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GLOBAL CONVERGENCE OF A CLASS OF TRUST REGION
ALGORITHMS FOR OPTIMIZATION USING INEXACT

PROJECTIONS ON CONVEX CONSTRAINTS*

A. R. CONNt, NICK GOULD’, A. SARTENAER, AND PH. L. TOINT

Abstract. A class of trust region-based algorithms is presented for the solution of nonlinear
optimization problems with a convex feasible set. At variance with previously published analyses
of this type, the theory presented allows for the use of general norms. Furthermore, the proposed
algorithms do not require the explicit computation of the projected gradient, and can therefore
be adapted to cases where the projection onto the feasible domain may be expensive to calculate.
Strong global convergence results are derived for the class. It is also shown that the set of linear and
nonlinear constraints that are binding at the solution are identified by the algorithms of the class in
a finite number of iterations.
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1. Introduction. Trust region methods for nonlinear optimization problems
have become very popular over the last decade. One possible explanation of their
success is their remarkable numerical reliability associated with the existence of a
sound and complete convergence theory. The fact that they efficiently handle non-
convex problems has also been considered an advantage.

As an integral part of this growing interest, research in convergence theory for
this class of methods has been very active. First, a substantial body of theory was
built for the unconstrained case (see [19] for an excellent survey). Problems involving
bound constraints on the variables were then considered (see [1], [9], and [21]), as
well as the more general case where the feasible region is a convex set on which the
projection (with respect to the Euclidean norm) can be computed at a reasonable cost
(see [4], [20], and [29]). The studied techniques are based on the use of the explicitly
calculated projected gradient as a tool to predict which of the inequality constraints
are binding at the problem’s solution. Moreover, trust region methods for nonlinear
equality constraints have also been studied by several authors (see, e.g., [5], [8], [25],
and [30]).

This paper also considers the case where the feasible set is convex. It presents
a convergence theory for a class of trust region algorithms with the following new
features.

The theory does not depend on the explicit use of the projection operator
in the Euclidean norm, but allows for the use of a uniformly equivalent family of
arbitrary norms.

The gradient of the objective function can be approximated if its exact value
is either impossible or too costly to compute at every iteration.
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The calculation of the "projected gradient" (with respect to the chosen
norms) need not be carried out to full accuracy.

When the feasible set is described by a system of linear and/or nonlinear
(in)equalities, conditions are presented that guarantee that the algorithms of the class
identify, in a finite number of iterations, the set of inequalities that are binding at the
solution. We note that this description of the feasible set does not need its partition
into faces.

In this sense, we see that our theory applies to problems similar to those considered
in [4], [9], [20], and [29], although in a more general setting.

An attractive aspect of this theory is that it covers the case where a polyhedral
norm is chosen to define an analog of the projection operator, allowing the use of
linear (or convex) programming methods for the approximate calculation of the pro-
jected gradients. This type of algorithm should be especially efficient in the frequent
situation where the feasible set is defined by a set of linear equalities and inequalities,
and where a basis for the nullspace of the matrix of the active constraints is cheaply
available. In network problems, for example, this can be very cheaply obtained and
updated using a spanning tree of the problem’s underlying graph (see [17] for a de-
tailed presentation of the relevant algorithms). Other examples include multiperiodic
operation research models resulting in staircase matrices.

The problem and notation are introduced in 2, together with a general class
of algorithms. The convergence properties of this class are then analyzed in 3. A
particular practical algorithm of the class is discussed in 4. The identification of he
active constraints is presented in 5. Section 6 presents an analysis of the conditions
under which the whole sequence of iterates can be shown to converge to a single limit
point. Additional points and extensions of the theory are discussed in 7. A glossary
of symbols can be found in Appendix B. All the assumptions used in the paper are
finally summarized in Appendix C.

2. A class of trust region algorithms for problems with convex feasible
domain.

2.1. The problem. The problem we consider is that of finding a local solution
of

(2.1) min f(x)

subject to the constraint

(2.2) x E X,

where x is a vector of Rn, f(.) is a smooth function from Rn into R and X is a
nonempty closed convex subset of Rn, also called the feasible set. We assume that
we can compute the function value f(x) for any feasible point x. We are also given a
feasible starting point x0, and we wish to start the minimization procedure from this
point.

If we define/= by

/ de____f X I"l {x e Rn f(x)

_
f(x0)},

we may formulate our assumptions on the problem as follows.
AS.1. The set/: is compact.
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AS.2. The objective function f(x) is continuously differentiable and its gradient
Vf(x) is Lipschitz continuous in an open domain containing .

In particular, we allow for unbounded X, provided the set remains bounded.
We will denote by (., "/ the Euclidean inner product on Rn and by I1" 112 the

associated 2-norm.
We recall that a subset K of R is a cone if it is closed under positive scalar

multiplication, that is, if Axe K whenever x e K and A > 0 (see [26, p. 13]). Given
a cone K, one can define its polar (see [26, p. 121]) as

(2.4) g0 de_,_f (y e Rnl (y, u) _< 0, VU e K}

and verify that K is also a cone, and that (K) K when K is a nonempty closed
convex cone.

Given the closed convex set X, we can define Px(x), the projection of the vector
x E Rn onto X, as the unique minimizer of the problem

(2.5) min IlY xll2-yEX

This projection operator is well known and has been much studied (see, e.g., [33]).
We will also denote by N(x) the normal cone of X at x e X; that is,

(2.6) Y(x) de___f {y e R (y, u- x) <_ 0, Vu e X}.

The tangent cone of X at x X is the polar of the normal cone at the same point;
that is,

(2.7) T(x) de__.f g(x)O cl{A(u- x)[A >_ 0 and u e X},

where cl{S} denotes the closure of the set S. We will also use the Moreau decompo-
sition given by the identity

(2.8) x PT(u) (x) / PN(y) (x),

which is valid for all x E Rn and all y X (see [22]). This decomposition is illustrated
in Fig. 1. In this figure and all subsequent ones, the boundary of the feasible set X is
drawn with a bold line.

We conclude this subsection with a result extracted from the classical perturbation
theory of convex optimization problems. This result is well known and can be found
in [14, pp. 14-17] for example.

LEMMA 2.1. Assume that D is a continuous point-to-set mapping from S c_ Re

into Rn such that the set D(e) is convex and nonempty for each e S. Assume also
that one is given a real-valued function F(y, e), which is defined and continuous on
the space Rn S and convex in y for each fixed e. Then, the real-valued function F.
defined by

(2.9) F.(e) de---f inf F(y,e)
uED()

and the solution set mapping y. defined by

(2.10) y,(e) de__f {y e D(e)lF(y, e)= F.(e)}

are both continuous on S.
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y + PN(y)(x

y +

y + N(y)

X

y + T(y)

FIG. 1. The normal and tangent cones at y, and the corresponding Moreau decomposition of x
(translated to y).

2.2. Defining a local model of the objective function. The algorithm we
propose for solving (2.1) subject to the constraint (2.2) is iterative and of trust region
type. Indeed, at each iteration, we define a model of the objective function f(x), and
a region surrounding the current iterate, say Xk, where we believe this model to be
adequate. The algorithm then finds, in this region, a candidate for the next iterate
that sufficiently reduces the value of the model of the objective. If the function value
calculated at this point matches its predicted value closely enough, the new point is
then accepted as the next iterate and the trust region is possibly enlarged; otherwise
the point is rejected and the trust region size decreased. With each iteration of our
algorithm will be associated a norm: we will denote by I1" II(k) the norm associated
with the kth iteration.

We now specify the conditions we impose on the model of the objective function.
This model, defined in a neighbourhood of the kth iterate xk, is denoted by the symbol
mk and is meant to approximate the objective f in the trust region

(2.11) Bk d___f {x e Rnl IIx xll(k <_ vlAk},

where vl is a positive constant and Ak > 0 is the trust region radius. We will assume
that m is differentiable and has Lipschitz continuous first derivatives in an open set
containing Bk, that

(2.12) mk(xk) f(xk),

and that gk de=f Vmk(xk) approximates Vf(xk) in the following sense: there exists a
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nonnegative constant 1 such that the inequality

(2.13) Ilell[] <_ lAk

holds for all k where the error ek is defined by ek
def

gk Vf(Xk) and where the
norm I1" II[k] is any norm that satisfies

(2.14) I(x, y) l_< I1 11( )IlYlII I

for all x, y E R’. In particular, one can choose the dual norm of II. I1 ) defined by

(2.15) def I<x,IlyllI l I1 11 )

Condition (2.13) is quite weak, as it merely requires that the first-order informa-
tion on the objective function be reasonably accurate whenever a short step must be
taken. Indeed, one expects this first-order behaviour to dominate for small steps.

Clearly, for the above conditions to be coherent from one iteration to the next,
we need to assume some relationship between the various norms that we introduced.
More precisely, we will assume that all these norms are uniformly equivalent in the
following sense.

AS.3. There exist constants al, a3 E (0, 1] and a2, (74

_
1 such that, for all kl _> 0

and k2 _> 0,

(2.16)

and

(2.17)

for all x Rn.
If (2.15) is chosen, then (2.17) immediately results from (2.16) with a3 l/a2

and a4 1/al.
We also note that (2.16) and (2.17) necessarily hold if the norms ]1" I](k2) and

I1" II[k.] are replaced by the t2-norm.
We finally introduce, for given k and for any nonnegative t, the quantity ak(t) >_ 0

given by

(2.18) ((t) de=f min (g, d)I,
xk+dX

that is, the magnitude of the maximum decrease of the linearized model achievable
on the intersection of the feasible domain with a ball of radius t (in the norm I1" I[())
centred at Xk.

We note here that ck(t) can be defined using the notion of support function of
the convex set {dlxk + d X and Ildll(k) <_ t}. The properties that follow can then
be derived in this framework. We have, however, chosen to use the more familiar
vocabulary of classical optimization in order to avoid further prerequisites in convex
analysis.

We then have the following simple properties.
LEMMA 2.2. For all k >_ O,
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(1) the function t -. ak(t) is continuous and nondecreasing for t >_ O,
(2) the function t - ak(t)/t is nonincreasing for t > O,
(3) the inequality

(2.19) c(t) < iipT()(_gk)ll[kt

holds for all t > O.
Proof. The first statement is an immediate consequence of the definition (2.18)

and of Lemma 2.1 applied to the optimization problem of (2.18). In order to prove
the second statement, consider 0 < t t2 and two vectors d and d2 such that

ck(t) -(gk, d) Ildlll() <_ t, xk + d e X,

and

(2.21) c(t2)- -(gk, d2) Ildull() <_ t2, xk + d2 e X.

We observe that the point x + (tl/t2)d2 lies between x and xk + d2, and therefore
we have that xk + (t/t2)d2 e X. rthermore,

t tl(2.22) d2 [d2[[(k) tl
(k)

and the point x + (tl/t2)d2 thus lies in the feible domain of the optimization
problem sociated with the definition of ak(t) and dl. As a consequence, we have
that

(2.23) ak(tl) > 1 rid2 ) k(t2)

and the second statement of the lemma is proved.
The third statement is proved follows. Applying the Moreu decomposition to

-g, we obtain that, for any d such that x + d X and (g, d} O,

(.)
(gk, d) {PT()(--gk), d} (PN()(--gk), PT()d} (PT()(--gk), d}

where we used the fact that d T(xk) and the fact that the tangent cone is the polar
of the normal cone to derive the lt inequality. Taking absolute values and applying
(2.14) thus yields that

(.) (,d) ldll()IlPr()(-)ll.
We then obtain (2.19) by applying this inequality to any solution d of the optimization
problem sociated with the definition of ak(t) in (2.18) and using the fact that

2.3. A class of trust region algorithms. We e now ready to define our first
algorithm in more detail. Besides a used in (2.13), it depends on the constants

(.e6) 0 < ,1 < , < 1, , e (0,1], ,4 e (0,1],

(2.27) 0 </23 </]2 <_/21, /]4 (0, 1],
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(2.28) 0 < 1 < 2 < 1,

and

0</1 --<2 < 1 </3.

ALGORITHM 1.
Step 0. Initialization. The starting point x0 is given, together with f(Xo) and an

initial trust region radius A0 > 0. Set k 0.
Step 1. Model choice. Choose ink, a model of the objective function f in the

trust region Bk centred at xk, satisfying (2.12) and (2.13).
defStep 2. Determination of a generalized Cauchy point (GCP). If ak ak(1) 0,
CC such that for some strictly positive tk > Ilsk II(k),stop. Else, find a vector sk

(2.30) x + sC e X,

(2.31) IIfll() <-- =i,

(2.32)

(2.33) mk(Xk 2r- 8Ck
_
mk(Xk) 2t- ]1 <gk,

and either

(2.34) tk

or

Set the GCP

(2.36) x xk + SkC.

Step 3. Determination of the step. Find a vector sk such that

(2.37) xk + sk E X C Bk

and

(2.38)

Step 4. Determination of the model accuracy. Compute f(xk + sk) and

(2.39) /()-/( +)
p

.() .( + )"
Step 5. Trust region radius updating. In the case where

(2.40) Pk > rh,
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set

(2.41) Xk-}-I Xk -}- 8k

(2.42) Ak+l E [Ak,’)’3Ak] if Pk _>

or

(2.43)

Otherwise, set

Xk+l Xk

if pk <

Ak-}-i E [lAk,’2Ak].

Step 6. Loop. Increment k by one and go to Step 1.

Of course, this only describes a relatively abstract algorithmic class. In particular,
we note the following:

1. We have not been very specific about the model mk to be used in the trust
region. In fact, we have merely stated that its value should coincide with that of the
objective at the current iterate, and that its gradient at this point should approxi-
mate the gradient of the objective at the same point. We will also impose additional
necessary assumptions on its curvature in order to derive the desired convergence re-
sults. This still remains very broad and requires further specification for any practical
implementation of the algorithm.

One very common model choice for a twice differentiable f is to use a quadratic
of the form

(2.46) + + +

where Hk is a symmetric approximation to V2f(Xk). In particular, Newton’s method
corresponds to (2.46) with the choice of Hk V2f(xk).

