
Large-scale nonlinear constrained optimization

A. R. Conn, Nick Gould and Ph. L. Toint

January 16, 2018

Abstract

During the past ten years, much progress has been made in the theory
and practice of constrained nonlinear optimization. However, considerable
obstacles appear when these ideas are applied to large-scale problems. This
is important as many real applications require the solution of problems
in thousands of unknowns. In some areas, in particular linear program-
ming, considerable progress has been made. But even modest departures
into nonlinearity, for example the solution of large, general quadratic pro-
grams, present considerable challenges. This is apparent when one views
the paucity of software for solving such problems. Unsurprisingly, the
position does not improve as more drastic forms of nonlinearity are en-
countered.

In this paper, we will try to explain why the difficulties arise, how
attempts are being made to overcome them and what the problems are
that still remain.

1 Introduction

Our purpose in this paper is to present an overview of the state-of-the art in
large-scale nonlinear optimization. This article is a personal response to the
questions, why we are interested in large-scale nonlinear optimization, what are
the difficulties and what kind of progress has been made. Although we have
made some effort to be complete in our references and thus hope to provide a
useful bibliography, we have not attempted to be as complete in our overview.
Rather, we have tried to include enough details of the general issues to indicate
the nature and reasons for some of the current research in the field. Moreover,
the length of treatment is frequently an indicator that the work is new and less
well-known, and a brief mention does not mean that the work is relatively less
important.

It seems appropriate to first state the most general form of the problem that
we are addressing, namely

minimize
x∈ℜn

f(x) (1.1)

subject to the general (possibly nonlinear) inequality constraints

cj(x) ≤ 0, 1 ≤ j ≤ l, (1.2)
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to the (possibly nonlinear) equality constraints

cj(x) = 0, l + 1 ≤ j ≤ m, (1.3)

and the simple bounds

li ≤ xi ≤ ui, 1 ≤ i ≤ n. (1.4)

Here, f and the cj are all assumed to be twice-continuously differentiable
and any of the bounds in (1.4) may be infinite.

At the outset we should make it clear that we only expect to obtain lo-
cal minimizers. This is in marked contrast to combinatorial optimizers who,
typically, are only interested in global solutions. This presents no problems in
convex programming, where all local minima are indeed global (for example, in
linear programming), but even for small, general nonlinear programming prob-
lems it is usually extremely difficult to verify globality. For large problems, it
is practically impossible. Fortunately, in many situations, an algorithm that
determines local optima suffices.

Our primary interest here is in problems that involve a large number of
variables and/or constraints. Consequently, it seems worthwhile to elaborate
as to what we mean by large.

Firstly, this notion is clearly computer dependent. What is large on an Apple
Macintosh is significantly different from what is large on an IBM 3090 or a Cray
2. The first machine has a substantially smaller memory and storage than the
other two, and therefore has more difficulty handling problems involving a large
amount of data. Secondly, a highly nonlinear problem in one hundred variables
could be considered large, whereas in linear programming it is possible to solve
problems in five million variables. The notion of size is thus problem dependent.
It also depends upon the structure of the problem. Many large-scale nonlinear
problems arise from the modelling of very complicated systems that may be
subdivided into loosely connected subsystems. This structure may often be
reflected in the mathematical formulation of the problem and exploiting it is
often crucial if one wants to obtain an answer efficiently. The complexity of the
structure is often a key factor in assessing the size of a problem. Lastly, the
notion of a large problem depends upon the frequency with which one expects
to solve a particular instance or closely related problem. When one anticipates
solving the same class of problems many times, one can afford to expend a
significant amount of energy analyzing and exploiting the underlying structure.
Thus, although it is not possible to say categorically that a problem in say
seven hundred variables is large, suffice it to say that, today, a problem in fifty
variables is small and a generally nonlinear problem in five thousand variables
and one thousand nonlinear constraints is large.

One might suppose that intellectual curiosity alone is sufficient reason to be
interested in large-scale nonlinear optimization. However, although we readily
admit to the fact that this is an important element of our interest (and indeed
if our research had been confined to the publication of theoretical articles, ar-
guably the main one), much of our joint effort has been devoted to the time
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consuming and often tedious task of writing software, preparing input and test-
ing. The salient point is that there is a need for algorithms to solve large-scale
nonlinear optimization problems. The accurate modelling of physical and sci-
entific phenomena frequently leads to such problems. Nature loves to optimize:
minimum energy, minimum potential difference, shortest paths. Moreover, the
universe certainly is not linear. If the model is to be accurate (for example, if it
is derived from a discretization of a continuous process), the number of variables
is necessarily large. Another area where large nonlinear problem arise naturally
is in economics, where one often wishes to maximize profit (or minimize losses)
in complex situations involving many parameters. The proliferation of large lin-
ear models, rather than nonlinear ones, is sometimes a consequence of our lack
of knowledge concerning the phenomena being modelled, in which case assum-
ing linearity is about the simplest assumption one can make. As our knowledge
improves, often the models are refined and nonlinearity should be introduced.
In our opinion, the frequent use of linear models is not an indication that non-
linear problems do not abound. Rather, it is a statement of the desire to use an
algorithm (the simplex method) that is readily understood and is well-known to
be suitable for large problems. In particular, it is one of our tasks to convince
you that you should consider solving nonlinear programs, when they are more
appropriate. As a necessary corollary, it should be emphasized that solutions
to large nonlinear problems on moderate workstations in a reasonable amount
of time are currently quite possible. Furthermore, in practice one is often only
seeking marked improvement rather than assured optimality (another reason
why globality is not necessarily an issue). This fact makes even problems that
at first sight seem impossible (for example, control problems that one wishes to
solve in something like real-time), tractable.

