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CONVERGENCE PROPERTIES OF AN AUGMENTED
LAGRANGIAN ALGORITHM FOR OPTIMIZATION WITH A
COMBINATION OF GENERAL EQUALITY AND LINEAR

CONSTRAINTS*

A. R. CONN’, N. GOULD$, A. SARTENAER, AND PH. L. TOINT

Abstract. We consider the global and local convergence properties of a class of augmented
Lagrangian methods for solving nonlinear programming problems. In these methods, linear and
more general constraints are handled in different ways. The general constraints are combined with
the objective function in an augmented Lagrangian. The iteration consists of solving a sequence
of subproblems; in each subproblem the augmented Lagrangian is approximately minimized in the
region defined by the linear constraints. A subproblem is terminated as soon as a stopping condition
is satisfied. The stopping rules that we consider here encompass practical tests used in several
existing packages for linearly constrained optimization. Our algorithm also allows different penalty
parameters to be associated with disjoint subsets of the general constraints. In this paper, we analyze
the convergence of the sequence of iterates generated by such an algorithm and prove global and fast
.linear convergence as well as show that potentially troublesome penalty parameters remain bounded
away from zero.
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convergence theory
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1. Introduction. In this paper, we consider the problem of calculating a local
minimizer of the smooth function

(1.1) f(x),

where x is required to satisfy the general equality constraints

(.2) c(x) o, <_ <_ m

and the linear inequality constraints

(1.3) Ax b >_ O.

Here f and ci map n into , A is a p-by-n matrix, and b E P.
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A classic technique for solving problem (1.1)-(1.3) is to minimize a suitable se-

quence of augmented Lagrangian functions. If we only consider the problem (1.1)-
(1.2), these functions are defined by

(1.4)
m

1
m

+ +
i----1 i--1

where the components A of the vector A are known as Lagrange multiplier estimates
and # is known as the penalty parameter (see, for instance, Hestenes [18], Powell
[23], and Bertsekas [3]). The question then arises of how to deal with the additional
linear inequality constraints (1.3). The case where A is the identity matrix (that is,
when (1.3) specifies bounds on the variables) has been considered by Conn, Gould, and
Toint in [5] and [7]. They propose keeping these constraints explicitly outside the aug-
mented Lagrangian formulation, handling them directly at the level of the augmented
Lagrangian minimization. That is, a sequence of optimization problems, in which
(1.4) is approximately minimized within the region defined by the simple bounds, is
attempted. In this approach all linear inequalities other than bound constraints are
converted to equations by introducing slack variables and incorporated in the aug-
mented Lagrangian function. This strategy has been implemented and successfully
applied within the LANCELOT package for large-scale nonlinear optimization (see
Conn, Gould, and Toint [6]). However, such a method may be inefficient when linear
constraints are present because there are a number of effective techniques specifically
designed to handle such constraints directly (see Arioli et al. [1], Forsgren and Murray
[14], Toint and Tuyttens [24], or Vanderbei and Carpenter [25], for instance). This is
especially important for large-scale problems. The purpose of this paper is therefore
to define and analyze an algorithm where the constraints (1.3) are kept outside the
augmented Lagrangian and handled at the level of the subproblem minimization, thus
allowing the use of specialized packages to solve the subproblem.

Our proposal extends the method of Conn, Gould, and Toint [5] in that not only
bounds but general linear inequalities are treated separately. Fletcher [13, p. 295]
remarks on the potential advantages of this strategy.

Furthermore, it is often worthwhile from the practical point of view to associate
different penalty parameters with subsets of the general constraints (1.2) to reflect
different degrees of nonlinearity. This possibility has been considered by many au-

thors, including Fletcher [13, p. 292], Powell [23], and Bertsekas [3, p. 124]. In this
case, the formulation of the augmented Lagrangian (1.4) can be refined. We partition
the set of constraints (1.2) into q disjoint subsets {Qj }=1 and redefine the augmented
Lagrangian as

(1.5)
q

[(I)(x, A, #) f(x)+ Aici(x)+ --ci(x)2

iej
2#j

where tt is now a q-dimensional vector whose jth component is j > O, the penalty
parameter associated with subset Qj. Because of its potential usefulness, and because
its analysis is difficult to infer directly from the single penalty parameter case, this
refined formulation will be adopted in this paper.

The theory presented below handles the linear inequality constraints in a purely
geometric way. Hence the same theory applies without modifications if linear equality
constraints are also imposed and all the iterates are assumed to stay feasible with
respect to these new constraints. It is indeed enough to apply the theory in the affine
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subspace corresponding to this feasible set. As a consequence, linear constraints need
not be included in the augmented Lagrangian and thus have the desirable property
that they have no impact on the structure of its Hessian matrix.

The paper is organized as follows. In 2, we introduce our basic assumptions on
the problem and the necessary terminology. Section 3 presents the proposed algorithm
and the definition of a suitable stopping criterion for the subproblem. The global
convergence analysis is developed in 4, while the rate of convergence is analyzed in

5. Second-order conditions are investigated in 6. Section 7 considers some possible
extensions of the theory. Finally, some conclusions and perspectives are outlined in

8.
2. The problem and related terminology. We consider the problem stated

in (1.1)-(1.3) and make the following assumptions.
AS1. The region B {x lAx- b >_ 0} is nonempty.
AS2. The functions f(x) and c(x) (i 1,..., m) are twice continuously differ-

entiable for all x E B.
Assumption AS1 is clearly necessary for the problem to make sense. We note that

it does not prevent B from being unbounded.
We now introduce the notation that will be used throughout the paper.
Let g(x) denote the gradient Vxf(x) of f(x) and H(x) denote its Hessian matrix

Vx/(x). We also define J(x) to be the m-by-n Jacobian of c(x), where

() [ (x),..., (x)].
Hence

J(x) [v(x),..., v(x)].

Let Hi(x) denote the Hessian matrix Vxc(x) of c(x). Finally, let g(x,A) and
He(x, A), respectively, denote the gradient, Vg(x,/), and the Hessian matrix, Vzg(x,
of the Lagrangian function

m

(x, ) f(x) + (x).

We note that g(x, A) is the Lagrangian solely with respect to the c constraints. If we
define first-order Lagrange multiplier estimates componentwise as

(2.1) (x, A[Qj], #j)[Qj] =/[] + c(x)[]/#j (j 1,..., q),

where w[s] denotes the ISI-dimensional subvector of w whose entries are indexed by
the set S, we shall use the identity

(2.2) #j
9(x, (x, ,, )).

Now suppose that {xk e 13}, {/k}, and {#k} are infinite sequences of n-vectors,
m-vectors, and positive q-vectors, respectively. For any function F, we shall use the
notation that Fk denotes F evaluated with arguments xk, Ak, and/or #k as appropri-
ate. So, for instance, using the identity (2.2), we have that

(2.3)
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where we have written (2.1) in the compact form

We denote the vector w at iteration k by wk and its ith component by wk,i. We also
use wk,[s] to denote the I$1-dimensional subvector of wk whose entries are indexed by
$.

Now let {xk }, k E K:, for some subset of the natural numbers N be a convergent
subsequence with limit point x,. Then we denote the matrix whose rows are those of
A corresponding to active constraints at x,--that is, the constraints that are satisfied
as equalities at x,nby A,. Furthermore, we choose Z, to be a matrix whose columns
form an orthonormM basis of the null space of A,, that is,

A,Z,-0 and Z,TZ,=I.

We define the least-squares Lagrange multiplier estimates (corresponding to A,) as

(X) de__f _((j(x)Z,)+)TZT, g(x

at all points where the right generalized inverse

(j(x)Z,)+ def T T -1Z, J(x)T(j(x)Z,Z, J(x)T)

of J(x)Z, is well defined. We note that whenever J(x)Z, has full rank, A(x) is
differentiable and its derivative is given in the following lemma.

