanno (1997) prefer
using a merit function that handles the equality constraints as quadratic penalties and
the slacks as barrier terms. Their context is also that of a linesearch, and indefiniteness
is handled by modified Hessians. Gay, Overton and Wright (1998) also use a linesearch
and handle indefiniteness using modified Hessians. Their merit function is a classical
barrier function with an augmented Lagrangian to handle general equality constraints.
In addition they use a watchdog technique. Finally, Byrd, Hribar and Nocedal (1997) use
a sequential quadratic programming trust-region approach and a barrier function. Es-
sentially, inequality constraints are transformed to equality constraints that are handled
explicitly and the slacks are incorporated into the merit function as log-barrier terms.
This problem is solved approximately (using multipliers corresponding to a shifted
(augmented) Lagrangian plus the barrier function) with a merit function corresponding
to a threshold on ahy, norm of the residual of the first order optimality conditions.
This in turn is solved by means of an SQP method and the Byrd-Omojokun trust-region
approach. Both primal and primal-dual versions are proposed.

2. Notation and assumptions
2.1. Basic notation and assumptions on the problem

Let P = {x | c(x) > 0O} be the set of points satisfying the inequality constraints,

L = {x | Ax = b} be the set of points satisfying the linear equality constraints, and so the

intersection® def P N L is the set of feasible points. Also let stfi¢tdenote the strictly

feasible set with respect to its argument, which means that{®ict {x | c(x) > 0}.
If we denote the Euclidean inner product py-) and lete be the vector of all ones, we
shall assume that

the functionsf(-) andc(-) are twice continuously differentiable in their
argument over some open set containfig

AS.3 the matrixA has full rank, and

AS.4 the function f(x) — r(e, log(c(x))) is bounded below o for every
> 0.

Assumption AS.2 (along with the later assumption AS.5 simply ensures ¢kat
is well behaved in the region of interest. Since under AS.1, the constraints b
are consistent, AS.3 may be guaranteed by preprocessing the rovdcofemove
redundancies (although we do not pretend that this is necessarily an easy task in practice).
Assumption AS.4 might at first seem strong, but it is intended merely to rule out
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functions which grow more slowly at infinity than the log function. For such functions,
the logarithmic barrier approach we consider in this paper is unlikely to succeed as the
global minimizer of the barrier function is unbounded. In practice AS.4 can be expected
to rule out few problems of interest.

In what follows, thei-th component of a vector is denoted byx];. We denote
the diagonal matrix whoseth diagonal is the-th component of the vectar(x),
G (X) = [c(X)]i, by C(x). Then by n identity matrix is diage) = |, and itsi-th column
is . The vectorgy will be shorthand foig(xk), whereg(x) denotes the gradient of the
objective function ak, Vy f(x). We let the columns of tha by n — m matrix N be
an orthonormal basis for the nullspace/s{so AN = 0 andNT N = I). Finally, any
continuous functiow : R, — IR, is a said to be &rcingfunction if w(x) = 0 if and
only if u = 0.

We denote the smallest and largest eigenvalues of the symmetric idddyix™"[ M ]
andA™[M]. Such a matrix is said to ks=cond-order sufficievith respect tdd) if and
only if the reduced matridN™ MN is positive definite (see, for instance, Gould, 1985).

2.2. Norms

Because proper scaling is crucial in our algorithm, we need to consider a humber of
different norms whose purpose is to reflect the geometry of the problem. The first is
simply the Euclideaii; norm, which we shall denote by the symljel|. For this norm,

we have the relationship

IXI = miaX|[X]i| = IIxIl 2

for any vectorx. If Sis a symmetric positive definite matrix, our second norm isShe
norm ofx, [|x||s, for which[|x[|Z = (x, SX.

It what follows, we shall choose to measure gradients and related quantities in
a seminorm induced by a second-order sufficient iteration-dependent scalingMhatrix
wherek is the index of the current iteration of our algorithm. We definekdseminorm
of a vectorg, ||gl|k, by

def
gz, = (v. 9), 3)

(%) ()- ()

This is actually a norm on the nullspace Afif g lies in this nullspace, and measures
deviations from its range-space. In particulgfijx; = 0 if and only if || NTg| =0.ltis
easy to show that (3) may be expressed as

wherey solves the system

I9lipg = INT Gl (N7 MeN)-1- 4)

In addition, because the gradients can be interpreted as linear forms on the space
of the problem variables, it is natural to measure quantities directly involving these
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variables, such as the size of the trust region, in a seminorm corresponding to the dual

of || - llng in the nullspace ofA. It is easy to verify that such a seminorm is given by
sl = | NTS”NT mN» and is, in fact, a norm in the nullspace &f As a consequence,

for all v, s € R" such thatAs = 0, i.e. such thas = NNTs, we have that

1 1
(v, 9] = [((NTMkN) "2NTw, (NTMN) ZNTs)| < [Jvllig lISlik. (5)

because of the Cauchy-Schwarz inequality. We stress that there is no négdifeelf
to be positive definite, merely th&™ MN should be. IfU is any symmetric matrix,
we also define the reduced matrix

RIU. Mid ' (NTMN) “2NTUN(NT MN) 2,

Nl

its smallest eigenvaluegy; [U] = 2™ [R[U, Mk]] and

def
Ul = IRV, Mi]Jl.

We note that, again because of the Cauchy-Schwarz inequality,

1 1
(s, Us)| = |((NTMkN)2NTs, RIU, M (NTMeN)2NTs)| < (Ul lISIE (6)

for everys such thatAs = 0. We also note that the inertia &U, Mx] andR[U, |] =
NTUN are the same. In particular, we have that

”,Q},”k[U] > 0 is equivalenttor]"[U] > O. @)

We finally write ||v]|. def INTv| = |INNTv||, the Euclidean norm of the projection of

v onto the nullspace oA\, and observe thdt- ||, is a self-dual norm in this nullspace.

3. The algorithm

Our algorithm is basically a sequential minimization of a logarithmic barrier function
subject to linear constraints, i.e. we propose to (approximately) solve

minimize ¢(X, k)

subject toAx = b, (8)
where
P(X, i) = F() — pi(e, log((c(x))), 9)
for a sequence of barrier parametgiis > 0,k = 1,2,..., whose limiting value is

zero. An approximate minimizer of problem (81, defines amuter iterate and the
associated adjustment of the barrier parameter and other tolerances defioetethe
iteration. Outer iterations will be indexed by the subsciipt= 0. Each outer iterate
Xk+1 is computed by using an appropriat@er iterationalgorithm to approximately
solve (8), with a corresponding sequencenofer iterates{xy j}. We now consider the
inner and outer iterations in turn.
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3.1. The inner iteration

We start by examining the inner iteration, whose purpose is to approximately solve (8)
for a given valueux > 0. The idea behind the algorithm we propose for this purpose
is simply to apply a standard Newton-like trust-region method with the restriction that
the iterates lie in the nullspace 8f At iteration(k, j), such a method would typically
attempt to decrease the value of a quadratic model of the log-barrier function of the form

M j(Xk,j +95) = f(Xkj) + (Ok.j,S) + 3(s Hijs)
— ke, log(c(xk 1)) — uk( ;Crje. 9)

p
1
T ~—2
+huk(s W G2 s — b Y. S
i=1 ’

(10)

(s, Vxei‘k,jS%

within a trust region, where the first three terms constitute a quadratic model of the
objective functionf with Hy j being an approximation d¥xx f(xk j), where we write

Jj = JXkj): Ckj = C(Xk j) and whereQj k j approximates/xxCi (X j). However,

when applying this method in practice, one often notices that convergence of the iterates
X, j slows down considerably whenever they happen to be close to the boundary of
This is because the singularity of the logarithm then plays a dominantrole, which means
that quadratic models of the log-barrier function, while very adequate locally, do not fit
the barrier function well. One way of alleviating this numerical problem is to abandon
the analytic expression for the local second-order behaviour of the barrier term and to
replace it by a term whose growth would be, we hope, less dominant. In primal-dual
methods, we choose to replace

P P
Hi,j +MkJ|ZjC|ZJ-ZJk,j - Z : L —Qikj by Hkj+Bkj— Z[Zk,j]iQi,k,j,
i=1

i=1

where
def _
Brj = J-ck,jlzk, i (11)
for some bounded positive diagonal matzi j. In other words, we consider the model
M j(Xkj +9) = fkj) + (kj. S) + 3(s HkjS)
— k(e log(c(xk i) — uk(J¢ ;Crje §)
p

+3(s, Bk js) — 3 Z[Zk,j]i (s, QikjS
i—1

instead of (10). Defining

p

def

Gy j = Hij — E [Z,ji Qikj» 12)
i—1

we obtain that our model has the form

M Xk +9) = dO j, k) + (O j — 1k jCic > S) + 3(S [Gk j + Brjls).  (13)
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Note thatGy j is an approximation of the Hessian of the Lagrangian function

Y(X, 2) = f(X) — (z, c(X))

at (Xk j, z«,j) with respect te, that isGg j & Vxx¥(Xk.j, Zk j)-

Interestingly, as is well-known, there is another way to motivate this modification
of the barrier model's Hessian, using a perturbation argument. Consider the first-order
necessary conditions for the problem of minimizing the model of the objective function
on the feasible set, namely

gx)+ATy—Jx)Tz=0, Ax=b, Cxz=0, cx) >0 z>0 (14)

wherez is the vector of dual variables (Lagrange multipliers) for the inequality con-
straints andy is the vector of Lagrange multipliers associated with the equality con-
straints. The third equation of (14) is known as the probl@mraplementarity condition
Notice that it expresses a true combinatorial requirement: “if a constraint is non-zero,
then its corresponding dual variable must be zero” and vice-versa. As combinatorial
conditions may be very hard to satisfy, especially for large problems, we perturb them.
Introducing a small perturbation parameter- 0, we then write

gx) +ATy—Jx)Tz=0, Ax=b, CXz=pe ¢cx)>0, z>0.

