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Abstract

This paper examines the question of modifying the decomposition of a partially

separable function in order to improve computational efficiency of large-scale

minimization algorithms using a conjugate-gradient inner iteration. The con-

text and motivation are given and the application of a simple strategy discussed

on examples extracted from the CUTE test problem collection.
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1 Introduction

Large-scale numerical optimization, like many other fields involving large problems,
heavily relies on two fundamental but distinct endeavours: the use of structure and
the search for maximum algorithmic efficiency. Indeed, many of the methods proposed
in this area require that the user specifies the problem’s structure in some prescribed
way, and are designed to exploit this given structure to the largest extent possible.
However, it is frequently assumed that the problem’s structure is given, and that a
good algorithm has to exploit it. In this paper, we consider the complementary point
of view: we examine the question of modifying the problem’s structure, in the hope
that this modified structure can lead to improved algorithmic performance. Although
not new in other areas of computational mathematics (see, for instance the work by
Chan and McCormick [3] on how to make sparse matrices sparser), this idea does not
seem to have been much studied in the context of large-scale optimization.

It is the purpose of this paper to consider this question in the context of partially
separable functions. Introduced by Griewank and Toint [8], this particular structure
and its generalization to group partial separability have shown to be very useful in
the design of algorithms for large-scale optimization problems, both constrained and
unconstrained. For instance, the LANCELOT package (see Conn et al. [7]) is based on
this structural concept. In this context, we will consider that the partially separable
structure of a function is given, and will then try to improve it with a very specific
goal in mind: we aim at reducing the amount of computational time spent in the
calculation of a step of a truncated-Newton algorithm using the conjugate gradient
technique. This particular choice is motivated by the frequent use of this technique in
large-scale optimization methods, and, more precisely, by the potential benefits that
could be achieved within the LANCELOT package itself.

The paper is organized as follows. Section 2 formally introduces two related prob-
lems in modifying a partially separable structure: element merging and expansion.
Section 3 describes a simple algorithmic approach to partially separable structure
improvement, while Section 4 presents some results obtained by applying the algo-
rithm of Section 3 to test examples extracted from the CUTE test problem collection of
Bongartz et al. [2]. A more general discussion of the subject is presented in Section 5.

2 The merging and expansion problems in par-

tially separable structures

In order to motivate our approach in a simple framework, we consider the uncon-
strained optimization problem of minimizing

f(x) =
m
∑

i=1

fi(x), (2.1)
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a partially separable function of the n-dimensional real vector x. (We refer the reader
to Conn et al. [4] or Chapter 2 of [7] for a detailed introduction of partial separability
and group partial separability.) Assume furthermore, for the moment, that f(x) is
convex and twice continuously differentiable. Suppose finally that the problem is to
be solved on a sequential computer by applying Newton’s method, and that the linear
conjugate gradients algorithm is selected for calculating the Newton’s step at a given
iterate x. The problem is then to solve (possibly approximately) the linear system

H(x)s = −g(x) (2.2)

where H(x) denotes the (positive definite) Hessian matrix of f at x, g(x) its gradient
at the same point and where s is the desired step. Since the main computational cost
within the conjugate gradient algorithm is the multiplication of the involved matrix
with a vector, we see that the cost of solving (2.2), even approximately, is likely to
be dominated by that of computing products of the form H(x)v for given x and v.
Since x is fixed for a given Newton iteration, we will omit it from now on.

Now observe that, because of (2.1), one has that

H =
m
∑

i=1

Hi, (2.3)

where Hi is the Hessian of the i-th element function fi (at x). Hence one can compute
the desired product in at least two different ways, as

Hv =

(

m
∑

i=1

Hi

)

v or Hv =
m
∑

i=1

(Hiv). (2.4)

We refer to the first possibility as the fully assembled form and to the second as
the fully disaggregate form. But these are only the two extreme situations: if m is
large (which is the case of interest) they are many possible ways to write the vector
Hv, depending on which elements are assembled before the product of the partially
assembled matrix with v is finally computed.

