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CONVERGENCE PROPERTIES OF MINIMIZATION ALGORITHMS
FOR CONVEX CONSTRAINTS USING A STRUCTURED TRUST

REGION*

A. R. CONNt, NICK GOULD$, A. SARTENAER, AND PH. L. TOINT

Abstract. In this paper, we present a class of trust region algorithms for minimization problems
within convex feasible regions in which the structure of the problem is explicitly used in the definition
of the trust region. This development is intended to reflect the possibility that some parts of the
problem may be more accurately modelled than others, a common occurrence in large-scale nonlinear
applications. After describing the structured trust region mechanism, we prove global convergence
for all algorithms in our class.
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1. Introduction. Trust region algorithms have enjoyed a long and successful
history as tools for the solution of nonlinear, nonconvex, optimization problems. They
have been studied and applied to unconstrained problems (see [7], [17], [25], [28]-[31],
[34], [35], [38]) and to problems involving various classes of constraints, including sim-
ple bounds [6], [10], [11], [27], [32], convex constraints [2], [3], [14], [41], and nonconvex
ones [5], [8], [16]; [36], [44]. This long-lasting interest is probably justified by the at-
tractive combination of a solid convergence theory, a noted algorithmic robustness,
the existence of numerically efficient implementations, and an intuitively appealing
motivation. The main idea behind trust region algorithms is that, if a nonlinear
function (objective and/or constraints) is expensive to compute or difficult to han-
dle explicitly, it should be replaced by a suitable model. This model is deemed to be
trustworthy within a certain trust region around the current point. The trust region is
defined by its shape and its radius. The minimization involving the difficult nonlinear
function(s) is then replaced by a sequence of minimizations of the simpler model(s)
within appropriate trust regions. The trust region radii are adjusted to reflect the
agreement between the model and true functions as the process proceeds.

It is remarkable that, up to now, all algorithms that we are aware of use a single
trust region radius to measure the degree of trustworthiness of the models employed,
even if several different functions are involved. This choice is somewhat surprising
if one admits that some of the modelled functions could be substantially "better be-
haved" than others in the same problem, as this implies that the region in which their
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models can be trusted might also be substantially larger. In this context, the unstruc-
tured trust region choice might be viewed as a conservative strategy ensuring that all
models may be trusted in what amounts to a safe minimal region. While this strategy
might be reasonable for small problems, where each involved function depends on all
the problem’s variables, it is clearly questionable for large-scale applications, where
each of the problem’s functions typically depends only on a small number of variables.
For instance, one might consider the minimization of an unconstrained objective func-
tion consisting of the sum of many quadratic and a few highly nonlinear terms, the
latter involving a small subset of the variables. If a classical unstructured trust region
algorithm, with a quadratic model, is used, the quadratic terms are perfectly mod-
elled, but the steps that one can make at each iteration are (unnecessarily) limited
by the highly nonlinear behaviour of a small subset of the variables.

It is the purpose of this paper to present and analyze a class of algorithms that
uses the problem’s structure in the definition of the trust region, allowing large steps in
directions in which the model has proved to be adequate while restricting the move-
ment in directions where the model seems unreliable. To be more precise, we will
consider the problem of minimizing a partially separable objective function subject
to convex constraints; we will then use the decomposition of the objective function
into element functions as the basis for our structured trust region definition. The
choice of the partially separable structure, a concept introduced in [21], is motivated
by the very general geometric nature of.this structure and by the increasing recog-
nition of its practical use (see [4], [9], [12], [13], [.18].-[20], [22], [26], [39], [42], [43],
among others). More significantly, partial separability provides a decomposition of the
considered nonlinear function into a linear combination of smaller element functions,
each of which may then be modelled separately (see [40]). It is then quite natural
to assign one trust region radius per element function and to decide on its increase
or decrease separately. Because different element functions typically involve different
sets of variables, each element trust region only restricts the components of the step
corresponding to its elemental variables.

An obvious approach is to use the norm-scaling mtrices allowed in the theory
for unstructured trust region methods ([10], for instance) to ccount for differences
in model dequcy mong elements when constructing the trust region. This would
be stisfctory if the existing theory .did not require that the scaling mtrices be
of uniformly bounded condition number. Unfortunately, it is esy to conceive of
instances where this is a severe hndicap. For example, it would prevent the trust
region radius of a well-modelled (perhaps linear or quadratic) element from increasing
to infinity while t the same time ensuring that that of a badly behved nonlinear
element function remains of modest size. Moreover, this strategy may well cause
numerical difficulties when used to solve the trust region problem. In fct, s we
will shortly see, additional algorithmic safeguards are important when simultaneously
handling trust regions of wstly different sizes. Thus, we do not consider such an
approach further in this pper.

Section 2 Of the paper presents the problem in more detail and the new class of
lgorithms using the principle of structured trust regions. Global convergence for all
Mgorithms in the class is proved in 3. We briefly discuss the identification of active
constraints in 4. We examine in 5 some extensions of the results of the previous
sections. We finally give some comments and perspectives in 6.

2. Structured trust region for partially separable problems.
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2.1. A structured model of the objective and the corresponding struc-
tured trust region.

2.1.1. The problem. The problem we consider is that of minimizing a smooth
objective function subject to convex constraints. That is, we wish to solve the problem

(2.1) minimize f(x),
xEX

where X is a closed convex subset of Rn. We denote the Euclidean inner product on
Rn by (., .}, and the associated g2-norm by I1" II. Given Y a closed convex subset of
R, we define the operator PY(’/ to be the orthogonal projection onto Y. We now
list our additional assumptions on (2.1).

AS.I. X has a nonempty interior.
AS.2. f is bounded below on X.
AS.3. f is partially separable, which means that

p

(2.2) f(x) f(x)
i--1

and that, for each i E {1,..., p}, there exists a subspace Af - {0} such that,
for all w E Af and all x X,

(e.3) f (x +

AS.4. For each {1,... ,p}, fi is continuously differentiable in an open set
containing X and its gradient is uniformly bounded on X.

Note that we admit the case where X is unbounded or even identical to R
itself, in which case we obtain an unconstrained problem. In relation to the partial
separability of the objective function, we also consider the range subspace (see [23])
associated with each element function f, which is defined as

(2.4) 7 de Aft.
We are mostly interested in the case where the dimension of each 7 is small compared
to n. A commonly occurring case is when each element function f depends only on
a small subset of the problem’s variables; 7 is then the subspace spanned by the
vectors of the canonical basis corresponding to the variables that occur in f (the
elemental variables). The range of the projection operator Pn (.) is therefore of low
dimensionality. The reader is referred to [12] for a more detailed introduction to
partially separable functions.

We note that f is invariant for any translation in the subspace =1 T) We
may therefore restrict our attention to the case where

p

(2.5) E Ti R
i--I

without loss of generality.