Newton’s equation for this system of nonlinear equations at some inner itegate j )
and for some valugy of the perturbation parameter are

Gk jAXK ] + ATk jr1— I¢ AZj = —Ok | + Z |
AAxgj =0 (15)
Ck,j Azk,j + Zk,j NS Axk,j = uke— Ck,j Zk,jev
whereZy j = diag([z jl1, ... . [z jIn) and where we have writtey j+1 = Yk j +
Ay j. lgnoring the non-negativity conditions and eliminatingy j in (15), we obtain
the system
N _ . T ~-1
A 0 Yk, j+1 0
and
AZgj = —2j — Cijle’j ‘]k,j AXg | + V“kclz,jle' an

We then note that the first component of right-hand side of this relation is nothing but the
negative gradient of the log-barrier functionVxo(X, k). Moreover, these equations
are precisely the first-order optimality conditions for the problem of minimizing the
model (13), subject to the constraimia\x, j = 0. HenceAxy j may be interpreted as
a constrained Newton-type step 6, uk). This is exactly what we proposed above,
and we would like to emphasize that we now intergggtas the vector of dual variables.

We may therefore wish to compute the step from (16)—(17), but some additional
precautions are necessary. Note that (16) fully defiogsj, andyy, j+1 provided AS.3
holds and the matri$y j + By j is nonsingular on the nullspace Af This is obviously
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the case iff(x) is strictly convex, but may not be true in general. More significantly,
(16) is inappropriate iGy j + Bk j is not second-order sufficient, as thamy ; at best
defines a saddle point for the model. Thus the model should either be modified, as we
proposed for the case of bound constraints in a previous paper (Conn et al., 1999), or
restricted by a trust-region constraint, as we propose here. Observe also fwag; if

is well defined,Azj is in turn well defined by (17). Of course, there is no automatic
guarantee that(xy, j + AXk j). Zk j + Az j) > 0 so we would need to be careful before
allowing such a step. Moreover, the fact thax, k) = uk(e, log(c(x))) is undefined
whereverx does not belong to strigP} creates a difficulty, for nothing in the above
derivation prevents from predicting a stapy j such thaiy j + Axy j & stric{P}. The
valueb(Xk j + AXk j, uk), and thereforg(xx j + Axy j, k), are then undefined, and

the algorithm breaks down. Fortunately, such undesirable algorithmic behaviour can be
circumvented quite simply. The idea is to observe thatyif + Axy j lies outsideP,

this is merely an indication that the modek ; does not approximate the objective
d(Xk.j + s, uk) very well. In particular, this indicates that a smaller step fregm

(which must lie insideP) is necessary. A simple technique is to restrict the trust-region
radius enough to ensure thatj + Axy j € strict{P}, which must occur wher\y j is

small enough to enforce that

B i dzef{xk,j +seR"| As=0 and |s|kj < Ak j} C stric{P}.

The crucial point is that this restriction may be decided without even trying to compute
the (undefined) function value &t ; + s j, therefore avoiding the situation where the
algorithm breaks down. Thus iteratigris viewed as unsuccessful ang j is reduced
whenevexy j + AXg j falls in the region where the barrier function is undefined. If this
is not the case, the trial stepj = AXy j is acceptable.

Itis important to notice that we are prepared to solve the trust-region subproblem

minimize my j (Xk j + )
subjecttoAs=0 (18)
and [sllkj < Akj.

only approximately, in that we merely aim to improwg j (X, j + S) while satisfying

the remaining constraints. In particular, there is no evidence in general that finding
an accurate solution is especially beneficial. Thus, we may be satisfied to find an
approximation which guarantees convergence, knowing that any extra effort may be
expended when necessary. To this end, we assume that trs pisghosen so that

Micj (Xk,j + Sk j) < Micj (X j)

IVxd Xk, j> i) ik, j1
Bk, j

-0 max{ [ Vxp(Xk, j > 1) Ik, ) Min [ , Ak,j] , (19)

— 'L'k’j m|n|:fl€] . Aﬁ]]}
wheref € (0, 1),

Bej=1+1Gk;j + Bkjlikj)y and wj = Ay [Gkj + Bk jl. (20)
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This assumption is usual in trust-region methods. Bec@usegives a bound on
the curvature of the quadratic model, in the reduced space and scaled, the first term in
the maximum guarantees that the model reduction is at least a fraction of that obtained
at the Cauchy point, while the second term ensures that negative curvature is exploited
when present. Projected conjugate-gradient/Lanczos-like methods are able to produce
such a step at a reasonable cost (see Gould, Lucidi, Roma and Toint, 1999).

The actual choice of norm in the second constraint of (18) is important. We believe
that the norm defining the trust-region shape should reflect the underlying geometry
of the problem, and the freedom of choice of the matvlx; defining this norm
will allow us to capture this geometry. A natural choice in this context is to choose
Mk j = VxxiMk j(Xk j) = Gk j + Bk j. However, this matrix may not be second-order
sufficient, in which case we may have to mod®y, j to ensure this property (remember
that, by definition By j is positive semidefinite). To reflect this possible modification,
we define

Mij = Wi j + By j, (21)

where, for instancefVi j = Gy wheneveleJ + By j is second-order sufficient.
The algorithm that we propose for the inner iterations is presented as Algorithm 3.1.

Algorithm 3.1: Inner iteration

Step 0: Initialization. An initial poinky o € strict{ P} N £, a vectorz, g > 0 of dual variables and an
initial trust-region radiusAy o are given. The constantg, 11, 72, y1, andy, are also given and
satisfy the conditions & ¢k < 1,0< 1 < 2 < 1and O< y1 < y» < 1. Computef(xy o) and
C(xk.0) (if not already known) and sgt= 0.

Step 1: Model definition. Choose the scaling malvfi j according to (21) and define, B j, a model
Mg j of (X j + S, k) Which is of the form (13).

Step 2: Step calculation. Compute a sigp such thaiy j + s¢ j € Bk j and such that it sufficiently
reduces the modefy j in the sense of (19).

Step 3: Acceptance of the trial point.  If
CXkj +Skj) = skC(Xkj), (22)
computep(xk j + Sk j» #k) and define the ratio

. PO k) — POk j Sk KD
DT M () — Mk (X FSej)

else sepy j = —oo. Then if px j > 0y, definexy j 11 = Xk j + S j; otherwise definey j 1 =
XK, j -
Step 4: Trust-region radius update. Set

[Ak,j>0) it ok j = n2.
Akj+1 €\ 28k j, Akl if pj € n1, m2),
14k j, 22kl if pkj <1

Step 5: Update the dual variables. Defig 1 > 0. Incrementj by one and go to Step 1.
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The only differences between this algorithm and a standard trust-region method,
besides the fact that the objective function is np@, k) instead off(x) and we are
accounting for the linear equality constraints by working in the corresponding reduced
space, are the requirement that the initial point must li¢ @md the interior of> and the
fact that an iterate is rejected if (22) does not hold. We have intentionally not specified
how the parametef is chosen for each inner minimization. This parameter specifies the
minimum relative value of the inequality constraints which is acceptable in the course
of the current minimization. The fact that it is not fixed but may itself tend to zero as
k increases makes fast asymptotic convergence of the outer iterates possible, but we
do not discuss this question in detail. Also note that the possibility of chodsingi
as large as one wishes on successful iterations may be important in practice, because
it allows the trust-region radius to return to a reasonable value as soon as a successful
step is made, instead of being constrained to remain of the order of magnitude of the
distance ofk j to the boundary oP.

Iterations at whichpk j > 51, and thus the current iterate is redefined, are called
successful. We denote I§the set consisting of the indices of all successful iterations.

3.2. The outer iteration

After describing the mechanism of the inner iterations for finding an approximate
minimizer of (8), we now consider the outer iteration to solve (1), which we formally
state as Algorithm 3.2.