Without a doubt, the ubiquity of powerful workstations and the availability
of supermachines (both parallel and sequential) have encouraged research in
algorithms for large-scale problems. However, we concur with a remark that
Martin Beale once made that he would ‘much rather work with today’s algo-
rithms on yesterday’s computers than with yesterday’s algorithms on today’s
computers’ [128].

2 Examples of Applications

As we already stated, our interest in developing algorithms for large-scale opti-
mization was created out of necessity. There is an increasing demand for such
software as the size and nonlinearity of the problems that practitioners are
interested in solving steadily grows. The same evolution that leads to larger
and larger nonlinear optimization models for physical phenomena is observed
in data fitting, econometrics and operations research models. In particular, it
is perhaps worth listing some examples:

• Discretizations of variational calculations and optimal control problems
involving both state and control variables.

These arise, for example, in quantum physics, tidal flow analysis,
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design (of aircraft, journal bearings and other mechanical devices),
structural optimization, ceramics manufacturing, chemical process
control and satellite piloting.

• Nonlinear equations arising both in their own right and in the solution of
ordinary and partial differential equations.

These occur, for instance, in elasticity, semiconductor simulation,
chemical reaction modelling and radiative transfer.

• Nonlinear least squares or regression.

Some examples include fluid dynamic calculations, tomography (both
seismic and medical), combustion, isomerization and metal coating
thickness assessment.

• Nonlinear approximation.

These include antenna design, power transmission, maximum likeli-
hood and robust regression.

• Nonlinear networks.

Examples occur in traffic modelling, energy and water distribution/ma-
nagement systems, and neural networks. These problems can have
hundreds of thousands of variables but they are tractable because of
their very special structure.

• Other interesting problems occur in macro- and micro-economics, equi-
librium calculations, production planning, energy scenario appraisal and
portfolio analysis. These problems often give rise to quadratic programs,
particularly in portfolio analysis.

The increasing interest in the solution of large-scale nonlinear optimization
problems is also related to the realisation by users that today’s advances in
computer technology are making the solution of such problems possible.

Recent articles and books devoted primarily to large-scale optimization in-
clude [19], [20], [24], [33], [35], and [133]. Some examples of applications are
given in [59], [87], [95], [96], [123] and [131]. Background material on nonlinear
optimization is given in [54], [60], [61], [70] and [108]. An overview of what
is involved in a mathematical programming system, especially with respect to
linear problems, is given in [129].

3 What are the difficulties?

Efficient algorithms for small-scale problems do not necessarily translate into
efficient algorithms for large-scale problems. This is unfortunate, since in the
past twenty years rather sophisticated and reliable techniques for small-scale
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problems have been developed (see [108] for good surveys). As a consequence,
it is just not adequate to take existing optimization software for small problems
and apply it to large ones, hoping that the increased capacity in computing
will take care of the growth in problem size. By contrast, we could expect that
an efficient method for large-scale problems be at least moderately efficient for
small-scale problems.

Perhaps the most important difficulty in the large-scale context is that of
exploiting structure. The fact that we are able to solve large problems at all
is because they are structured. Even in linear programming, a problem in one
thousand variables devoid of structure (happily, usually an indication of a bad
formulation) severely taxes codes. Thus, it is absolutely essential for efficient
algorithms to exploit structure. Moreover, this means exploiting more than just
sparsity. Unfortunately, this exploitation often complicates the question of sta-
bility, that is, the ability of an algorithm to guarantee that small perturbations
in the data will only result in small perturbations to the solution for ‘satisfac-
torily conditioned’ problems. By contrast, algorithms for small problems have
the possibility to ignore structure.

Another significant difficulty is that of scaling. Perhaps the main reason
algorithms for small-scale problems do not necessarily translate into efficient
algorithms for large-scale problems is that in order to be able to handle large
problems the algorithms have to necessarily be as simple as possible. Conse-
quently, relative to many of the more successful algorithms for small, dense
problems, the amount of information available at any given iteration may be
severely restricted. This makes designing algorithms that are scale invariant
(in the sense that, assuming infinite precision arithmetic, quasi-Newton meth-
ods for unconstrained optimization are invariant under linear transformations)
more difficult for large-scale problems.