2.1.2. The element models. The algorithm we have in mind is iterative and
generates feasible iterates (in the sense that all iterates belong to X). At iteration
k we will associate a model rni,a with each element function fi. This model, defined
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on Ti in a neighbourhood of the projection of the kth iterate xk on this subspace, is
meant to approximate fi for all x in the element trust region

(2.6) B,k d= {X

where A,k > 0 is the ith trust region radius at iteration k and the norm ]. is
chosen to be the usual Euclidean norm in order to simplify the exposition. In what
follows, we will slightly abuse notation by writing mi,k(x) for an x R", instead
of the more complete m,k(Pn(x)). We will furthermore assume that each model
m, (i {1,..., p}, k 0, 1, 2,...) is differemiable and has Lipschitz continuous first
derivatives on an open set containing B, and that

e 0,

Moreover, we assume that gi,k d Vmi,k(xk) approximates V(xk) in the
sense that, for all {1,...,p} and all k,

(2.8) ei,kI[ lmin,k,

defwhere ei,k gi,k Vfi(xk), where n > 0 is a constant and where Amin,k is defined
by

(2.9) Amin,k de min Ai,k.
{

Condition (2.8) is quite weak, as it merely requires that the first-order infor-
mation be reasonably accurate whenever some trust region radius is small (i.e., the
corresponding model fits badly). Indeed, one expects the coherency of this first-order
behaviour to be of crucial importance in such cases. rther arguments supporting a
choice similar to (2.8) for problems with convex constraints are presented in [14].

Amongst the most commonly used element models, linear or quadratic approxi-
mations are preeminent. One can, for instance, consider the quadratic model given by
the first three terms of the element function Taylor series around the current iterate.
Another popular choice is a quadratic model where the second derivative matrix is
recurred using quasi-Newton formulae.

2.1.3. The overall model and trust region. With all the element models at
hand, we are now in position to define the overall model at iteration k, denoted m,
whose purpose is to approximate the overall objective function f in a neighbdurhood
of the current iterate x. om (2.2), it is natural to use the overall model

p

(2.10) k(X) dej mi,k(X)
i=1

for all x in the overall trust region defined by

(2.11) B=
{1

Indeed Bk is the intersection of all element trust regions, that is, the region in which
all element models may be trusted, irrespective of the additional limitation possibly
imposed by the feasible set X.
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Of course, the actual shape of the trust region Bk is determined by the choice
of the Euclidean norm; it corresponds to the intersection of cylinders whose axes
are aligned with the subspaces Af and whose radii reflect the quality of the element
models: large in subspaces where the element models predict the element function
correctly and smaller in subspaces where the prediction is poorer. In practice, one
might wish to choose other norms, such as the t-norm. In this case, and assuming
that the subspaces T are spanned by subsets of the canonical basis vectors, the
shape of the trust region is that of a box, the length of whose sides again reflects the
quality of the element models. The extension of the theory to more general norms is
considered in 5.4.

2.1.4. Curvature. We now follow [14] and [41] and define the generalized Rayleigh
quotient of f at x along s : 0 by

(2.12) w(f x, s) dej 2

ilsl12
[f(x / s)- f(x) (Vf(x), s)].

Obviously, this definition is valid only if s is such that x / s belongs to the domain of
the definition of f. Note that, by convention,

(2.13) 0(f, x, s) 0 whenever s 0.

If we assume that f is twice continuously differentiable, the mean value theorem (see
[24]) implies that

(2.14) w(f x, s) 2 t
iisll

(s, V2f(x + tvs)s
dv dt.

Furthermore, if f is quadratic, then one easily verifies that (f, x, s) is independent
of x and is equal to the Rayleigh quotient of the matrix V2f in the direction s. We
note that, because of AS.4, w(f, x, s) is bounded by some constant L _> 0 (see [24]).
Hence we obtain that

(2.15) Iw(f,x, s)l <_ max {1, i{naX,p}Li de=fL

for all x, x + s E X and all E {1,..., p}. The quantity that we need in our algorithm
statement and analysis is a monotonically increasing upper bound on the magnitude
of the generalized Rayleigh quotient w(rn,k,x,s,) defined by

(2.16) / de__ 1 + max
qe(O

i{1 p}

Iw(rn,q, xq, s,)l >_ 1,

defwhere s, PT(sk) for s the actual trial step computed by the algorithm, as
defined below. The quantity w(rn,k,xk, si,) measures the curvature of the model
rn,k in the direction of the trial step sk. If quadratic models rni, are considered, an
upper bound on/ is given by the largest singular value of all Hessian matrices, plus
one. We will assume that our choice of models is such that this curvature does not
increase too fast, which could lead to premature convergence of the algorithm to a
noncritical point (see [41]). More precisely, we make the following assumption, as in
[14], [10], [35], and [41].
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AS.5.
o

1

i--0 kk
This condition is weaker than the common assumption that the model’s second-

derivative matrices are uniformly bounded [32], which holds, for instance, for the
classical Newton method, where quadratic models using analytical second derivatives
are used on a compact domain. It is also weaker than the condition

(2.18) tw(mi,k,Xk, si,k)l <_ cok

for some constant c0 > 0, which holds in the case where quadratic element models
are used and updated using either the Broyden-Fletcher, Goldfarb, Shanno (BFGS)
or the safeguarded symmetric rank one quasi-Newton formulae.

2.1.5. Criticality. Before we can describe our algorithm in detail, we also need
a criticality criterion for our problem. A critical point of our problem is a feasible
point x where the negative gradient of the objective function -f(x) belongs to the
normal cone of X at x X, which is defined by

(2.19) (x) dj {y e R ](y, u- x} 0 Vu e X}.

The associated tangent cone of X at x X is the polar of (x), that is,

(2.20) T(x) de (x)0 closure{A(u x) [A 0 and u e X}.

Thus every measure of criticality has to depend on the (differemiable) objective
f and on the geometry of the feasible set at the current point, We will use the symbol
a(x, f, X) to denote such a criticality measure.

AS.6. The criticality measure a(x,h,X) is nonnegative for all x X and
all functions h differetiable in an open neighbourhood of x. Moreover,
a(x, h, .X) 0 if and only if x is critical for the problem

(2.21) minimize h(x).
xX

But, within the algorithm, only approximate gradient vectors might be available,
namely, the vectors gk and gi,k, the gradients of the models. It is therefore natural to
use

def x),

the criticality measure for the problem

(2.23) minimize ma (x),
xGX

as n pproximate criticality measure for (2.1). Note that ak > 0 implies that gk O.
In unconstrained optimization, one typically chooses

the obvious criticality measure (see [31] or [34]). When bound constraints are present,
the choice
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is made in [10]. For the infinite-dimensional case, the definition

(2.26)

is used in [41]. For the case where convex constraints are considered,

Ilgx(x 

is chosen in [32], where tC > 0 is the line-coordinate of the so-called generalized
Cauchy point to be discussed below. In a similar context,

(2.28) ak min (gk, d)
Ildlt<-

is used in [14].