LEMMA 2.1. Suppose that AS2 holds. If J(x)Z, ZT, J(x)T is nonsingular, A(x) is

differentiable and its derivative is given by

(2.6) VxA(x) ((j(x)Z,)+)T T eZ, H (x, A(x))- (J(x)Z, ZT,j(x)T)-lR(x),

where the ith row of R(x) is T (x) + TJ(x)TA(x) T TZ, H(x)Z, g Z,
Proof. The result follows by observing that (2.5) may be rewritten as

r(x) zT, J(x)TA(x) Z, (X) and J(x)Z,r(x) 0

for some vector r(x). Differentiating (2.7) and eliminating the derivative of r(x) from
the resulting equations give the required result.

We stress that, as stated, the Lagrange multiplier estimate (2.5) is not directly
calculable since it requires a priori knowledge of x,. It is merely introduced as an
analytical device.

Finally, the symbol I1" will denote the g2-norm or the induced matrix norm. We
are now in position to describe more precisely the algorithm that we propose to use.

3. Statement of the algorithm. We consider the algorithmic model we wish to
use to solve the problem (1.1)-(1.3). This model proceeds at iteration k by computing
an iterate x that satisfies (1.3) and approximately solves the subproblem

(3.1) min (I)(x, Ak, #k)
xEB

where the values of the Lagrange multipliers Ak and penalty parameters #k are fixed
for the subproblem. Subsequently we update the Lagrange multipliers and/or decrease
the penalty parameters, depending on how much the constraint violation for (1.2) has
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been reduced within each subset of the constraints. The motivation is simply to ensure
global convergence by driving, in the worst case, the penalty parameters to zero, in
which case the algorithms essentially reduce to the quadratic penalty function method
(see, for example, Gould [15]). The tests on the size of the general constraint violation
are designed to allow the multiplier updates to take over in the neighborhood of a
stationary point.

The approximate minimization for problem (3.1) is performed in an inner iteration
that is stopped as soon as its current iterate is "sufficiently critical." We propose to
base this decision on the identification of the linear constraints that are "dominant"
at x (even though they might not be active) and on a measure of criticality for the
part of the problem where those constraints are irrelevant. Given w _> 0, a criticality
tolerance for the subproblem, we define, for a vector x E B, the set of dominant
constraints at x as the constraints whose indices are in the set

(3.2) D(x,w) deZ {i e {1,..., p}laTx- bi <_ a0w}

for some a0 > 0. Here aT n is the ith row of the matrix A and bi is the correspond-
ing component of the right-hand side vector b. Denoting by AD(x,w) the submatrix of
A consisting of the row(s) whose index is in D(x,w), we also define

g(x,w) { T ,)1 (i 1,.. ID(x w)l)}AD(x,w)l ID(x and i <_ 0

the cone spanned by the outward normals of the dominant constraints. The associated
polar cone is then

T(x,w) g(x,w) cl{d dTv <_ 0 for all v e N(x,w)},

where cl(V) denotes the closure of the set V. The cone T(x,w) is the tangent cone
with respect to the dominant constraints at x for the tolerance w. Note that D(x, w)
might be empty, in which case AD(x,w) is assumed to be zero, N(x,w) reduces to the
origin, and T(x, w) is the full space.

We then formulate our "sufficient criticality" criterion for the subproblem as fol-
lows. We require that

_<

where Pv (’) is the projection onto the convex set V and wa is a suitable tolerance at
iteration k. Once xa satisfying (3.3) has been determined by the inner iteration, we
denote

(3.4) Dk D(Xk,Wk), Nk N(xk,w), T T(xk,wa).

For future reference, we define Zk to be a matrix whose columns form an orthonormal
basis of )?, the null space of ADk, and Y to be a matrix whose columns form an
orthonormal basis of 4;k ])-. As above, we have that Tk is the full space and Nk
reduces to the origin when Dk is empty. We note that, in this case, Za PTk I,
the identity operator, and Yk PN 0. We also note that )2k C_ Tk and, hence, that

since ZZ[ is the orthogonal projection onto k.
It is important to note that the stopping rule (3.3) covers a number of more specific

choices, including the rule used in much existing software for linearly constrained
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optimization (such as MINOS [21], LSNNO [24], or VE14 and VE19 from the Harwell
Subroutine Library [17]). The reader is referred to 7.2 for further details.

We are now in position to describe our algorithmic model more precisely. In this
model, we define ak to be the maximum penalty parameter at iteration k (see (3.10)).
At this iteration, the parameters wk and 7k represent criticality and feasibility levels,
respectively.

ALGORITHM 3.1.
Step 0 [Initialization]. A partition of the set {1,..., m} into q disjoint sub-

sets {Q}= is given, as well as initial vectors of Lagrange multiplier esti-
mates o and positive penalty parameters #0 such that

(3.6) #05 < 1 (j 1,...,q).

The strictly positive constants n0, w. << 1, 7. << 1, T < 1, aV < 1, and/v < 1
are specified. Set c0 maxj=l q/t0,j, w0 c0, 70 c’, and k 0.

Step 1 [Inner iteration]. Find xk E B that approximately solves (3.1), i.e.,
such that (3.3) holds.

Step 2 [Test for convergence]. If I[PTk (-Vx(I))!1- w. and IIc(xk)ll <_ 7.,
stop.

Step 3 [Disaggregated updates]. For j 1,..., q, execute Step 3a if

(3.7) IIc(xk)[]ll <_ 7k

or Step 3b otherwise.
Step 3a [Update Lagrange multiplier estimates]. Set

k,j

Step 3b [Reduce the penalty parameter]. Set

(3.8) Ak+,[] Ak,[],
tk+ j Tk,jtk,j

where

(a.9) Tk,j min(T, oz)

Step 4 [Aggregated updates]. Define

(a.lO)

If

(3.11)
then set

if #k,j
otherwise.

ak+= max #k+
j=l,...,q

Ok+l Ok

(3.12) wk+
7k+l

otherwise set

(3.13)
’dkq-

7k-{-1

Increment k by one and go to Step 1.

Ok+l,
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Algorithm 3.1 is specifically designed for the first-order estimate (2.1), a formula
with potential advantages for large-scale computations. We refer the reader to 7.1
for a further discussion of a more flexible choice of the multipliers, covering, among
others, the choice of the least-squares estimates A(x) as defined in (2.5).

We immediately verify that our algorithm is coherent, in that

(3.14) lim wk lim rlk 0.

Indeed, we obtain from (3.6) that ak < 1 for all k, and (3.14) then follows from (3.12)
and (3.13) if ak tends to zero or from (3.13) alone if aa is bounded away from zero.

The restriction (3.6) is imposed to simplify the exposition. In a more practical
setting, it may be ignored provided that the definition of s0 and (3.10) are replaced
by

c0 min (’ys, j=lmax q/t0,j) and Ck+l-- min (Ts, j=lmaX,q

respectively, for some constant 7s E (0, 1), and that (3.11) is replaced by

max #k+l,j < max #k,j.
j=l q j=l q

Algorithm 3.1 may be extended in other ways. For instance, one may respectively
replace the definition of w0, the first equation in (3.12), and the first equation of (3.13)
by

0d0 sW k+l Sk+l k+l kk+

for some ws > 0, a > a,, and fl > fly. The definition of 0 and the second equation
in (3.12) may then be replaced by

(3.15) 0 a" and k+l sak+

%r some s > 0. None of these extensions alter the results of the convergence theory
developed below. The values used in the kANCKkOT package in a similar context
are a, w 0. and , O.9 (relation (3.15) is also used with s 0.12589,
ensuring that 0 0.01). The values Ws aw w 1 and 0,y 0.1 (j 1,..., q)
also seem suitable. The parameters w, and , specify the final accuracy requested by
the user.

Finally, the purpose of the update (3.9) is to put more emphasis on the feasibility
of the constraints whose violation is proportionally higher in order to achieve a "bal-
ance" among all constraint violations. This balance then allows the true asymptotic
regime of the algorithm to be reached. The advantage of (3.9) is that this balancing
effect is obtained gradually and not en%rced at every major iteration, as is the case in
Powell [23]. rthermore, Powell’s approach increases the penalties corresponding to
the constraints that are becoming too slowly %asible, based on the g-norm. Thus it
is only when they have changed sufficiently so that they are all within the constraint
violation tolerance that the Lagrange multiplier update is per%rmed. By contrast, we
update the multipliers of the well-behaved constraints (assuming they correspond to
a particular partitionwhich is likely since that is, partly at least, why the partitions
exist) independently of more badly behaved ones. In addition, by virtue of using the
g2-norm, we do not give quite the same emphasis to the most violated constraint.
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4. Global convergence analysis. We now proceed to show that Algorithm 3.1
is globally convergent under the following assumptions.