Algorithm 3.2: Outer iteration

Step O: Initialization. An initial poinkg > O that satisfiesAxx = b, a vector of initial dual variables
zp > 0 and an initial barrier parametgiy > 0 are given. The forcing functions (1), €® (1) and
€E(n) are also given. Sé¢= 0.

Step 1: Inner minimization. Choose a valgies (0, 1). Minimize the log-barrier functiop(x, k) =
f(X)— k(e log(c(x))) starting fromxy . Stop this inner algorithm as soon as an itecatg; , zy, j) =
(Xk+1+ Zk+1) is found such that

AXcp1 = b (23)
(C(X%+1),Zk+1) > 0 (24)
1CO%4+1) Ziy1 — k! | < € (k) (25)
lok1 = A2kl peqy = €Guo and (26)
Misr [Grer1 + Biga] = —€“Gy). (27

whereMyy 1 = M j. Incremenk by one, and repeat Step 1.

Our intention is to find a point which satisfies (23)—(27) by applying Algorithm 3.1 to
approximately solve (8), assuming for now that it converges to a second-order critical
point, that is a point at which first- and second-order necessary optimality hold, for this
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subproblem. For, ikg .« were such a point, the conditions

Axc.=b (28)
c(Xkx) > 0 (29)
NT V(X 11k) = NT(9Xk) — sy J0k) TCO ) "7€) =0 and  (30)
A" [NT V(X . k)N > 0 (31)
must occur. On defining
Zx = ikC(Xx) e > 0, (32)

we see from (30) that
NT (90 ) — IXk+) "2k x) = O,
and by definition
C(Xi#) Zi s« — pkl = 0.
Moreover

Vs Xixr 11k) = Vex FXkx) + 1k Ik x) T COk i) 2 I (X 1)
P
1
— ik ) —— VxxCi (Xk %)
1% ; Ci(Xk,*) xxGCi (

and thus, taking (32) into account and assuming that the m&igi>xconverges to
Vix¥W Xk, Zk «), We see thaGk + By converges toVyx¢(Xk «, 11k). Combining these
conclusions, we therefore obtain that any inner iterate sufficiently cloge.tprovides
a suitable terminating value satisfying (23)—(27).

We should also add a comment on the terminating condition (27). The aim here
is to ensure that second-order necessary conditions for the solution of (1) are implied
by requiring that similar conditions hold for (8). However, one naturally expects that
second-order conditions for (8) would involve the matrix

NT Vixp (X, i N (33)
not
NT (G + By) N. (34)

The reason we base our terminating condition (27) on (34) rather than (33) is simply
that Algorithm 3.1 uses this matrix rather than (33) at its core — spectral information
will thus be conveniently available for (34) but not for (33). Of course (33) and (34)
coincide whergy is defined via (32), and the two matrices can be expected to be close
whene©(uk) in (25) is small.

The variableszy computed by the algorithm are estimates of the dual variables
associated with the inequality constraints at a solution of (1). The particular choice (32)
is appropriate at a critical point of (8), while it is less suitable away from such a critical
point. As we shall see, there are better choices in this latter case.
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The seminorm used in (26) is the appropriate measure of convergence of the gradient
since, as we mentioned above, the trust region is defined in the dual to this seminorm in
the nullspace oA, | - |lk+1. At first sight, we may question whether it is reasonable to
expect global convergence properties of both the inner and outer algorithms if we use
the scaled norms. The question arises because the mattiggsblow up when, as is
highly likely, the iterates approach the boundary of the feasible set. It is fortunate that
global convergence to critical points may still be proved with the scaled formulations,
as we will shortly see.

4. Convergence theory

In this section, we consider the convergence of Algorithm 3.2, where we intend to use
the inner-iteration Algorithm 3.1 to calculate each of the iterates.

4.1. Further assumptions

The iterates generated by the algorithm remain in some regioner

which the Hessianyyxx f(x), of f(x), as well as the Jacobiab(x) def

Vxc(x) and each of the Hessiangc;(x) are uniformly bounded in
Euclidean norm.

As we already mentioned in the introduction, assumption AS.5 is required to ensure that
the functions of the problem are well behaved in the region of interest.

In addition, in order to prove the desired results, we must state our assumptions on
the dual variables and on the matf ;.

For eachk > 0, there exists a constant(k) > 0 such that, for alj > 0
andalli =1,...,p,

[zxili <Kui(K) max|: = 1]
jili = Kzi B .
“ Ci (Xk,j)

AS.7 | the approximate Hessian of the Lagrangian remains bounded, i.e.
Gk jllkjy < «c

forall k, j > 0, and for someg > 0,

Note that, because of AS.2, AS.5 and AS.6, AS.7 is automatically satisfied if the
appropriate exact values are choserHgr andQ; i j. We finally state the assumptions
on the scaling matrices and require that

there existssm € (0, 1) andk, > O such that, for alk and all j, the
scaling matrixMy j = Wk j + By j and its componendl j satisfy

A" NT M jN] = em (35)
and
INTW N < s (36)
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As a consequence of the first part of this last assumption, we note that
T -3NT T -3 1
IU iy = [[(N" M jN) "2ZNTUN(N" M jN) 2| SJHUH (37)

for every symmetric matrikJ.

4.2. Convergence of the inner iteration

We first prove that conditions (23)—(27) will eventually be satisfied after a finite number
of iterations of Algorithm 3.1. The main idea is that we may apply a variation on
a traditional trust-region algorithm for unconstrained optimization in the subgpate
all vectors satisfying the linear constraints. Unless otherwise stated, we assume in this
section that® = €° = ¢ = 0.

We start our analysis by showing that, as expected, the iterates generated by Algo-
rithm 3.1 will never become infinitely close to the boundaryof

Lemma 1. Suppose that AS.1-AS.5 hold, and that;} is a sequence of iterates
generated by Algorithm 3.1. Then there exists a congigi) € (0, 1) depending only
onk such that, for allj,

i_rlnmnci Xk j) = «kpk), (=1,...,p).
Proof. Clearly, the level sefx € P | b(x, u) < b(Xko, #)}, and thus ofp(xk 0, 1),
must be bounded away fro#®P. The existence ofp (k) then results from the inequality
d(Xk.j» k) < ¢(Xk 0, uk) Which is true for allj > 0. Moreover, it can always be chosen
small enough to ensure that it belongg@o1l).

O

This result is crucial because it states that all arguments that use a sequence of trust-
region radiiAg j converging to zero will not be hindered by the restriction of remaining
in the interior of P. Note that AS.6 and Lemma 1 together ensure that, for fixadd
alli andj,

Kzi(k) d=9f
Kb (K)

wherex; (k) only depends ok. Also note that the first part of (20), the triangle inequality,
(37), AS.7, Lemma 1 and (38) together imply that, forkadind j,

kz(K), (38)

[z <

iz(K)e5 get
emip(K)

Bri <1+ Gkl ) + IBijllkjy < 1+kc + kp(K),  (39)
wherexy > 0 is the upper bound oifJ(x)|| implied by AS.5. The bound (38) is
important because it guarantees, together with Lemma 1, that all scaled norms used
during a single inner minimization are uniformly equivalent, as we now show.
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Lemma 2. Suppose théix j} is a sequence of iterates generated by Algorithm 3.1 and
that AS.1-AS.6 hold. Suppose furthermore May; satisfies AS.8. Then there exists
a constank, (k) > 1 only depending ok such that, for allj (and fixeck) the seminorms

- llkj and| - Ik j) satisfy

vl < llvlle < koK) NIVl j s

1
Kn(K)
and

——lv|l < vllo < k() lv]]

vk i v Ky vk i1,
(K kjl = o= [k.j]
for all v € IR".

Proof. We start by proving the first series of inequalities. First notice that the result
obviously holds ifNTv = 0. We therefore restrict our attention to vectdtSv = 0.
Suppose first that

(NTv, (NTW jN)NTv) < (NTv, (NT B jN)NTw). (40)
Then, using (38), Lemma 1 and AS.5,

Il j = INTUIRry, = (NTv, NTIWkj + B jINNTv)

IA

2NN, (3f,C1Z, ;3 j)NNT )

217 (K 41
o 205 N2 “n

i (K)

27 (K)ic2

= I jv|l3.
Kb (K)
If, on the other hand, (40) does not hold, then
||v||ﬁj = (NTv, NT[Wij + By jINTv)

< 2(NTw, (NTWijN)NTv)

42
< 2icu[INTo|? 2
= 2icu V113,
because of (36). Combining (41) and (42), we obtain that
. Kb(k) 1
min llig; < llvl2. (43)
2Kz(k)KJ Kw

Turning to the other inequality for the seminofim| j, (35) implies that, for alb # 0,
if we letw = (NTMy ;| N)2NTo,

1
2

1012 ((NTMjN) ">w, (NTMkN) 2w)
lwig; ~ ((NTM N N)ZNTu, (NTMicjN)ZNTy)
< [ (NTMiN) 7
=

1
v
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This inequality and (43) together prove the desired inequality foff thg j seminorm

with
1 2Kk
k(K dzefJ max|:—, 2(K)c5 , 2KW:|.

em  kp(k)

The proof of the second set of inequalities in the theorem is obtained by a similar
argument involving NT My j N) 1 instead ofNT My j N, since the eigenvalues of the
former are then contained in the interval

K 1 1 27 (K)ic2
min L)z’_ ,— | instead of | ey, max M,ZKW
2c,(K)K§ " 2w | €m ip(K)
for the latter.
O

Alast useful consequence of Lemma 1 is that there is a neighbourhood of each iterate
Xk,j whose diameter only depends losuch that (22) holds in this neighbourhood.