2.2. Ensuring sufficient model decrease.

2.2.1. An overview of the classical sufficient decrease condition. A key
to trust region algorithms is to choose a step s at iteration k that is guaranteed to
provide a sufficient decrease on the overall objective function model mk. In other
words, a step such that

5mk
def +

is sufficiently positive, given the value of a suitable criticality measure c satisfying
AS.6. This concept of sufficient decrease is usually made more formal by introducing

c isthe notion of the (generalized) Cauchy point. This remarkable point, denoted xk,
typically computed by trust region algorithms as a point on (or close to) the projected
gradient path Px(xk--tgk) (t > 0) that is also within the trust region and sufficiently
redudes the overall model in the sense that

(2.30)
2

where 2 > 0 is a constant and ak is a criticality measure satisfying AS.6. However,
such a point may not exist when the trust region radius Ak is small compared with

c//k. In this case, the generalized Cauchy point is chosen as (or close to) the
intersection of the projected gradient path with the boundary of the trust region,
yielding an inequality of the form

(2.31)

A point on the projected gradient path satisfying (2.30) may also fail to exist because
the projected gradient path itself ends on the boundary of X, well inside the trust
region. In that case, this endpoint (or another feasible point close to it) is typically
chosen as the generalized Cauchy point, and it is then typically shown that
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One then ensures the sufficient decrease by requiring that the chosen step sk produces
at least a fixed fraction of the overall model reduction achieved by the generalized
Cauchy point, which is to say that

(2.33) 5ink _> 2a min --, Ak, 1

where
Many variants on the above scheme exist in the literature for the unstructured

trust region case. All of these variants ensure that a suitable step is found after a
finite number of trials. The best known is for unconstrained problems when the 2-
norm is used to define the trust region shape. In that case, the projected gradient
path is simply given by all negative multiples of the gradient g and the Cauchy point
is simply the point that minimizes the model rn in the intersection of the steepest
descent direction and the trust region (see, for instance, [34] and [37]). When other
norms are used, for example the -norm, one can then choose either to minimize
the model in the intersection of this steepest descent direction and the trust region,
as before (see [I0]), or to "bend" the projected gradient path onto the boundary
of the trust region and to choose the generalized Cauchy point as a point which
satisfies classical Goldstein-type linesearch conditions along that path while staying
within the trust region (see [33] and [41]). Both of these latter strategies are used in
the LANCe:LOT software [13]. When additional convex constraints are present, the
projected gradient path is additionally bent to follow the boundary of the feasible
domain. Thus the philosophy is the same in that (2.33) is guaranteed in the above
cases Indeed satisfaction of this condition has been derived for each of the choices
(2.24)-(2.28) for (k in the papers where they were respectively introduced.

2.2.2. Sufficient decrease for the structured model and trust region.
We will use a similar approach in our structured model and trust region framework to
determine what is a sufficient decrease of the overall model m within the region Ba,
whose shape is chosen to reflect the structure of the problem. Special care is needed
because this region might be very asymmetric in the sense that it may allow very
large steps in some directions and only very short ones in others. As a consequence,
we have to adapt the notion of trust region radius to our context and adequately
reformulate condition (2.33).

From a practical point of view, one might use a two-staged approach. In this,
one first aims to find a step producing a sufficient model decrease in a smaller, but
more symmetric, region. Following this, one then allows the step to increase within
the trust region while maintaining control over the model decrease.

To be specific, let

(2.34) Bmin,k de___f Bk ["’t {X Rn IIx xall < /min,k}
be the trust region whose radius is determined by the possibly most nonlinear part
of the model. Applying the results discussed in the previous section after condition
(2.33), one may deduce that it is possible to find, in a finite number of trials, a step
8min,k such that xk + 8min,k .Bmin,k f-)X and

mk(Xk) ?lk(Xk + 8min,k) ;20k min -k,/min,k, 1

for some suitably chosen criticality measure (k satisfying AS.6 and some constant
?2>0.
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However, the restriction that the length of 8min,k be bounded by Amin,k makes
the whole exercise of shaping Bk to reflect the problem’s structure entirely irrelevant.
One might therefore be prepared to accept a larger step provided it remains feasible,
within the trust region Bk, and produces a further significant model decrease. More
specifically, we allow our algorithm to choose any step sk such that xk / sk E Bk N X
and which guarantees that

(2.36) max[/kmin [[,s[I] 1 }5ink > 20k min --k’ ,k,

for some t2 E (0, 2].
Note that, since (2.36) holds for sk 8min,k, this condition can therefore be

achieved in practice after a finite number of trials. Observe also that (2.36) is funda-
mentally different from an angle test of the form

as (2.36) does not prevent sk from being orthogonal to the steepest descent direction,
so long as a sufficient model reduction is obtained. This is useful because such a step
may occur when moving away from a saddle point of the objective function. Finally
note that, as expected, (2.36) reduces to (2.33) in the case where only one trust region
is considered.

2.3. A class of structured trust region algorithms. We now describe the
class of algorithms that we consider for solving (2.1). Besides 1 used in (2.8) and 2
used in (2.36), it depends on the constants

0 < ?1 7]2 < /]3 < 1,

and

(2.40) 0 < 1 < 2 < 1.

In addition to the above conditions, we also require a compatibility condition between
the ’s and the #’s. Specifically, we request that

(2.41)

Typical values for these constants are t 0.1, 32 0.01, /1 0.1, ’2 0.5, 3 2,
?1 0.01, ?2 0.25, ?3 0.75, t 0.05, and #2 0.1.

ALGORITHM.
step 0: initialization.

The starting point x0 X is given, together with the element function values
{fi (x0) }iP= and the initial trust region radii P{Ai,0}i=l. Set k 0.

step 1: model choice.
For i {1,...,p}, choose the model mi,k of the element function fi in the
trust region Bi,a centered at xk (as defined in (2.6)), satisfying (2.7) and
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step 2: determination of the step.
Choose a step sk such that the sufficient decrease condition (2.36) holds and

(2.42) xk+sEBAX.

(2.43)

(2.44)

step 3: measure overall model fit.
If

then

fk de__f f(xk) f(xk + sk) h6mk

Xk+l Xk "
else

(2.45) Xk+l Xk.

step 4: update the element trust region radii.
Denote the achieved changes in the element functions and their models by

def(2.46) 5fi, fi(x) fi(xk + s), e {1,... ,p},

(2.48)

(2.49)

(2.51)

(2.54)

and
def

6mi,k mi,(x)- mi,(Xk + Sa), e {1,...,p},

respectively. Then define the set of negligible elements at iteration k as

N de--f {i {1,...,p} ,6m,t, <_ #15m}p
and the set of meaningful elements as its complement, that is,

Mk {1,...,p} \ N.
Then, for each {1,... ,p}, perform the following.
Case 1: M.