Another interesting choice is

+ I(x + ,),

that is, the model and the objective must coincide on X I3 Bk. In that case, Pk will
always be exactly one, and the trust region size Ak may be assumed to be very large.
We then obtain a convergence theory of an algorithm which is no longer a trust region
method in the classical sense. In particular, if the step sk is determined by a linesearch
procedure (see [1] and [29]), the present theory then covers both linesearch and trust
region algorithms in a single context.

2. When k 0 or xk =/= Xk-1 or Ak < /k-1, the definition of the model mk at
Step 1 and the condition that (2.13) be satisfied may require the computation of a
new sufficiently accurate approximate gradient gk.
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3. We now briefly motivate the conditions (2.30)-(2.35). Our main idea is to
avoid the repeated computation of the projection onto the feasible set X within the
GCP calculation, which is a convex nonlinear program. Instead, we allow the repeated
solution of convex linear programs. Furthermore, these linear programs need not be
solved to full accuracy. These two relaxations may indeed allow for a substantially
reduced amount of calculation. We have in mind the particular case where X is a
polyhedral set and I1" II(k) is polyhedral for all k.

Condition (2.30) is imposed because we want our algorithm only to generate
feasible points. This may be essential when some constraints are "hard," for instance,
when the objective function is undefined outside X.

Condition (2.31) simply requires the step to be inside a ball contained in the trust
region defined by (2.11). This is intended to leave some freedom for the calculation
of sk in Step 3, even when the GCP is on the boundary of that smaller ball.

Condition (2.32) introduces the desired relaxations, while relating the definition
c to that of a point along the projected gradient pathof xk

(2.48) xk(O) Px(x -Og) (0 >_ 0).

c achieves theIndeed, it can be shown that, if #3 1 and I1" II(k) I1" 112, then xk
same reduction in the linearized model as that obtained by the unique point Xk(Ok) on
the projected gradient path (2.48) having length tk, if such a point exists. Condition
(2.32) with #3 < 1 can therefore be interpreted as a weakening of the condition (for

c should be on the projected gradientexample, required in [9], [21], and [29]) that xk
path. This weakening is of great practical interest when the projection onto the
feasible domain X is not readily computable.

An example is shown in Fig. 2 using the g-norm, where the set of admissible
steps sk

c is represented by the shaded area, and where (2.32) with #3 1 is achieved
for the step dk(tk).

Conditions (2.33) and (2.35) are in the spirit of the classical Goldstein condi-
tions for a "projected search" on the model along the approximation of the projected
gradient path implicitly defined by varying tk. This projected search is similar to that
introduced in [29] and modified in [20]. Condition (2.34)completes (2.33) and (2.35)
by allowing the search to terminate with a point that sufficiently reduces the model
m while having a length comparable to the trust region radius.

We note here that the value of tk is never used by Algorithm 1 except in the
definition of sk.c It is unnecessary to explicitly define its numerical value, provided

c We note also that condition (2.32)its existence is guaranteed for the computed skc and the denominator of (2.39) are nonzero.implies that both sc in (2.36) is called a GCP because it plays a role similar to thatThe vector x
of the GCP in [4], [9], [20], and [29].

c satisfying the conditions ofAt this stage, it is far from obvious how a vector sk
Step 2 can be computed. The existence and computation of a suitable step will be
addressed in 4 and 7.1.

4. Again, much freedom is left in the calculation of the step sk in Step 3, but this
fairly broad outline is sufficient for our analysis. However, this freedom is crucial in
practical implementations, as it allows a refinement of the GCP step based on second-
order information, hence providing a possibly fast ultimate rate of convergence.

5. Only a theoretical stopping rule has been specified at the beginning of Step 2.
(This criterion will be justified in 3.) Of course, any practical algorithm in our class
must use a more practical test, which may depend on the particular class of models
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xk + dk(tk)

FIG. 2. An illustration of condition (2.33) using the -norm.

being used. The present hypothesis is, however, natural in our context, where we want
to analyze the behaviour of the algorithm as k tends to infinity. We will therefore
assume in the sequel that the test at the beginning of Step 2 is never triggered.

6. From the practical point of view, it may be unrealistic to let the trust region
radius Ak grow to infinity, and most implementations do impose a uniform upper
bound on these radii. This is coherent with (2.42), where a strict increase of Ak is
not required.

7. The condition (2.45) may seem inappropriate when Ilskll(k) is small compared
with the trust region radius/kk. Analogously to the observation in [29], this condition
may be replaced by the more practical

(2.49) Ak+ e [min(/o[ISkll(k), lnk),

for some 9’0 E (0, 1] without modifying the theory presented below.
8. The algorithm necessarily depends on several constants. Typical values for

some of them are #1 0.1, #2 0.9, #4 1,/21 1,/23 10-5, /24 0.01,711 0.25,
and ’3 2 Suitable values for the remaining constants7]2 ---0.75, 1 --O.01, 2 5,

will only become clear after extensive testing.
We call an iteration of the algorithm successful if the test (2.40) is satisfied, that

is when the achieved objective reduction f(xk)- f(xk + Sk)is large enough compared
to the reduction mk(xk) --mk(xk + Sk) predicted by the model. If (2.40) fails, the
iteration is said to be unsuccessful. In what follows, the set of indices of successful
iterations will be denoted by ,.
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3. Global convergence for Algorithm 1.

3.1. Criticality measures. If we are to prove that the iterates generated by
Algorithm 1 converge to critical points for the problem (2.1)-(2.2), we clearly must
specify how we will measure the "criticality" of a given feasible point. We say that a
feasible point x, is critical (or stationary) if and only if

(3.1) -Vf(x,) e N(x,).
We propose to use, as a measure of criticality, the quantity

(3.2) ak[x] de___f] min (Vf(x), d) [,
-dX

Ildll()l

which can be interpreted as the magnitude of the maximum decrease of the linearized
objective function achievable in the intersection of X with a ball of radius one (in the
norm [1" II(k)) centred at x. Observe that ak[x] reduces to [IVf(x)[[2 when X Rn

and [[. [l(k) --[[" ]]2.
LEMMA 3.1. Assume that AS.2 holds. Then, for all k >_ O, ak[’] is continuous

with respect to its argument.
Proof. The continuity of ak [.] with respect to its argument is a direct consequence

of Lemma 2.1 and of the continuity of Vf(x).
We now show that all the norms I1" II(k) are formally equivalent.
THEOREM 3.2. Assume that AS.2 and AS.3 hold. Then there exists a positive

constant Cl >_ 1 such that

1
(3.3) --kl[x] <_ Ck.[x] <_ ClCkI[X]

C1

.for all x E X and all kl >_ 0 and k2 >_ O.
Proof. We first observe that, using assumption AS.3,

(3.4) Ildll(k) 1 == al <_ Ildl12 <_ a2.

The lower (respectively, upper) bound in this last inequality represents the smallest
(respectively, largest) possible distance (induced by I1" 112) between x and the boundary
of any ball, Ildll(k) 1, for k >_ 0. The ball {x 4- d ll]dll2 <_ a2} then contains all the
balls of the form

(3.5) Ildl]() _< 1,

while the ball {x 4- d Ildll <_ o- } is contained in them all. Now consider

def def
min (Vf(x), d} I.(3.6) Cmetx +dexmin (Vf(x),d)l and min
+deX

Becus oth second,rtoLee.e (ith , VI()d {.[ .[),
we deduce that

2(3.7) amx min.

Hving established this property, we now return to the proof of Theorem 3.2 itself. If
kl Ix] k2 [X] the (3.3) is trivially stised. We thus only cosider the ce where
sy
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In this situation, we will show that both dl and d2, two vectors satisfying the relations

(3.9) akl[x] (Vf(x),dl), IIdllk) _< 1, x + dl e X,

and

(3.10) k2[X] -(Vf(x),d2), IId211(k2) < 1, x + d2 e X,

are such that

(3.11) 0.1 _< Ildxll _< z and 0.1 _< Ildzllz _< z.

We note that the two upper bounds in these inequalities immediately result from
AS.3 and (3.9)-(3.10). We therefore only consider the case where one or both lower
bounds in (3.11) are violated. Assume, for instance, that [1d1[[2 < al. This solution
of the minimization problem associated with akl [x] is therefore in the interior of all
the possible balls of the form (3.5). The only binding constraint at this point must
be x / d E X, and this is still true if the ball defined by I1" [l(k) is replaced by that
defined by I1" I[(k.). But this implies that (3.8) cannot hold, which is impossible. The
case where [Id2[12 < al is entirely similar. The inequalities (3.11) are therefore valid,
and we obtain that

(3.12) Omin

_
Ok IX]

_
Omax and Omin

_
Ok2 Ix]

_
Omax.

Combining these relations with (3.7) and (3.8), one deduces that

(3.13) ak [X] < Ok.[X

__
Omax

_
--Omin
0.2

_
--Okx0.2 [X]

0.1 0.1

defand (3.3) is proved with cl 0.2/0.1.
The fact that ak[x] can now be used as a criticality measure results from the

following lemma.
LEMMA 3.3. Assume that AS.I-AS.3 hold. Then, x. is critical if and only if

(3.14) ak[x.] 0.

Proof. Consider first the minimization problem of (3.2) where we choose I1" II<k)
112, and let us denote the analog of (3.2) by a2[x].
The criticality conditions for this problem can be expressed as

(3.15) 0 e 2d + Vf(x) + N(x + d),

(3.16) x + d X,

(3.17) Ildll _< 1,

and

(3.18) ff (lldllN 1) o.

Assume now that a2[x,] 0. Then the choice d 0 is a solution of the minimization
problem. The relation (3.1) then follows from (3.15).
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Assume, on the other hand, that (3.1) holds. Then the conditions (3.15)-(3.18)
are satisfied with d 0 and 0. It is then easy to verify that

0

follows.
As a consequence, x, is critical if and only. if (3.19) holds. But Theorem 3.2 and

the fact that the g2-norm can be considered as one of the (k)-norms then yield the
desired result.

Lemmas 3.1 and 3.3 and Theorem 3.2 have the following important consequence.
COROLLARY 3.4. Assume that AS.I-AS.3 hold and that the sequence {xk} is

generated by Algorithm 1. Assume .furthermore that there exists a subsequence of
{xk }, {Xk }, say, converging to x, and that

(3.20) lim ak [Xk] O.

Then x, is critical.
We note that, if formally equivalent, the criticality measures depending on k often

differ from the practical point of view, when used in a stopping rule. If the problem’s
scaling is poor, a scaled measure is usually more appropriate. This scaling can be
taken into account in the definition of the iteration-dependent norms.

On the other hand, if the only first-order information we can obtain is gk (under
the proviso (2.13)), then k[x] is unavailable, and one is naturally led to use

def(3.21) (k Ck(1) min (gk,d)I,
k A-d__X

which represents the amount of possible decrease for the linearized model in the in-
tersection of the feasible domain with a ball of radius one. Clearly, ak Ok[Xk] when
gk Vf(xk), but this need not be the case in general. The value ak was used in the
"theoretical stopping rule" in Step 2 of Algorithm 1.

The replacement of ak[xk] by ak has a price, however. It may well happen that
an iterate xk is a constrained critical point for the model mk, although xk is not
critical for the true problem. In that case, Algorithm 1 will stop at the beginning
of Step 2. The model mk should therefore reflect the noncriticality of x. The
discrepancy between ak and Olk[Xk] cannot be arbitrarily large, however, as is shown
by the following result.

LEMMA 3.5. Let xk E X be an iterate generated by Algorithm 1. Then

(3.22)

Proof. Define d and dk as two vectors satisfying

(3.23) c[x] (Vf(xk),d), IIdll() < 1, x + d e X,

and

(3.24) ck -(gk, dk) ]]dkl](k) < 1, Xk A- dk X.

Assume first that Ok[Xk] >__ k. Then we can write that

0 k[xk]- k (gk,dk)- (Vf(xk), d)
(3.25) (gk, dk d) + (ek, d)

-dl) +
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where we used the inequality (2.14). But the definitions of ck, dk, and d imply that

(3.26) (gk, dk) --k <_ (gk, d)

and hence (3.22) follows from (3.25). On the other hand, if ck[xk] < ck, then a
similar argument can be used to prove (3.22), with (3.25) replaced by

(3.27) 0 < ck --Ck[Xk] <_ (Vf(xk),d -dk)-t-Ilekll[k]
and (3.26) by

(3.28) (Vf(xk), d) --ck[xk] <_ (Vf(xk), dk). D

The bound (3.22) will be used at the end of our global convergence analysis.

3.2. The model decrease. The traditional next step in a trust region-oriented
convergence analysis is to derive a lower bound on the reduction of the model value
at an iteration where the current iterate xk is noncritical. This lower bound usually
involves the considered measure of criticality (k in our case), the trust region radius
Ak, and the inverse of the curvature of the model mk (see [9], [19], [21], [23], and [29]
for examples of such bounds). To define this notion of curvature more precisely, we
follow [29] and introduce, for an arbitrary continuously differentiable function q, the
curvature at the point x E X along the step v, as defined by

(3.29) Cok(q,x, v) de_f 2

ilvll, k
[q(x / v) q(x) (Vq(x), v)]

If we assume that q is twice differentiable, the mean-value theorem (see, e.g., [16,
p. 11]) implies that

1f01 v’v2q(x-t-T1T2v)v)
(3.30) COk(q,x, V) 2 T2 IlVII2 dT1 dT2.

(k)

It is also easy to verify that, if q is quadratic and I1" II(k) I1" 112, then cok(q,x, v) is
independent of x and of the norm of v, and reduces to the scaled Rayleigh quotient of
72q with respect to the direction v. We note that the Rayleigh quotient has already
been used for similar purposes in the context of convergence analysis, namely, in [7],
[28], and [29].