AS3. The iterates {xk} considered lie within a closed, bounded domain Ft.
AS4. The matrix J(x,)Z, has column rank no smaller than m at any limit point

x, of the sequence {Xk } considered in this paper.
We notice that AS3 implies that there exists at least a convergent subsequence

of iterates but does not, of course, guarantee that this subsequence converges to a
stationary point, i.e., that "the algorithm works." We also note that it is always
satisfied in practice because the linear constraints (1.3) includes lower and upper
bounds on the variables, either actual or implied by the finite precision of computer
arithmetic.

Assumption AS4 guarantees that the dimension of the null space of A, is large
enough to provide the number of degrees of freedom that are necessary to satisfy the
nonlinear constraints, and we require that the gradients of these constraints (projected
onto this null space) are linearly independent at every limit point of the sequence of
iterates. This assumption is the direct generalization of AS3 used by Conn, Gould,
and Toint [5].

We shall analyze the convergence of our algorithm in the case where the conver-
gence tolerances w, and r/, are both zero. We first need the following lemma, proving
that (3.3) prevents both the reduced gradient of the augmented Lagrangian and its
orthogonal complement from being arbitrarily large when wk is small.

LEMMA 4.1. Let {xk} C 13, k E 1, be a sequence that converges to the point x,
and suppose that

where the are positive scalar parameters that converge to zero as k increases.
Then

(4.1) T TZ, Vxkll _< IIZVxk]] < wk and

for some 1 > 0 and for all k 1 sufficiently large.
Proof. Observe that, for k /C sufficiently large, wk is sufficiently small and x

sufficiently close to x, to ensure that all the constraints in Dk are active at x,. This
implies that the subspace orthogonal to the normals of the dominant constraints at
xk, 12 contains the subspace orthogonal to the normals of the constraints active at
x,. Hence, we deduce that

where we have used (3.5) to obtain the second inequality and (3.3) to deduce the
third. This proves the first part of (4.1).

We now turn to the second. If Dk is empty, then Yk is the zero matrix and the
second part of (4.1)^immediately follows. Assume therefore that D = . We first
select a submatrix ADk of ADk that is of maximal full row-rank and note that the
orthogonal projection onto the subspace spanned by the {ai}iED is nothing but

Hence we obtain from the orthogonality of Yk, the bound IDkl p, (3.2) and (3.4),
and the fact that all constraints in Dk are active at x, for k sufficiently large, that

(4.e) x,)ll
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But there are only a finite number of nonempty sets Dk for all possible choices of
and , and we may thus deduce the second part of (4.1) from (4.2) by defining

tl P/O min [[A) [-DA7D] -1

where the minimum is taken on all possible choices of Dk and 2Dk.
We now examine the behavior of the sequence {Vx}. We first recall a result

extracted from the classical perturbation theory of convex optimization problems.
This result is well known and can be found, for instance, in [12, pp. 14-17].

LEMMA 4.2. Assume that U is a continuous point-to-set mapping from S c
into the power set of n such that the set U(O) is convex and nonempty for each E S.
Assume that the real-valued function F(y, ) is defined and continuous on the space
n S and convex in y for each fixed . Then the real-valued function F, defined by

F,(o) de= inf F(y,O)
u(o)

is continuous on S.
We now show that, if it converges, the sequence {KTx(k} tends to a vector that

is a linear combination of the rows of A, with nonnegative coefficients.
LEMMA 4.3. Let {xk} C B, k ]C, be a sequence that converges to the point x,

and suppose that the gradients Vxk, k IC, converge to some limit V’x,. Assume
furthermore that (3.3) holds for k IC and that w tends to zero as k 1C increases.
Then

Vx,, AT, r,

for some vector 7r, >_ O, where A, is the matrix whose rows are those of A correspond-
ing to active constraints at x,.

Proof. We first define

def(4.3) a max (-VxTd)
A(xk+d)--b_O

with the aim of showing that this quantity tends to zero when k increases. We
obtain from. (4.3), the Moreau decomposition [20] of Vk, and the Cauchy-Schwarz
inequality that

(4.4)
Gk

where Bk de___ {d e Rn aT(x + d)- bi >_ 0 (i Dk) and Ildll _< 1}. Since, for
xk sufficiently close to x, and w sufficiently small, all the constraints in Dk must be
active at x,, we have that N is included in the normal cone N(x,, 0) and therefore the
vector PN (--xk) belongs to this normal cone. Moreover, since the maximization
problem of the last right-hand side of (4.4) is a concave program, since x, is feasible for
(1.3) and since {{x,--xkll <_ 1 for k e/C large enough, we thus deduce that d x,-xk

is a global solution of this problem. Observing that

PN (-Vx)Td [YYkTpNk (-Vx(I))]Td PN(-Vk)TYky[d,
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we obtain

max PN (--Vxk)Td max PN (-VxPk)TYcY[d <_ ]]PN (-Vz ].Y[(x-x, [[,
dBk dBk
(4.5)
where we used the Cauchy-Schwarz inequality to deduce the last inequality. We
may now apply Lemma 4.1 and deduce from the second part of (4.1), (4.5), and the
contractive character of the projection onto a convex set containing the origin that

max PNk (-Vx(I)k)Td <_ nlwkllV]],
dEB

and thus, from (4.4) and our assumptions, that

Our assumption on the wk sequence then implies that ak converges to zero as k
increases in

Consider now the minimization problem

minde V(I),Td
(4.6) subject to A(x, + d)- b >_ O,

IId]l <_ 1.

Since the sequences {Vx(I)} and {xk} converge to V(I), and x,, respectively, we
deduce from Lemma 4.2 applied to the optimization problem (4.3) (with the choices
0T (vxT, xT), U(O) {dlA(x + d)- b >_ O, IId]] <_ 1}, y d, F(y,O) Vx(Td),
and the convergence of the sequence a to zero that the optimal value for problem
(4.6) is zero. The vector d 0 is thus a solution for problem (4.6) and satisfies

Tx (I) T TA,r, 2d A,

for some vector r, >_ 0, which ends the proof. Vl

The important part of our convergence analysis is the next lemma.
LEMMA 4.4. Suppose that AS1 and AS2 hold. Let {x } c B, k E ], be a sequence

satisfying AS3 that converges to the point x, for which AS4 holds and let ), )(x,),
where ) satisfies (2.5). Assume that {A}, k ], is any sequence of vectors and
that {#}, k ], form a nonincreasing sequence of q-dimensional vectors. Suppose
further that (3.3) holds where the wk are positive scalar parameters that converge to
zero as k ] increases. Then

(i) there are positive constants 2 and 3 such that

(4.8)

and

(4.9)

for all j 1,..., q and all k sufficiently large.
Suppose, in addition, that c(x,) O. Then
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(ii) x, is a Kuhn-Tucker point (first-order stationary point) for the problem
(1.1)-(1.3), A, is the corresponding vector of Lagrange multipliers, and the sequences
{A(xk,,k, #k)} and {A(xk)} converge to , for k

(iii) the gradients Vxk converge to ge(x,,A,) ,for k E K,.