If

5f, 5m,k
1- 3 6ink
P

and (2.43) both hold, then choose

A,+ [A,, A,].
If (2.50) holds but (2.43) fails then choose

A,+ A,.
If (2.50) fails but

1 25f,k 5m,k 6ink
P

holds, then choose

A,+ [A,, A,].
If (2.53) fils, then choose

A,+ [A,, 2A,].
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Case 2: E Nk.
If

and (2.43) both hold, then choose

If (2.56) holds but (2.43) fails, then choose

/i,k+l /i,k.

If (2.56) fails, then choose

Ai,k+l E [lAi,k, 9/2Ai,k].
Increment k by one and return to step 1.

End of Algorithm

As is traditional in trust region algorithms, we will call an iteration successful if
the test (2.43) is satisfied, that is, when the achieved objective reduction 5fk is large
enough compared to the reduction 5rnk predicted by the overall model. If (2.43) fails,
the iteration is said to be unsuccessful. In what follows, we will denote by the set
of all successful iterations.

We now comment on various aspects of the algorithm.
1. The algorithm is constructed in such a way that a successful step is always

possible for sufficiently small trust region radii if the current iterate x is not
critical. This result is formally proved in Corollary 3.6.

2. The choice of the element models rni, is left rather open in the above descrip-
tion. It clearly needs to be made precise for any practical implementation of
the algorithm. One common choice would be to set

(2.60)
1

(s, Hi+ + +

where Hi, is a symmetric approximation to V2fi(xk) whose nullspace con-
tains the subspace Aft. In particular, Newton’s method corresponds to the
choice gi, Vfi(x) and H, V2fi(xk), which is guaranteed to satisfy
this latter condition. Another possible choice is rn,k(xk / s) f(xk + s),
which may be attractive for the simpler element functions. In this case, the
model’s fit to the true function is always good for the ith element and the
algorithm guarantees that the Ai, form a nondecreasing sequence.
If the model change for an element is negligible, that is, small compared to the
overall predicted change, we do not need to restrict its element trust region
size unless the true element change is relatively large compared with the same
overall predicted change. We can therefore afford to ignore negligible items
until they stop being relatively negligible, something which is inevitable when
convergence occurs. Hence our distinction between "negligible" elements (in
N) and "meaningful" ones (in M).
Condition (2.41) can be viewed in this context as a guarantee that a new
iterate will be accepted in (2.43) whenever the model reduction obtained for
all meaningful elements is also acceptable (i.e., (2.53) holds for all Mk),
irrespective of the contribution of the negligible ones. This interpretation is
clarified in Lemma 2.2.
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(2.61)

4. The apparent intricacy of (2.50) and (2.53) is caused by two complications
which arise in the context of multiple elements. The first is that, although
(2.36) ensures that 5mk is always positive, we may not assume in general
that the same is true for 5m,k. The second is that possible cancellation
between elements makes it necessary to consider the accuracy of model fit
for an element to be relative to the overall model fit. Indeed, requiring small
relative errors for models with very large values may result in large absolute
errors. If mk is small, these large errors will then cause m to be a poor
prediction of 6fk and the iteration might be unsuccessful. This explains why
the perhaps more intuitive tests

6fi, > 6mi,k (1 lj)lbmi,kl (j 2, 3)

cannot be used instead of (2.53) (j 2) and (2.50) (j 3).
Observe also that conditions (2.50) and (2.53) reduce to the familiar

(2.62) fk >_ ljmk (j 2, 3)

when p- 1.
5. Note again the consistency between the trust region radii updates in step 4

and the case where p 1. In this latter case, the set Nk is always empty and
(2.50) then implies (2.43), because of (2.39). Equation (2.52) is thus never
invoked.

6. No stopping criterion has been explicitly included in our algorithm descrip-
tion. This is adequate for the theoretical analysis that we consider in the
present paper, where we are interested in the asymptotic behaviour of the
method, but it should be completed for any practical use. The choice of a
particular stopping criterion will depend on the type of models being, used.

7. The mechanism that we specified for updating the trust region radii does not
exclude the additional requirement that the radii be uniformly bounded, if
that is judged suitable for the type of models used. In practice, keeping the
radii bounded is essential to prevent numerical overflow.

c that8. One possible implementation of step 2 first computes a feasible step sk
minimizes mk(Px(xa- tgk)) within a trust region of radius Amin,a. Note

c satisfies (2.35) and (2.36) by construction. This step may then sub-that sk
sequently be increased by progressing further along the arc Px(x-tg)- xk
so long as the overall model mk continues to decrease and (2.36) holds.
Additional decrease in mk may then be obtained (for instance by applying
conjugate-gradient steps) provided condition (2.36) is maintained.

Before starting our global convergence analysis, we first state, for future reference,
some properties that result from the mechanism of the algorithm.

LEMMA 2.1. Assume that AS.3 holds. At each iteration k of the algorithm,
1. Mk contains at least one element. Furthermore,

Pl 5mk < E 5mi,k < 1 + p 1
Pl 6m.

P PiEMk

(2.64) ")’lAi,k <_ Ai,k+l <_ ")’3Ai,k

for all E {1,...,p}.
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Proof. The first result immediately follows from the definition of Nk and the
inequality #1 < 1. One then deduces that Nk contains at most p-- 1 elements. Hence,

(2.65) 5mk-- E 5mi,k + E 5mi,k
P

from which the first part of (2.63) may be deduced. The second inequality in this
result is obtained from

iMk iNk iN

the relation (2.48), and ]Nk] E p- 1. The bound (2.64) results from (2.51), (2.54),
(2.55), (2.57), and (2.59).

We also investigate the coherency between the measure of fit for individual ele-
ments and that for the overall model.

LEMMA 2.2. Assume AS.3 holds and that, at iteration k of the algorithm, (2.53)
holds for all i M and (2.56) holds for all i Nk. Then iteration k is successful;
i.e., k S.

Proof. Because (2.53) holds for Mk, one has that

1 5ink
ieMk iMk P P

for all such i, where we used the inequMity Mk p and Lemma 2.1 to deduce the
second inequality. On the other hand, since (2.56) holds for i Nk, one obtains for
these that

(2.68) ]hfi,k] <
p --1

P
25m,

where we used item 1 of Lemma 2.1 to bound ]Nk. Now,

iMk iNk iMk iNk

Combining this last inequality with (2.67) and (2.68) gives that

(2.70) 5fk> (2 p--i p--I )Pl P2 5mk,
P P

which then yields (2.43) because of (2.41).
We observe from this proof that the weaker condition

(2.71) 2 1
p" 1

P

could be imposed instead of (2.41). However (2.71), and hence the setting of the
algorithm’s constants, would then be problem dependent, which one might consider
to be undesirable.