We then obtain the following simple result.
LEMMA 3.6. If AS.I-AS.3 hold, then there exists a finite constant c2 >_ 1 such

that

(3.31) wk(f, Xk, S) <_ C2

for all k >_ 0 and all s such that xk + s .
Proof. The Lipschitz continuity of Vf(x) implies that

(3.32) If(xk + s)- f(xk) (Vf(xk) s} < 1/2Llllsll 22
where nI is the Lipschitz constant of Vf(x) in the norm II" 112. We may then deduce
from (3.29) that

2

(3.33) cok(f, xk, 8) nf 11812(k)
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which gives (3.31) with c2 max[l, aLI] by using AS.3.
We are now in position to state the main result of this section.
THEOREM 3.7. Assume that AS.I-AS.3 hold. Consider any sequence {xk} pro-

duced by Algorithm 1, and select a k > 0 such that xk is not critical in the sense that
ak > O. Then, if one defines

one obtains that

(3.35) wk
c >_ O.

Furthermore, there exists a constant C3 E (0, 1] such that

C(3.36) mk(xk) mk(x + s) > c3cmin 1,

for all k O.
Proof. Let us first consider the ce where t 1. In this ce, we obtain from

(2.33), (2.32), the first statement of Lemma 2.2, and the definition (3.21) that

(3.37) mk(xk) mk(xk + S) ,l,3ak(tk) ,l,33k(1)

Assume now that tk < I. We first note that, because of (2.32), the second part of
Lemma 2.2, (3.37), and (3.21), we have that

c ak(tk) ak(1)(3.38)
<gk,sk )

,3 ,3
t t 1

Combining this inequality with (2.33), we obtain that

c
(3.39) mk(xk) mk(xk + S) , <9, Sk )

tk ,1,3ktk.
tk

Now, if condition (2.34) is satisfied, we can deduce, by using (3.39), that

(3.40) mk(xk) mk(xk + 8) lg3k min[aA, a].
C satisfies (2.35) we observe thatOn the other hand, if sk

2(1 ,2)[<g,s)l > 2(1
Cll( ) c

c and (2.35). Hence (3.35) is proved and, usingwhere we used the definition of wk
(3.38), we have that

k(3.42) t > 2(1- ,2) 23(1-
w 1 + w"

Substituting this bound into (3.39) then yields that

c satisfies (2.35)(3.34) wc def O)k(mk, Xk, 8) if 8k
0 otherwise,
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The inequality (3.36) now results from (3.37), (3.40), (3.43), (2.38), and u4 _< 1, with

(3.44) c3 #1#3#4 min[’3, ’4, 2#3(1 #2)] _< 1. FI

We end this subsection by stating an easy corollary of Theorem 3.7, giving a lower
bound on the decrease in the objective that is obtained on successful iterations.

COROLLARY 3.8. Under the assumptions of Theorem 3.7, one obtains that

[ l(3.45) f(xk) f(xk+) > rlC3ak min 1 Ak
1 + wk

forkE.
Proof. The inequality (3.45) immediately results from (3.36), (2.39), (2.40), and

(.4).
.3. Convergence o criical points. This section is devoted o he. proof of

global convergence of he ieraes generated by Algorithm i o critical points.
For developing our convergence heory, we will need o introduce additional -sumpions on he curvature of the models a. These sumptions, and he res of

our convergence analysis, will be phred in erms of the quantity

(3.46) flk=lq- max [max[w/C
i--O,...,k

c and sk vectors.We note that flk only measures curvature of the model along the sk
We also observe that the sequence {ilk } is nondecreasing by definition.

We first recall two useful preliminary results in the spirit of [29].
LEMMA 3.9. Assume that AS.I-AS.3 hold and consider a sequence {Xk} of iter-

ates generated by Algorithm 1. Then there exists a positive constant c4 >_ 1 such that,
for all k >_ O,

If(Xk + Sk) mk(xk + )[ < C4flkA2k

Proof. We observe that

/ II’alla)l’.,.’(f, ,’) (ma,,)1
(.48)

IIll[] I111)
+ llll[l(f,,)1 + I(m,, )1],

where we used the definition (3.29), (2.12), and the inequality (2.14). But
PlAk, and hence we obtain from (3.48), (2.13), (3.46), and Lemma 3.6 that

(3.49) If(xa + ) m(a + a)l

which then yields (3.47) with

(3.50) c4 2 C2 + m 1,

LEMMA 3.10. Assume that AS.I-AS.3 hold and consider a sequence {xk} of
iterates generated by Algothm 1. Assume fuheore that there exists a constant
e (0, 1) such that

(3.51)
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for all k. Then there exists a positive constant c5 such that

c5(.)

for all k.
Proof. Assume, without loss of generality, that

c0A0(a.a) < c(1 72)’

where "1 and 2 are defined in the algorithm (see (2.29) and (2.28)). In order to
derive a contradiction, sume also that there exists a k such that

(3.54)
C4

and define r the first iteration number such that (3.54) holds. (Note that r 1
because of (3.53).) The mechanism of Algorithm 1 then ensures that

(3.55) Z__ C3(1 2)
1 C4

where we used the relations

_ , (2.45), (3.54) with k- r, c3 1, and c4 1.
Combining the inequalities (3.51), (3.36), e < 1, r- 1, and (3.55), we now obtain
that

(3.56) mr-(xr-) mr-(x_ + sr-) cae min 1, Ar-, r-
The relations (2.39), (3.47), (3.56), and the middle part of (3.55) together then imply
that

(a.)

I- l
if(x_ + _) _(x_ + -)l < Z-- < ._(x_) _(x_ +_)

Hence p_ 2, and thus A A_. However, we may deduce from this lt
inequality that

7c3(1 2)(3.58) r_lAr_l
C4

which contradicts the sumption that r is the first index with (3.54) satisfied. The
inequality (3.54) therefore never holds, and we obtain that, for all k,

(3.59)
C4

The inequality (3.52) then follows from (3.59) by setting

(.0)
C4

We now formulate our first sumption on the model’s curvatures.
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AS.4. The series

(3.61) E --k--0

is divergent.
As shown in [29], this condition is necessary for guaranteeing convergence to a

stationary point. It is clearly satisfied in the common case where quadratic models
of the form (2.46) are used, whose Hessian matrices Hk are uniformly bounded. This
last assumption obviously holds when f(x) is twice continuously differentiable over
the compact set and Hk V2f(xk).

Before proving one of the major results of this section, we recall the following
technical lemma, due to Powell [24] (proofs can also be found in [9] or [32]).

LEMMA 3.11. Let {Ak} and {/3k} be two sequences of positive numbers such that
kAk C5 .for all k, where c5 is a positive constant. Let e be a positive constant, S
be a subset of {1, 2,...}, and assume that, for some constants /2 < 1 and "y3 > 1,

(3.62) Ak+l _< "y3Ak for k E S,

(3.63) Ak+l _< ")’2Ak for k

_ ,
(3.64) k+ >_ k for all k,

and

(3.65) E min Ak,kk
Then

k=lkk <O"
Using this lemma, we now show the following important result.
THEOREM 3.12. Assume that AS.I-AS.4 hold. Then, if {xk} is a sequence of

iterates generated by Algorithm 1, one has that

(3.67) lim inf ak 0.

Proof. Assume, for the purpose of obtaining a contradiction, that there exists an
e E (0, 1) such that (3.51) holds for all k >_ 0. Corollary 3.8 and the fact that the
objective function is bounded below on imply that

(3.68) 1C3 min 1, Ak, <_ [f(xk)- f(xk+)] < cx.

Thus, because of Lemma 3.10 and the inequalities e < 1 and k >_ 1, the sequences
Ak and fk then verify all the assumptions of Lemma 3.11, which then guarantees that

(3.69) E < c.
k=0
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This last relation clearly contradicts AS.4, and hence our initial assumption must be
false, yielding (3.67).

This theorem has the following interesting consequences.
COROLLARY 3.13. Assume that AS.I-AS.4 hold. Assume furthermore that

is a sequence of iterates generated by Algorithm 1 that converges to x,, and that

(3.70) lim [[el[[ O.

Then x, is critical.

Proof. This result follows directly from (3.70), Lemma 3.5, Theorem 3.12, and
Corollary 3.4.

COROLLARY 3.14. Assume that AS.I-AS.4 hold. If {xk} is a sequence of iterates
generated by Algorithm 1 and if , is finite, then the iterates xk are all equal to some
x, for k large enough, and x, is critical.

Proof. If , is finite, it results from (2.44) that xk is unchanged for k large enough,
and therefore that xk x, xj+l for k sufficiently large, where j is the largest index
in ,. The relations (2.45) and (2.29) also imply that the sequence {Ak} converges to
zero. Hence (2.13) ensures that (3.70) holds. We then apply Corollary 3.13 to deduce
the criticality of x.. [:]

If we now assume that S is infinite, we wish to replace the lim inf in (3.67) by a
true limit, taken on all successful iterations, but this requires a slight strengthening
of our assumption on the model curvature.

AS.5. We assume that

(3.71) lim k[f(x) f(x+l)] O.

As discussed in [9], this assumption is not very severe, as we always have that
(3.71) holds with the limit replaced by the limit inferior. Also, AS.5 is obviously sat-
isfied when using a model with bounded curvature, as is assumed in [20], for example.

THEOREM 3.15. Assume that AS.I-AS.5 hold. Then, if (xk} is a sequence of
iterates generated by Algorithm 1 and if the set , is infinite, one has that

(3.72) lim Ck O.

Proof. We proceed again by contradiction and assume that there exists an el E
(0, 1) and a subsequence (m} of successful iterates such that, for all m in this
subsequence,

(3.73)

If we define

def [1 ]1 1(3.74) C6 max --, cl
Cl

where c is given by Theorem 3.2, and if we choose

(a.75) ee 0,2(c+1)
Theorem a.12 then ensures the existence of another subsequence {i} such that

(a.76) c _> e for mi <_ k < i and
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We now restrict our attention to the subsequence of successful iterations whose indices
are in the set

(3.77)

where mi and gi belong, respectively, to the two subsequences defined above. Applying
Corollary 3.8 for k E ]C, we obtain that

[f(Xk)- f(Xk+) >_ 7c3e2 rain Ak,

where we used the inequalities e2 < 1 and k >_ 1. But AS.5 then implies that

(3.79) lim kAk O,

and hence, using (3.78), that

I(x)- I(x+) _> ,c3/x

for k K: sufficiently large. As a consequence, we obtain, for i sufficiently large, that

(3.81)

where the sums with superscript (]C) are restricted to the indices in ]C, and where

def O’2/21(3.82) c7
T1C32

Because of Lemma 3.1 and because the last right-hand side of (3.81) tends to zero as
i tends to infinity, we deduce that

(3.83) e( + 3)

for i sufficiently large. We note now that (3.79), k >_ 1, and (2.13) imply that gin, is
arbitrarily close to Vf(xm,), and hence Lemma 3.5 gives that

1(3.84) Io,, -., [.,]1 _<
2(o + 3)

for i large enough. We observe also that, because of (2.13) and (2.42),

where ki is the largest integer in ]C that is smaller than gi. As before, we now deduce
from (3.79), k _> 1, Lemma 3.5, and (3.85) that
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for large i. Hence, using Theorem 3.2, we obtain that

[(3.87) [Cm [xe] e [xe][ _< c6ce [xe] _< c6 ce + 2(c6 + 3)

for i sufficiently large. Using the triangular inequality together with (3.84), (3.83),
(3.87), and (3.86), we obtain that, for large enough i,

We then deduce from (3.76) and (3.75), that, for large enough i,

am, _< ag, (c6 + 1) + 1/2{[1 < {[1,

which contradicts (3.73) and proves the desired result. F1

As above, we can obtain conclusions about convergent subsequences where the
first-order information is asymptotically correct. If is finite, the convergence of the
iterates to a critical point results from Corollary 3.14. Hence, we now restrict our
attention to the case where S is infinite.

COROLLARY 3.16. Assume that AS.I-AS.5 hold. Assume furthermore that ,S is
infinite, that {xk} is a convergent subsequence of the successful iterates generated by
Algorithm 1, and that

(3.90) lim o.

Then x, the limit point of {xk, }, is critical.

Proof. The proof of this result is entirely similar to that of Corollary 3.13 except
that we have to consider only the successful iterates.

Finally, we are interested in what can be said on the criticality of limit points of
{xk} if we do not assume (3.70).

COROLLARY 3.17. Assume that AS.I-AS.5 hold, that {xk} is a subsequence of
successful iterates generated by Algorithm 1, and that xk} converges to x.. Then

(3.91) limsupak[x,] _< limsup

Proof. If ,S is finite, then the result immediately follows from Corollary 3.14 and
Lemma 3.3. Assume, therefore, that is infinite. Because of Lemma 3.1, Lemma 3.5,
and Theorem 3.15, we have that

lim sup ck, [x,] lim sup ak,

_< lim sup

<_ lim sup

Keeping in mind that the dependence of I1" II[k] on ki, and hence on i, is irrelevant
because of Theorem 3.2, Corollary 3.17 thus guarantees that all limit points are as
critical as the scaled accuracy of gk as an approximation to Tf(xk) warrants.
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4. A model algorithm for computing a generalized Cauchy point. A
major difficulty in adapting the framework given by Algorithm 1 to a more practical
setting is clearly the definition of a practical procedure to compute a GCP satisfying
all the conditions of Step 2.

As indicated already, such procedures have been designed and implemented in the
case where the projected gradient path defined by the classical g2-norm is explicitly
available (see [1] and [29], for example).

We now consider the more general case presented in 2 and 3, and we wish
to find, at a given iteration, a GCP satisfying (2.30)-(2.35). The difficulty is then
to produce a point that is not too far away from the unavailable projected gradient
path. This cannot be done without considering the particular geometry of this path,
which may closely follow the boundary of the feasible set. As a consequence, linear
interpolation between two points on the projected gradient path is often unsuitable,
and a specialized procedure is presented in this section.

For the sake of clarity, in this section we will drop the subscript k, corresponding
to the iteration number.

4.1. The RS Algorithm. We first define the following restriction operator as-
sociated with the feasible set X and a centre x E X. This operator is defined as

(4.1) Rx[y] de__f arg min II z YlI2
z[x,y]nx

for any y E Rn, where Ix, y] is the segment between x and y. The definition of Rx[y]
uses the g2-norm, but any other norm can be used because the associated minimization
problem is unidimensionM. The action of the restriction operator (4.1) is illustrated
in Fig. 3. It should be noted that computing R [y] for a given y is often a very simple
task.