An additional degree of freedom may be present in a partially separable structure.
It is indeed often the case that a distinction can be made between the elemental
variables associated with the i-th element and the internal variables associated with
this element. The vector of elemental variables for the i-th element, which we denote
xE
i is a subvector of dimension ni, say, of the vector x, containing only the components

of x that explicitly appear in the formulation of the i-th element function. A vector
of internal variables is then defined in the case where the i-th element function can
be written, for all x, as

fi(x
E
i ) = fi(Wix

I
i ) (2.5)

for some pi × ni full rank matrix Wi, with pi ≤ ni, and for some vector of internal
variables xI

i . (Again, see Conn et al. [7] for a detailed exposition.) We say that ni
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is the elemental dimension of the i-th element, while pi is its internal dimension and
Wi is the associated range transformation. We furthermore denote by HE

i the ni×ni

matrix restriction of Hi to the subspace of the elemental variables of the i-th element.
When pi < ni, the elemental Hessian HE

i is written and usually stored as a product
of two range transformations and an internal Hessian HI

i , that is

HE
i = W T

i H
I
i Wi. (2.6)

Thus even the nonzero part of a simple product Hiv can be computed as

HE
i v =

(

W T
i H

I
i Wi

)

v or HE
i v = W T

i (H
I
i (Wiv)) (2.7)

Two questions then arise if the overall product Hv is to be computed efficiently.

• How far should one go into the partial assembly of the matrices Hi (or, equiv-
alently, of the HE

i ) between the two extremes of (2.4)? This can be viewed as
deciding whether to “merge” elements in the partially separable structure of f .

• Should one “expand” HI
i by explicitly computing the result of (2.6) before

computing the partial product Hiv?

Efficient answers to these questions will naturally involve some trade-off between com-
puting speed and storage requirements. Note that we assume here that the vector v
is dense, as is usually the case in a conjugate-gradient technique. Products of Hessian
with sparse vectors are also of interest, for instance in the context of a Generalized
Cauchy Point calculation, but are typically performed in a specialized and cheaper
fashion (see Section 3.3.5 of Conn et al. [7], for instance).

We note that we only consider modifying the partially separable structure of f
by aggregating some of its components. Indeed, if (2.1) is given by the user, there
is no automatic way to disaggregate the problem further, as this typically requires
refinements in the user’s model. This might of course be desirable, but is beyond the
scope of this paper.

We next observe that the questions raised above are also valid if the problem is
not convex. Indeed, conjugate gradients are still often used in this more general case:
either the Hessian is suitably modified to make it positive definite, or directions of
negative curvature detected within the conjugate gradient iterations are exploited in
a trust region framework. But the efficiency of the matrix-vector products remains
crucial.

We also note that merging elements and/or expanding elemental Hessians is not
always computationally advantageous: it strongly depends on the initial decompo-
sition (2.1). The procedure described below should therefore have little or no effect
if this initial decomposition was determined with the preoccupation of making ma-
trix vector products reasonably efficient. We only aim here at improving possibly
unfortunate choices of (2.1).
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We finally claim that our definition of computing efficiency (solely based on the
number of floating point operations), although somewhat restrictive, is an acceptable
a priori way to assess the potential of element merging before attempting to rewrite
a specialized large-scale optimization code that can exploit this potential to its real
extent.

3 A first algorithmic approach to merging and ex-

pansion

We now consider the merging and expansion question in more detail. Consider first
the possible expansion of element i from internal to elemental representation. The
situation is pictured in Figure 1.

ni

✻

❄

HE
i

=

W T
i HI

i Wi

pi

✻

❄

Figure 1: Elemental vs internal Hessian representation

Note that not all matrices in this picture are dense. In fact, Wi (and W T
i ) often

contain a significant proportion of zeros. Let di be the number of nonzeros in Wi.
Given this number, we may then decide to expand the i-th element if the product
of the matrix on the left (of Figure 1) with v is less costly that the products on the
right, that is when

n2

i ≤ 2di + p2i . (3.1)