Proof. As a consequence of AS2-AS4, we have that for k E K: sufficiently large,
(JkZ,)+ exists, is bounded, and converges to (J(x,)Z,)+. Thus, we may write

(4.o) II((JZ,)+)TII
_
,

for some constant a2 > 0. Equations (2.3) and (2.4), the inner iteration termination
criterion (3.3), and Lemma 4.1 give that

for all k K: large enough. By assumptions AS2, AS3, AS4, and (2.5), A(x) is bounded
for all x in a neighborhood of x,. Thus we may deduce from (2.5), (4.10), and (4.11)
that

(4.12)

II((JZ*)+)TZT, g/AI!
II((JZ,)+)T(ZT, g / (JZ,)T)II

<_ II((&Z,)+)TII_
I’2ok

Moreover, from the integral mean value theorem and Lemma 2.1 we have that

/o(4.13) A(x) A(x,) VxA(x(s))ds. (xk x,),

where VxA(x) is given by equation (2.6) and x(s) x + s(x, xk). Now the terms
within the integral sign are bounded for all x sufficiently close to x, and hence (4.13)
gives

(,.14) ll,(x) ,,II -< ,llx x,

for all k K: sufficiently large and for some constant /3 > 0, which implies inequality
(4.8). We then have that A(xk) converges to A,. Combining (4.12) and (4.14) we
obtain

which gives the required inequality (4.7). Then, since by assumption w tends to zero
as k increases, (4.15) implies that ,k converges to A, and therefore, from the identity
(2.3), Vx(I)k converges to g(x,, A,). Furthermore, multiplying (2.1) by #k,j we obtain

(4.16)

Taking norms of (4.16) and using (4.15), we derive (4.9).
Now suppose that

(4.) (x,) 0.

Lemma 4.3 and the convergence of V(I)k to g(x,, ,,) give that

g(x,) + J(x,)TA, A,Tr,
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for some vector r, >_ 0. This last equation and (4.17) show that x, is a Kuhn-Tucker
point and A, is the corresponding set of Lagrange multipliers. Moreover, (4.7) and
(4.8) ensure the convergence of the sequences {(xk, Ak,#k)} and {A(xk)} to A, for
k E K. Hence the lemma is proved.

We finally require the following lemma in the proof of global convergence, which
shows that the Lagrange multiplier estimates cannot behave too badly.

LEMMA 4.5. Suppose that, for some j (1

_
j <_ q), #k,j converges to zero as k

increases when Algorithm 3.1 is executed. Then the product tk,jllk,[Qj]ll converges
to zero.

Proof. As tk,j converges to zero, Step 3b must be executed infinitely often for the
jth subset. Let ]j {ko, kl,k2,...} be the set of indices of the iterations in which
Step 3b is executed.

We consider how the jth subset of Lagrange multiplier estimates changes between
two successive iterations indexed in the set K:j. First note that A.+I,[Qj] A,[Q.].
At iteration kv + t, for kv < k + t _< k+, we have

(4.18) - c(x+)ie
k+t,[] ,[] +E

t=l #k-+t,J

where the summation is null if t 1 and

tkv+l ,j tkv +t,j Pkv +l,j Tkv ,j Pkv ,j"

Substituting (4.19) into (4.18), multiplying both sides by #+t,j, taking norms, and
using (3.9) yield

t-1

/--1

and hence

kv+ -kv -1

/--1

Using the fact that (3.7) holds for kv + 1 <_ k + <_ kv+ 1, we deduce that

Now defining

(4.20)
/--1

we obtain that
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for all t such that kv < kv / t <_ kv+i and, in particular,

(4.22) 6v+l <_ wev d- pv.

Thus, from (4.22) and the inequality - < 1, if p. converges to zero, then 5 and
hence, from (4.21), #kv+t,jllAav+t,[]ll both converge to zero. To complete the proof
it therefore suffices to show that Pv converges to zero as v tends to infinity.

Suppose first that ak is bounded away from zero. Then we must have that (3.13)
is used for all k sufficiently large, with ak+l Omin for some Omin E (0, 1). This and
the definition of pv in (4.20) imply that

kv+

for sufficiently large v. Since (3.13) also guarantees that ]k tends to zero, we deduce
that Pv converges to zero. This completes the proof for the first case.

Suppose now that ck converges to zero. This implies that each of the q indepen-
dent penalty parameters is reduced an infinite number of times. Consider the progress
of Ck over the course of q successive decreases (3.11). Since (3.11) happens only when
the currently largest penalty parameter, #k,j say, is reduced, as (3.9) requires that
this penalty parameter is reduced by - and because there can only possibly be at
most q- 1 other penalty parameters in the interval (-#,j, #k,j], it follows that
must be reduced by at least - over q successive decreases (3.11). Thus, considering
the possible outcomes (3.12) and (3.13), each rlv+ must be bounded by a quantity of
the form (-ic.),+t, for some indices and t. Furthermore, at most q such terms
can involve any particular and t. Therefore, since -ck. < 1, we obtain that

i=0 t=O

ql_(ri)Z,.=
i=0

kvq

Thus we see that, as k. converges to zero, so does pv, completing the proof for the
second case.

We can now derive the desired global convergence property of Algorithm 3.1,
which is analogous to Theorem 4.4 in Corm, Gould, and Toint [5].

THEOREM 4.6. Assume that AS1 and AS2 hold. Let x, be any limit point of the
sequence {Xk} generated by Algorithm 3.1 of 3 for which AS3 and AS4 hold, and let

be the set of indices of an infinite subsequence of the xk whose limit is x,. Finally,
et , a(x,). Then conclusions (i), (ii) d (iii) of Lemma a.a hod.

Proof. Our assumptions are sufficient to reach the conclusions of part (i) of
Lemma 4.4. We now show that c(x,)[] 0 for j 1,...,q and therefore that
c(x,) 0. To see this, we consider a j (1 j q) and analyze two separate cases.

The first case is when k,j is bounded away from zero. Hence Step 33 must
be executed at every iteration for k sufficiently large, implying that (3.7) is always
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satisfied for k large enough. We then deduce from (3.14) that c(xa)[Q] converge to
zero.

The second case is when #,j converges to zero. Then Lemma 4.5 shows that
#k,jll(A ,)[2]11 tends to zero. Using this limit and (3.14) in (4.9), we obtain that

c(xk)[] tends to zero, as desired.
As a consequence, conclusions (ii) and (iii) of Lemma 4.4 hold. V1

We finally note that global convergence of Algorithm 3.1 can be proved under
much weaker assumptions on ’k,j and w. The reader is again referred to Corm et al.
[9] for further details.

5. Asymptotic convergence analysis. The distinction between dominant and
nondominant (floating) linear inequality constraints has some implications in terms
of the identification of those constraints that are active at a limit point of the se-
quence of iterates generated by the algorithm. Given such a point x, we know from
Theorem 4.6 that it is critical, that is, that -g(x,,,) E N, N(x,,O) for the
corresponding Lagrange multipliers ,. If we now consider a linear constraint with

index i E {1,...,p} that is active at x,, we may define the normal cone N,[] to be the
cone spanned by the outwards normals to all linear inequality constraints active at x,,
except the ith one. We then say that the ith linear inequality constraint is strongly
active at x, if -g(x,, ik,)

_
N[,]. In other words, the ith constraint is strongly active

at a critical point if this point ceases to be critical when this constraint is ignored.
Let us denote by S(x,) the set of strongly active constraints at x,. All nonstrongly
active constraints at x, are called weakly active at x,. We now prove the reasonable
result that all strongly active constraints at a limit point x, are dominant for k large
enough.

THEOREM 5.1. Assume that AS1-AS3 hold. Let {xk}, k l, be a conver-
gent subsequence of iterates produced by Algorithm 3.1, whose limit point is x, with
corresponding Lagrange multipliers ,. Assume furthermore that AS4 holds at x,.
Then

S(x, C_ Dk

for all k sujficiently large.
Proof. Consider a linear inequality constraint S(x,). Then, by the definition

of this latter set, we have that -g(x,, A,) N,[] Since Theorem 4.6 guarantees that

7k converges to g(x,, A,) and since N,[] is closed, we have that -VOk N,[] for
k K: large enough. Therefore, one obtains from the Moreau decomposition [20] of
-V that

for some > 0 and for all sufficiently large k /C, where T,[] [N!]]. We have
also from (3.3) that IIPTk (-Vxk)ll is arbitrarily small because wk tends to zero (see
(3.14)). Assume now that, for some arbitrarily large k E K:, we have i D. This

implies that T!] C_ T and, hence, that (5.1) is impossible. We therefore deduce that
i must belong to D, which proves the theorem. [:1

This result is important and is the generalization of Theorem 5.4 by Corm, Gould,
and Toint [5]. It can. also be interpreted as a means of active constraint identification,
as is clear from the following easy corollary.
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COROLLARY 5.2. Suppose that the conditions of Theorem 5.1 hold. Assume
furthermore that all linear inequality constraints active at x, have linearly independent
normals and are nondegenerate in the sense that

(5.:) gt(x,, ,) e ri[N,],

where ri[V] denotes the relative interior of a convex set V. Then Dk is identical to
the set of active linear inequality constraints at x, for all k E ] suJficiently large.