Y2

X

Yl

FIG. 3. The restriction operator with centre x.

The GCP Algorithm relies on a simple bisection linesearch algorithm on the re-
striction of a piecewise linear path with respect to a given center, called the RS
Algorithm (Restricted Search Algorithm). Because of the definition of the restriction
operator, this last algorithm closely follows the boundary of the feasible domain, as
desired. It finds a point x. x + z in Rx[xl,xP, xU], the restriction of a nonempty
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piecewise linear path consisting of the segment Ixz, xp] followed by Ixp, xU], where xz,
xp, and xu are defined below. The restriction is computed with respect to the centre
x, and the resulting vector z is such that (2.33) and (2.35) hold with sk z. The as
Algorithm can be applied under the conditions that (2.35) is violated at R[x] and
that (2.33) is violated at Rx[x]. It therefore depends on the three points x, xp, and
xu defining the piecewise linear path, the centre x, and on the current model m (and
hence on its gradient g). It also depends on an arbitrary bijective parametrization of
the path Ix, xp, xU]. For example, one can choose the parameter to be the length of
the arc along the path measured in the g2-norm. More formally, if

6p llxp xll2 and 6 6p + llx xpll2,

we can define

6 xder xp 4-(1 ) if _< tip,
6-6, xU6_ + (1 _.)xp if _> 5p

for any E [0,6]. The inner iterations of Algorithm RS will be denoted by the
index j.

RS ALGORITHM.
Step 0. Initialization. Set 10 0, u0 6u, and j 0. Then define 60 1/2 (10 4-u0).
Step 1. Check the stopping conditions. Compute xj R[x(6j)], using (4.1) and

(4.3). If

(4.4)

then set

(4.5) lj+l lj and uj+ j,

and go to Step 2. Else, if

(4.6)

then set

(4.7) lj+l 6j and uj+ uj,

and go to Step 2; else (that is, if both (4.4) and (4.6) fail), set x. xj and STOP.
Step 2. Choose the next parameter value by bisection. Increment j by one, set

(4.s) 1/2 +
and go to Step 1.

The fact that a vector x. has been produced by the application of the RS Algo-
rithm on the path [xZ,xP, x’] with respect to the centre x and the model m will be
denoted by

(4.9) x, RS(x, m, x xp, xU).

We have the following simple result.
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LEMMA 4.1. Assume that the RS Algorithm is applied on a piecewise linear path
[x,xP, xu] satisfying the conditions stated in the paragraph preceding its description,
with centre x and model m. Then this algorithm terminates with a suitable vector
x. x + z at which (2.33) and (2.35) hold in a finite number of iterations.

Proof. We first note that (2.35) is violated at Rx[x] and that (2.33) is violated at
R[xu]. As a consequence, the validity of the result directly follows from the inequality
# < #2, the continuity of the model m on the restriction of the path Ix, xp, xU], and
from the fact that the length of the interval [lj, u] tends geometrically to zero, while
its associated arc on the restricted path always contains a fixed connected set of
acceptable points, rl

4.2. The GCP Algorithm. We now describe the GCP Algorithm itself. It
depends on the current iterate x E X, on the current model m and its gradient g, on
the current norm I1" II, and also on the current trust region radius, A > 0. Its inner
iterations will be identified by the index i. (Also recall that all subscripts k have been
dropped, yielding, for instance, a(t) instead of a(t) and instead of

GCP ALGORITHM.
Step 0. Initialization. Set 0, lo 0, z 0, and uo u2A. Also choose z as

an arbitrary vector such that IIzll > u2A and an initial parameter to E (0, u2A].
Step 1. Compute a candidate step. Compute a vector zi such that

(4.10)

(4.11) x + zi e X,

and

(4.12) <g, zi> <_ -/3c(ti).

Step 2. Check the stopping rules on the model and step. If

(4.13) m(x - zi) > m(x) +/1 (g, Zi},

then set

(4.14) Z
u

Li-t-1 i i+1 Zi

and

(4.15) li+l li, Zi+ Z

and go to Step 3. Else, if

(4.16) + z.) < ,= z.>
and

(4.17) ti < min[u3A,

then set

(4.18) Ui+l Ui, Zbl Z
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(4.19) li+l ti, zi+1 Zi

and go to Step 3. Else (that is, if (4.13) and either (4.16) or (4.17) fail), then set

(4.20) xC x + zi

and STOP.
Step 3. Define a new trial step by bisection. We distinguish two mutually exclusive

cases.

z0 or z+ Z. SetCase 1. z+l

ti+l -12 (/i+1 -- Ui+I),

increment by one and go to Step 1.
Case 2. zi+ z0 and z+ z. Define

(4.22) P [ [[Z+l[[] Zi+Zi+l max 1,
ilz+:ll

set

(4.23) P uxC RS(x, m, xi+l, Xi+l, Xiq_l)

where

(4.24) p p u
X - Zi.4_1: XiA_ X "4" ZiA_l XiA_ X - Zt+lXiq-1

and STOP.

The actual value of z is irrelevant in practice: this quantity is merely used to
detect if z+ has been updated in (4.14) at least once.

Figure 4 shows the situation at a given iteration of the GCP Algorithm in the
case where I1" II(k) I1" IIo. In particular, the use of the point xp as defined in Step 3

(Case 2) is illustrated. The symbols xr, xy, t, t, xt, Ct, and Ct= are not yet defined,
but will be introduced in the proof of Theorem 4.5 below.

We note that linear interpolation between xi+l Rx [xi+l 1] and xi+ Rx[xiu+l]
cannot generally be used in Step 3 (Case 2), because the geometry of the boundary of
the feasible domain may imply that the (unknown) projected gradient path consider-
ably departs from the segment [X+l, xi+l]. This is the reason why a call is made to
the RS Algorithm, which closely follows this boundary.

We emphasize that this GCP Algorithm is only a model, intended to show feasi-
bility of our approach, but is not optimized from the point of view of efficiency. Many
additional considerations are possible and indeed necessary before implementing the
algorithm, including

the details of the all-important solver used to determine zi in Step 1,
a suitable choice of to,
more efficient techniques for simple models (e.g., linear or quadratic), and

also for specific choices of the norm [[. [[.
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boundary of the ball
of radius t

boundary of the ball
of radius t

tu

the path Rx[x xp, xu]

X

FIG. 4. A "restricted path" with the l.oo-norm.

The solver used in Step 1 obviously depends on X and the norm It" II. For example,
Step 1 reduces to a linear programming problem if X is polyhedral and a polyhedral
norm is used; the classical projected, gradient may also be obtained when the g2-norm
is used and 3 1.

If we denote by

(4.25) xC GCP(x, m, nJ-II, A)

the fact that the vector xC has been obtained by the GCP Algorithm for the point x,
the model m, the norm I1" II, and the radius A, we then replace Step 2 of Algorithm 1
by the simple call

(4.26) xCk GCP(xk,mk, I1"
4.3. Properties of the GCP Algorithm. We now wish to show that the GCP

Algorithm converges to a point satisfying (2.30)-(2.35) and terminates in a finite
number of iterations.
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The first result shows that, if a step z satisfies (2.32), then all prolongations of
this step, that is, all vectors of the form TZ with " _> 1, also satisfy the same condition.

LEMMA 4.2. Assume that there exists a t >_ Ilzll such that

(4.27) <g,z> _--#30(t)

:for some z O. Then

(4.2s) <,> <_ -(t)

forT>_1.
Proof. Using successively (4.27), the inequality T >_ 1, and the second part of

Lemma 2.2, we obtain that

(4.29) <g, TZ> <--#3Tt
a(t)

<-#3t
a(Tt)

t Tt

yielding the desired bound.
We are now in the position to prove that the GCP Algorithm is correctly stated,

finite, and coherent with the theoretical framework presented in 2 and 3.
LEMMA 4.3. The GCP Algorithm has well-defined iterates.

Proof. We have to verify that all the requested conditions for applying the RS
Algorithm are fulfilled when a call to this algorithm is made. We first note that
the RS Algorithm can only produce a feasible point because of the definition of the
restriction operator. We also note that the mechanism of the GCP Algorithm ensures
that the piecewise path to be restricted is nonempty, that (2.33) is always violated
at Rx[xui+l] xUi+l, and, similarly, that (2.35) is always violated at Rx[x+l] Xi+l.l
The RS Algorithm is therefore applied in the appropriate context.

We now prove the desirable finiteness of the GCP Algorithm at noncritical points.
THEOREM 4.4. Assume that ( > O. Then the GCP Algorithm terminates with a

suitable xC in a finite number of iterations.

Proof. Assume that an infinite number of iterations are performed. We first
consider the case where

l=z0 for alli>0.(4.30) z
In this case, the mechanism of the GCP Algorithm implies that

(4.31) ti < (1
Hence we obtain that

(4.32) [Izill _< ti _< min [1, 2(1-Lm#l)#3a]
for all >_ il, say, where L, is the Lipschitz constant of the gradient of m with respect
to the norm ]]. I]. For all i _> 0, we have that

(a.aa) ,( + z,) ,() , (a. z,) ( ,)(a. z,) + i,il,
where we have used Taylor’s expansion of m around x and the definition of Lm. But
the second part of Lemma 2.2 implies that

(4.34) a(ti) > a(1)
a

t 1
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for all i >_ il, and hence that

for i >_ il, because of the inequality t >_ II  ll. Condition (4.12) then gives, for such i,
that

(4.36)

Introducing this inequality in (4.33), we obtain that

(4.37) m(x + zi) m(x) #1 <g, zi> <_ -(1 l)3llzll / 1/2LmllZ[I 2

for i _> il. Using (4.32), we now deduce that

(4.38) m(x + (g, <_ 0

for all i _> il. As a consequence, (4.13) is always violated for sufficiently large i, and
(4.30) is therefore impossible.

We thus consider the case where z z for all i. This implies that (4.13) is
always false and that the algorithm either stops through (4.20) (in which case the
convergence is clearly finite) or uses (4.19) at each iteration. But. the effect of (4.19)
is that li tends to u2A as i grows, and therefore (4.17) must fail for sufficiently large
i because u3 < u2. The algorithm then terminates with (4.20) after finitely many
iterations.

We conclude from these two arguments that, for the algorithm to be infinite, one
must have that z! z0 for some i > 0 and also that zi z must be defined
for some i2 > 0. But, because the mechanism of the algorithm guarantees that the
sequence (li} is nondecreasing and that the sequence (ui} is nonincreasing, Case 2 in
Step 3 therefore occurs for i max(il, i2). The RS Algorithm is thus used in (4.23),
and Lemma 4.1 again ensures finite temination.

THEOREM 4.5. The call (4.26) can be used as an implementation of Step 2 of
Algorithm 1.

Proof. We have to verify the compatibility of the GCP Algorithm with the con-
c cditions of Step 2 in Algorithm 1, that is, we have to check that the step sk xk xk

produced by (4.26) does indeed satisfy the conditions (2.30)-(2.35). All these condi-
tions except (2.32) are clearly enforced by the mechanism of the GCP and RS Algo-
rithms. We can therefore restrict our attention to the verification of (2.32) for the

c ctwo different possible exits of the GCP Algorithm and their associated sk xk Xk.
Dropping again the subscripts k, we have to verify that (4.27) holds with z xC- x.

The first case is when the GCP Algorithm terminates using (4.20). Then (4.12)
ensures that (4.27) holds for z zi.

The second and last case is when the algorithm terminates through (4.23). The
for somecondition (4.12) again ensures that, in this case, (4.27) holds for z z+

llZ+lll, and for z z+ for some +1 -> llZ+lll. For clarity of notations, we
drop the subscript + 1 below.

Ve analyze the stuaton n the pane containing z, z, and z, and define, for
> O, the convex sets

(4.39) Ht de=f {X + Z e H <g, z> < -3(t)},
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and

(4.41) G de=r/-/t 0 St.

For a given t > 0, Ht is the half-plane of all vectors x + z E H such that z satisfies
(4.27), irrespective of the constraints t _> Ilzll and x + z E X, while Ct is the subset
of Ht for which these constraints hold.

We again distinguish two cases. The first case is when

(4.42) llz [I IIz ll.
Using the first part of Lemma 2.2, we deduce that

(4.43) <g, Zu> __< --30(:u) __<

and therefore, using the inequality t _> IIz ll llz ll, that the complete segment
Ixl, x"] belongs to the convex set C,. Hence (4.27) holds for t at every point of the
segment Ix, xu] R[x, xp, x].

The more complicated second case is when (4.42) fails. The proof proceeds by
showing the existence of a continuous feasible path between x and xu, depending on
the parameter t, such that, for each point on this path, there is a t e ItS, tu] for which
(4.27) holds at this point. To find this path, we first define, for all t It, tu],

def(4.44) xt arg min Ily xll2,
y6Ct

that is, the projection of xu onto the convex set C. We note that both x and
belong to C,, and hence that the segment Ix, x,] lies in C,. We also note that
xu x 6 Ct. Finally, x clearly belongs to C for all t 6 [tl, t] because of (4.44).
Furthermore, this set of x determines a continuous path, as can be seen by applying
Lemma 2.1 to the minimization problem (4.44). The desired path from x to x then
consists of the segment [x, x,] followed by the path determined by x for t 6 [t, tu].

To complete the proof of the theorem for this second case, we use the path just
obtained to show that (4.27) holds for some t at every point of R[x,xP,x]. We
observe here that this restriction belongs to the plane H. We successively consider
three parts of the restricted path, and show the desired property for each part in turn.
This restricted path is that used by the GCP Algorithm. A case where I1" II 11"
is illustrated in Fig. 4.

The first part of the restricted path consists of the segment [x, xr] (where xr

R[xP]) which is the restriction of the segment Ix, xP]. Using Lemma 4.2 and the fact
that zp is a multiple of zl, we deduce that, for each point y 6 Ix, xr], there exists a
t such that (4.27) is satisfied at this point for z y- x. We also note that the same
argument implies the existence of tp >_ IlzPll IlzUll such that (4.27) also holds at zp.