Lemma 3. Suppose that AS.1-AS.6 and AS.8 hold, and #gt is a sequence of iter-
ates generated by Algorithm 3.1. Then there exists a cong{éit € (0, 1) depending
only onk such that, for allj,

Gi(w) > skCi(Xj) (=1...,p)
for everyw € F such that

lw— Xk jllkj < kx(K).

Proof. Assume, for the purpose of obtaining a contradiction that there exists some
w e F,somei € {1,..., p} and some iterat& ; generated by Algorithm 3.1 such
that

(1= g1xp(K) det

lw—Xgjllkj < o, Kx(K) (44)
and
Gi(w) < 6kGi (Xk,j) (45)
for somei € {1,..., p}. Letv € [k j, w] be the point in that segment which is such

thatci(v) = ckGi(xkj) and which is closest (in thg - ||k ; seminorm) toxy j. Note
that v must exist because of AS.2 and is unique because of AS.8. AS.2 also implies
that

GkCi (XK j) = G (V) = G (XK j) + (VxGi (), v — Xk j) (46)
> Gi(Xk.j) — IIVxC E) ik j1llv — Xk j llk, j (47)
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for somet e [xk j, v], where we used (5) to deduce the last inequality. But the definition
of v and the inclusionxy j € F imply that the segmerii j, v] is also included inF.
Hencef € F and we may apply AS.5 and Lemma 2 to bouindci (¢) ||, j; above by

Kk, (K)x 3, which implies, using (47), the bouniéd — Xk jllk j < llw — Xk j Il j, Lemma 1
and (44), that

0> (1—gCi(Xkj) — ka(KK3llv — Xk jlIk j

v

(1= sxpk) — Kk, (K gllw — X j llk,j

3(1— ik
> 0,

v

which is impossible. Hence no suahi andj can exist and the lemma is proved.
]

We now consider the error between the predicted and the exact objective value at
the trial point as follows.

Theorem 1. Assume that AS.1-AS.8 hold. Assume also that is generated as in
Algorithm 3.1 and that

Ak j < kx(K) (48)
then we have that,
(XK + Sk k) — Micj Xk j + )| < k(KA. (49)
where
def 1 Mng kK Kz(k)l(g
Kkp(K) = 3KkG + e |: f 202 P® T o } , (50)

where the constantss andx are, respectively, the upper bounds |pay f(x)|| and
I VxxCi (X)|| implied by AS.5.

Proof. Taking the difference of the second-order Taylor’s expansiamaridmy ; and
considering absolute values yields that, for s@mgin [X j, Xk,j + S j1,

[d(Xk + Sk, k) — Mij Xk j + Sk ) = 31(Scj, VaxdEk,js )
— (S j» VxMi j Xk, S (51)

because of AS.2 and (13). Lemma 3, the boilad ||k, < Ak j and (48) then ensure
that (22) holds and that the segméxt j, Xk, j + S j1 belongs taF. Thus AS.1, AS.5
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and (37) imply, using Lemma 1, that

IVxx G ol fy = 1¥xx & Dl jy + s 3Gk DT CGE D 723D [

p
1
——IVxxGi i ;
1 +uk;q(xk’j)ll G &)k )
-~ a[”vxxf(fk‘j)n + | 3 ) TCE ) 23|
p
1
—— | VxxGi i
+Mk§ci(xk,j)|| i)l
2
- HkKS MkKc
=< €M |:Kf + gflcb(k)z §ka(k):|
d:ef k1(K).

Similarly, using (38) and (13), we obtain that

kz(K)K5 e
emkp(K)

VxxMi j Xk, ) Tk, < IGkj lik.jy + 1B j Ik, j) < kG + Kk2(K).

Thus (51) yields that

|p(Xk + Sks pk) — Mij (X j + S )] < 31(Skj» VxS j)]
+ 318} VxMi j (X j)S )|
< 3e1(K) + 2K I 12 (52)
< Kkp(NAE .
as required, where we successively used AS.7, the triangle inequality, (6) and the fact
thatxy j + scj € Bk,j imply that||sjllkj < Akj-
|

We therefore see that the error between the objective function and the model de-
creases quadratically with the trust-region radius. The smaller this radius becomes, the
better the model approximates the objective, which intuitively guarantees that minimiz-
ing the model within a sufficiently small trust region will also decrease the objective
function, as desired.

We next show that an iteration must be successful if the current iterate is not first-
order critical and the trust-region radius is small enough.

Lemma 4. Assume that AS.1-AS.8 hold and there existg:a 0 such that

[ Vx@(Xk,j» )l j1 = kg (53)

for all j and giverk. Then there is a constarf (k) > 0 only depending ok such that,
forall j,

Axj = ka(K).



232 Andrew R. Conn et al.

Proof. Assume that iteration is the first such that
Ocg(1 — n2) ]
maxX{kp(K), kp(K)1 ]

whereg is as in (19)kx(K) is as in Lemma 3 and, (k) is as in Theorem 1. But we have
from Step 4 of Algorithm 3.1 that; Ak, < Ak ¢+1, @and hence that

Org(1 — n2) ]
maxXxg(K), kp(K)] ]

This latter inequality implies the last part ¢&cjllke < Ake < kx(k). Lemma 3

Ak e+1 < y1min [Kx(k), (54)

Ake¢ < min [Kx(k), (55)

now implies that the constraint (22) holds and therefore the valg&x@f, + S, 1tk)
is evaluated. Moreover, since the conditiopse (0,1) andd € (0, 1) imply that
0(1—n2) < 1, we deduce from (53) and the boufige < xg(k) that
I Vx@(Xi.e, 1k [l k]

Br.e '

As a consequence, (19) and (53) immediately give that

Agyp <

IVxOke. )l }
> Bkl

Mg (Xk,e) —Me(Xk,e + S¢) = Ol V(X e, 1k |l [k €1 min[ s

= 0| Vxp(Xk. ¢, 11k Il [k, 1 Ak, ¢
> QKgAk’(.

On the other hand, we apply Theorem 1 and deduce from this last bound and (55) that

_ 10Oke + Sces ) = Mice (X +S)l _ kg (R Ak
[Mi ¢ (Xk,e) — Mk ¢ (Xk,e + Sk,e) | T Okg

loke — 1] <1-n2.

Thereforeox, > n2 and Ay ¢+1 > Ay ¢ by Step 4 of Algorithm 3.1. This contradicts
our assumption thatis the index of the first iteration at which (54) holds. Hence (54)
is impossible, which yields the desired conclusion with

brg(1 —n2) ]
maxxp(K), kp(K)1]

ka(K) = y1min |:Kx(k),
[m}

The proof of the convergence of Algorithm 3.1 follows the pattern which is now
classical for trust-region methods. We first consider the case where Algorithm 3.1 has
only a finite number of successful iterates.

Lemma 5. Assume that AS.1-AS.8 hold and that there are only finitely many successful
iterates in Algorithm 3.1. Then, for a givén

VxR o+ )ik e+j1 = I VxR e+, k) llo = O,

for all j > 0, wheret is the index of the last successful iteration.
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Proof. The mechanism of Algorithm 3.1 ensures thpt j remains constant for all
j > 0, where(k, ¢) is the index of the last successful inner iteration. Moreover, since all
inner iterationgk, ¢ + j) are unsuccessful for > 0, Step 4 of Algorithm 3.1 implies
that Ay ¢j converges to zero whep tends to infinity. If || Vxd(Xk e+, i) llje+j] is
bounded away from zero, Lemma 4 implies that this is also the caggforj, whichis
impossible. The desired conclusion then follows from the fact thit it j; seminorms
are uniformly equivalent tg) - |, for fixedk because of Lemma 2.

O

If there are infinitely many successful iterations, a similar conclusion holds in the
limit, as we now verify.

Lemma 6. Assume that AS.1-AS.8 hold and that there are infinitely many successful
iterates in Algorithm 3.1. Then

|ijl“iiglof Vxdp(Xk.j» i) llik j1 = |ijnlioflf Vxp(Xk.j» i) llo = 0. (56)

Proof. Assume, for the purpose of deriving a contradiction, that (53) holds foy. all
Now consider a successful inner iteratigg ¢). For this iteration, (19), (53), (39), the
inequalitypk ¢ > 11 and Lemma 4 imply that

DXk ¢ k) — Xk o415 k) = N1[Mk e (Xke) — Mk ¢ (X e + S¢)]
> Oregnimin| —3— kA (k)

def 851> 0.