Of course, (2.53) holds whenever (2.50) holds because of (2.39). Lemma 2.2
therefore shows that (2.43) is coherent with the meure of the fit between the element
models and element functions.
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3. Global convergence. We now study the convergence properties of the class
of algorithms that we introduced in the preceding section. Our analysis follows the
pattern of similar proofs with an unstructured trust region (see [14] or [41]). The
central idea in the proof is that the algorithm will continue to make progress as long
as a critical point is not reached. We first start by bounding the error between the
true element functions and their models. We next derive a lower bound on the size
of the smallest trust region radius at a noncritical point. This lower bound ensures
that the trust region constraint will not prevent further progress toward a critical
point. Only with this bound can we then prove that limit points of the sequence of
iterates produced by the algorithm are indeed critical for the models used. We close
the section by deriving some simple consequences of these results on the criticality of
the limit points for the true objective function.

We first start by bounding the error made between the model of any element
function and the element function itself at xk + sk.

LEMMA 3.1. Assume that AS.4 holds and consider a sequence {xk} of iterates

generated by the algorithm. Then there exists a positive constant cl >_ 1 such that

(3.1)

for all i E {1,...,p} and all k.
Proof. We first observe that, for each E {1,..., p} and for all k, the definition

(2.12), (2.7), and the Cauchy-Schwarz inequality imply that

But II  ,k[I , because of (2.6), and hence we obtain from (2.8), (2.15), and (2.16)
that

1
(L +/)A2,.[fi(Xk -- 8k) mi,k(Xk -’ 8k)[ tl/min,ki,k - -Using (2.9), this then yields (3.1) with

(3.4) l(L + >+

where the last inequality results from (2.15). [:]

We now derive an upper bound on the change predicted for an element at a
noncritical point as a function of the size of the step in the corresponding range
subspace.

LEMMA 3.2. Assume that AS.l, AS.3, and AS.4 hold. Consider iteration k of
the algorithm and assume that, for some i {1,...,p},
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Then one has that

for some constant c2 > 0 independent of and k.
Proof. We first note that (2.9), (2.16), and (3.5) imply that

(3.7) Amin,k

_
1.

Using (2.12) and (2.16), we also obtain that

1
[6m,l < I(g,, s,}l + -l[s,klt 2 < ](Vf(xa), s,k)l + I(e,k, s,a)l-I-- -klls,ll2.

Remembering now (2.8), (2.6), (3.5), and (3.7), we can deduce that

(3.9)
1

maxn,x (llVf (x)ll)I1  , 11 + xmmin,kll*i,ll +    lls ,kll 2
1

Inequality (3.9) then gives (3.6) with

def 1
(3.10) c2 max (IIVA(x)II)/

iE{1 ,p}

We next prove the important fact that., so long as a critical point has not been
determined, the trust region radii stay sufficiently bounded away from zero, therefore
allowing further progress to be made.

LEMMA 3.3. Assume that AS.I-AS.4 hold. Consider a sequence {xk} of iterates
generated by the algorithm and assume that there exists a constant > 0 such that

(3.11) ak >_

for all k. Then there is a constant C3 > 0 such that

c3(3.12) nmin’k -- kfor all k.
Proof. Assume, without loss of generality, that

(3.13) e < min{1,/0tmin,0}.

To derive a contradiction, assume that there exists a k such that

1c42(1 T]3) 54(#2 1) } def
/kAmin,k < ")’1 min .e,

ClC2p2 clp
c3,

defwhere ca 271e. Now define r to be the smallest iteration number such that (3.14)
holds. (Note that r. >_ 1 because of (3.13) and the inequality 7 < 1.) Also fix i such
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that min,r Ai,r. The monotonic nature of the sequence {/k} and the bound (2.64)
then ensure that

/i r C3(3.15) #r--1/min,r--1 #r-lAi,r-1

_
r <_ <_ e < 1,

Where we used (3.14) nd the inequality (3.13). We note that the definitions of nd
r give that

(3.16) rAi,r rAmin,r < r-Amin,r-1,

which in turn implies that min,r--1 > Ai,r because of the monotonic nature of the
sequence {3 }. Using this inequality with (2.36), (3.11), and (3.15), we obtain that

5m-i k 2emin
e

,max[Amin,-, [[S-l[]], 1
(g.17) emin _,min,-, 1

2emin,r--

which ensures, because of (2.64), that

(3.18) 5m_1 C4Ai,r-1.

But (3.15) guarantees that r-lAi,r-1 1. We may thus apply Lemma 3.2 and
deduce that

C4

where we Mso used (2.6) and (3.18).
Assume first that M_, which guarantees that 5m,_ O. Then, using

(2.48) and (3.18),

(3.20) Imi,r-l{ > Pmr-1 lC4i,r-1.
p p

Because of (2.7), (3.1), and (3.20), we therefore obtain that

(3.21) 5fi,-1 1
](xr-1 + st-z)- mi,-(xr-1 + sr-1)] < clp

r-lAi,r-1.5m,_l hm,_[ 1c4

But (3.14) and (3.15) together give that

(3.22) #r-iAi -1 < (1 V3) ,1c
Clc2p2

which, with (3.21), implies that

(3.23) 5f,_
1 < (1 3)ca

5m,_ c2p

Consider first the case where 5mi,r-1 > 0. We may then apply (3.19) and deduce
that

1--3 ((1--a)mr-1 )mi,_-m_=mi,_ 1- <mir- 1-



ALGORITHMS USING A STRUCTURED TRUST REGION 1075

Using (3.23), we now deduce that

fi,r--1 > 1-
(1- rl3)c4

mi,r-1 c2p

and therefore, because of (3.24), that

1 I T]3(3.26) 5fi,r-1 >_ 5mi,r-1 1-
(1 /3)c4 _> 5mi,r-1 5mr-1,

c2p p

which implies that (2.50) holds for element i at iteration r- 1. Now turn to the case
where 5mi,r-1 < 0. Because of (3.19.), we deduce that

1 ?’]3
5mi r-I--Smr-I 5Tni r-1 1 +

p

As above, we use (3.23) to obtain that

(1-73) 6mr-1 / <6mir_l(1 +p Im,-ll
(1 T]3)c4

c2p

(3.28) 5fi,r--1 < 1 + (1 ?3)C4
6mi,r-1 c2p

and therefore, because of (3.27), that

(1 73)c4 ’ 1 73(3.29) fi,r--1 > 5mi,r--1 1 q- > 6mi,r--1 6mr--l,
c2p ] p

which again implies that (2.50) holds for element at iteration r- 1.
Assume now that E N-I. Then, because of (2.7), (2.48), and (3.1), we have

that

(3.30)
15f,-1] 15m,-11 + If(x-i + 8r-1) Tni,r--l(Xr--1 - --1)1

< m-i + c-1A,_I.
P

Now, multiplying (3.18) by Ai,r- 1, we obtain that

(3.31) 2 < Ai,r-1
Ai,r_ 5mr-1.