The second part of the restricted path consists of the segment [xl,x], where
x:f Rx[xf] is the first feasible point on the segment [xP, xU]. (Note that [xl, xu]
may be equal to Ixp, x] when xp is feasible or may be reduced to the point x if this
is the only feasible point in Ixp, xU].) The segment [xI, xu] is also contained in X and
is therefore equal to its restriction. Because (4.27) holds with t min[tp, t] both for
zp and z, it must also hold, with the same t, for all z such that z y- x where
e c_
The third part of the restricted path consists of the restriction of the segment

Ixp, xY]. If xp is feasible, then the path reduces to xY xp, and the desired property
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results from the analysis of the first part of the restricted path. Assume, therefore,
that xp is not feasible. Then the restriction of Ixp, xf] lies on the intersection of the
boundary of X with H. It can therefore be viewed as the prolongation (as defined
before Lemma 4.2) of a part of the path from x to xu defined by the segment [x, xz]
followed by {xtlt E It, t]}. Lemma 4.2 then guarantees the existence, for each point
y x / z on the restriction of Ixp, xf], of a t such that (4.27) holds for z. This finally
completes the proof. [:]

The proof of this last theorem also shows that the path used by the GCP Al-
gorithm is not the only possible one. This can be seen, for example, by choosing

I1" I1" 112, in which case the projected gradient path (see [29]) is also acceptable
(in the sense that each of its points satisfies (4.12)) and may be different from the
restricted path used by the GCP Algorithm.

5. Identification of the correct active set. In this section we consider the
case where the convex set of feasible points X is defined as the intersection of a finite
collection of larger convex sets X, that is,

m

z
i--1

AS.6. We assume that, for all i E {1,..., m}, the convex set X is defined by

(5.2) x {x e Rlh(x) > 0},

where the function hi is from Rn into R and is continuously differentiable.
We will be interested in the behaviour of the class of algorithms presented in 2

as the iterates {xk} approach a limit point x,. More precisely, if we define the active
set at the point x X by

(5.3) A(x) {i e {1,... ,m}lh(x 0}

(note that A(x) may be empty if X has a nonempty interior that contains x), the
question we wish to analyze can then be phrased as "Is A(xk) A(x,) for k large
enough?"

We temporarily restrict ourselves to the case where only inequality constraints
are present. This is indeed the case where the constraints identification problem is
most apparent. We will discuss the introduction of linear equality constraints in 7.2.

5.1. The assumptions. Clearly, our present assumptions are too general for
such an analysis, and we need to strengthen them both from the algorithmic and the
geometric point of view.

We first state precisely the additional conditions that are required in Algorithm 1.
c indexed by A(xCk) shouldThe idea is that the active constraints at the GCP xk

be a good estimate of the constraints active at the limit point x, when k is large
enough, as in [4] and [9]. The test which ensures that the GCP asymptotically picks
up the correct active constraints is motivated as follows. Assume that an iterative
procedure is used to solve the linearized problem associated with ak(tk) in (2.18).

^C satisfying condition (2.32) is obtained in the course of this iteration,When a step sk
^c doeswe investigate if the correct active set has been found. If the current step sk

not approximately minimize the linearized model with respect to the constraints in
^CA(xk + sk ), we anticipate that this is because the correct active set has not yet

been determined. Consequently, additional constraints may need to be considered,
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for otherwise, the minimizer may be too far away--at infinity in the case of purely
linear constraints. We may then choose to continue our iterative procedure. On

^c approximately minimizes the linearized model with respect tothe other hand, if sk
this restricted set of constraints, we may hope that the correct active set has been
identified. In the worst case, this may result in finally solving the linearized problem
exactly: at the solution c, we know that (2.32) obviously holds, but also that this
step solves the relaxed version of the same problem where all constraints that are not

^cin A(xk + sk have been discarded. This technique motivates our next assumption, in
c but also that this step approximatelywhich we require not only that (2.32) holds at s},

minimizes the linearized model with respect to the constraints in A(xCk).
c and for all t > 0,More precisely, if the quantity (c(t) is defined, for a given xk

by

I,
Xk-bdEX

where

xf x,,
ieA(x)

we can then formulate our assumption as follows.
c suchAS.7. For all k sufficiently large, there exists a strictly positive t >_ Ilsk I1()

that

(5.6)

for some constant #3 E (0, 1].
We note that, because X c_ XkC,

>

for all t >_ 0, and hence condition (5.6) is stronger than (2.32)" it can therefore replace
this condition, for large k, in the formulation of Algorithm 1. (This is the reason why
the constant #3 has been reused in (5.6).)

We also note that it is always possible to satisfy AS.7 and (2.32) together because
c is chosen as the minimizer of the linearizedequality holds in condition (5.7) if xk

problem associated with the definition of ak(t) in (2.18) (see our motivation for AS.7
above).

Once the correct active constraints have been identified by the GCP one must
then make sure they are not dropped at Step 3 of Algorithm 1. This is ensured by
the following condition.

AS.8. For all k sufficiently large,

(5.s) A(xC C_ A(x + s).

In a way entirely similar to that used in the proof of Lemma 2.2, one can deduce
cthe following properties of ck (t) as a function of t.

LEMMA 5.1. For all k >_ O,
c1. the function t o (t) is continuous and nondecreasing .for t >_ O,

2. the function t H (t)/t is nonincreasing for t > O.
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By analogy with (3.21), we can also define

(5.9) akC de aC (1).

Using this quantity, we obtain the following counterpart of Theorem 3.7 and Corol-
lary 3.8.

THEOREM 5.2. Assume that AS.I-AS.3 and AS.7 hold. Consider any sequence
c(xk} produced by Algorithm I and assume that ck > 0 .for a k su]ficiently large. Then

there exists a constant cs E (0, 1] such that

[(5.10) mk(xk)- mk(xk / Sk) > csk
C min 1, Ak 1 / wk

for all k sufficiently large. Furthermore, one has that

(5.11) f(xk)- f(xk+l) > rhcsk
C min 1 Ak 1 / wk

Cfor all k S sufficiently large such that k > O.
Proof. The proof is entirely similar to those of Theorem 3.7 and Corollary 3.8, with

all Ck being replaced by kC, Lemma 2.2 replaced by Lemma 5.1, and the references
to (2.32) by references to (5.6).

c instead ofWe note that we can then pursue the development of 3.3, using
k, and deduce a counterpart of Theorem 3.12.

THEOREM 5.3. Assume that AS.I-AS.4 and AS.7 hold. Then, if (xk} is a
sequence of iterates generated by Algorithm 1, one has that

(5.12) lim inf ck
C 0.

k--o

Let us now examine the geometry of the feasible set. We will use the strong
constraint qualification based on the independence of the constraint normals at the
limit points of the sequence of iterates {xk } generated by Algorithm 1. We first define
L to be the set of all limit points of this sequence. Clearly, L is compact because of
AS.1.

AS.9. For all x, L, the vectors {Vhi(x,)}iA(x,) are linearly independent.
Assumptions AS.6 and AS.9 imply that the normal cone at any x, L is poly-

hedral and of the form

(5.13) N(x,)={yR,ly=_ iA(x.)Z/kiVhi(x,),Ai >_ 0}.
We complete our assumptions by requiring DunE’s nondegeneracy condition [13]

at every limit point x, L. Before stating this condition, we recall that the relative
interior of a convex set Y (denoted ri[Y]) is its interior when Y is regarded as a
subset of its affine hull, that is, the affine subspace with lowest dimensionality that
contains Y (see [26, p. 44] for further details). Using this concept, we now express
our condition as follows.

AS.10. For every limit point x, E L, one has that

(5.14) Vf(x,) e ri[N(x,)].
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As discussed in [3], this last condition can be viewed as the generalization of the
strict complementarity assumption used in [9] and [18]. It was also used in [2] and
in [3] in a similar context. As in [2] and [3], we note that AS.9, AS.10, and (5.13)
together imply the existence of a unique set of strictly positive multipliers. Thus, for
every x, E L,

ieA(x.)

for some uniquely defined Ai > 0.
We finally assume that the gradient approximations are asymptotically exact.
AS.11.

(5.16) lim Ilekll[kl O.

This assumption is not the weakest one for obtaining the results on constraint
identification presented below, but its presence simplifies the exposition. A weaker
requirement will be discussed in 7.

We note that none of the above assumptions requires the feasible set to be poly-
hedral, or even that it has quasi-polyhedral faces (cf. [3]).

5.2. Connected components of limit points. Using the assumptions pre-
sented in the preceding subsection, we examine the properties of the unique connected
component of limit points of L containing a given x, E L, which we denote by L,.
We first show the following remarkable fact.

LEMMA 5.4. Assume that AS.l-AS.10 hold. Then, for each connected component
of limit points L,, there exists a set A(L,) c_ {1,..., m} such that

(5.17) A(x,) A(L,)

for all x, L,.
Proof. Consider two limit points x,, y, L, such that

(5.18) A(x, A(y,

and assume, without loss of generality, that there exists j {1,..., m} such that
j A(y,) but j f A(x,). Because of the path-connectivity of L,, we know that there
exists a continuous path z(t) such that

(5.19) z(0) x,, z(1) y,, z(t) e n,, Vt e [0, 1].

Using the continuity of z(-) and hi(-), the condition (5.18) and the definition of j also
ensure the existence of t+ (0, 1] such that

(5.20) j

_
A(z(t)) Vt e [0, t+) and j e A(z(t+)).

Let us also consider a sequence {ty} in the interval [0, t+) converging to t+, and such
that A(z(t)) is constant, and equal to A_ say, for all j. Equation (5.15) implies that

(5.21) Vf(z(t)) : (t)Vh(z(t))
iA_

for all tj and for some uniquely defined A-(tj) > 0. We now wish to show by contra-
diction that the sequences {A-(tj)} are bounded for all i E A_. Assume indeed that
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the sequence of vectors {- (tj)} is unbounded, where these vectors have {- (tj)}ieA_
for fixed j as components. In this case, we can select a subsequence {Q} c_ {tj} such
that

(5.22) IIA-(Q)II2 x and
IIx-(t)II2

where o is normalized and has at least one strictly positive component. We then
obtain from (5.21) that

(5.23)
Vf(z(Q))

which gives in the limit that

(5.24) 0= E AVhi(z(t+)),
A_

using the continuity of z(.), Vf(.), and Vhi(.). If we now define

(5.25) A+ de__f A(z(t+)),

we note that (5.20) and the fact that the set {x RIA(x)

_
A_} is closed ensure

that A_ c A+. Therefore, because of AS.9 and the fact that z(t+) L, we may
deduce from (5.24) that all the components of Ao are zero, which we just showed to
be impossible. Hence the sequence {A- (tj) } must be bounded, as well as the sequences
of its components. From each of these component’s sequences, we may thus extract
converging subsequences with limit points A-. Using the continuity of z(-), Vf(.),
and Vh(.), and again taking the limit in (5.21) for these subsequences, we obtain
that

iA_

On the other hand, (5.15) implies that

(5.27) VI(z(t+))
iA+

for some uniquely defined set of A+ > 0. But the fact that A_ c A+ ensures that
(5.26) and (5.27) cannot hold together. Our initial assumption (5.18) is thus impos-
sible, which proves the lemma.

We now define the distance from any vector x to any compact set Y by

(5.28) dist(x, Y) de__f min
eY

and the neighbourhood of any compact set Y of radius 5 by

(5.29) Af(Y, ) def {x e R=]dist(x, Y) <_ 5}.

After showing that different active sets cannot appear in a single connected component
of limit points, we now show that connected components of limit points corresponding
to different active sets are well separated.
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LEMMA 5.5. Assume that AS.I-AS.10 hold. Then there exists a E (0, 1) such
that

(5.30) dist(x,, L’,) >_

.for every x, L and each compact connected component of limit points L’, such that
A(L’, A(x, ).

Proof. Consider any x, L. To this x,, we can associate the sets

Di de= {x e 1i e A(x)}

for i A(x,). For each x, e L,, there is only a finite number of such sets, and each
of them is compact. Because of Lemma 5.4, the sets Di and L, are disjoint for all
i

_
A(x,). From the compactness of L, we then deduce the existence of > 0 such

that

min min min[lx,-xl[2>.
x. ELiA(x.)xEDi

(Without loss of generality, we may assume that < 1.) Hence the distance from x,
to any L’, c L such that A(L’,) contains some index j A(x,) is bounded below by, which then implies the desired result. D

We next show that, for k large enough, every iterate Xk lies in the neighbourhood
of a well-defined connected component of limit points, and also that all constraints
that are not binding for this component are also inactive at xk.