Summing over all successful iterations from (tave deduce that

14

B0, 1) — e+t k) = Y[ 1) — (X j+1, )] = 081,
j=0

where the) ' is restricted to successful iterations andis the number of successful
(inner) iterations from iteratioxk, 0) up to iteration(k, £). Our assumption then gives
that oy tends to plus infinity wherd grows, and thus we obtain thatxy ¢+1, k) is
unbounded below orF, which contradicts AS.4. Thus (53) cannot hold forfland
the proof is concluded by using Lemma 2.

O

This result states that at least one limit point of Algorithm 3.1 is first-order critical.
We now prove that this property holds falt such limit points.

Theorem 2. Assume that AS.1-AS.8 hold. Then

Iim ([ Vxp(Xk j, ) llik,j1 = lim ([ Vxe (X j, uk)lle = 0. (57)
J—)OO J—)OO
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Proof. Lemma 5 shows that the conclusion holds if there are only finitely many success-
ful iterations. Assume now that this is not the case, and assume, again for the purpose
of obtaining a contradiction, that there is a subsequence of successful (inner) iterates
indexed by{k, t;} such that

[ Vxdp(Xicti s 1k lliti] = 3¢ (58)

for somee > 0 and for alli. Lemma 6 then ensures the existence, for dacbf

a successful iteratiok, p(tj)) with p(t) > ti and [|[Vxd(Xk pctiy» 4k ik pt)] < €.
Denotingp; = p(t), we thus obtain that there exists another subsequence of successful
iterates indexed bgk, p;) such that

IVxd(Xij i) llk.j1 = € for ti < j < pi and [[Vxg(Xkpis i) ik py < €. (59)

We now restrict our attention to the subsequence of successful iterations whose indices
are in the set

J={k DeSIti<]j<np}

wheret; and p; belong to the two subsequences defined above. Using (19), the fact that
all iterations inJ are successful, (39) and (59), we deduce thatkoj) € 7,

AOXk,j s k) — @K j+1, k) = nalMi j (Xk, j) — Mk j (X j + S, j)] (60)

€
> Qe 1min[—,Ak,-]. 61
n PR (61)
But the sequenc&p(xk,j,uk)}ﬁo is monotonically decreasing and bounded below
because of AS.4. Hence it is convergent and the left-hand side of (61) must tend to zero
when j tends to infinity. This gives that

lim Ay =0.
j—o00

k.jpeg

As a consequence, the second term dominates in the minimum of (61) and we deduce
that, for(k, j) € J andj sufficiently large,

1
Agj < —[dpXkj, k) — Xk, j+1, k)]
Oen1

We then obtain from this inequality, the observation that; — Xk pi | = Xkt — Xk p; llo
becauset; andxy p both belong toZ, and Lemma 2 that, fdarsufficiently large,

pi—1
Xkt — Xipr | < Ka() D Ik j — Xkl
j=ti
pi—1
< (k) YAk
j=ti
Kn(K)
Oen1

< [dXic ;> k) — PXk i s K]
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Using AS.4 and the monotonicity of the sequeligéx |, ,uk)}‘j’O:o again, we observe

that the right-hand side of this last inequality must converge to zero, and therefore that
Xkt — Xk, p; || tends to zero whentends to infinity. We then deduce from the continuity

of Vx¢(X, uk) and Lemma 2 that

[Vt s i) ki) — IVx@ Xk pr s k)l pip| < €
for i sufficiently large. Using this last bound, (58) and (59), we then have that
2¢ = 3c—«¢

= V@it i) liktin = 1Vxd X pr > i) 11k, pi

IA

VXt > i) Ik tin — IVx@ Xk i 140 [k pi

IA

€,

which is impossible. Hence no subsequence satisfying (53) can exist and the theoremis
proved.
]

This concludes the convergence theory for the inner algorithm, at least as far as
convergence to first-order critical points is concerned. However, the tests (23)—(27) are
based on convergence to points satisfying second-order necessary conditions. In order
to obtain the necessary results in this direction, we need to strengthen our assumptions
on the Hessian of the Lagrangian’s model and on the dual variables, as suggested in
Sect. 3.2. More specifically, we assume that,

for all k,

Iim Gk j = Vi (i j» 2 )l jy = 0 when1im | Vxg(xi j. i)l j) = O,
]—)OO ]—)OO

AS.10 | forallk,

lim [z — uCyje| =0 when lim [|Vxp(xk j, i) Ik j1 = O.
j—o0 ' j—o0
Note that these two assumptions together imply that

p
. LK

lim ||Gkj — Vax (X, j) + ———— ViuxCi Xk, ) lik.jy = 0 62
=00 j XX j ;Ci(xk‘j) xxCi il iy (62)

when limj_ oo | Vxp(Xkj i)k j1 = O-
We are now in position to prove that the model is asymptotically convex, at least
along some subsequence.
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Theorem 3. Assume that AS.1-AS.10 hold. Then

lim supk?:,"”k.j [VxxMi j (X )] = lim supkm,\}l"Kj [Gkj+ Bkjl=>0 (63)
j—00

j—00
and

lim sup ”,Q},”kyj [Vxxd(Xi j» )] = 0.

j—o0

Proof. Assume first, for the purpose of deriving a contradiction, that there exists an
€ > 0 such that

W [Ckj + Bk jl = —e (64)
for all j sufficiently large. Using this definition, (19) and (57), we then obtain that
Mk j (XK j) — Mk j (X j + S j) = Bemin[e?, Af ] > 0eA (65)

for j sufficiently large and\y j sufficiently small. We may then again consider the ratio
of predicted versus achieved reduction and deduce that, fojsarat i ; and for some
&k j in [Xkj, Xk j + S,j] € F (where the last inclusion holds because of Lemma 3),
Ak j +S) — M j (X j + S.j)

Mic j (X, j) — Mk j Xk j + Sk j)

[|(5kj , Vi Ec s 10Scj) — (Scjs (G j + Bk,j)3<‘j)|] (66)

lokj — 1 =

<
= 2
QéAk’j

1
< §||Vxx¢(ék,j,uk) —Gk,j — B jllik.jy

where we have used (10), (13), (6) and the bojisad [lk,j < Ak,j. In order to derive an
upper bound on the last right-hand side of this last inequality, we first note that, because
of Theorem 2 and AS.10,

lim [z — uCje| =0. (67)
]—00
Morever,

€k — Xk jllkj < lIskjllkj < Akj

and we therefore obtain, using (67), that

AEm . e E )T ClER )2 I(EK ) — B Iy
ej—

j—o00
=A|kihlo | IE DT CE ) T2 IE ) — I )T Cxc )_1Zk,,- IO ) || ki)
j%loo
= [k A!(im . [ 9Gk DT C D26k 1) — Ik DTCO P 23K ) [
Sine

j—o00

=0 (68)
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and also that

p
Jm Vi) = Z VG (8 )

|(53 i)

—Vixx F(Xk, j) + Z VxxCi (X, ])”{k i} = 0. (69)

Xk, J)
Now observe that for anyin R",
[ Vxx@(v, k) — Gk j — Bk jllik j}

p
< |[Vxx f(v) — Z o )VXXCI(U)
Ci

uw
— Vx f(Xk j) + Z o VixxCi (Xk, j) 1k, j3
i=

k
7 G (X j)

K

mVXXCI Xk, j) — Gk jllk jy (70)

p
+ [ Vax FOu ) — Z

+ ||ukJ<v>TC<v>*2J<v> — Brjllikj)

using the definition of the Hessian of the logarithmic barrier function, (11), (12) and
the triangle inequality. Substituting now (62), (68) and (69) in this last inequality with
v = & j, we obtain that

lim  [[Vxx¢(k j, k) — Gk j — Bijllkj) =0 (71)
AM%O
j—o0
and thus the last right-hand side of (66) is arbitrarily small whénsufficiently large
andAy j sufficiently small. Thugy j > 12 for suchj andAy j. Hence there must exist
ady € (0,¢] and ajo > 0 such that

pkj =2 forall j > josuchthatAyj < 1. (72)

Therefore, each iteration such that this condition hold ensures\that: > Ay j by
Algorithm 3.1. This in turn implies that, foy > 0,

- def
Ak jo+j = Min[y181, Ak jo] = 82. (73)
Combining (65) and this lower bound, we obtain that

DX jor j» 1K) — DX jo+j+15 k) = N10€85 > 0. (74)

whenever iterationjo + j is successful. If there are only finitely many successful
iterations, the mechanism of the algorithm implies that the trust-region radius converges
to zero, which is impossible because of (73). Hence there must be an infinite number
of successful iterations. But (74) now contradicts AS.4. Hence our assumption (64)
must be false and (63) is proved. The second inequality in the theorem’s statement then
immediately results from (11), (70) with= X j, (62), Theorem 2 and (67).