One consequence of the necessity to keep the algorithms for large-scale non-
linear optimization ‘simple’ is that typically one has rather incomplete infor-
mation available at every iteration. Thus it becomes difficult to successfully
merging two distinct (and in many ways, conflicting) aspects of any nonlinear
programming algorithm. The first aspect is that which guarantees global con-
vergence. By global convergence (not to be confused with convergence to global
optima), we mean convergence to a stationary point from any starting point.
Essentially, this is a weak requirement (the method of steepest descent with a
suitable line search condition will suffice) which combined with the desire to
stress simplicity encourages us to use a steepest-descent-like method. On the
other hand, ultimately we want faster convergence. This means using Newton’s
method or quasi-Newton methods, although in the case of large problems a fast
linear rate might suffice.

From a more mundane point of view there are very real difficulties inputting
large problems. In particular, the amount of information present in the struc-
ture of a large-scale optimization problem, although crucial for the acceptable
performance of algorithms, is also very difficult to specify in a complete and
understandable format. A standard input that is a simple formal language in
which these structural concepts could be expressed unambiguously, has been
rather well-established and successful in the more restricted domain of linear
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programming [47]. We have extended this input format to the nonlinear case
(see [36]). However, particularly because of the necessity of exploiting structure
in a rather general sense, the resulting standard is not as simple as it was in
the linear case. Other approaches are based upon using a high-level modelling
language. The high-level aspect makes these rather more user friendly but they
require an interpreter and are thus not normally in the public domain. More-
over, they do not, currently, exploit structure as generally as we would like.
Well-known examples of this approach are GAMS ([14]) and AMPL ([65]).

Obviously, a primary requirement in evaluating the quality of an algorithm
is to have a good set of test problems. In the first instance, it is by no means
obvious what constitutes such a set for large-scale optimization, in the main
because of the complexity of the problems and the lack of experience in solving
them. Nevertheless, important starts have been made, and although we do not
yet have collections as readily available as those for linear programming and
sparse linear algebra (see [57] and [66]), we currently have over nine hundred
problem instances in (our) ‘standard input format’ [40]. We are also asking for
more test problems from the community ([125]). Moreover, as a part of the
MINPACK-2 project ‘a collection of significant optimization problems’ is being
made, see [4]. Earlier collections for unconstrained problems include [15] and
[102].

Just as important is the ability to evaluate results. Given the number of
variables (in both senses of the word) at hand, it is a complex task to interpret
the results of testing. It is fair to say that, at present, we require more estab-
lished test problems and a broader experience of the behaviour with various
algorithms.

4 Current Approaches

Having considered the difficulties, we now examine how they are addressed. It
is convenient to consider three broad classes, namely, approaches based upon
classical large linear programming, approaches based upon small-scale nonlinear
programming and approaches based upon a mixed linear programming/interior
point method, even though the ideas in each approach are not mutually exclu-
sive.

4.1 Approach based upon classical large linear programming

We will begin with a terse and somewhat eccentric summary of the simplex
method. For those who need further details, an excellent recent survey article,
that includes the interior point method that is relevant to the third approach
below, is given in [73]. Consider the linear programming problem in the form

minimize
x∈ℜn

cTx (4.5)

subject to the m (≤ n) general linear constraints
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Ax = b (4.6)

and to the simple bound constraints

x ≥ 0. (4.7)

The solution to the above problem normally occurs at a vertex of the feasible
region, that is a point defined by the equations (4.6) and n−m of the variables
lying on their bounds (4.7). Without loss of generality, we can assume that
the last n − m components of x are at their bounds. We call such variables
non-basic — the remaining m variables are termed basic. We may thus consider
the activities (i.e. those constraints satisfied as equalities) to be given by

Cx =

(

B N
I

)

x =

(

b
0

)

. (4.8)

Now

C−1 =

(

B−1 −B−1N
I

)

. (4.9)

The fact that the kth column of C−1 is orthogonal to the other n − 1 rows of
C, along with the fact that we start at a vertex of the feasible polytope and
insist on following a path of objective-improving feasible vertices to optimality
is really the heart of the simplex method. The first statement means that by
moving along this kth column the remaining equations corresponding to the
other n−1 rows of C stay active. Being at a vertex ensures that we can refer to
C−1. Objective-improving is just a matter of sign and maintaining feasibility
requires that we move to an adjacent vertex.

More importantly, from the point of view of this article, the method is
efficient because it exploits heavily the structure of B, making use of techniques
such as the Markowitz strategy, [93], and sparse Bartels-Golub, [6], updating of
LU factors (see [117] for further details and the first implementation in Fortran).
Another important feature of linear programming software is the ability to have
crash starts, i.e. a relatively simple method for finding a good starting basis
(see, for example [76]).