LEMMA 5.6. Assume that AS.I-AS.10 hold. Assume also that the sequence
is generated by Algorithm 1. Then there exist a 5 e (0, 1/4), e (0, 1), and a kl >_ 0
such that, for all k >_ kl, there exists a compact connected component of limit points
L,k C_ L such that

(5.33) xk Af(L,k, )

and

(5.34) A(x) c_ A(L.) for all x Af(L., 5) q .
Proof. Because of the bounded nature of the sequence {Xk} (ensured by AS.l),

we may divide the complete sequence into a number of subsequences, each of which
converges to a given connected component of limit points. For k large enough, Xk
therefore lies in the neighbourhood of one such connected component, say L,k. The
inclusion (5.33) then follows for small enough and for k sufficiently large. We
then obtain (5.34) by using (5.32) and imposing the additional requirement that
5 < /4. O

We now prove that, if an iterate x is close to its associated connected component
c is boundedc has an incomplete set of active bounds, then akof limit points, but xk

away from zero by a small constant independent of k.
LEMMA 5.7. Assume that AS.I-AS.11 hold. Then there exists k2 >_ kt (where kt

is as defined in Lemma 5.6 with < 1/2) such that, if there exists j e {1,..., m} with

(5.35) j e A(L,) and j A(XCk)
.for some k >_ k2, then

(5.36) c%
c > e.
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.for some e, E (0, 1) independent of k and j.
Proof. Consider, for a given x, e L with A(x,) and a given i A(x,), the

quantity

(5.37) a,, (x,) de=f min (Vf(x,), d) l,
,+dex(}

where X{i} is defined by

def(.3s) x [ x.
je{1 ,}\{i}

c,i(x,) is the magnitude of the decrease obtained by minimizing the linearized objec-
tive from x, in a ball of radius 1/2 (in the norm I1" II(k)) when dropping the ith (active)
constraint. Because of AS.9 and AS.10, one has that

(5.39) ,i(x,) > 0

for all choices of x, L and i A(x,). Lemma 2.1 and the continuity of Vf also
ensure that (,(x,) is a continuous function of x,. We first minimize c,(x,) on the
compact set of all x, L such that i A(x,). For each such set, this produces a
strictly positive result. We next take the smallest of these results on all i such that

A(x,) for some x, L, yielding a strictly positive lower bound 2e,. In short,

(5.40) min min a,i(x,) >_ 2e,

for some e, > 0.
Now consider k >_ kl. Then, by Lemma 5.6, we know that we can associate with

xk a unique connected component of limit points L,k such that (5.33) holds. We then
choose a particular x,k L,k [ Jf(xk, ), for which we have that

(5.41) {x,k / d e X{}[[[dll(k

_
1/2} C {xk + d e X{}[[[d[l(k <_ 1}

for all i e {1,..., m}, where we used the inequality 6 < 1/2. Observe also that (5.38)
implies that

(5.42) X{i} C_ XkC

for all/fig A(xCk).
Given a k _> k and such that xk satisfies (5.35), we now distinguish two cases.

c > a,j(x,k) in which case (5.36) immediately follows from (5.40).The first is when ak c (x,k). If define dk and d, as two vectors satisfyingThe second is when ak < a,j we c

(5.43) aCk (gk, dCk ) IIdll(k) < 1, xk +dCk e XC

and

(5.44) a,j(x,k) (Vf(x,k), d,),

we can write that

lid, ll() _< 1/2, x, + d, e X{},

(5.45)
o < ..(.) . (.} (vl(.).

(. -.} + (a vf(z.). .)
<_ (yk, dCk --d,) + 1/2llgk Vf(x,k)ll[k],
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where we used the inequality (2.14). Now combining (5.41), (5.42), and the definitions
of ak,c dk,c and d,, we obtain that

_<

Substituting this last inequality in (5.45), using AS.11 and the Lipschitz continuity
of Vf (reducing 5 if necessary), we can find k2 >_ kl sufficiently large such that

(5.47) 0 < (,j (x,k) k
C <_ e,

when k >_ k2. The inequality (5.36) then follows again from (5.40).
5.3. Active constraints identification. We now wish to show that, given a

limit point x,, the set of active constraints at x,, that is A(L,), is identified by
Algorithm 1 in a finite number of iterations.

We first show that, if the trust region radius is small and the correct active set
c (k large enough) which implies, by Lemma 5.7, that (5.36)is not identified at xk

holds, then the kth iterate is successful.
LEMMA 5.8. Assume that AS.I-AS.9 hold. Assume .furthermore that (5.36) holds

and

(5.48) kAk <_ c8e,(1- Y2)
4

for some k >_ k2. Then iteration k is successful (k S) and Ak+ >_ Ak.
Proof. We first observe that (2.28) and the inequalities ca _> 1 and cs _< 1 imply

that

(5.49) cs(1 2) <_ 1.
C4

Using Theorem 5.2, (5.36), (5.48), (5.49), and the inequalities e, < 1 and k >_ 1, one
then deduces that

(x) m(x + s) >

But this last inequality, Lemma 3.9, and (5.48) then ensure that

(5.51)
C8,

Hence Pk

_
?’]2, and the conclusion of the lemma follows. [:]

We also need the result that the gradient projected onto the tangent cone at a

point y having the correct active set goes to zero as both this point and the iterates
tend to a connected component of limit points.

LEMMA 5.9. Assume that AS.I-AS.11 hold. Consider any subsequence whose
indices form K c_ N such that

(5.52) lim dist(xk, L,) 0
kEK

.for some connected component of limit points L,,

(5.53) lim IlYk Xkll(k) 0
kEK



GLOBAL CONVERGENCE OF A CLASS OF TRUST REGION ALGORITHMS 201

.for some sequence (Yk}keK such that yk E X, and

(5.54) A(yk) A(L,)

for all k K. Then one has that

(5.55) lim PT(u (--gk O.
kK

Proof. We first note that Lemma 2.1 and the continuity of the constraints’ normals
imply the continuity of the operators PT(.) and PN(.) as functions of {ylA(y) A(L,)}
in a sufficiently small neighbourhood of L,. We also observe that the Moreau decom-
position of-gk gives that

+

Equations (5.54) and (5.56), limits (5.52) and (5.53), and assumptions AS.10 and
AS.11 then give (5.55) by continuity. [:l

Among the finitely many active sets {A(x,)}x, eL, we now consider a maximal
one and denote it by A,. This is to say that A, A(x,) for some x, L and that

(5.57) A,

_
A(y,)

for any y, L. We are now in the position to prove that A, is identified at least on
a subsequence of successful iterations.

LEMMA 5.10. Assume that AS.I-AS.11 hold and that the sequence {xk} is gen-
erated by Algorithm 1. Then there exists a subsequence {ki} of successful iterations
such that, for i large enough,

(5.58) A(xk) A,.

Proof. We define the subsequence {kj } as the sequence of successful iterations
whose iterates approach limit points with active set equal to A,; that is,

{kj} dej {k e SIA(L,k A,},

and assume, for the purpose of obtaining a contradiction, that

(5.60) A(xkj+l) A,

for all j large enough. Assume now, again for the purpose of contradiction, that

(5.61) A, c_ A(xCkj)
for such a j. Using successively AS.8, (5.60), and Lemma 5.6, we then deduce that,
for j sufficiently large,

(5.62) A, c A(L,k+I),

which is impossible because of (5.57). Hence (5.61) cannot hold, and there must exist
a pje A, A(L,k) such that pj A(x) for j large enough. From Lemma 5.7, we
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then deduce that (5.36) holds for all j sufficiently large. But Theorem 5.2 and the
inequalities e, < 1 and/k >_ 1 then give that

(5.63) /k [f(xk f(x+:)] >_ 7:c8e, min[/A e,],

for j large enough, and thus, using AS.5, that

(5.64) lim /kAk O.
j--*c

The inequality/k _> 1 and (2.11) then give that

(5.65)
1

for j larger than jl _> 1, say. But this last inequality and Lemmas 5.5 and 5.6 imply
that x}+ cannot jump to the neighbourhood of any other connected component of
limit points with a different active set, and hence xk+ belongs to JV’(L,, 5) again for
some L, such that A(L,) A,. The same property also holds for the next successful
iterate, say xk+q, and we have that A(L,k+q) A,. Therefore, the subsequence
{kj } is identical to the complete sequence of successful iterations with k _> kjl. Hence
we may deduce from (5.64) that

(5.66) lim/}Ak 0.

In particular, we have that

(5.67) /kAk <_ csv
2e, (1 72)

2c4

for all k E S sufficiently large. But the mechanism of the algorithm and (5.66) also
give the limit

(5.68) lim Ak O.
k--+o

c and xk / Sk all belong toAs a consequence, we note that, for k large enough, xk, xk
JV’(L,, 5) for a single connected component of limit points L,.

We also note that Lemma 5.8, the fact that (5.36) now holds for k E S, and (5.66)
together imply that

(5.69)

for k large enough.
We can therefore deduce the desired contradiction from (5.69) and (5.68) if we

can prove that all iterations are eventually successful.
Assume, therefore, that this is not the case. It is then possible to find a subse-

quence K of sufficiently large k such that

(5.70) k,S and k+lS.

Note that, because of (2.45) and the nondecreasing nature of the sequence {/k }, one
has that

(5.71) cs")’le, (1 Y2)< <
9’: 2c4
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for k E K sufficiently large, where we used (5.67) to deduce the last inequality. Now,
if one has that

(5.72) A(xC c A(L.),

then Lemmas 5.7 and 5.8 together with (5.71) and (2.29) imply that k e ,, which
contradicts (5.70). Hence (5.72) cannot hold, and AS.8 together with Lemma 5.6 give
that

A(xk + sk) A(xCk A(L.)

for all k K sufficiently large. Observe now that, since k S, one has that Xk+l xk
because of (2.44), and hence, using (2.12), that

But, using successively the identity xk xk+, the Cauchy-Schwarz inequality, AS.3,
(2.11), (2.13), and (2.45), we have that

(5.75)

for all k K, and also that

(5.76)

for all k K, where we have used the Moreau decomposition of--gk, the fact that

Sk+l s T(xk + Sk), (2.14), the fact that the cone T(xk + sk) is the polar of
N(xk + sk), (2.11), AS.3, and (2.45). Using (2.45) again, (5.74), (5.75), (5.76), and
the nondecreasing nature of {ilk}, we also deduce that, for such k,
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We now observe that, because of (2.37) and (5.68), we have that Ilskll(k) tends to zero
when k tends to infinity. Now applying Lemma 5.9 using (5.73) (with Yk Xk + Sk)
to the subsequence k e K, we deduce from (5.77), (5.55), (5.68), and (5.66) that

mkTl(Xk-t-1 + 8k+1)- Irtk(Xk "[- 8k)

_
--1/2Cs.Ak-t-1

for k large enough in K. On the other hand, we can also apply Theorem 5.2 to
iteration k + 1 and obtain

(5.79) f(Xk+l) mkTl(Xk+l + 8k+l)

_
C8,Ak+1,

where we used (5.66), the inequalities e, < 1 and/k+l >_ 1, and the fact that (5.36)
holds for all sufficiently large k E ,. Hence we obtain that

f(Xk) mk(Xk -- 8k)-- f(Xk+l) mk+l(Xk+l + 8k+1) -- mkTl(Xk+l -- 8k+1)+_
1/2c8,Ak+l
5Cse,Ak

for all k K sufficiently large. But then, using the definition of p, Lemma 3.9, and
(5.71), one obtains that

2c4(5.81) ]Pk- 1 &Ak 1- V2
C81 e.

and hence that Pk 2 for all k K large enough. But this lt inequality implies
that k S, which contradicts (5.70). The condition (5.70) is thus impossible for k
sufficiently large. All iterates are eventually successful, which produces the desired
contradiction.

As a consequence, (5.60) cannot hold for all j, and we obtain that there exists a
subsequence {k} c {k} such that, for all p,

A, A(xkp+) A(xp+q),

where kp + q is the first successful iteration after iteration kp. The lemma is thus
proved if we choose {ki } {kp + q}. fl

The last step in our analysis of the active set identification is to show that, once
detected, the maximal active set A, cannot be abandoned for sufficiently large k. This
is the essence of the final theorem of this section.

THEOREM 5.11. Assume that AS.I-AS.11 hold and that the sequence {Xk} is
generated by Algorithm 1. Then one has that

(5.83) A(x,) A,

for all x, L, and

(5.84) A(xk) A,

for all k sufficiently large.
Proof. Consider {ki}, the subsequence of successful iterates such that (5.58)holds,

as given by Lemma 5.10. Assume furthermore that this subsequence is restricted to
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sufficiently large indices, that is, k >_ k2 for all i. Assume finally that there exists a
subsequence of {k}, say {kp}, such that, for each p, there is a jp with

(5.85) jp e A(xkp) A, and jp A(xk,+l).
Now Lemma 5.6, (5.57), and (5.58) give that A(L,k) A,. Using this observation
and AS.8, we obtain that

(5.86) jp e A(L,) and jp A(x)
for all p. But Lemma 5.7 then ensures that

for all p. Combining this inequality with Theorem 5.2 and the relations e, < 1 and

k 1, one obtains that, for all p,

(5.88) ,[f(x)- f(x+)] cse, min[,A,, e,].
Using AS.5, we then deduce that

(5.89) lira kAk, O.
p

Theorem 5.2 and the inequalities e, < 1 and k 1 then imply that

(5.90) f(xk,)- mk,(Xk + Sk,) cse,Ak,
for all p sufficiently large. On the other hand, we have that, for all k,

+ (k)

() A+
where we used (3.29), (3.a6), (2.S), d (2.). Combining (5.90) with (5.91) taken
at k k, applying the third statement of Lemma 2.2, and dividing both sides by
Ak,, we obtain that

Assuming that the sequence (xk} converges to some x, in some L, (or taking a
further subsequence if necessary), using (5.89) and Lemma 5.9 (with g
Yk xk and A(L,) A,), we deduce that (5.92) is impossible for p large enough. As
a consequence, no such subsequence (kp} exists, and we have that, for large i,

(5.93) A, A(xk,+) A(n,k,+),
where we used Lemma 5.6 to deduce the lt inclusion. But (5.93) and the mimality
of A, impose that

(5.94) A, d(xk,+) d(L,k,+)
for i large enough. Hence we deduce that, for sufficiently large i,

A,,
where ki + q is the index of the first successful iteration after iteration ki. Hence
k + q e (k}. We can therefore repeatedly apply (5.95) and deduce that

(5.96) (ki) (k e Sk is sufficiently large },
and also that A(xk) A, for all k e S large enough, hence proving (5.84). Moreover,
A, is then the only possible active set for the limit poims, which proves (5.83).
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6. Convergence to a minimizer. The purpose of this section is to analyze
conditions under which the complete sequence of iterates produced by Algorithm 1
can be shown to converge to a single limit point. By Corollary 3.16 and AS.11, this
limit point is, of course, critical. We will assume in this section that there are infinitely
many successful iterations. Indeed, the convergence of the sequence of iterates is trivial
if all iterations are unsuccessful for sufficiently large k.

We define C, as the set of feasible points whose active set is the same as that of
all the limit points, that is,

(6.1) C, de {x e XlA(x A,}.