Proof. The nondegeneracy assumption and the linear independence of the active
constraints normals imply that A, is unique and only has strictly negative components.
Therefore each of the active linear inequality constraints at x, is strongly active at
x,, and the desired conclusion follows from Theorem 5.1.

We note here that the nondegeneracy assumption corresponds to strict comple-
mentarity slackness in our context (see, for instance, Dunn [11] or Burke, Mord, and
Toraldo [4]).

We now make some additional assumptions before pursuing our local convergence
analysis. We intend to show that all penalty parameters are bounded away from zero.

AS5. The second derivatives of the functions f(x) and ci(x) (1 _< i _< m) are

Lipschitz continuous at any limit point x, of the sequence of iterates {x}.
AS6. Suppose that (x,, A,) is a Kuhn-Tucker point for problem (1.1)-(1.3), and

let Z be any subset of the linear inequality constraints that are active at x,
that contains all strongly active constraints (S(x,) c_ Z) plus an arbitrary
subset of weakly active constraints at x,. Then, if the columns of the matrix
Z form an orthonormM basis of the subspace orthogonM to the normals of
the constraints in 2;, we assume that the matrix

ZTH(x,, A,)Z
J(x,)Z

zTJ(x,)T
o )

is nonsingular for all possible choices of the weakly active constraints in the
set 2".

We note that AS6 implies AS4 and seems reasonable in that the definition of
strongly and weakly active constraints may vary with small perturbations in the
problem, for instance when g(x,, A,) lies in one of the extreme faces of the cone N,.
Our assumption might be seen as a safeguard against the possible effect of all such
perturbations.

We now make the distinction between the subsets for which the penalty parameter
converges to zero and those for which it stays bounded away from zero. We define

zde{je{1 ...,q}l lim #k,j=0}

We also denote

(5.3) #k,z
def

max #k,j

and 7) de----f {1,..., q} \ Z.

and

We now prove an analog to Lemma 5.1 by Conn, Gould, and Toint [5] that is suitable
for our more general framework.
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LEMMA 5.3. Assume that AS1-AS3 hold. Let {xk}, k E )C, be a convergent
subsequence of iterates produced by Algorithm 3.1, whose limit point is x, with cor-
responding Lagrange multipliers ,. Assume that AS5 and AS6 hold at x,. Assume
furthermore that Z .

(i) If 19 , there are positive constants < 1, n4, 5, 6, 7 and an integer kl
such that, if ca <_ (, then

(5.4)

(5.5)

and

(5.6)

for all k >_ kl, k ].

(ii) If, on the other hand, 7) O, there are positive constants < 1, n4, n5, n6,

7 and an integer k such that, if #k,z <_ (, then

(5.7)

and

(5.8) IIc(xk)[Qj]ll <_ n6rlk#,z + (1 + nT#k,z)P

for all k >_ k, k IC, and all j Z.
Proof. We will denote the gradient and Hessian of the Lagrangian function, taken

with respect to x, at the limit point (x,, A,) by g, and H,, respectively. Similarly, J,
will denote J(x,). We also define 5 xk x,. We observe that the assumptions of
the lemma guarantee that Theorem 4.6 can be used.

We first note that there is only a finite number of possible D, and we may thus
consider subsequences of K: such that Dk is constant in each subsequence. We also
note that each k K belongs to a unique such subsequence. To prove our result,
it is thus sufficient to consider an arbitrary infinite subsequence K such that, for
k f, Dk is independent of k. This "constant" index set will be denoted by D. As
a consequence, the cones Nk and Tk, the subspaces )k and W, and the orthogonal
matrices Z and Yk are also independent of k; they are denoted by N, T, ;, l/V, Z,
and Y, respectively.

Using (2.3) and Taylor’s expansion around x,, we obtain that

(5.9) g(x,)+ H(x,)5 + jT, + Eim=l k,iHi(x,)k q-rl(Xk,X,,k)
g, + H,5 + JT,(k ,) + r(xk,x,,k) + r2(xk,x,,,A,),

where

rl(Xk, X,, Xk) dd jo [He(x, + sSk, X) He(x,, Xk)]Sk ds

m

r2(Xk,X,,k,,) deal E(k,i ,,i)Hi(x,)k.
i--1
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The boundedness and Lipschitz continuity of the Hessian matrices of f and ci in a
neighborhood of x, together with the convergence of Ak to/, then imply that

and

for some positive constants ts and ;9. Moreover, using Taylor’s expansion again,
along with the fact that Theorem 4.6 ensures the equality c(x,) 0, we obtain that

(5.12)

where

fOO fOO T[r3(xk,x,)] s 5k Hi(x, + tshk)hk dtds

(see Gruver and Sachs [16, p. 11]). The boundedness of the Hessian matrices of the
c in a neighborhood of x, then gives that

(.) II(,x,)ll < 011ll
for some positive constant al0. Combining (5.9) and (5.12), we obtain

J, 0 , c(x r

where we have suppressed the arguments of the residuals r, r2, and r3 for brevity.
Using the orthogonal decomposition of n into Y W and defining

0 0 I

we may rewrite (5.14) as

k

(5.15)
Z H,Z jT, zTek
T yTH,y yT yTY H,Z jT,
J,Z J,Y 0

Y(Vxk 9e,) YTr
(x)

We now observe that (3.3), the inclusion ) C_ T, and the fact that wk tends to zero
imply that

,(.) rZ g,=O.

def
where r4 rl + r2. Expanding this last equation gives that
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Substituting (5.16) in (5.15), removing the middle horizontal block, and rearranging
the terms of this latter equation then yield that

(5 17)
Z g,z jT, ZTSk

J,Z 0 k ,
( zT(xffk--Hg,yyT(Sk) )c(xk) J.yyTk r3

Roughly speaking, we now proceed by showing that the right-hand side of this relation
is of the order of Ok + Pk, where

0kde--e{ ck if 7)=0,(.ls) v if p 0.

We will then ensure that the vector on the left-hand side is of the same size, which is
essentially the result we aim to prove. We first observe that

(.) I111 llzzr + llzr5l +
from (4.1). We then obtain from (4.7)and (5.19)that

(.o) II ,11 < + allzll,

where 11 t2 + 3tl. Furthermore, from (5.10), (5.11), (5.13), (5.19), and (5.20),

(5.21) 2

where 2 s + 39 q- to, tg13 2/g1(/g8 -- /glO) -- /g9(/gll -- tal), and /g14

(s + 0)+ 1911. We now bound c(xk) by distinguishing components from
Z and 7). We first note that, since the penalty parameters for each subset in 7) are
bounded away from zero, the test (3.7) is satisfied for all k sufficiently large. Moreover,
the remaining components of c(xk) satisfy .the bound

for all j e Z and all k sufficiently large, using (4.9). Hence, using (5.3), (3.7), and
(5.22), we deduce that

jEP jEZ

Note that the first term of the last right-hand side appears only if 7) is not empty
Since the algorithm ensures that

(5.24) cok _< r/k

because av < 1 and fi < 1, we may obtain from (4.1), (5.23), and (5.19) that

][(zT(Vx--He*yyTs)) < tgl5{gk --}- pk .-ll- qlglll.tk,Zigk(5.25) c(x) j,yyT5



692 A.R. CONN, N. GOULD, A. SARTENAER, AND PH. L. TOINT

where t15 q / 1 + (IIZTHYII + IIJ.YII). By .assumption AS6, the coefficient
matrix on the left-hand side of (5.17) is n0nsingular. Let M be the norm of its
inverse. Multiplying both sides of the equation by this inverse and taking norms, we
obtain from (5.18), (5.21), (5.24), and (5.25) that

ZTSk M[IIZT6II / llz,lle + t140 / /,15tk

/p / q,p,ze / q’#,=llzT6ll].