The highly successful package MINOS, [106] can be viewed as an extension
of the simplex method as a reduced gradient technique. Its origins come from
[118] and [119]. One should also note that for practitioners who are used to
linear programming approaches, MINOS serves as an extremely useful bridge
to nonlinear programming. In particular, MINOS replaces

minimize F (x) + cTx+ dT y
x∈Rn,y∈Rm

subject to f(x) +A1y = b1
A2x +A3y = b2

and
lx ≤ x ≤ ux
ly ≤ y ≤ uy

(4.10)
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with

minimize F (x) + cTx+ dT y + λT
k (f(x)− f̃(x)) + 1

2ρ(f(x)− f̃(x))T (f(x)− f̃(x))
x∈Rn,y∈Rm

subject to

f̃(x) +A1y = b1
A2x+A3y = b2

and
lx ≤ x ≤ ux
ly ≤ y ≤ uy,

where

f̃(x) = f(xk) + Jk(x− xk),
(4.11)

and Jk denotes the Jacobian of f evaluated at xk. In other words, the nonlin-
ear contribution to the constraints is linearized so that we can exploit linear
programming technology. It then formulates a quadratic model for the artficial
objective function. A reduced gradient technique is used, that is one determines
a search direction that maintains the current activities to first-order (i.e. the
linearized approximations that were active stay active). Writing the activities
that are determined by the general linear constraints as

Âx =
(

B S N
)

x = b, (4.12)

this means that our search direction is given by

h = Zd, (4.13)

where
ZT =

(

−
[

B−1S
]T

I 0
)

. (4.14)

This follows directly from the fact that

ÂZ = 0 and (0 0 I)Z = 0. (4.15)

Analogously to the simplex method, the columns of B correspond to basic
variables and the columns of N correspond to non-basic variables. However,
because of the nonlinearity of the objective function, we are no longer able to
ensure that optima lie at vertices (the number of columns of B and N may not
add up to the dimension of the space). The ensuing deficiences are made up by
the columns of S, the so-called superbasic columns. Because of the similarities
in the resulting linear algebra the exploitation of structure is much the same as
that in the simplex method. It is worth pointing out that exploitation of the
structure of Z and the simple bounds is especially attractive in the context of
network problems (see, for example, [51], [82], [127] and [126]).

It should be clear that the fewer superbasic columns, the closer the problem
is to a linear programming problem. MINOS works particularly well when there
are relatively few superbasics.

A related approach that was one of the earliest successful pieces of software
that could handle large nonlinear problems was an implementation of the gen-
eralised reduced gradient method of Abadie ([1]) by Lasdon ([90]). A quadratic
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programming algorithm that uses similar ideas to MINOS and is for large-scale
problems is given in [75].

Not surprisingly, the earliest approach to large-scale nonlinear optimization
was a successive linear programming technique (see [81]). A more recent suc-
cessive linear programming technique that uses an exact l1 penalty function
and incorporates trust region constraints is given in [64], although numerical
results are given for small problems only.

4.2 Approaches based upon small-scale nonlinear programming

4.2.1 Sequential quadratic programming

One of the best known techniques for nonlinear programming is the so-called
sequential quadratic programming approach (see, for example, [61], Chapter 12
and [70], Chapter 6). Recent work by Eldersveld [58] and colleagues uses the
augmented Lagrangian. The vector s represents slack or surplus variables (see
below for some motivation for this function and the introduction of slack or
surplus variables)

f(x)− λT [c(x)− s] + [c(x) − s]T [c(x)− s]/µ, (4.16)

with the quadratic programming search-direction subproblem

minimize 1
2p

THp+ gT p
p,q

Ap− q = − [c(xk)− sk]

l̂ ≤

[

p
q

]

≤ û,

(4.17)

using a suitable symmetric matrix H, to solve (1.1) to (1.4). A protoype im-
plementation has been developed that uses a modification of the MINOS code.
They use for the active set

Â =

(

B S N
0 0 I

)

(4.18)

and solve
ZTHZyz = −ZT (g +Hp),

y = Zyz,

where
ZT =

(

−
[

B−1S
]T

I 0
)

and ZTHZ is small. Noting that one needs H to evaluate the gradient of
the quadratic objective function, they make use of the fact that if we define
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Q = [Z Y ], choosing Z and Y so that ZTHY = 0 and Y THY = I, then we
can write H = Q−T (QTHQ)Q−1, where

QTHQ =

[

ZTHZ 0
0 I

]

.

For example, taking

Y =







B−1 0
0 0
0 I







then

Q−1 =







0 I 0
B S 0
0 0 I






.

Details are given in [58]. An approach that also uses sequential quadratic pro-
gramming, but ‘solves’ the quadratic program using an interior point method
(see below) is given by [13]. Although these methods hold promise, computa-
tional experience to date has been insufficient to make definitive statements as
to their effectiveness. Other sequential quadratic programming based methods
include [92] and [105].