]
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We conclude our analysis of Algorithm 3.1 by returning to the case where the
stopping tolerances’, €® ande® are positive instead of being zero, and show that the
stopping conditions of Algorithm 3.1 will eventually be satisfied.

Theorem 4. Assume that AS.1-AS.10 hold and that
€ >0 € >0 ande > 0.
Then conditions (25)—(27) hold after a finite number of iterations of Algorithm 3.1.
Proof. Theorems 2 and AS.10 together imply that
V(X j» i) llik.jy — 0 and Cy jzcj — uke — 0

when j tends to infinity. As a consequence (25) and (26) both hold after finitely many
iterations. Theorem 3 then guarantees that (27) will also be satisfied eventually, which
concludes the proof.

]

We note that Theorem 3 does not assume that the sequence of iterates of Algo-
rithm 3.1 converges, or even that it has limit points. If this additional assumption is
made, then the result may be extended to show that all these limit points satisfy second-
order necessary conditions for optimality.

4.3. Updating the vector of dual variables

We now indicate how the dual variablegj 1 may be updated in practice at Step 5 of

the primal-dual barrier algorithm, while ensuring AS.6 and AS.10. A simple idea is to

use the value predicted in the middle part of the Newton equations (15), which is
7k‘j+l = Zk’j + AZk’j = [chlzjle— Ckiilzk’] ‘Jk,j S(’] . (75)

However, there is no guarantee that the chaicg1 = Z« j+1 maintains feasibility of

the dual variablesz( j;1 > 0), nor that it satisfies AS.6 or AS.10. We thus need to
safeguard it, which can be achieved by projecting (componentwise) the value (75) into
the interval

I = [KZ| mln (ev Zk,] ’ MkCE}+1e)v maX(Kzuev Zk,j ’ Kzul'l“|:1ev KzuMkCEjl-+1e):| ’ (76)

wherex, andk,, are constants such that

0 <Ky <1<k, (77)
This is to say that
) Prlzc 4l i Xk a1 = Xk + S
Zj+1 = { i i Xij 1= X (78)

where Pz[v] is the componentwise projection of the vectoonto the intervalZ. In
practicex, = 1 and«,, = 10°° appear to work satisfactorily. Does this safeguarded
value satisfy the required conditions? We now verify that this is usually the case.
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Theorem 5. Suppose that AS.2-AS.5 and AS.7-AS.8 hold. Suppose also that
{Xk j. zj} is a sequence of primal and dual iterates generated, at a given outer iter-
ationk, by Algorithm 3.1 where, j+1 is updated according to (78), withbeing given

by (76) andzk j+1 by (75). Therg j+1 > 0 and AS.6 holds. If, furthermore,

lim fIscjllkj =0 when lim [|[Vxé(Xk j, k) llk j; = O (79)
j—o00 j—00

then AS.10 is also satisfied.

Proof. The positivity of the vector of dual variables immediately results from the fact
that the lower end of the intervdlis always positive. To obtain AS.6, we notice that
the definition ofZ and this bound implies that

Ku  Kullk ]

[Zkj+1]i < maX[Kzu, [zx0li, —,
Mk Ci(Xk j+1)

and AS.6 follows with

def K
Kzi(k) = maX|:Kzuv [Zk‘o]i s Ev Kzuﬂkjl .

We now show that AS.10 is also satisfied if (79) holds. Suppose therefore that
| Vx@ (X j, i) llk, j1 converges to zero, which must eventually occur because of Theo-
rem 2. This implies, because of Lemma 2, the fact that; = 0 and (79), that

lim Jisejll = lim Jiscjllo = lim fIsjlikj =0. (80)

Then Lemma 1, (80) and AS.2 ensure that

im
j—00
(k, eSS

ICi = Ciiyall = 0. (81)

But
1241 — i iael = 241 — mCiel + il (G — Ccyael
=< [z I sl + A Ciy = Cfaa
where we have used (75). We thus obtain from Lemma 1, (80), (38), AS.2 and (81) that

3

i 5 ~1 _
lim ||z 41— uka‘Hle” =0.
] —00
(k.pes
Now this limit and (77) give that, fotk, j) € S andj sufficiently large,
KZIMKCE}I-+1e S 2k,]-i-:l. S KzuMka_‘}L+le-

Hence, from the definition dd j 1, we have thaty j 11 = Z« j41 for j € S sufficiently
large. Thus (75) yields that

1
Cij+1%k j+18 = Cr j+1Ck j (L j e jSic j + 1K) (82)
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On the other hand, we deduce from AS.2, Lemma 3 and (80) that
lim Cyj41Cij=1-

j—o00

(k,HeS
We then obtain from this limit, AS.5, AS.6 and (82) that

im  Cy j+1Zk j+1€ = HkE.
]—00
(k, eS

AS.10 then follows becausaj+1 = zj for (k,j) ¢ S, that is exactly when
Xk, j+1 = Xk j-
|

Observe that the first part of the proof implies that any valug gf 1 chosen inZ
satisfies AS.6. In particular, this is true for the choices

1
Zkj+1=2cj and zcjy1 = ukCyj 18

the latter corresponding to the pure primal method, that is to the model (10). Also
note that, because of Theorem 2, the choice of norms in (79) is in fact irrelevant: the
Euclidean norm would have been just as adequate, but we have chosen the scaled norms
for consistency.

4.4, Convergence of the outer iteration

Having proved that its iterates are well-defined, we now consider the convergence of
Algorithm 3.2. In order to state our result, we need the following definition. We say
that a subsequence of outer itergbes} is consistently active if, foreadh=1,..., p

either

lim ci(xg,) =0 or liminfci(x,) > 0.
£—00 ’ {— 00

This is to say that each constraint is asymptotically active or inactive for the com-
plete subsequence. We also define the set of asymptotically active constraints for such
a subsequence by

AfXk, } d:ef{i e{l,...,n}| eimoo Ci(Xk,) = O}.

In other words, the set of asymptotically active constraints is fixed for the iterates
of a consistently active subsequence. Since there are only a finite number of such
sets, as each constraint is asymptotically active or is not, the number of consistently
active subsequences is finite for any sequexge of non-negative iterates. Further-
more, the complete sequence of iterates may be partitioned into disjoint consistently
active subsequences. Observe also thafxjf has limit points, then each subse-
quence converging to a specific limit poirf is consistently active, as the set of
asymptotically active constraints is then determined by the componeris tifat is
Afxg,} ={i e {1, ....n}|ci(xs) =0}
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We then have the following result.

Theorem 6. Suppose that AS.1-AS.10 hold. Suppose also that, for agme0,

. €“(uk)
lim < 83
kLoo Mk Ko (83)
that
m () VPk -0 (84)

k—oc0 MiN; G (Xk+1)
and that{xx} is a sequence of iterates generated by Algorithm 3.2. Then, we have that
k'Lmoo[NTVXf(Xk)]i ~[N")z] =0 (=1....m. (85)

Furthermore, we also have that, for every consistently active subsequence of iterates
{Xi. 1

Jim (z]i =0, (0 ¢ Afxe ) (86)
and
lim inf (U, NT V(3 )Nu, ) > 0 (87)

for every sequencgiy, } in IR™ for which [ J,, Nuk, i = 0 whenever € A{x,}.
Proof. We start by choosing a subsequenc@@f indexed bykC such that

[z]i , [z]i :
kLoo 600 400 (€& and ILrEiupW <o (IeR), (88)
for some subset§ andR of {1, ..., p}. The contraints whose index is éconverge
quickly to zero (they are “eager”), while those whose index iRimare “reluctant” to
do so, if they converge to zero at all. Note that the complete sequence of iterates may
again be partitioned into a finite set of subsequences satisfying (88) (for differeét sets
andR). Letks > 0 be such that

[z«]i
K3 > maxl|m sup
kk—>oc Gi (X k)

ek

Writingr = NT[Vy f(xx) — JkT Z,e] and using (4), the definition of theseminorm,
condition (26) then becomes

1
[ (NTMKN) " 2ric]| < € (k1) (89)
for all k. But, sinceNT Mk N is positive definite,

Il Iril?
NT McN) 2 - '
NN 204 > S T = TR Men]
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Now, we have, using (36), that, fare K sufficiently large,

[zl
Gi (%)

INTMN] < [NTWAN] -+ [NT BN = s+ 3 max
Assume first thaf = ¢. Then,
INTMN| < sy + k53
for k € K sufficiently large, and therefore, using (26) and (89),

7l

,/KW+K§K3

lim iri = lim |[NTVyfow) — NT 3z = 0. (90)

kelC kel

1
(k1) = [ (NTMN) " Zry | =

for suchk. This implies that

On the other hand, § # ¢, we first observe that, for each

[z« k=1 |G (Xi)[Z]i — pk—1] Mk—-1 . €“(k-1) k=1
60w — G Ow2 Gi (XK)2 = a2 T a0z (HK")Ci ()2’

where we have used the triangle inequality, (25) and (83) successively. Thus we obtain
that

[zl
Ci (Xk)

for k € K sufficiently large. In this case,

Mk-1  def 2  [k-1

<21 3 o
= 21+ ru)K5 min G2 A min 6 (%02

INTMN| < 2«5 max
I

min; G (Xk)

NT M N)—2
H( kN) fk|| > ||rill PN

and hence, using (89),

€°(k—1) /k—1

Ikl < k4 -
Il min; Gi (Xk)

which, together with (84), again yields (90). Thus (85) holds sikicevas chosen
arbitrarily.