C4

Combining (3.30) and (3.31), we deduce that

(3.32) [Sfi,-l[ _< 1
_

--r-lAi,r-1 5mr-1.
p c4

Observing now that (3.14)and (3.15)imply that

(3.33) r_lmi,r_l
C4(#2- 1)

Clp

we obtain from (3.32) that

(3.34)
P
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But this inequality implies that (2.56) holds for element at iteration r- 1. Thus
either (2.50) or (2.56) holds for element at iteration r- 1 and the mechanism of the
algorithm then implies that A,r > A,r_l. But we may deduce from this inequality
that

(3.35) /r--1/min,r--1 /r--1 Ai,r-1 <_ r/ki,r,

which contradicts the assumption that r is the smallest iteration number such that
(3.14) holds. The inequality (3.14) therefore never holds and we obtain that (3.12) is
satisfied for all k. El

We now turn to one of the main results in this section, which proves a weak form
of global convergence. The technique is inspired by [35].

THEOREM 3.4. Ass.urne that AS.I-AS.6 hold. Consider a sequence {xk} of iter-
ates generated by the algorithm. Then

(3.36) lim inf ak 0.

Proof. Assume, for the purpose of obtaining a contradiction, that there exists an
e E (0, 1) such that (3.11) holds for all k >_ 0. Then

ke,S 5fk >_ 711 Ek,.q 5rnk

m  [ZXmi 11  11]> 7112e }-ke8 min k’ ,k,

(a.aT) _> 7112e -kes min --, Amin,k
1

711 N2 min{e, ca } E -’
where we used successively (2.4a), (2.a), (3.11), and Lemma a.a. w that
and AS.2 then imply that

1

Now let r be an integer such that

(3.39) 7372

and define

S(]g) de__f IS ’1 {0,..., ;- 1}1,

the number of successful iterations up to iteration k- 1 (k >_ 1). Then define

(3.41) )F1 dej {g 11 k <_ r$(k)} and $’2 de (]g l[k > rq(k)}.

We nbw wish to show that both sums

1 1
(3.42) E E and E
are finite. Consider the first. If it has only finitely many terms, its convergence is
obvious. Otherwise, we may assume that 9rl has an infinite number of elements,
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and we then construct two subsequences. The first consists of the indices of 9i in
ascending order and the second, 93 say, consists of the set of indices in (in ascending
order) with each index repeated r times. Hence the jth element of 93 is no greater
than the jth element of l. This gives that

1 1 1
(3.43) E /-

because of the nondecreasing nature of the sequence (Z} and (3.38). Now turn to
the second sum in (3.42). Lemma 2.2 and the mechanism of the algorithm imply that,
at each unsuccessful iteration, at least one element trust region radius satisfies (2.55)
or (2.59) and none of them is allowed to increase. Hence

p p

(3.44) H A, 7;s(k)Te H A,0,
i=1

which immediately implies that

s(k)k S(k))(3.45) Amin,k 3 /PAmx,0,
def

where Amx,0 maxe{ ,p} A,0. We deduce from this inequality that, for k ,
s() (-s() k/ (-C < Amin,k < 3 72 )/PAmax,0 < 73 2 k/r)/PAmax,O

k

32 Amax,0,

where we have also used Lemma 3.3 and the definition of 2 in (3.41). Using (3.39),
this gives that

1 Amax,0

nd the second sum is convergent. Therefore the sum

o
1 1 1

(3.48) E --- E + E
k--1 kl

is finite, which contradicts AS.5. Hence condition (3.11) is impossible and (3.36)
follows. E]

Notice that the relation between ak, the criticality measure for problem (2.23),
and a(xk, f,X), the criticality measure for problem (2.1), has been left rather un-
specified up to this point. It is indeed remarkable that we can prove Theorem 3.4
assuming so little on a. To derive convergence properties for the original problem
from Theorem 3.4, we have to be slightly more specific and request that, if both func-
tion and model have the same first-order information, then the criticality measures
on the original problem and on the model problem agree.

AS.7. Let h and h2 be two continuously differentiable functions in the inter-
section of X with a neighbourhood of the feasible point x such that hi (x)
h2(x). Then, the difference a(x, hl,X)- a(x, h2,X) tends to zero when
Vhl (x)- Vh2(x) tends to zero.
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In other words, we require the criticality measure to be continuous (near zero) in
the gradient of its second argument. Again, this is true for the choices (2.24)-(2.25)
and (2.28).

With this additional assumption, we are now ready to examine the criticality of
the limit points of the sequence of iterates generated by the algorithm for the original
problem (2.1).

COROLLARY 3.5. Assume that AS.I-AS.7 hold. Consider a sequence {xk} of
iterates generated by the algorithm and assume that

(3.49) lim

for all E {1,...,p}. Then this sequence has at least one critical limit point x,.

Proof. From AS.7 and (3.49), we obtain that

lim [a(x, f, X) a] 0

which, with (3.36), guarantees

(3.51) lim inf a(xk, f, X) O.

The desired conclusion then follows by taking a subsequence of {xk} if necessary.
Condition (3.49) is important, otherwise the situation might arise that an iterate

is critical for the current overall model (because its gradient is inexact) while not
being critical for the original problem. There are various ways in which (3.49) can
be achieved in a practical algorithm, the simplest being to make the size of e, also
depend on a itself, ensuring that the first goes to zero if the latter does.

COROLLARY 3.6. Assume that AS.I-AS.7 hold. If 8, the set of successful iter-
ations generated by the algorithm, is finite, then all iterates x are equal to some x,

for k large enough, and x, is critical.

Proof. Assume indeed that $ is finite. It is thenclear from (2.45) that xk is
unchanged for k large enough, and therefore that x, xj+l, where j is the largest
index in ,S. Note now that Lemma 2.2 implies that, if k 8, then (2.53) or (2.56)
must be violated for at least one element. Hence we obtain that Amin,k converges to
zero. But (2.8) then implies that e,k also converges to zero for all E {1,...,p} and
gk converges to Vf(xk). Thus AS.7 and Corollary 3.5 then guarantee the criticality
of x..

As in existing theories for the unstructured trust region case, it is possible to
replace the limit inferior in (3.36) by a true limit, therefore ensuring (if the gradients
are asymptotically exact) that all limit points are critical. As in. these theories, a
slight strengthening of our assumptions is however necessary.

AS.8. We assume that

(3.52) lim kSfk O.

This assumption is similar to that used in [14] and [41], where it is motivated in detail.
We only mention here that (3.52) holds for Newton’s method on bounded domains
because 3 is bounded above in that case.