4.2.2 The LANCELOT project

The approach to which we wish to devote much of the rest of this article is
based upon the adaptation of trust region methods to the problem with simple
bounds. The method is extended to general constraints by using an augmented
Lagrangian function and the bounds are handled directly via projections that
are easy to compute. We use group partial separability (a generalisation of
sparsity, introduced in [79]) to allow efficient storage and updating of matrices
in matrix-vector product form. This approach has the further advantage that
accurate approximations to the second derivatives of the element functions, nor-
mally being of low rank, are easier to obtain than for the assembled matrices.
This structure is extremely general. Indeed, any sufficiently differentiable func-
tion with a sparse Hessian matrix may be written in this form. An introduction
to group partial separability is given by [34]. The entire project has resulted in
a substantial amount of software that is available at nominal cost for research
purposes. There is also a book ([41]) to accompany the software. Returning to
the underlying concepts of LANCELOT, we will now give some details.

Trust region methods in the context of unconstrained optimization have
been able to combine a rather intuitive framework and robust numerical imple-
mentations with a powerful and elegant theoretical foundation. An excellent
reference is [101]. The basic idea is to model the objective function (by a
quadratic given by the first three terms of a Taylor’s series expansion about
the current point xk, for example). One then ‘trusts’ this model in a neigh-
bourhood (called the trust region) of xk. The next step is to approximately
minimize the model in the trust region, thereby obtaining a point xk + sk, say.
One now determines how well the model actually predicted the change in the
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true objective function. If good descent is obtained, the next iterate, xk+1, is
set to xk+sk and the trust region is expanded. If moderate descent is obtained,
the next iterate, xk+1 is set to xk + sk and the trust region remains unchanged.
Otherwise, xk+1 is set to xk and the trust region is contracted. The beauty of
such an approach is that, when the trust region is small enough and the problem
smooth, the approximation is good, provided the model gradient is sufficiently
accurate. Moreover, assuming one does at least as well as the minimum along
the steepest descent direction of the model within the trust region (that deter-
mines the so-called Cauchy point), one can ensure convergence to a stationary
point ([18]). In addition, eventually the trust region is expanded sufficiently
that it does not interfere with the subsequent iterates, and thus, assuming that
in this situation the underlying algorithm is sufficiently sophisticated, one can
ensure fast asymptotic convergence. Details are given in [101].

The algorithm that is at the heart of LANCELOT is a method for which all
the constraints are just simple bounds. The extension of the above ideas are
relatively straightforward in this case. Essentially, one generalizes the Cauchy
point to the minimum along the projected gradient path within the trust region,
where the projection is with respect to the simple bounds. It is important to
note that it is trivial computationally to compute such a projection: components
of x that hit a bound just remain fixed. This approach was first carried out
by McCormick in [94], and independently by Bertsekas [10] and Levitin and
Polyak [91]. More recently it has been exploited extensively in the context of
large-scale optimization by many authors, see for example [32], [52], [103], and
[104]. As in the unconstrained case, global convergence can be guaranteed,
provided one does at least as well as the generalized Cauchy point. One obtains
better convergence, and ultimately a satisfactory asymptotic convergence rate,
by further reducing the model function. In the context of LANCELOT, this is
achieved by fixing the activities determined by the generalized Cauchy point
and further reducing the model within the feasible region and trust region using
just the remaining free variables. Updating of the trust region size is handled
in exactly the same way as it is in the unconstrained case. The basic algorithm
can be summarised as follows:

• Find the generalized Cauchy point based upon a local (quadratic) model.

• Fix activities to those at the generalized Cauchy point.

• Using the free variables further reduce the model within the feasible region
and the trust region. Of course this may, and typically does, introduce
new activities in addition to those determined by the generalized Cauchy
point.

• Determine whether the current point is acceptable and update the trust
region radius accordingly.

Provided the quadratic model is reasonable, we are able to prove that we
converge to a Kuhn-Tucker point. Moreover, we identify the correct active
constraints (activities) after a finite number of iterations assuming that strict
complementarity is satisfied and the activities determined by the generalised
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Cauchy point are kept active when the model is further reduced. Details are
given in [31].

The extension to general constraints is carried out by means of an aug-
mented Lagrangian function. In order to understand this extension we need
to motivate this function. We have known for nearly two hundred years ([89],
part 1, section 4, article 2), that a solution to

minimize f(x)
x∈Rn

subject to c(x) = 0
(4.19)

is a feasible stationary point of the Lagrangian

f(x)− λT c(x). (4.20)

It is only since the Second World War, that we have recognised ([48]) that we
can solve (4.19) using the quadratic penalty function

minimize f(x) + c2(x)/µ
x∈Rn

(4.21)

as µ tends to zero from above. The idea here is that as µ becomes small the
‘penalty term’ c2(x)/µ forces one to become feasible. This intuitive idea was
not accorded a sound theoretical basis until the work of Fiacco and McCormick
(see for example [60]). Augmented Lagrangians combine both ideas, thereby
convexifying the Lagrangian and circumventing the necessity of requiring small
µ by, instead, approximating the Lagrange multipliers, λ. Thus we use the
problem

minimize f(x)− λT c(x) + c2(x)/µ.
x∈Rn

(4.22)

This approach was first suggested by K. J. Arrow and R. M. Solow in [3] but
is better known through the work of Hestenes and Powell in [85] and [115].