We also define V(x) as the plane tangent to the constraints indexed by A,, that is

(6.2) dd e 0},

where J,(x) is the Jacobian matrix whose rows are equal to {Vhi(x)T}iEA,.
As we wish to use the second-order information associated with the objective

function, we must clearly assume that it exists.
AS.12. The objective function f(.) is twice continuously differentiable in an open

domain containing X.
We can now prove that if the model curvature along successful steps is asymptot-

ically uniformly positive and if a limit point is an isolated local minimizer, then the
complete sequence of iterates converges to this single limit point. In the statement
of this result we use the second-order sufficiency condition that the Hessian of the
objective is positive definite on the tangent plane to the constraints at the solution
(see, e.g., Theorems 6.1 and 6.2 in [4]), which guarantees the isolated character of the
minimizer.

THEOREM 6.1. Assume that AS.I-AS.12 hold, that the sequence {xk } is generated
by Algorithm 1, and that the set , is infinite. Assume also that there is an e > 0 such
that

(6.3) liminf wk(mk,xk, sk) >_ e

and that, for some x, E L, V2f(x,) is positive definite on the corresponding tangent
plane V(x,). Then

(6.4) lim x} x,.
k--oo

Proof. We first observe that x, is a critical point because of AS.11 and Corol-
lary 3.16. We consider {xk}, a subsequence of successful iterates converging to x,.
We now choose 5i > 0 small enough to ensure the following two conditions. The first
is that we can define Z(x), a matrix whose columns form a continuous basis for the
tangent plane V(x). The existence of such a basis is ensured in a sufficiently small
neighbourhood Af(x,, 5l) of x, by assumptions AS.6 and AS.9. The second condi-
tion is that Z(x)TV2f(x)Z(x) (that is, V2f(x) restricted to the subspace V(x)) is
uniformly positive definite in Af(x,, 5l)F C,.

We now introduce

(6.5) 5, def 51 < 61
4a2 + e
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and define f, to be the largest value of the objective such that the level set

(6.6) d {x e Af(x,, 6x) C, If(x) <_ f,} c Af(x,, ,),

which is possible because the positive definiteness of Z(x)TV2f(x)Z(x) in (x,,
C, guarantees the strict convexity of f(x) in this set.

We then use Theorem 5.11 and choose i such that ki 0 is sufficiently large to
guantee that, for all i i,

(6.7)

and also, for all k 8 with k ki,

(6.8) xk C,

and

(.) (,,) .
We note that, for k O,

(6.10) sk e T(xk).

Because of (6.8) and Lemma 5.9 with yk x, we deduce that

(6.11) ]]PT(x)(--gk)][k] 5,

for all k $ larger than ki ki, say.
Now consider

2

where the equality results from (3.29) and the inequality from the definition of the
step sk,. Using successively (6.12), (6.9), the Moreau decomposition of-gk, and
(6.10), we then deduce that

-e (,, ,) 4 I(Pr(,)(-,),)l(.la) , II(,) < <

for i i2. Hence, using (2.14) and (6.11),

(.14)
45,

for i i2. Using this lt relation, the equivalence of norms, and the triangle inequal-
ity, we obtain that, for such i,

We now observe that
and all conditions that were satisfied a are again satisfied a ghe next successful
iteration after ki. The argument can herefore be applied recursively o show that

(.1) + e c (,, e)

for all j 1. Since 1 is arbitrarily small, his proves he convergence of ghe complete
sequence {}
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7. Discussion and extensions. The purpose of this section is to further dis-
cuss aspects of the theory presented above, from the point of view of both practical
implementation and interesting theoretical extensions.

7.1. Simple relaxation-based tests for inexact projections. A computa-
tional difficulty in the framework of Algorithm 1 is the practical enforcement of condi-
tion (4.12) in the GCP calculation. Indeed, although the left-hand side can be readily
calculated for any vector z, the right-hand side contains the quantity c(ti), which
may not be available. However, an upper bound on c(ti) can often be derived in the
following way.

Assume, for example, that we have computed a candidate for the GCP step, say
z, such that

(7.1) IIzll _< ti and I(g,z)l- (1111).

The last of these conditions says merely that zi minimizes the linearized model in a
"ball" of radius Ilzill. The aim is then to verify that zi satisfies (4.12), i.e., that zi
gives a large enough reduction of this linearized model compared to that obtained
by the minimizer in a ball of radius ti >_ Ilzill. Using the definition of ((ti) and the
second part of Lemma 2.2, it is easy to see that

(7.2) c(ti)

and (4.12) can thus be guaranteed by checking the stronger condition

(7.3) (g, zi) <_ -#3t

which is equivalent to verifying that

(7.4) I[zll >_ #3ti.

The situation described by (7.1) is far from being unrealistic. It may arise, for
example, if c(ti) is computed by an iterative method starting from x and ensuring
(7.1) at each of its iterations.

Another interesting case is when X is polyhedral and ]]. ]](k) is the infinity norm
for all k. We then find a vector zi satisfying (4.12) by applying a simplex-like method
to the linear programming problem (2.18). Using the fact that the current iterate is
feasible and adding slack variables if necessary, this problem can then be rewritten
(again dropping the k’s) as

(7.5) min (g, d)

subject to the constraint

(7.6) Ad 0

and the componentwise inequalities

(7.7) <_ d <_ u

for some constraint matrix A and some vectors of lower and upper bounds and u,
depending on the value of t in (2.18) (or, equivalently, of ti in (4.12)). If we use a



GLOBAL CONVERGENCE OF A CLASS OF TRUST REGION ALGORITHMS 209

simplex-based method for solving this problem, we calculate, at each iteration of this
method, an admissible iterate dt and an associated admissible basis Bt. It is then
easy to compute

(7.8) r gB[ and ttj max(0,rAej gj) (j 1,...,n),

where gBt, is the basic part of g, and e is the jth vector of the canonical basis of
Rn. Remarkably, rt and the vector #t (whose components are the #ti) provide an
admissible point for the problem

(7.9) max- (A1, r) (u l, #) + (g, l)

subject to

(7.10) rA- # _< g

and

(7.11) #_>0.

But this problem is the dual of problem (7.5)-(7.7) after the change of variables d’
d- 1. As a consequence, we can use the weak duality theorem for linear programming
(see, e.g., [17, p. 40]) and deduce that (A1, r} + (u- l, #t)- (g, l} is an upper bound
on the value of a(ti) in (4.12). We may then stop our simplex-based algorithm as
soon as

(7.12) [(g,d)l>_ #a min
r--1,...,

since this condition implies

[(Al, r,.) + (u- l, #,.)- (g, 1)],

(7.13) <g, dr>[>_ #3a(ti),

thus ensuring (4.12) for zi dr. This technique therefore allows for the inexact
solution of the linear program implicit in (2.18).

We also note that the use of interior point methods for linear programming (see,
e.g., [27]) seems quite attractive for solving the same problem in the case where I]" is a
polyhedral norm and X is polyhedral. These algorithms indeed provide a sequence of
feasible approximate solutions together with an estimate of the corresponding duality
gaps, which can then be used to stop the process as soon as condition (4.12) is satisfied.

7.2. Constraint identification in the presence of linear equations. We
now consider the case where the feasible domain X is defined not only by a set of
convex inequalities (as in AS.6) but also by a set of independent linear equations of
the form

where each of the pi is an affine function from Rn into R.
We first observe that identifying the active pi at the solution is trivial: they are

all active by definition. The only remaining question is then to examine whether their
very presence can upset the theory developed in 5. We also note that representing
an equation by two inequalities of opposite sign does not fit with this theory, because
AS.9 is then automatically violated. We therefore need to discuss this case separately.
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The simplest way to exploit the identification theory for inequalities is to eliminate
the linear equations and view Algorithm 1 as restricted to the affine subspace, say W,
where the equations (7.14) hold. We therefore consider the reduction of the original
problem to W as follows. Assume that Z is an n x n-q matrix whose columns form
an orthonormal basis of the linear subspace parallel to W. The problem can now be
rewritten as

(7.15) min ](y) de___f f(Zy)

subject to the constraints

(7.16) i(Y) de=f hi(Zy) >_ 0 (i- 1,..., m),
where y E Rn-q (see [15, p. 156] for an introduction to the variable reduction tech-
nique). The idea is to show that, if an adapted version of AS.6-AS.11 holds for the
problem including the constraints (7.14), then AS.6-AS.11 hold for problem (7.15)-
(7.16). The theory of 5 then applies without any modification.

Assumptions AS.6-AS.8 and AS.11 need not be modified for handling the con-
straints (7.14). Therefore, they also hold for problem (7.15)-(7.16). Assumption AS.9,
however, requires the following modification.

}i= are linearlyAS.9b. For all x, E L, the vectors {Vh(x,)}eA(,)and {Vp(x,) q

independent.
The formal expression of AS.10 is unchanged, but AS.6 and AS.9b imply that the

normal cone N(x,) is now defined by

(7.17) N(x,) {y Rnly=
ieA(x.)

q }> 0
i--1

instead of (5.13).
def

Defining x, Zy, and A(y,) df A(x,), we first note that AS.9 holds for problem
(7.15)-(7.16) as a consequence of AS.9b.

THEOREM 7.1. Assume that AS.9b holds. Then the vectors {Vi(Y,)}ieA(y.) are
linearly independent.

The proof of this result belongs to the folklore of mathematical programming,
and an easy proof is given in the Appendix A.

Similarly, AS.9b and AS.10 with (7.17) imply that AS.10 holds for problem (7.15)-
(7.16), as expressed in the following proposition.

THEOREM 7.2. Assume that AS.9b and AS.10 hold with (7.17). Then

(7.18) V/(y,) e ri[(y,)],
where

(7.19) j(y,) def { Z Rn-q[z AiVfz(y,), A _> 0}.eA(u,)

The proof of this result can also be found in Appendix A.
The conclusion of this simple reduction exercise is that all the conditions required

for the theory of 5 to hold are satisfied for problems (7.15)-(7.16). The presence of
equality constraints therefore does not affect the identification of active inequality
constraints in a finite number of iterations of Algorithm 1.
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7.3. Constraint identification without linear independence of con-
straint’s normals. One may note that AS.9 is a rather strong constraint qualifi-
cation and wonder if it can be weakened without affecting the result that "the correct
active set" is identified in a finite number of iterations.

In order to answer this question, we first note that Algorithm 1 and the GCP
and RS Algorithms do not depend in any way on the particular parametrization
(description) of the feasible set X that is used. The constraints functions hi were
indeed introduced only in AS.6 and play no role in the theoretical algorithm. As a
consequence, one can clearly add redundant constraints of the form

(7.20) ri(x) _> 0 (i-- 1,... ,mr)

to the set {hi}im=l without modifying the result that the algorithm will identify the
correct active constraints in the set {1,..., m}.

mrIdentification of the active redundant constraints in {ri}i=l will then depend on
the existence, for each of these constraints, of a set Ai c {1,..., m} such that

{x e XlA(x) Ai} G {x e Xlri(x 0}.
If this property holds for r, and if A A,, then the activity of r will clearly be
detected in a finite number of iterations.

For example, if r(x) is a multiple of hi(x), say, and if j E A,, then r is identified
as an active constraint in a finite number of iterations. Another example is given by
the problem

(7.22) minx + y

subject to

h(x,y) x >_ O, h2(x,y) y >_ O, r(x,y) x + 4y >_ O.

In this case, the constraint rl is active if and only if both hi and h2 are active
(A1 {1, 2}). It is therefore detected as an active constraint in a finite number of
iterations because the activity of h and h2 is also.

On the other hand, if we consider the problem

(7.24) min y

subject to

(7.25) h(x,y)=y-x2>_0 and rl(x,y)=y>_0,

we note that the activity of r at the solution may not be detected in a finite number
of iterations. This is because there is no subset A G {1,...,m} {1} such that
(7.21) holds.

The above arguments show that a weak active constraint identification is possible
without the assumption of linear independence of the constraints’ normals. In order to
avoid this assumption and to obtain this identification property more directly, several
researchers have used a purely geometrical description of the feasible domain for some
less general cases (see [3], [4], and [31]). It would be quite interesting to develop such
a geometric theory in our framework. This approach seems indeed possible, because a
specialization of our identification results to linear inequalities shows that the correct
active face of the corresponding convex polytope is identified by Algorithm 1 in a finite
number of iterations. This geometric rephrasing of nonlinear constraint identification
results is the subject of ongoing research.
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7.4. A further discussion on the use of approximate gradients. The tech-
nique for handling inexact gradient information, as proposed in 2.2, is identical to
that analyzed by Toint in [29], but is quite different from that proposed by Carter in
[6] for the unconstrained case, where he only requires that, for all k >_ 0,

(7.26) I]D-Tek 112 <- TIID-Tgk 112
for some T E [0, 1- 72) and some symmetric positive definite scaling matrices Dk
such that the norms IID-T(.)II2 do satisfy AS.3. Convergence is proved under this
remarkably weak condition by using the property that

(7.27) lim (1 Pk) < lim IID-Tek 112 < lim
T

A--.O A-O IID-Tgk 112 cos Ok A-0 COS Ok’

where Ok is the angle between Dksk and --D-Tgk. The next step in Carter’s de-
velopment is to show that Ok tends to zero when the trust region radius Ak tends
to zero, for a large class of trust region schemes applied on unconstrained problems.
The relation (7.27) then implies that Pk >_ r]2 for small enough Ak, and hence the
kth iteration is successful, the trust region radius increases, and the algorithm can
proceed.

This line of reasoning unfortunately does not apply to constrained problems,
where it may well happen that the negative gradient and its approximation both
point outside the feasible domain. As a consequence, if xk lies on the boundary of
X, the accuracy level T requested for ek may depend on vk, which can be bounded
away from zero as it depends on the angle of D-Tgk with the plane tangent to the
constraint boundary at Xk. For example, if one considers the problem

(7.28) min-2xl 2x2

with the constraints

(7.29) xl<_0 and x2_<3,

and if one assumes that Dk I, xk is the origin, and mk(s) --2s s2 for some

fi > 0, then it is not difficult to verify that- <_ (1 r) cos) _< (1 ,)fllv/4 + fl
is required in (7.26) for the iteration to be successful with Ak+ >_ Ak, and this value
depends on the geometry of the feasible set at xk (see Fig. 5, where the shaded area
corresponds to all steps that produce a model decrease).