Suppose now that k is sufficiently large to ensure that

1

4Mt13

and let

(5.28) & min a0,
4Mq3

Recall that a0 and hence & < 1. Then, if #k,z _< , the relations (5.26)-(5.28) give

1IIz:r,ll <_ llz:r,ll + M[O + p +

where n16 qtll / t14 / 15. Since 5k, and hence IIzTsk]], converge to zero, we have
that

(5.30) iiz:r,ll < 1

4Mn2

for k large enough. Hence inequalities (5.29) and (5.30) yield that

(5.31)

If 7) is empty, we use (5.19), (5.31), and (5.18); the fact that #k,Z ak; and the
inequality

Pk

_
qak II.X ,

def defto deduce (5.4), where t4 4Mn6 + n and n5 4Mq. Defining n6 n2 + n3n4
defand 7 35, we deduce (5.5) from (4.7) and (5.4). Now, using (2.1),

(.32)
q q

II(x)ll _< II(x)i]ll- ,11( ,)[]11 <- qo(llX ,11 + II.x
j=-

and (5.6)then follows from (5.32)and (5.5).
If, on the other hand, 7) is not empty, (5.7) results from (4.7), (5.19), (5.31) with

def def
0k r/k, and (5.24) with n6 4Mn3n16 + n2 + n3n and n 4Mn3. Finally, (5.8)
sts rom (e.)d (.). n

For the remainder of this section, we will restrict our attention to the case where
the sequence of iterates converges to a single limit point. Obviously, this makes AS3



AUGMENTED LAGRANGIAN WITH LINEAR CONSTRAINTS 693

unnecessary. We briefly comment at the end of the section on why this additional
assumption cannot be relaxed.

We now show that, if the maximum penalty parameter ck converges to zero, then
the Lagrange multiplier estimates Ak converge to their true values A,.

LEMMA 5.4. Assume AS1 and AS2 hold. Assume that {x}, the sequence of
iterates generated by Algorithm 3.1, converges to the single limit point x, at which
AS6 holds, and with. corresponding Lagrange multipliers ,. Then, if tends to
zero, the sequence ) converges to ),.

Proof. Recall that AS6 implies AS4 and therefore that our assumptions are suf-
ficient to apply Theorem 4.6.

We observe that the desired convergence holds if Ak,[] converges to A,,[] for
all j 1,...,q. It is thus sufficient to show this latter result for an arbitrary j
between 1 and q. The result is obvious if Step 3a is executed infinitely often for the
jth subset. Indeed, each time this step is executed, A+,[] k,[], and inequality
(4.7) guarantees that Ak,[] converges to A,,[]. Suppose, therefore, that Step 3a is
not executed infinitely often for this subset. Then II(A A,)[] will remain fixed
for all k _> k2, for some k2 :> 0, as Step 3b is executed for each remaining iteration.
But (4.9) then implies that IIc(x)[]ll _< 7#,y for some constant t7 :> 0 and for
all k >_ k3

_
k2. As ck tends to zero and av < 1, t17#k,j

__
t170k

__
O" ?k

for all k sufficiently large for which ak strictly decreases. But then inequality (3.7)
must be satisfied for some k _> k3, which is impossible, since this would imply that
Step 3a is again executed for the jth subset. Hence Step 3a must be executed infinitely
often.

We now consider the behavior of the maximum penalty parameter ck and show
the important result that, under stated assumptions, it is bounded away from zero.
The proof of this result is inspired by the technique developed by Conn, Gould,
and Toint [5]. When the single penalty parameter definition of the augmented La-
grangian (1.4) is used (or, equivalently, when q 1), one then avoids a steadily
increasing ill-conditioning of the Hessian of the augmented Lagrangian. Note that
this ill-conditioning is also avoided when q > 1, as we show in Theorem 5.6.

THEOREM 5.5. Assume AS1 and AS2 hold, and suppose that the sequence of
iterates {Xk} of Algorithm 3.1 converges to a single limit point x, with corresponding
Lagrange multipliers ,, at which AS5 and AS6 hold. Then there is a constant O/min

(0, 1) such that (k O/min for all k.
Proof. Suppose otherwise that ak tends to zero (that is, P q)) and hence that

#k,j tends to zero for each j between 1 and q. Then Step 3b must be executed infinitely
often for each subset. We aim to obtain a contradiction to this statement by showing
that Step 3a is always executed for each subset for sufficiently large k. We note that
our assumptions are sufficient to apply Theorem 4.6. Furthermore, we may apply
Lemma 5.3 to the complete sequence of iterates.

First observe that

(5.33) a _< < 1

for all k >_ kl, where and kl are those of Lemma 5.3. Note that

for all k _> k. This follows by definition if (3.12) is executed. Otherwise it is a
consequence of the fact that ak is unchanged while wa is reduced’when (3.13) occurs.
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Let k4 be the smallest integer k such that

1
(5.34) a-a" <

+
and

q(2t1.8 + t6)
where als max(l, 36 + 37). Note that (5.33) and (5.35) imply that

(5.36) ck _<c-’_< 1
__

1

/18 t7

for all k >_ max(k1, k4). Furthermore, let k5 be such that

for all k _> k5, which is possible because of Lemma 5.4. Now define k6 max(k1, k4, k5),
let F be the set {k (3.12) is executed at iteration k- 1 and k >_ k6}, and let ko be
the smallest element of F. By the assumption that ak tends to zero, F has an infinite
number of elements.

’. Then inequalityBy the definition of F, for iteration k0, wko co and r/ko Cko
(5.6) gives that, for each j,

(from (5.36))
(from (5.37))
(from (5:33))
(from (5.34)).

As a consequence of this inequality, Step 33 will be executed for each j with
(Xko, %ko,[2j], #ko,j)[2]. Inequality (5.5) together with (5.37) guarantee that

II’ko+l ,ll N’6t’ko "]- TCtko]lko /*ll /q’18OZko

We shall now make use of an inductive proof. Assume that, for each j, Step 33 is
executed for iterations k0 + (0 _< t) and that

(5.40)
Inequalities (5.38) and (5.39) show that this is true for t 0, We aim to show that
the same is true for = t + 1. Our assumption that Step 33 is executed gives that,

Ozt+2 and ko+t+lfor iteration ko + t + 1, Oko+t+l OZko, COko+t+l ko OZko
Then inequality (5.6) yields that, for each j,

(from (5.36))

(from (5.40))

(from (a.a6))

(from (5.35)).
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Hence Step 3a will again be executed for each j with

Ao+t+,[] A(Xo+t+, Ao+t+,[;], #o+t+,j)[].
Inequality (5.5) then implies that

;x, II <_ +
_,+2 +Z, (from (5.40))6ko + gTg18koko

g6ko gTgl8koko
=(a + aTaSaao )aa

+ a7)a o

glSko

which establishes (5.40) for t + 1. Thus Step 3a is executed for each j 1,..., q
for all iterations k k0. But this implies that F is finite, which contradicts the as-
sumption that Step 3b is executed infinitely often for each subset. Hence the theorem
is proved.

This theorem was all that was needed in Corm, Gould, and Toint [5]. However,
the situation is more complex here because q may be larger than one. If the iI1-
conditioning of the Hessian is to be avoided, we must now prove the stronger rult
that all penalty parameters stay bounded away from zero.

THEOREM 5.6. Assume AS1 and AS2 hold, and suppose that the sequence of
iterates {xk } of Algorithm 3.1 converges to a single limit point x, with corresponding
Lagrange multipliers A,, at which AS5 and AS6 hold. Then there is a constant p > 0
such that Pk,j for all k and all j 1,,.., q.