Suppose now thdiky, } is a consistently active subsequence whose set of asymptot-
ically active constraints igl. Then, ifi € A, (25) yields (86).

The final step of our proofis to show (87), that is that the Hessian of the Lagrangian
is, along a consistently active subsequence, asymptotically positive semi-definite in the
plane tangent to the asymptotically active constraints. We first notice that (27), the
forcing nature ok®(u) and the convergence gf to zero implies that

Nl

v) > 0.

_1 B
iminf in (N MieN)"2NT[Gi, + By IN(NT My, N)

jooo v 1012
ve
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Hence we deduce from (25), AS.9, (26) and the convergengag tf zero that

1

1 o
liminf inf (v, (NTMi, N) 72 NT [ Vot (Xig » Zi) + Bi IN(NT My, N) ™20

oo v 1012
ve

> 0.

_1
Thus, if we definev = (NT My, N) ™ 2v € R™, we obtain that

(w, NT[Vxtr(Xi, » Zi,) + Bi, INw)

liminf inf 3
£—o00 w#0 ”w“NTMkZN
_1 _1
(v, (NT M, N) " ZNT [Vyoh (X, Zi,) + B, IN(NT My, N) ™ 20)
= liminf inf 5
t—o00 v#0 [l
>0, (91)
where we have used the identiy |t w,, N = = [[(NT M, N)2w|| = |lvll.

We now assume that (87) does not hold, which means that we can pick a sequence
of unit vectors{uk,, } and a subsequeng¢ry, } < {Xk, } such that

[Jk, Nug, Ji =0 for i e A and (92)
liminf s co(Ui, » NT Vioth Xk, » Zi )NUK, ) = —€ (93)

for somee > 0. Using (92), (25), (11), the convergencewaf to zero, AS.10 and the
fact thatci (xk,, ) is bounded away from zero forg A, we now observe that

Jim {ug, . NT By, Nug, ) = Jim i, -a{uk NT 3¢, Cii2 Jee N, ) = O,
and hence, taking (36) into account, that
[, ||NTMK N = (Ui - NTWE, Nug, ) + (ug, . NT By, Nug, ) < 2%y
for t sufficiently large. Combining these conclusions, we obtain that
—e = limin (Ui, » NT Vot (X, » Zi, ) NUi, )
= liminf (U, . NT Vi (X, - 2k, )Nuig, ) + liminf {ui, . N Big, Nug,, )
= liminf {ui, . NT (Voo (X, - Zi,) + Big,)NUg, )

-
> 2Ky I|m inf <Ukl" N (Voo (Xigy » Zie) + Bkzl)NUkzt)

t—>o0

2
”uU[l ” NT Mklt N
2 07

where we used (91) to obtain the last inequality. This is impossible sinc8. Hence
no vector satisfying (92)—(93) can exist, (87) holds and the proof of the theorem is
complete.

]
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Necessary optimality conditions for (1) are that the primal variakleand dual
variablesz, satisfy the first-order optimality conditions

Ax. =b, (%, 2) > 0,C(x)z, =0 and NT(g(x:) — Jx)Tz,) =0,  (94)

and the second-order conditions

(S, VxxW(X«, Z4)S) > 0 forall sel, (95)
where
As=0,
U= {S [J(x)sli =0if (X)) =0 } (96)

(see, for example, Gill, Murray and Wright, 1981, p. 81). This definitiod/oforres-
ponds to the “weak” second-order necessary conditions. Ideally, we would like to obtain
their “strong” counterpart, in which (95) holds for

As=0,
U=1{s | [IX)S]i=0 if ¢g(Xxx) =0 and [z.]; >0, and 97)
[Jx)sli >0 if ci(xs) =0 and [z]i =0

(see, for example, Fletcher, 1981, Sects. 9.2 and 9.3), but we know from Gould and
Toint (1999) that this is in general impossible in the framework of log-barrier functions.
Thus every finite limit pointx,, z,) of Algorithm 3.2 is first-order critical and satisfies
second-order conditions that are as strong as can reasonably be expected.

We conclude our analysis by commenting on condition (84). Since Mifflin (1975) has

shown that, under reasonable conditions, the quantityenirg,.1) is of the order ofuk
1

or ,bLE depending respectively upon whether strict complementarity hold or not, we may
then deduce that requiring th&l() ande® (1) converge to zero faster than(which is

our choice in the next section) is usually sufficient in practice to ensure convergence of
the outer iteration. However, a stopping rule based on (84) might be preferable especially
when the Jacobian of the contraints is (asymptotically) rank deficient.

5. Numerical experience

Although the algorithm we have developed in this paper is intended for problems with
linear equality constraints and general inequality constraints, to date we have only tested
it on the narrower class of non-convex quadratic programming (QP) problems. This was
quite deliberate since we have a large number of test examples in this case, and since we
already have numerical results for these examples using other QP algorithms. We view
non-convex QP as prototypical linearly constrained optimization problems, and thus we
hope to see that our new algorithm is effective in at least this case. Furthermore, such
problems occur both in their own right, and as subproblems within algorithms for more
general constrained optimization.

VE12 is the new primal-dual non-convex QP Fortran 90 package from the Harwell
Subroutine Library (HSL). It is exactly the algorithm we analysed in this paper (spe-
cialized to the case of a quadratic objective function), but of course in addition there are
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a large number of linear algebra tricks and other issues to enhance efficiency. General
simple bound$ < x < u are allowed with some/all dfor u being infinite. All fixed
variables are removed automatically and the minimization is performed with respect to
the remaining variables. The resulting trust-region subproblem (18) is (approximately)
solved using the generalized Lanczos trust-region (GLTR) algorithm proposed by Gould
et al. (1999) and implemented within the HSL\4B05. This method was originally
proposed for unconstrained problems, but the extra requireA®st0 is imposed via

the preconditioner. That is, lettingl = My j, the basic preconditioning step requires

the solution of the system

M AT /s g
(3%5)()--(%) &
to find a correctiors , given the gradieng’ of the model at thé-th GLTR iteration —
some form of iterative refinement or residual adjustment is needed to ensure that the

condition As = 0 is satisfied very accurately (see Gould, Hribar and Nocedal, 1998).
VE12 offers the option of a large variety of preconditioners of the form

M AT
<~(3%)
where M varies from the simplestM = 1) to the exact form i = H + X~12).
HoweverM is required to be second-order sufficient, and this is enforced by factorizing
K and, if K has more than rank( negative eigenvalues, addifi$/| to M and re-
factorizingK. While such a modification strategy is undoubtedly simplistic, it has been
effective in our experiments.

The results we present here were obtained using an “automatic” preconditioning
strategy that we will now describe. We start with just a diagonal Hessian based on
the barrier terms, i.eM = X~1Z. This is often sufficient, but if the CPU time per
iteration seems to be increasing significantly, we switch to a full factorizafloa:

H + X~1Z for the next iteration. If the cost of this is much higher, we revert to the
original preconditioner until the cost again rises to the (now known) value for the full
factorization. Of course, we might conceive of adding other levels of preconditioner, but
the above seems to perform adequately in most cases. Two other points are important.
Firstly, if the model Hessian is itself diagonal, then this is used at every stage. Secondly,
if M is diagonal (and nonsingular) and so long as the constraints do not have columns
with more than (in our case) 10 nonzeros, we solve the normal equations

s=-—-MYATY +d), where AMIATY = —AM~1g, (99)

using the factors oAM~1AT, rather than solving the augmented system (98). At some
stage we intend to handle denser columns and zero diagonal terms in the normal equation
case.

The initial strictly feasible pointis found (as the analytic centre of the feasible region
when the region is bounded) using another new HSL cd8&3. More preciselyWE13
converges to the analytic center once a feasible point has been found. However, in the
event that the size of the iterate exceedes some prescribed upper bound, the last point
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with a norm smaller than this bound is taken for the initial point. This code is based
on the primal-dual infeasible interior point algorithm considered by Conn et al. (1999),
and is used in the special case where the objective function is absent. In principle, any
good interior-point method would suffice, but in any event, this part of the calculation
is usually very efficient.

The initial dual variablegg are simply those calculated at the analytic centre
while the initial value of the barrier parameter is the smallest power of 10 larger than
(Zo, Xo)/n. The barrier parameter is updated so that

kg1 = min (0. 1k, Mﬁ'5)
with the intention of encouraging asymptotic superlinear convergence. The forcing
functions which control the inner-iteration convergence are defined to be

() = () = pt = —eF(w).