In LANCELOT one thus solves the general problem by first introducing slack
or surplus variables, if necessary, to change inequalities to equalities. Subse-
quently one minimizes the augmented Lagrangian

Φ(x, λ, S, µ) = f(x) +
m
∑

i=1

λici(x) +
1

2µ

m
∑

i=1

siici(x)
2 (4.23)

(where the diagonal matrix S is introduced to incorporate scalings) subject
to the explicit bounds, using the earlier algorithm1. This approach can be
summarised as follows:

1. Test for convergence using the two following conditions.
Sufficient stationarity — the projected gradient of the augmented La-
grangian with respect to the simple bounds is sufficiently small;
Sufficient feasibility — the norm of the constraint violations is sufficiently
small .

1It is worth noting that MINOS uses for its objective function an augmented Lagrangian

function with corresponding constraints f − f̃ = 0, whose relaxation can be considered as

trusting the linear approximation to f .
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2. Use the simple bounds algorithm to find a sufficiently stationary approxi-
mate minimizer of Φ (considered as a function of x only) subject to simple
bounds.

3. If sufficiently feasible (both the ‘local convergence’ values here and in 2)
are greater than the test for convergence, in general) update the multipli-
ers and decrease the tolerances for stationarity and feasibility.

4. Otherwise, decrease the penalty parameter and reset tolerances for sta-
tionarity and feasibility.

We are able to show, under suitable conditions, that we converge to a first-order
stationary point for the nonlinear programming problem. Furthermore, if we
have a single limit point, we eventually stop reducing the penalty parameter,
µ. Under somewhat stronger conditions we are able to show that one requires
only a single iteration of the simple bounds algorithm to satisfy the conditions
of the third item above. Details of these important properties are given in [38]
and [42].

As we have already seen, a significant (and often dominant) cost in opti-
mization is solving a linear system. Typically these arise from the necessity to
determine an approximate stationary point for a quadratic function — equiv-
alently, the necessity to solve a linear system whose coefficient matrix is a
symmetric matrix. If the system is large there are two possible approaches.
The first is to use direct methods based upon multifrontal techniques. These
use partial assembly and dense matrix technology on sparse matrices. General
details are given in [56] and an application in the context of LANCELOT is given
in [43]. Our experience to date, however, has been that an iterative approach
is more robust. The most popular such approach is preconditioned conjugate
gradients. For ease of motivation we first consider conjugate gradients without
a preconditioner. Directions, di, are called conjugate with respect to a pos-
itive definite matrix A if dT1 Ad2 = 〈d1, d2〉A = 0. In other words, they are
orthogonal in the A-metric. The best known conjugate set of vectors are the
set of orthonormal eigenvectors. If one considers minimizing a strictly convex
quadratic form 1

2x
TAx− bTx+ c, it is easy to see from the geometry that if one

minimizes along the eigenvectors of A, then at each stage one determines the
minimum of the quadratic on the space spanned by the eigenvectors used, and
thus, after at most n steps, if A is n by n, the quadratic function’s (unique)
minimum is determined.

The appeal of conjugate-gradient methods is that this finite termination
result for quadratics is true for general conjugate directions. Moreover, the
attraction for large-scale optimization is that such an orthogonalisation can be
determined via a three term recurrence and thus the method is particularly
simple and only requires that we store three vectors.

However, if n is large, performing n steps may be prohibitively expensive.
Moreover, a quadratic is only being used to model a nonlinear problem and so
what we have is really a ‘moving quadratic’. What makes this technique remain
attractive is the use of preconditioners. The essential result is that whenever
one has multiple eigenvalues, the conjugate gradient method minimizes the
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quadratic in the space spanned by the corresponding eigenvectors. If we can
cluster eigenvectors (i.e. approximately have multiple eigenvectors) we can
reduce the number of iterations for good approximations to minimizers, from n
to the number of clusters. The perfect way to do this in the quadratic case is to
precondition with A−1 — but then this is equivalent to doing Newton’s method.
Surprisingly one can often do very well by using very crude approximations to
A−1 (diagonal matrices, for instance). A good reference is [67].

It is fortunate that most optimization problems in thousands of variables
are structured; fortunate but demanding of respect. If one considers the arrow-
head matrix (ai,1, a1,i, ai,i non-zero, i = 1, 2, . . . n, all other entries zero), it is
clear that one neither wants to input or nor wants to store this matrix as a dense
matrix, for large n. A little less obvious is the fact that if one does Gaussian
elimination without pivoting, after the first column is updated the remaining
n − 1 by n − 1 block will be full — in other words, fill-in is disastrous. On
the other hand, if we first reverse the ordering of the rows and columns (which
amounts to changing the orderings of the equations and the labellings of the
variables) there is no fill-in at all. Since optimal numerical stability typically
dictates row and column orderings and limitations on storage motivate one to
minimize fill-in, we are immediately aware of a major conflict in numerical linear
algebra when one wants to account for structure. One form of compromise is
known as threshold pivoting (see, for example, [56]).