Proofi Assume otherwise that Z is Hot.empty and hence that #k,Z converges to
zero. Then Step 3b must be executed infinitely often for j Z. We aim to obtain
a contradiction to this statement by showing that, for any j Z, Step 3a is always
executed for sufficiently large k. We may deduce from Theorem 5.5 that ak attains
its minimum value min e (0, 1) at iteration kmx, say. Hence, P . rthermore,
we may apply Lemma 5.3 to the complete sequence of iterates. Let k7 kmax be the
smallest integer for which

1 min min(g.41) .k,z N min ,
2a + ’ q(2 + )

for all k k 2 kl, where and k are tose of Lemma g.a and where

Note hm > mn gS ff < 1.
Consider the th subse for some . At iteration H H;, the algorithm

ensures

ff Step 3b s executed for he th subset, hle (.?) ensures h

+
ff Step 8 s executed for he sme subset. Summing on a11 and denning

Z,= { Z Step 3a s executed for the th subset t tertion H}
Ze, { Z Sep 8b s executed for he h subset teraton
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we obtain that

Pk+l
jEZk,b

__
(O/min + Tq#k,z)Pk + t6q#k,Z?k.

p,j(aV +

For the purpose of obtaining a contradiction, assume now that

1
(5.43) Pk >--

for all k >_ kT. Then (5.42) gives that, for all k > kT,

because of (5.41). Hence we obtain from (5.44) that

Pk+l -- PkvOmin

(k-kT.’t-1)eTherefore, since pkTOmin tends to zero, we obtain that

1 ,+(k-kx),
Pk-l-1 < Omin

(-kr+), 1 an +(k-kmaxq-1)flv 1
Omin Omin ?k+

for all sufficiently large k, where the last equality results from the definition of kmax
and (3.13). But this contradicts (5.43), which implies that (5.43) does not hold for
all k sufficiently large. As a consequence, there exists a subsequence K; such that

1

for all k E . Consider such a k. Then, using (5.42) and (5.45), we deduce that

1 1 o,+ 1
Pk+l < T]k(Omin if" ql’7k,Z q- 2qe;6#k,z) < - min "lk

where we have used (5.41) to obtain the second inequality. As a consequence, k+ 1 E K:
and (5.45) holds for all k sufficiently large. Returning to the subset j Z, we now
obtain from (5.8) and (5.45)that

1
(1 + 7#k,z)) <

for all k sufficiently large because of (5.41). Hence Step 33 is executed for the subset
j and for allsufficiently large k, which implies that j does not belong to Z. Therefore
Z is empty and the proof of the theorem is completed.

As in Corm, Gould, and Toint [5], we examine the rate of convergence of our
algorithms.

THEOREM 5.7. Under the assumptions of Theorem 5.6, the iterates xk and the
Lagrange multipliers of Algorithm 3.1 are at least R-linearly convergent with R-
factor at most " where is the smallest value of the maximum penalty param-Omin O/rain

eter generated by the algorithm.
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Proof. The proof parallels that of Lemma 5.3. First, Theorem 5.5 shows that
the maximum penalty parameter ak stays bounded away from zero and thus remains
fixed at some value Omin 0, for k >_ kmax. For all subsequent iterations,

(5.46) k+ minWk and Uk+ min’qk

hold. Moreover, Theorem 5.6 implies that, for all j 1,...,q, (3.7) holds for all
k kx sufficiently large. Hence because of (4.1), the bound on the right-hand side
of (5.25) may be replaced by 5k + qua, and thus

(5.47) ]]ZTk]] M[g15k +qk + g12ZTk[2 + gl3]ZTk]]k + g14].

Therefore, if k is sufficiently large so that

1
(5.48) k 2M413
and

(5.49) IIzTkll < 1

4M;12

inequalities (5.47)-(5.49) can be rearranged to yield

IIzTskll <_ 4M((t4 4- 5)wk + qr/k).

But then (5.19) gives that

(5.50) IIkll E19k + 20k,

where n9 n + 4M(n4 + n5) and n0 4Mq. Since fin < 1 and amin < 1,

(5.46) nd (5.50) show that xk converges to x, t least R-linearly, with R-factor z"
min"

Inequalities (4.7) nd (5.50) then guarantee the same property for A.
To conclude this section, we note that the conclusions of Theorems 5.5, 5.6, nd

5.7 require that the complete sequence of iterates converges to unique limit point. As
indicated above, this assumption cannot be relaxed. The counterexample presented
by Corm, Gould, and Toint [5] (where the linear inequality constraints re simple
bound constraints on the problem’s variables) shows that the sequence of penalty
parameters may indeed converge to zero if there is more thn a single limit point.

6. Second-order conditions. If we further strengthen the stopping test for the
inner iteration beyond (3.3) to include second-order conditions, we can then guarantee
that our Mgorithms converge to n isolated local solution. More specificMly, we require
the following additional assumption.

AS7. Suppose that xk satisfies (3.3), converges to x, for k , such that Z,
hs a rank strictly greter than m. Then, if Z is defined s in AS6, we assume
that zTvkZ is uniformly positive definite (that is, its smallest eigenvMue
is uniformly bounded way from zero) forall k sufficiently lrge.

We cn then prove the following result.
THEOREM 6.1. Under assumptions As1-As3, AS5-AS7, the iterates xk, k ,

generated by Algorithm 3.1 converge to an isolated local solution of (1.1)-(1.3).
Proo By the definition of ,

q

Ht 1 )T(6.1) V (x, X) + J(xk J (x),
j=l Pk,j
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where JQj (x) is the Jacobian of c(x)[ej ]. Note that the rank of Z is at least that of
Z,. AS7 then implies that there exists a nonzero vector s such that

J(xk)Zs=O

and hence

(6.2) J (xk)Zs 0

for each j. For any such vector, AS7 further implies that

for some N;21 > 0, which in turn gives that

sTzTHe(xk, X)Zs > 21lll] 2

because of (6.1) and (6.2). By continuity of He as xk and k approach their limits,
this ensures that

sTzTHZ(x,,A,)Zs >_ 111]1

for all nonzero s satisfying

J(x,)Zs=O,

which implies that x, is an isolated local solution of (1.1)-(1.3) (see, for instance,
Avriel [2, Thm. 3.11]). [:]

If we assume that the inner iteration stopping test is tightened so that VxxOk is
required to be uniformly positive definite in the null space of the dominant constraints,
and if we assume that the nondegeneracy condition (5.2) holds, then Corollary 5.2
ensures that Zk Z Z, for sufficiently large k and Theorem 6.1 holds. A weaker
version of this result also holds, where only positive semidefiniteness of the augmented
Lagrangian’s Hessian is required, yielding then that x, is a (possibly not isolated)
minimizer of the problem.

7. Extensions.

7.1. Flexible Lagrange multiplier updates. The formula (2.1) has definite
advantages for large-scale computations but may otherwise appear unduly restrictive.
The purpose of the first extension we consider is to introduce more freedom in our
algorithmic framework by replacing this formula by a more general condition, allowing
a much larger class of Lagrange multiplier updates to be used. More specifically, we
consider modifying Algorithm 3.1 as follows.

ALGORITHM 7.1 This algorithm is identical to Algorithm 3.1, except that Step 3
is replaced by the following, where /is a constant in (0, 1).

Step 3 [Disaggregated updates]. Compute a new vector of Lagrange multi-
plier estimates k+l. For j 1,..., q, execute Step 3a if

or Step 3b otherwise.
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Step 3a [Update Lagrange multiplier estimates]. Set

{k+,[] k,[] otherwise,
kTl,j Pk,j.

Step 3b [Reduce the penalty parameter]. Set

Ak+,[] A,[] otherwise,
Pk+ ,j Wk ,jPk ,j

where k,y is defined by (3.9) in Algorithm 3.1.

Algorithm 7.1 allows a more flexible choice of the multipliers than Algorithm 3.1
but requires that some control is enforced to prevent their growth at an unacceptably
fast rate. It covers, among others, the choice of the least-squares estimates A(x) as
defined in (2.5).