The algorithm is halted as soon as an inner-iteration has been terminated with each of
these tolerances belowd®01, or if more than 1000 iterations have been performed.
Valuesni = 0.01, 72 = 0.9 are used to accept and reject steps in the inner-iteration,
and the trust-region is updated according to the usual rule

min[10?%, max2||s j Il j, Ak )] if ok > 2,
Agj+1 = Ak j if ok j € 1. n2),
3 Ak if kg < ni

the initial radius for each inner iteration 48 o = 100Qu.

To test our algorithm, we have selected all of the larger quadratic programs in the
CUTE test set (see, Bongartz, Conn, Gould and Toint, 1995). Although it is desirable in
practice to preprocess the problems (for instance, to remove redundant constraints and
scale the problem, see for example Andersen, Gondzio, Mészaros and Xu, 1996), we
have not done so.

In Tables 1-3, we give the results of our preliminary tests. They were performed in
double precision on an IBM RISC System/6000 3BT workstation with 64 Megabytes
of RAM, using the xIf90 compiler and optimization level -O3. For each example, we
report its name along with its dimensiomnsi§ the number of variables) the number
of constraints), the problem type (C for convex, SOS for second-order sufficient and
NC for non-convex and not second-order sufficient), the number of iterations performed
(its), and the time taken in seconds (time). For comparison, the tables also show the
number of iterations and time taken by a Fortran 90 versioW®B09, a quadratic
programming subroutine from the HSL. This latter algorithm is designed to handle
non-convex problems and is of the active-set type, each of its iterations corresponding
to a pivoting operation. The reader is referred to Gould (1991) for further details
on this method. Note that since iterations mean completely different things for the
two approaches, they are not directly comparable, and we include them simply for
information. All runs were terminated after 1800 seconds, and any exceeding this limit
may be regarded as failures.

In Table 1, we report results for what are, by today’s standards, relatively small
problems. We indicate the better of the two CPU times for each problem in bold.
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Observe that in the majority of cases the new algorithm outperforms its active-set rival,
and that the algorithmis just as successful when the problem is non-convexasitis in the
convex case. Such behaviour is at variance with our previous linesearch-based primal-
dual method (see Conn et al., 1999) which was far less successful in the non-convex
case. We believe that this is likely because negative curvature is better handled in the
trust-region subproblem than through the ad-hoc matrix modification strategy which
lays at the heart of our previous linesearch algorithm. Of course, the new algorithm is
not uniformly better tharEQ9; the PRIMAL* and DUAL* problems, which require

very few changes of active-set, and Q®* problems, which need a relatively large
number of primal-dual iterations, being cases in point. In addittii.2 is currently
unable to cope with rank-deficieAt and we are presently investigating the best ways

of dealing with this defect.

Table 1. Preliminary numerical results: small problems

VE12 VEO09

Name n m type its time its time
AUG2DCQP 3280 1600 C 25 6 3112 133
AUG2DQP 3280 1600 C 30 7 3019 127
AUG3DCQP 3873 1000 C 23 9 3056 106
AUG3DQP 3873 1000 C 24 9 2097 71
BLOCKQP1 2006 1001 NC 23 10 1006 28
BLOCKQP2 2006 1001 NC 29 8 1006 40
BLOCKQP3 2006 1001 NC 157 46 | 1006 28
BLOWEYA 2002 1002 C 7 3 1597 68
BLOWEYB 2002 1002 C 8 2 1497 67
BLOWEYC 2002 1002 C 5 3 1697 53
CVXQP1 1000 500 C 39 35 861 70
CVXQP2 1000 250 C 37 12 370 13
CVXQP3 1000 750 C 89 41 1389 107
DUALC1 223 215 C 35 1 12 0
DUALC2 235 229 C 28 1 14 0
DUALC5 285 278 C 17 1 10 0
DUALCS8 510 503 C 25 2 11 0
GOULDQP2 699 349 C 3 0 251 1
GOULDQP3 699 349 C 10 0 463 2
KSIP 1021 1001 C 30 7 1388 36
MOSARQP1 1500 600 C 50 8 5859 91
MOSARQP2 1500 600 C 43 7 1679 27
NCVXQP1 1000 500 NC 76 5 1561 51
NCVXQP2 1000 500 NC 66 4 1840 61
NCVXQP3 1000 500 NC 112 17 too ill-cond. basis
NCVXQP4 1000 250 NC 48 1 649 2
NCVXQP5 1000 250 NC 42 1 565 2
NCVXQP6 1000 250 NC 59 10 532 3
NCVXQP8 1000 750 NC 49 6 1901 141
NCVXQP7 1000 750 NC 56 6 1567 120
NCVXQP9 1000 750 NC 75 22 too ill-cond. basis
PRIMALC1 239 9 C 130 1 20

PRIMALC2 238 7 C 28 4 4 0
PRIMALC5 295 8 C 100 1 14 0
PRIMALCS8 528 8 C 129 128 20 0
PRIMAL1 410 85 C 31 4 361 4
PRIMAL2 745 96 C 35 6 677 12
PRIMAL3 856 111 C 37 27 798 35
PRIMAL4 1564 75 C 27 18 1515 40
QPCBOEI1 726 351 C 87 9 823 6
QPCBOEI2 305 166 C 81 3 303 1
QPCSTAIR 614 356 C 222 18 987 16
QPNBOEIL 726 351 NC > 1000 132 736 5
QPNBOEI2 305 166 NC 165 7 299 1
QPNSTAIR 614 356 NC 300 38 993 15
SOSQP1 2000 1001 SOS 10 2 996 14
STCQP1 4097 2052 NC Arank deficient 2845 67
STCQP2 4097 2052 NC 22 81 2040 98
STNQP1 4097 2052 NC Arank deficient 3158 68
STNQP2 4097 2052 NC 25 1 1408 39
UBH1 909 600 C 5 0 315 5
YAO 1002 500 [ 72 3 3 2
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In Tables 2 and 3, we exhibit specimen results for medium and large-scale instances
of the variable-dimensional problems. We include these simply to show that the ad-
vantages of interior-point methods over conventional active-set approaches are now
clear.

Table 2. Preliminary numerical results: specimen medium problems

VE12 VEO9

Name n m type its time its time
AUG2DCQP 20200 10000 31 69 - >1800
AUG2DQP 20200 10000 35 77 - >1800
AUG3DCQP 27543 8000 35 744 - >1800

C

Cc

C
AUG3DQP 27543 8000 C 26 598 - >1800
BLOCKQP1 20006 10001 NC 26 673 - >1800
BLOWEYB 20002 10002 C 7 48 5156 893
CVXQP3 15000 11250 C 24 104 - >1800
GOULDQP2 19999 9999 C 1 1 - >1800
GOULDQP3 19999 9999 C 1 2 1331 730
KSIP 10021 10001 C 32 110 - >1800
MOSARQP1 30000 10000 C 57 455 not enough memory
NCVXQP4 10000 2500 NC 53 33 6588 343
SOSQP1 20000 10001 SOSs 7 54 9996 1551
STCQP1 8193 4095 NC Arank deficient | 5769 268
STCQP2 8193 4095 NC 18 246 4320 613
UBH1 18009 12000 C 5 13 - >1800
YAO 20002 10000 C 107 118 not enough memory

Table 3. Preliminary numerical results: specimen large problems

VE12 VEO9
Name n m type its time its time
GOULDQP2 100001 50000 C 3 32 - >1800
GOULDQP3 100001 50000 C 10 98 - >1800

We cannot give results for our other variable dimensional problems in the large category
(say 1@ variables) simply because we do not have enough memory to form the factors
of the preconditioner. Clearly, this indicates some limitations of our approach, but since
we are able to report successful results for larger problems than we have seen before,
we believe that this is an indication that our approach is an important advance in the
methods for the numerical solution of large-scale non-convex quadratic programs, with,
hopefully, implications for general nonlinear problems.

6. Conclusion

We have introduced a primal-dual algorithm for solving nonlinear non-convex mathe-
matical programming problems with linear equality constraints and general nonlinear
inequality constraints. In this algorithm, a scaled trust-region subproblem is approxi-
mately solved. Additionally, we have shown that this algorithm is globally convergent
to points satisfying the weak second-order necessary optimality conditions, even if we
allow the scaling matrices to become unbounded to reflect the singularity of the barrier.
Preliminary numerical experiments on a variety on convex and non-convex quadratic
programs indicate that the new algorithm is potentially efficient for the solution of
large-scale problems.



A primal-dual trust-region algorithm for non-convex nonlinear programming 249

The analysis presented here can still be extended in several directions. For instance, it
is possible to verify that we can replace the quadratic models of the objective function and
inequality constraints by more general models, provided they agree with the modelled
function at least to first order and have bounded second derivatives. The extension to
general nonlinear equality constraints, although less direct, is also worth investigating.
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