In LANCELOT we take the point of view that invariant subspaces are more
important than sparsity. For example, consider f(x) = x450, and F (x) =
(

∑5,000,000
i=1 xi

)4
, x ∈ R5,000,000. In the first case the Hessian is sparse, while

in the second case the Hessian is dense. But they both have an invariant sub-
space of dimension n − 1. In the first case, it is the orthogonal complement
of e50 (the vector with a single non-zero entry, one, in the fiftieth compo-
nent), and in the second case it is the orthogonal complement of e (the vec-
tor of all ones). We exploit invariant subspaces by writing our functions as

f(x) =
∑m

i=1 gi
(

li(x) +
∑

j∈Ii
wjfj(x)

)

, where gi is a scalar function, the li are

linear functions and the wj are weights for the nonlinear functions fj(x). The
essential point is that the rank of ∇xxfj) is much smaller than n and the null
space of ∇xxfj is fixed. This, and the use of linear transformations to con-
sider expressions like e(x+y) as eu, u = x + y, enables us to use very compact
representations of the problems we are optimizing. In particular we can store
these as dense matrices. We note, however, that it is no longer reasonable to
expect these matrices to be positive definite. This has led to a revival of inter-
est in rank one secant methods. For an introduction to these considerations,
with many more details, the reader is urged to read [34]. A related means of
exploiting structure is given in [96]. For recent work on rank one updating see
[37], [55], [88], [111], and [132].

Although we are unaware of the details, an augmented Lagrangian approach
that is designed for large-scale optimization has been developed by Contesse,
[46]. There are some similarities between the approach of [38], [45] and [64].
Fletcher and Sainz de la Maza use a piecewise linear model and an l1 penalty
function for the merit function but improvements over the Cauchy point involve
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Problem n m

1-d nonlinear boundary value problem 5002 0
Economic model from Thailand 2230 1112
1-d variational problem from ODEs 1001 0
2-d variational problem from PDEs 5184 0
3-d variational problem from PDEs 4913 0
Nonlinear network gas flow problem 2734 2727
Chemical reaction problem 5000 5000
Oscillation problem in structural mechanics 5041 0
Nonlinear optimal control problem 9006 7000
Maximum pivot growth in Gaussian Elimination 3946 3690
Nonlinear network problem on a square grid 13284 6724
Nonlinear optimal control problem 10001 5000
Hydro-electric reservoir management 2017 1008
Minimum surface problem with nonlinear boundary conditions 15625 0
Economic equilibrium 1825 730
Nonlinear optimal control problem 7011 5005
Orthogonal regression problem 8197 4096
Analysis of semiconductors 1002 1000
Elastic-plastic torsion problem 14884 0

Figure 1: Some typical examples.

projected Hessian approximations.
Current work in LANCELOT has been to consider the special case of con-

vex constraints. The motivation is that, in particular, linear constraints are
very common, are too simple to handle effectively in the same manner as we
handle general constraints, but are nevertheless too complicated to handle the
projections easily in the context of large problems. We use a combination of a
simple piecewise linear line search (with only two pieces) and the trust region
approach. The projections are handled approximately, but the approximation
has to be ‘good enough’. Details are given in [45]. In particular, a special
case gives a convergence proof for sequential linear programming in the case of
convex constraints. In the case of nonlinear networks, Sartenaer, in [122], has
obtained some very encouraging numerical results.

In addition we have a test-bed of around nine hundred problems written in
our standard data format. We have solved almost all these examples, many of
which are of a substantial size. We expect to have them available electronically
via netlib or something similar some time this year (1992). Some typical ex-
amples of applications we have solved using LANCELOT are tabulated above,
in Figure 1. Detailed analysis of these results and our interpretation will be
reported separately.

What about other current work on LANCELOT and the future? As an
alternative to the augmented Lagrangian we are implementing a Lagrangian
barrier method [44], that is closely related to the modified and shifted barrier
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function method (see, for example, [68], and [114]). We use the Lagrangian
barrier function

Ψ(x, λ, s) = f(x)−
m
∑

i=1

λisi log(si − ci(x)),

which we can then optimize with respect to the simple bounds. A possible
choice is si = µλαλ

i , where µ is a penalty parameter and 0 < αλ ≤ 1.
We also would like to exploit group partial separability at a more fundamen-

tal level in our trust region algorithm. We have been able to use the structure
of the problem explicitly in the definition of the trust region and have suitable
convergence properties [39] and we are currently investigating the computa-
tional implications. In order to exploit linear constraints more successfully we
are investigating interior point methods. Finally, we always need to perform
more testing.