A fixed value, as used in [6], is therefore insufficient to cope with a possibly com-
plex geometry of the feasible set X, and an adaptive scheme, such as that suggested by
(2.13), is necessary. Furthermore, our purposely broad assumptions (2.37) and (2.38)
are too loose to guarantee a well-defined (isotonic, for example) behaviour of Ok as Ak
tends to zero. Finally, Carter also exploits in his theory the fact that the problem is
unconstrained, and thus that IID-Tgkll2 can be viewed as a criticality measure for the
problem at hand. When constraints are present, this is not the case anymore, and the
lack of relation between a criticality measure and the right-hand side of (7.26) makes
the direct adaptation of this criterion to the constrained framework quite difficult.

Condition (2.13) also differs from the more abstract condition used by Mor6 in

[19], namely that ek should tend to zero for a converging sequence of iterates. This
condition is related to (3.70) and (3.90) in our analysis.
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x (o, o)

x, (0, 3)

--Vf(xk)

s (o, ) -g

X

FIG. 5. The impact of the ]easible set geometry on the angle

One attractive feature of Carter’s condition (7.26) is the fact that the accuracy
requirement is relative to the size of the approximating vector gk, and hence also to
the size of the true gradient Vf(xk), as can be seen as follows. From (7.26), we have
that

IID-Tgk I1 lID;Tk I1 11 -TDk gkll2
<1+ <1+(7.31) IID_TVf(Xk)II IID[TVf(xk)II2 IID_TVf(xk)II 2

and hence, using the fact that T E [0, 1),

(7.32) IID-Tgkll2 < IIID-TVf(xk)IIa,
--1--7"

yielding the desired inequality.
It is important to note that our condition (2.13) can be made relative as well, in

the form of the criterion

(7.33) IIkll[k] min[lAk, 2] Ilgkll[k],

where 2 E [0, 1). This relative criterion does in fact imply (2.13). This implication
is based on the following simple result.

LEMMA 7.3. Assume that AS.3 and (7.33) hold. Then there exists a constant
c9 > 0 such that

(7.34) Ilgklltk] < c9

for all k >_ O.
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Proof. Because of (7.33), we have that

3

and hence he compactness of implies ha (7.34) holds wih

1
(7.36) c9

As a resul of his lemma, we obtain from (7.33) ha

(7.37)

and (2.13) therefore holds with replaced by c9t. The theory developed in this
paper is therefore also valid when condition (7.33) is imposed instead of (2.13).

We end this subsection by noting that AS.11 can be omitted without altering
the constraint identification result of Theorem 5.11 in the ce where the complete
sequence of iterates converges to a single limit point x,, and where the model’s gra-
dients 9k converge to a well-defined limit g, such that -g, belongs to the relative
interior of the normal cone at x,. This amounts to replacing AS.11 by the following.

AS.11b.

(7.38) lim xk x,

and

(7.39) lim gk g, and g, e ri[N(x,)].

The theory of 5 must then be adapted accordingly. In particular, the proof of
Lemma 5.7 is modified by replacing Vf(x,) by g, in (5.37); the minimum over x,
then disappears from (5.40) and the rest of the proof follows.

The second crucial adaptation is the observation that Lemma 5.9 merely requires
that

(7.40) lim Ilell[}] 0,
k@K

which is weaker than (AS.11). Condition (7.40) fortunately holds whenever Lemma 5.9
is used: it is ensured by (5.68) and (2.13) in the proof of Lemma 5.10 and by (5.89)
and (2.13) in the proof of Theorem 5.11 since k _> 1 for all k.

Assumption AS.11b seems natural if the correct active set is to be identified at
all, since the vectors gk should clearly provide some consistent first-order information
for this property to hold.

7.5. An extension to noisy objective function values. We note that (2.12)
(specifying that the model and function values should coincide at the current iterate)
is not used anywhere in the convergence theory of 3, except in Lemma 3.9. This leaves
some room for a further generalization of Algorithm 1, where not only gradient vectors
are allowed to be inexact, but also where the objective function values themselves are
not known exactly.

Indeed, define the quantity Ek by

(7.41) Ek d=f f(xk) --mk(xk)
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Ek is therefore a measure of the uncertainty of the objective function value relative
to the predicted model decrease for the current step sk. Clearly, if IEkl is of the order
of one or larger, then the predicted model reduction is comparable to the uncertainty
in the objective, and the step sk is then likely to be completely useless: the algorithm
might as well stop at xk. Conversely, if IEkl is small, then the predicted model
reduction is significant compared to the uncertainty in the objective value, and the
algorithm may proceed.

This argument is very nicely supported by the theory, as can be seen as follows.
We first note that the term If(x)- mk(x)l now appears in the right-hand side of
(3.48) and (3.49), so that (3.47) becomes

/ / / C4ki
We then use this inequality instead of (3.47) to obtain that

(7.43)
C3

instead of (3.57), and the right-hand side of this inequality is smaller than 1- 2
provided that we assume the bound

(7.44) IEI
for all k and for some e [0, 1), and provided that (3.53) is replaced by

(7.45) e <

and (3.54) by

c4/0A0
3’ca(1 r/a)(1 )

")’1c3(1 r2)(1 -)(7.46) kAk <_
C4

One then can deduce (3.52) with

’7ca(1 r2)(1 -)(7.47) c5 e.
C4

The rest of the global convergence theory of 3 then follows as before. Hence we
conclude that, provided the relative uncertainty on the objective value Ek satisfies
the typically very modest bound (7.44) (IEkl <_ 0.1 for 0.8 and r2 0.75),
Theorems 3.12 and 3.15 still hold.

8. Conclusions and perspectives. In this paper, we have presented a class of
trust region algorithms for problems with convex constraints that uses general norms,
approximate gradients, and inexact projections onto the feasible domain. We have
proved global convergence of the iterates generated by this class to critical points.
Identification of the final set of active inequality constraints in a finite number of
iterations is also shown under slightly stronger assumptions. Interestingly, this theory
does not assume the locally polyhedral character of the constrained set.

We have also considered practical implementation issues, including an explicit
procedure for computing an approximate generalized Cauchy point. Application of
these ideas to problems whose linear constraints represent the flow conservation laws
in a network is presently being studied.
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Appendix A. Proof of Theorems 7.1 and 7.2. Considering the variable
reduction introduced in 7.2, we first note that

(A.1) V](y) zTVf(x) and Vt,(y)= ZTVhi(x).

A.1. Proof of Theorem 7.2. Assumption AS.10 with (7.17) yields that

(A.2)
q

ieA(x.) i--1

for some Ai > 0 and i 0. Applying ZT to both sides of this relation and noting
that ZTVpi(x,) --0 by definition, we obtain the desired conclusion.

A.2. Proof of Theorem 7.1. Assume that

(A.3) Vt(y,) 0.
eA(y,)

Premultiplying by Z and using (A.1), we obtain that

(A.4) ZZTVh(x,) O.
iA(x.)

Assume, furthermore, for the purpose of contradiction, that

(A.5)
A(.)

(I- zzT)Vh(x,) O.

Since I- ZZT is the orthogonal projection onto the subspace spanned by the vectors
{Vp(x,)}, we can write that

q

(A.6) E ,(I- zzT)Vh(x*)= E
ieA(x.) i--1

for some X, not all X being zero. Adding (A.4) to (A.6), we obtain

q

(A.7) @Vh(x,) XVp(x,) O,
ieA(x.) i--1

which contradicts AS.9b. Hence (A.5) does not hold, and

(A.8)
iA(x.)

(I- zzT)Vh(x,) O.

Summing (A.4) and (A.8), and using assumption AS.9b, we deduce that @ 0 for
all i E A(x,), which yields the desired conclusion.
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Appendix B. Glossary.
Symbol Definition

(2.18)

(3.21)

(s.)
(3.2)

(3.46)

i,

3
4
/21

2
3, U4

rl, (72, (3,

wk(q,x,v)

A(
A,
Bk
1

ea

e6

e8
c9

6’.
dist(, Y)
Dk

Ek

(2.42), (2.43), (2.45)
Lemma 5.6
(2.)
(2.40), (2.42), (2.43)
(.a)

(2.33), (2.35)
(2.ae)
(.3s)
(2.11)
(.3)
(.aa)
(2.39)
(2.16), (2.17)

Lemma 5.5

(a.)
(3.34)
(5.3)
(5.57)
(.)
Theorem 3.2, (3.3)
Lemma 3.6, (3.31)
Theorem 3.7, (3.44)
Lemma 3.9, (3.50)
Lemma 3.10, (3.60)
(3.74)
(3.82)
Theorem 5.2, (5.10)
Lemma 7.3, (7.36)
(4.a)
(6.1)
(5.2s)
after (7.26)
after (2.13)

(7.a)

after (2.1)
after (2.12)
(AS.6), (5.2)
after (2.46)
after (6.2)

Purpose

iteration dependent norm and its dual
the magnitude of the maximum linearized model
decrease achievable in the intersection of X and a ball of
radius centred at xk
()
the magnitude of the maximum linearized model
decrease achievable in the intersection of xkC and a ball
of radius centred at xk
a(1)
the magnitude of the maximum linearized objective
decrease achievable in the intersection of X and a ball of
radius 1 centred at x
monotonically increasing upper bound on the model’s
curvature along relevant directions (at iteration k)
contraction/expansion factors for trust region updating

the trust region radius
model accuracy levels
the model’s gradient accuracy relative to the trust region
radius
Goldstein-like constants for the projected search
the relative projection accuracy
model value relaxation w.r.t, value at the GCP
outer trust region radius definition parameter
inner trust region radius definition parameter
minimum steplength condition parameter
ratio of actual (function) to predicted (model) decrease
constants in the uniform equivalence of the norms
and I1"
lower bound on the distance between connected
components of limit points
the curvature of the function q from x along v

c)Wk (ink, xk, sk
the active set at x
the maximal active set at limit points
the trust region at iteration k
uniform equivalence constant for Cek Ix]
uniform upper bound on wk(f, xk, s)
model decrease parameter

upper bound on the model’s gradient norm
set of admissible GCP steps of length at most
set of feasible points with active set equal to A.
the distance from x to the compact set Y
symmetric positive definite scaling matrix at iteration k
difference between the model’s and the objective’s
gradients
uncertainty of the objective value relative to the
predicted model decrease
the objective function
the gradient of the model at iteration k, taken at xk
inequality constraint functions
symmetric approximation to the objective’s Hessian at xk
the Jacobian matrix of the hi restricted to rows whose
index is in A. taken at x
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Symbol Definition Purpose

Lemma 5.6

Lemma 5.7

before (AS.9)
(2.3)

after (3.32)
after (4.32)
5.2
Lemma 5.6

Lemma 5.5, (5.30)
2.2
(2.6)
(5.29)
(7.14)
before (2.5)
(7.20)
before (5.14)
(4.1)
4.
(2.30)-(2.35)
(2.37)-(2.38)
end of 2.3
before (2.30)
(2.7)
(6.2)

7.2

4.2
4.2
4.2
4.2
4.2
2.2
(2.48)
(.a)
(4.44)
(3.1)
after (2.2)
(5.1), (5.2)
(.)

7.2

before (6.5)

cone and its polar

set of all limit points

the intersection of the feasible domain with the level set
associated with f(xo)
the Lipschitz constant of the objective’s gradient

the Lipschitz constant of the model’s gradient

the connected component of limit points containing x.
the connected component of limit points associated with

connected component of limit points not eontaining x.
the model of the objective at iteration k

the normal cone to X at the feasible point x

neighbourhood of a compact set Y of radius 6

linear equality constraint functions

the orthogonal projection onto X
redundant inequality constraint functions

relative interior of the convex set Y
the restriction operator

restriction of the path [xl,xP, xu]
the step from x to the GCP
the step at iteration k

the set of indices of successful iterations

upper bound on the length of the GCP step

the tangent cone to X at the feasible point x

the linear subspace such that x + V(x) is the tangent
plane at x to the constraints indexed by A.
affine subspace determined by the linear equality
constraints Pi

the iterate of Algorithm 1 at iteration k

the projected gradient path starting from xk
the Generalized Cauchy Point

the projection of x on the convex set Ct
a critical point

the convex feasible domain

convex sets whose intersection is the feasible domain

relaxation of the feasible domain determined by the
constraints active at the GCP
matrix whose columns form an orthonormal basis of the
linear subspace parallel to W
matrix whose columns form a continuous basis for V(x)
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Appendix C. Summary of the assumptions.
AS.1. The set is compact.
AS.2. The objective function f(x) is continuously differentiable and its gradient XTf(x) is

Lipschitz continuous in an open domain containing
AS.3. There exist constants al,a3 E (0,1] and a2,4 >_ 1 such that, for all kl _> 0 and k2 _> 0,

0"I[[[[(kl) [[[[(,2) 02[[[[(1) and o3[[[[[A,1] IIII[,:] o’4[[x[[[A,1]
for all x E Rn.

AS.4. The series

is divergent.
AS.5. The limit

lim f/c[f(t) f(Xk+l)] 0

holds.
AS.6. For all {1,...,m}, the convex set Xi is defined by

x ( [(z) 0),

where the function hi is from R into R and is continuously differentiable.
AS.7. For all k suciently large,

-3a (t),

Cll( and some constant P3 (0, 1].for some strictly positive tk I1%
AS.8. For all k sufficiently large,

a(x) A(x + sk).

AS.9. For all x. L, the vectors {Vhi(x.)}ieA(x.) are linearly independent.
AS.10. For every limit point x. L,

-Vf(x.) ri[N(x.)].

hS.ll.

lim llekl[[k] 0.

AS.12. The objective function f(.) is twice continuously differentiable in an open domain
containing X.

(x.)}i= are linearly indepen-AS.gb. For all x. L, the vectors {Vhi(x.)}ieA(x. and {Vpi q

dent.
hS.llb.

lim xk=x., lim gk=g. and -g, ri[N(x.)].
k k
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