With this additional assumption, we are now able to replace the limit inferior by
a true limit.
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THEOREM 3.7. Assume that AS.I-AS.8 hold. Consider the sequence {xk} of
iterates generated by the algorithm and assume that there are infinitely many successful
iterations. Then

(3.53) lira ak 0

where ,S is, as above, the set of successful iterations.

Proof. We again proceed by contradiction. Assume therefore that there exists an

(0, 1) and a subsequence {qj} of successful iterates such that, for all qj in this
subsequence,

(3.54) aq .1.

Theorem 3.4 guarantees the existence of another subsequence {/} such that

(3.55) a e2 for qj k < lj and

where we have chosen e2 (0, e). We may now restrict our attention to the subse-
quence of successful iterations whose indices are in the set

(3.56) d {k]k e $ and qy k </},
where qj and lj belong, respectively, to the two subsequences defined above. Applying
now (2.36) for k e , we obtain from (2.43), (2.16), and e2 < 1 that

fk 1922 min ’2 mX[min,k, ]S], 1 aue:min ,mX[min,k, ]Sk]]

But AS.8, along with (3.57), implies that

(3.58) lim a]s] 0 and lim kmin,k 0
k k

k k

and, because of (2.16), that

(3:59) lim lisa I]- 0 and lim min,k 0.
k k

k kE

Therefore, we can deduce from (3.57) and (3.58) that, for j sufficiently large,

(3.60) k=q

<_

where the sums with superscript () are restricted to the indices in , and

def 1

19252

But AS.2 nd the decreasing nature of the sequence {f(x)} imply that the last right-
hnd side of (3.60) converges to zero s j tends to infinity. Hence the cominuity of
.Vf and AS.7 give that

1
(.e) (x,/,X) (x, I,X) ( )
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for j sufficiently large. On the other hand, the second part of (3.59) and (2.8) im-
ply that gqj is arbitrarily close to Vf(xqj) when j is large enough, and AS.7 hence
guarantees that

(3.63)
1

a(Xq, f, X)l -(151 152)

for j sufficiently large. We note also that, becauseof (2.8),
p

(3.64) Ilgz Vf(xz)ll ’ Ile,zll /’i;lpmmin,/j"
i=1

But the mechanism of the algorithm guarantees that no A,k can increase between
iterations kj + 1 and lj (assuming kj + 1 lj), where kj is the largest integer in E
that is smaller than lj. This yields that

(3.65) Ilgzj Vf(xz)ll t173PAmin,k.

We now deduce from the second part of (3.59) that the left-hand side of (3.65) tends
to zero when j tends to infinity and therefore that, for j sufficiently large,

(3.66)
1

o(xz,, f,X)l <_ (Q 152)

because of AS.7. Combining (3.62), (3.63), and (3.66), we obtain, using (3.55), that

(a.67) 1(15 152) <
1

Oq,

__
Olj "l- 1-- (151 -" 152) < 1,

which is impossible because of (3.54). Hence our initial assumption cannot hold and
the theorem is proved. [:]

As above, we now consider the case where we impose that the element gradients
are asymptotically exact.

COROLLARY 3.8. Assume that AS.I-AS.8 hold. Consider the sequence {xk} of
iterates generated by the algorithm and assume furthermore that (3.49) holds for all
E {1,...,p}. Then all limit points of this sequence are critical.

Proof. If the set S is finite, the conclusion immediately follows from Corollary 3.6.
If, on the other hand, $ has an infinite number of elements, (3.49) implies that gk is
arbitrarily close to Vf(x) and the combination of AS.7 and Theorem 3.7 ensures the
criticality of any limit point of the sequence of successful iterates. [:l

Of course, (3.49) might be impossible to achieve in practice, and one might con-
sider the case where we can only assert that

(3.68) limsup [ max
k-. {,...,,}

for some small constant g3 > 0. This is the case, for instance, if gradients are
approximated by finite differences.

COROLLARY 3.9. Assume that AS.I-AS.6 and AS.8 hold. Consider the sequence
{xk} of iterates generated by the algorithm. Assume furthermore that (3.68) holds
and that, for some constant La > O, the criticality measure c satisfies

(3.69) Ia(x,h,X) a(x, h2, X)l <_ LllVh(x) Vh2(x)l
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for all x X and all functions h and h continuously differentiable in a neighbour-
hood of x such that h (x) h2(x). Then, for each limit point x. of the sequence,

(3.70) (x., f, X) < a3pL.

Proof. As in Corollary 3.8, the desired conclusion immediately follows from Corol-
lary 3.6 if S is finite. Assume therefore that S has infinitely many elements. We then
deduce that, for all k S,

a(x, f, X) <_ a + la(x, m, X) a(x, f,
(3.71) <_ a + Lllgk Vf(x)l

<_ ak + Lpmaxie{ p} I]ei,

Taking the limit for k tending to infinity in 8 and using Theorem 3.7 and (3.68) then
gives the desired conclusion. El

Finally observe that although (3.69) is stronger than AS.7, it is not a very strong
condition. For instance, it is satisfied with L 1 for the choices (2.24) and also for
(2.25) and (2.26) because of the nonexpansive character of the projection operator
Pz (see [41], for example). The same property also holds for the choice (2.28), as
discussed in [14].

4. Finite identification of the correct active set. When applied to con-
strained problems, trust region algorithms typically use the notion of projected gra-
dient or projected gradient path to identify a subset of inequality constraints that are
satisfied as equalities. Ultimately, the aim thereby is to identify the constraints satis-
fied as equalities at the solution well before the solution is reached. The methods then
reduce to an unconstrained calculation in the manifold defined by the currently "ac-
tive" constraints. As a consequence, it is possible to guarantee fast asymptotic rates of
convergence when .using accurate models, as is the case when analytical second-order
information of the objective and constraint functions is available.

It is possible to show that structured trust regions do not upset the theory devel-
oped in the unstructured case: it can indeed be shown that the constraints active at
a particular limit point of the sequence of iterates are identified after a finite number
of iterations, provided the normals of the active constraints are linearly independent
and strict complementarity holds and provided the step Sa+l satisfies the inequality

>_

for each k. 6 S and for some constant /0 6 (0, 7]. This latter condition is meant
to avoid a situation where the successful iterates converge to a critical point while a
subsequence of unsuccessful iterates converges to another point with a different active
set. It does not constitute a severe restriction in the step selection procedure and is
automatically verified if s is determined by a succession of steps of increasing norm
such that they remain feasible, within the trust region B, and ensure (2.36). This
is the case, for instance, if truncated conjugate gradients are used for computing the
step in the solution of an unconstrained problem (see [37] or [38]).