4.3 Approach based upon a mixed linear programming/interior
point method

Although not strictly speaking interior point methods, we have already men-
tioned modified barrier methods above. More generally, interior point methods,
although originally developed for nonlinear programming, have had a spectac-
ular success in the context of linear programming and have thereby generated
new interest in their use in nonlinear optimization. See [134], for example, for
background material. Encouraging results have already been obtained in the
context of linear-like problems (see [23], [25], [26], [100] and [120]) and quadratic
programming ([2], [9], [12], [22] [72], [83], [84], [99], [112], and [137]). Nash and
Sofer have computational experience with a barrier method applied to a thou-
sand variable nonlinear problem with bound constraints, [107]. Work in convex
programming includes [5], [53], [86], [97], [98], [135] and [136]. It seems reason-
able to expect further developments within nonlinear programming, especially
since these techniques appear to be especially appropriate for large-scale prob-
lems.

4.4 Other issues

There is obviously a number of issues that are relevant to our subject, but that
fall slightly out of the context of the current paper. We now briefly mention
some of the most important ones.

Both primal and dual degeneracy are intrinsic difficulties in that they are
often a manifestation of the problem that can be troublesome to the method
of solution. By primal degeneracy, we mean that the dual variables are not
uniquely defined. By dual degeneracy, we mean that some of the dual variables
are zero. Moreover degeneracy, especially primal degeneracy, is not a rare
occurrence. Revelent work includes [17], [50], [62], [63], [69] and [121]. This is
an important area in which there is a need for further research.

The primary level of formulation is clearly important. Augmented La-
grangians are rather different from barrier functions. If one exploits the struc-
ture using group partial separability this has a profound effect on the design
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of the software and the algorithmic techniques used. Trust region methods
typically make different demands from line search approaches. Small scale se-
quential quadratic programming techniques do not have much in common with
the approach taken in LANCELOT.

Parallelism is starting to have its effect on optimization. Firstly, numerical
linear algebra plays a fundamental role in optimization. Recently there has
been much work implementing such methods on advanced architectures. An
overview of many of the major issues is given in [74]. A lucid description, il-
lustrated by considering the Cholesky factorization, is given in [130]. Secondly,
parallelism can be exploited at the basic level of the optimization algorithm.
Simple examples are the computation of ‘extra’ quantities in parallel (for ex-
ample, speculative steps), or independent runs with different choices for some
of the algorithm parameters. Often the most effective algorithms for very large
problems are those which are very simple but not efficient if implemented in a
sequential environment. However, with the possibility of intelligently running
what amount to several instances in parallel, a much more effective algorithm
results.

We think that although they are not scale invariant, truncated Newton
methods are especially important in the context of large-scale nonlinear op-
timization. When incorporated with an iterative technique such as precondi-
tioned conjugate directions, they enable us to handle the difficulty of deciding
whether to solve inner iterations accurately or inaccurately, with the limited
information available, whilst still being able to ensure a satisfactory asymptotic
convergence rate and global convergence. For example, it is not easy to see how
to achieve the same ends in the context of sequential quadratic programming
using active set strategies.

Anyone who has tried inputting significant problems appreciates the poten-
tial of automatic differentiation. Recently, this has become a very active area of
research (see, for example, [77] and [78]), and efforts are underway to provide
automatic differentiation tools that promise to make this technology readily
usable to the optimization community ([11] and [80]).

After the great success of quasi-Newton methods there was much hope that
such techniques could be adapted to the manipulation of large Hessian approx-
imations. Unfortunately, this turned out not to be the case and the results
have been disappointing (see [124]). On the other hand, sparse finite difference
schemes have been successful. Since the pioneering work of Curtis, Powell and
Reid [49] there has been significant progress, some of which exploits parallelism
(see [21], [27], [28], [29], [30], [71] [113], and [116]).

An alternative approach is to use limited memory quasi-Newton updating.
This uses the information of only a few, most recent, steps to define a vari-
able metric approximation to the Hessian (see, for example [16] and [110]).
These methods have proved to be very useful for solving certain large unstruc-
tured problems and Nocedal, [109], claims it is competitive with the partitioned
quasi-Newton method on partially separable problems in which the number of
element variables exceeds five or six, at least when the cost of evaluating the ob-
jective function is relatively low. Recently Bartholomew-Biggs and Hernandez
([7]) have been able to solve large problems using limited memory approxima-
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tions to the inverse of the Lagrangian in the sequential quadratic programming
framework of [8].

We should also mention that the current familiarity of users with sophisti-
cated computer environments has created a high expectation for a user friendly
interface to software. Unfortunately, developers have been too busy, as yet,
coping with the algorithmic complexities to have devoted much time to the
important practicalities of a first rate interface.

4.5 In conclusion

We would like to emphasize that it is possible to solve large nonlinear con-
strained problems in thousands of variables in acceptable time on reasonable
workstations. At least two software packages, LANCELOT and MINOS, are
available. Input is important, and significant progress in both modelling lan-
guages and a standard input format, have been made.

This is a vibrant, challenging and useful research area. Our hope is that, in
the not too distant future, practitioners will be solving nonlinear models rather
than linear ones, when the former is the most appropriate one to consider.
Prefering to solve linear models, only because we understand how to solve large
linear programs, should no longer be the normal practice.
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[89] J. L. Lagrange. Théorie des Fonctions Analytiques. Impr. de la
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