The global convergence theory presented in 4 for Algorithm 3.1 can be extended
to cover Algorithm 7.1. This extension is detailed in Conn et al. [9]. Conn et al. [10]
extend the local convergence analysis .of 5 to Algorithm 7.1-, under the additional
condition that

holds for some positive constants 22 and
is the index set of a subsequence of iterates (generated by Algorithm 7.1) converging
to the critical point x, with corresponding Lagrange multipliers A,. Both (2.1) and
(2.5) satisfy this condition because of Theorem 4.6.

We also note that Corollary 5.2 ensures that the least-squares multiplier estimates
(2.5) are implementable when the nondegeneracy condition (5.2) holds. By this we
mean that the estimates

ik ((jZk)+)T TZk g

are identicalto those defined in (2.5) for all k sufficiently large and, unlike (2.5), are
well defined when x, is unknown.

7.2. Alternative criticality measures. In Algorithms 3.1 and 7.1 we used
the criticality measure I]PT(--Vz(I))II to define the stopping criterion of the inner
iteration (see (3.3)) because it is general. However, this quantity might not be easily
computed in the course of the numerical method used to calculate x, especially
when the dimension of the problem is high. It is therefore-of interest to examine
other criticality measures that might be easier to calculate. It is the purpose of this
section to analyze such alternative proposals.

Given Dk, Nk, and ADk as above, we first claim that (3.3) can be replaced by the
requirement that there exists a set of nonpositive "dominant multipliers" {k}eMk
(Mk C_ Dk, k _< 0) such that

(7.1)

where is the IDol-dimensional vector whose ith component is ik if Mk or zero
otherwise. We prove this claim.
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LEMMA 7.1. Assume that there exists a nonpositive k such that (7.1) holds at
xk. Then (3.3) also holds at xk.

Proof. Since the vector AT belongs, by construction, to the cone Nk definedDk
in (3.4), we can immediately deduce from the definition of the othogonal projection
and (7.1) that

T

which is the desired inequality. D
Condition (7.1) is appealing for two reasons. First, a set of (possibly approxi-

mate) multipliers is available in many numerical procedures that might be used to
perform the inner iteration and to compute a suitable xk; one can then select those
multipliers that correspond to the dominant constraints, further restrict this choice
to the nonpositive ones, and finally check (7.1). Such a scheme is implicitly used by
both the Harwell [17] barrier-function quadratic programming codes VE14 and VE19
and the IMSL [19] general linearly constrained minimization package LCONG.

Alternatively, suitable multipliers can be computed, for instance, by (approxi-
mately) solving the least-squares problem

min IlVxk + AT

and selecting the nonpositive components of the resulting vector or by (approxi-
mately) solving the constrained least-squares problem

min IIVxk + AT

Condition (7.1) is also appealing because it provides, in a single condition, both a
stopping condition on the inner iteration and a measure of the tolerated "inexactness"
in solving the associated least-squares problem, if this is the procedure chosen to
obtain the dominant multipliers.

We may therefore deduce from Lemma 7.1 that the convergence theory holds for
Algorithms 3.1 and 7.1 whenever (7.1) is used instead of (3.3).

Condition (7.1) can be further specialized. For instance, one might choose to
impose the familiar "reduced gradient" criterion

where 2(xk) is an orthogonal matrix whose columns span the null space of the con-
straints active at x, provided that the multipliers associated with these linear con-
straints are all nonpositive. In this case, we have that

because T(xk, 0), the tangent cone to the set determined by the linear inequality
constraints active at xk, contains T. As a consequence, the convergence theory still
holds when this criterion, which has been implemented by several subroutines for
minimizing a general objective function subject to linear constraints (for example,
the NAG [22], quadratic programming code E041FF and the more general package
E04UCF), is used as an inner-iteration stopping rule within Algorithms 3.1 and 7.1.
This is also true for reduced gradient methods (e.g., MINOS [21] or LSNNO [24]),
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which compute a full column rank matrix 2(xk) whose columns are generally non-
orthonormal but depend upon a subset of the (finite number) of coefficients for the
linear constraints. Indeed, the norm of ,(xk) is then bounded above and away from
zero, and a relationship that is a weighted form of (7.3) thus also holds in these cases.

To preserve coherence with the framework presented in Corm et al. [8], we finally
note that ak as defined in (4.3) may also be viewed as a criticality measure. Hence
we might decide to stop the inner iteration .when

(7.4) ak <_ wk.

The reader is referred to Corm et al. [9] for a proof that global convergence is still ob-
tained for this modification of Algorithms 3.1 and 7.1. However, the authors have not
been able to prove the desired local convergence properties with only (7.4). Instead,
the local convergence theory is covered for Algorithms 3.1 and 7.1 for the stronger
condition

2(7.5) a _<

(see Corm et al. [10] for details). This condition is theoretically interesting but might
be practically too strong. Note, as we now show, that it implies a variant of (3.3).

THEOREM 7.2. Assume that (xk}, k E tC, is a convergent subsequence of vectors
of 13 such that (7.5) holds for each k ]C, where the wk converge to zero as k increases
in 1. Then the inequality

(7.6) IIPT <

also holds for each k ] sufficiently large and for some t24 1.

Proof. We first consider the simple case where p 0, that is, when no linear
inequality is present. In this case, it is easy to check from (4.3) that ak IIVxOkll.
But we must have that Dk 0. Thus ak IIPTk (--VxOk)l[. We therefore obtain that
(7.6) holds with ;24 1 and k large enough to ensure that wk <_ 1.

Assume now that p > 0. The Moreau decomposition of--VxOk [20] is given by

If PTk(-V) is zero, then (3.3) obviously holds for any choice of t24. Assume
therefore that PT(-VxOk) is nonzero. We now show that xk + dk B, where we
define

(7.7) dk
def PTk (-VxOk) with k

def
min 1

Assume first that Dk. Then -a Nk and aTidk
_

0 because of the polarity of
Nk and Tk. Since xk B, we obtain that

(7.8) aTc (xk + dk) b (aTc xk b) + aT dk >_ O.

On the other hand, if D, we have that aTx --b > owk and hence

(7.9) (aTx,- b)+ aTdk > oWk- Ilall.lldll- ow- llall >- ow- ow- O.

Gathering (7.8) and (7.9), we obtain that x / dk 13, as desired. Furthermore,
since Ildkll _< 1 by definition, we have verified that dk is feasible for the minimization
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problem (4.3) associated with the definition of ok. Hence,

o"k

_
--Vx(X)kTdk
PTk(-Vxk)Tda + Pgk(-Vxa)Tda

where we have used successively the Moreau decomposition of--VxOk, the definition
of da, and the orthogonality of the terms in the Moreau decomposition. If k 1,
then (7.5)and (7.10)imply that

for k e K: sufficiently large. Otherwise, we deduce from (7.10), (7.5), and (7.7) that

o

As a consequence of (7.11) and (7.12), we therefore obtain that (7.6) holds with

E24-- max

Combining all cases, we conclude that (7.6) holds with this last value of/24. [’]

We finally note that Lemma 7.1 and Theorem 7.2 do not depend on the actual
form of the augmented Lagrangian (1.5) but are valid independently of the func-
tion minimized in the inner iteration. This observation could be useful if alternative
techniques for augmenting the Lagrangian are considered for a merit function.

8. Conclusion. We have considered a class of augmented Lagrangian algorithms
for constrained nonlinear optimization, where the linear constraints present in the
problem are handled directly and where multiple penalty parameters are allowed.
The algorithms in this class have the advantage that efficient techniques for handling
linear constraints may be used at the inner iteration level and also that the sparsity
pattern of the Hessian of the augmented Lagrangian is independent of that of the
linear constraints. The global and local convergence results available for the specific
case where linear constraints reduce to simple bounds have been extended to the more
general and useful context where any form of linear constraint is permitted.

We finally note that the theory presented is directly relevant to practical compu-
tation since the inner iteration stopping rule (3.3) covers the type of optimality tests
used in available packages for linearly constrained problems. This means that these
packages can be applied to obtain an (approximate) solution of the subproblem and
constitutes a realistic and attractive algorithmic development.

It is now the authors’ intention to perform extensive numerical experiments on
large-scale problems. This development requires considerable care and sophistication
if an efficient solver for the subproblem is to be integrated with the class of algorithms
described here.
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