The theory considers the active constraint identification problem from a quite
general point of view..The main observation is that a number of the existing theories
for active constraint identification are based on the definition of a special criticality
measure that satisfies AS.6 while not satisfying AS.7 (see [2] or [3], for instance).
Let us denote this measure at iteration k by . The steps leading to constraint
identification, are then as follows.
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1. The first step is to prove that a sufficient decrease condition of the type (2.33)
also holds with k instead of ak.

2. One then proceeds to prove that

(4.2) lim inf 0

much in the same way as for (3.36).
3. The measure (k is also constructed to ensure that it is asymptotically bounded

away from zero for all points such that their active set is not identical to that
of a (close) critical point. (This, in particular, prevents AS.7 from holding.)

4. Some contradiction is then deduced from these last two properties.
However, since this development is rather technical and lengthy, we do not include it
in the present paper, but refer the interested reader to [15] for details of the results
and additional assumptions. This reference also contains the theory concerning the
convergence of the iterates to a single limit point, adapted from [14].

Our experience with the solution of practical problems however indicates that the
identification of active constraints is seldom observed in practice before the very last
iterations of the algorithm, which makes the results discussed in this section mainly
of theoretical interest.

5. Extensions. We examine in this section some extensions and variants of the
results presented above.

5.1. A hybrid technique. One of the possible drawbacks of the algorithm of
2.3 is that steps might be constrained to be unnecessarily small in directions cor-
responding to highly nonlinear element functions. Indeed, the negative effect of in-
accurate models for these elements might be compensated by a successful step in
directions corresponding to less nonlinear elements. This compromise between the
different parts of the objective is, of course, inherent to the classical method using an
unstructured trust region.

We might try to obtain the best of both classical and structured approaches by
using a hydrid technique. In this technique, a global trust region radius Ak is recurred
for the objective function considered as a single element (using the algorithm analyzed
above, which is then equivalent to the classical one), along with the individual radii

Ai,k. We then define the individual "hybrid" radii by

(5.1) A.h def max{A Ai k},k k

for each {1,...,p} and redefine Bi,k as

(5.2) i,k def= {x e R {]Pn(x- Xk)] <_ Ahi,k}"
We can then apply our algorithm with these new quantities, to the effect that

well-modelled elements have their associated trust regions possibly extended without
having to contract those corresponding to badly modelled ones, as long as the global
agreement is satisfactory.

It is not difficult to verify that the theory presented above still holds for this
hybrid modification. The key points are to observe that the revised definition of our
trust region implies that

(5.3) 5ink 2kmin ,A, 1
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which is the classical sufficient decrease condition (2.33), that the inequalities (2.64)
are still valid with Ai,k replaced by Ah and also that an analogous result toi,k
Lemma 3.3 also holds for the global trust region radius, as is already well known
from the unstructured trust region case (see I141, for instance).

5.2. An alternative definition of success. An immediate consequence of in-
equality (2.63) in Lemma 2.1 is that it would be possible to replace the condition
(2.43) for an iteration to be successful by

(5.4) 5fk >_ E 5mi,k(xk)
iMk

without altering the developments presented above. Indeed, (2.63) shows the equiva-
lence between (2.43) and (5.4). We have chosen to use (2.43) above, because it seems
natural to consider the same collection of elements on both sides of the inequality.

5.3. Weaker sufficient decrease conditions. It is remarkable to note that
Lemma 3.3 and Theorem 3.4 can be proved in a weaker context. Indeed, we could
require the weaker sufficient decrease condition

(g.g) mk kmin , min,k, 1

instead of (2.g6) and still prove Lemma g.g and heorem a.4. However, we have
not been able to prove Theorem g.7, nor active constraint identification, with these
assumptions because (g.g) involves only the length of the step in a possibly small
subspace of N.

g.4. Using uniformly equvalen norms. Another possible generalization of
the theory developed above allows the use of different norms for each element and for
each iteration. Let us denote these norms by the symbol 1" I1(,. The element trust
region definition (2.6) then becomes

def {X Rn

while the gradient approximation condition (2.8) may be written as

(5.7) ]i,k][i,k] glmin,k,

where the norm [. ][i,] is any norm that satisfies

for all x, y R. In particular, one can choose the dual norm of ]]. ](,k) defined by

With iteration k, we my Mso associate n overM1 norm I]" ](k) defined on the whole
of R, whose purpose is to reflect the relative weighting of the different elemental

If we assume that M1 the considered norms re uniformly equivalent, that is if
there exists a constant a 1 such that, for all x,

(.0) x]l x ]xl
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where I1" I[a, I1" lib is any pair of the above-defined norms, then the theory developed
in all the preceding sections is still valid without any substantial modification. Again
the details of the proofs in this more general setting are provided in [15]. Note that
this extension covers the possible introduction of iteration-dependent scaling in a
practical implementation of our algorithm, which can be highly desirable for some
difficult problems.

6. Conclusions. We have shown in this paper that the trust region concept, one
of the most powerful tools for building efficient and robust algorithms for optimization,
can be extended in a very natural way to reflect the structure of the underlying
problem. The algorithm proposed is indeed a direct generalization of the more usual
case where only an unstructured uniform trust region is considered. Similar global
convergence properties can be proved for the new algorithm, including the case where
dynamic scaling is performed on the variables and the situation where the gradients
are only known approximately.

We must wait to see whether this modification of a trust region algorithm will
prove efficient in practice and justify the slight additional complexity of the method.
Note that the results of preliminary numerical experiments (based on a modification
of LANCELOT using the implementation described after the algorithm) have been
encouraging. Tests on unconstrained problems from the CUTE collection [1] have
shown that the new method, although very comparable to LANCEkOT in many cases,
sometimes produces substantial improvements. However, we anticipate the real power
of the concept to appear when minimizing augmented Lagrangians or other penalty-
like functions, because scaling is much more critical there than in many of the classical
unconstrained test examples. The authors are planning to include the new technique
described in this paper within the next release of LANCELOT.

One of the nice features of the partially separable functions considered in the
present theory is that the objective is a linear combination of its elements. While
group partial separability, as used in [12] or [13], has computational advantages in
terms .of economy of derivative calculation, this structure involves a nonlinear rela-
tionship between the elements and the overall function. This seems to make exploiting
the link between local and global models much harder. While we would be interested
in deriving structured trust region methods for group partially separable functions,
the methods would undoubtedly be more complicated and less amenable to analysis.
Thus, we are content, in the present paper, to consider the simpler, but nonetheless
very general, partially separable structure.

Finally, there might be other ways to introduce structure in trust region methods
than to consider (group) partially separable objective functions. In particular, trust
region methods for nonlinearly constrained problems seem attractive candidates for
an alternative approach that would separate the trust region(s) on the objective from
those on the constraints.

Acknowledgments. The authors are indebted to Johara Shahabuddin for twice
pointing out an,unsuitable definition of the sufficient decrease condition (2.36) in
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