Consider now element merging, and assume, for simplicity, that we examine the
possibility of merging two elements, elements i and k, say, both expressed in terms
of their elemental variables (either originally stored in terms of these, or expanded
in a first step). Figure 2 shows the structure of the Hessian matrix H restricted
to those elements. In this Figure, ni and nk stand for the elemental dimensions of
elements i and k respectively. We denote by nik the number of elemental variables
that are common to both elements. Notice that Hi and Hk are assumed to be stored
separately as dense matrices.

The number of floating point operations1, or flops, required to compute the prod-
uct Hiv +Hkv is then n2

i + n2

k. If, on the other hand, we decide to merge elements

1A floating point operation is defined here as an add-multiply pair.
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HE
i

HE
k

ni

✻

❄ nk

✻

❄

nik

✻

❄

0

0

Figure 2: Two elements in the Hessian matrix

i and k, the Hessian matrix of that merged element is represented in Figure 2 by
the large square of dimension ni + nk − nik. Because the zeros in the off-diagonal
blocks are stored in the merged Hessian just as other non-zero values, computing the
product (Hi+Hk)v now costs (ni+nk−nik)

2 flops. It is thus advantageous to merge
elements i and k if

n2

ik ≥ 2(nk − nik)(ni − nik), (3.2)

which is to say that the area of the overlap between the two elemental Hessians is at
least that of the two off-diagonal blocks. Given ni, nk and nik, (3.2) thus provides a
simple rule for merging two elements in elemental representation.

If one or both elements i and k are stored in terms of their internal variables, the
situation is slightly more complex. If we define

ci =

{

n2

i if element i is stored in elemental representation,
2di + p2i if element i is stored in internal representation,

(3.3)

then a suitable test is obviously given by the condition

(ni + nk − nik)
2 ≤ ci + ck. (3.4)

If this condition holds, elements i and k are first expanded and their expanded rep-
resentations are then merged.

Gathering conditions (3.4) and (3.1), we may set up a simple algorithm, whose
idea is

1. to first examine all elements and decide, on the basis of (3.1), if they should be
expanded,

2. to then consider pairs of elements and decide, on the basis of (3.4), if they
should be merged.
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We note that only elements for which elemental and internal dimension differ need
being considered in the first step. It is also necessary to compute the density di for
all such elements. This is quite acceptable from a computational point of view, as it
only involves work of the order of the number of elements m (assuming ni is small
compared with m). The situation is even more favourable in the frequent case where
all elements involve only very few element types, which determine their internal or
elemental representation.

If we now turn to the second step, we see that only pairs of elements having
common elemental variables need being examined for possible merging. Furthermore,
the number of such common variables must be known for all these pairs. A naive
implementation of this scheme would thus require of the order ofm2 operations, which
is excessive when m is large (often much larger that n). Moreover, it is still possible to
merge two elements which result themselves from previous merging operations. This
makes deciding on the best merging sequence (given our computational efficiency
criterion) a truly combinatorial problem. More precisely, it can be viewed as a large-
scale set covering problem (see Nemhauser and Wolsey [10], for instance) where one
wishes to cover the set E of all elements with merged elements (subsets of E) with
minimal computational cost. We do not intend, in this paper, to explore in depth the
specialized algorithms for set covering, but we will rather design a relatively simple
computational procedure for our element merging problem. This procedure can be
described as follows.

Element merging procedure

Step 1: Compute the lists of all elements involving a given variable

This can be achieved in a single loop on the elements. Let eij be the j-th
element involving the i-th variable.

Step 2: Perform a merging pass

For each variable i in turn, and for each j > 1, examine if element k = ei1
should be merged with element s = eij :

1. compute nks, the number of variables common to elements k and s,

2. merge elements k and s if (3.4) holds,

3. update the element/variable lists if merging occurred.

Step 3: Stopping test

If any merging occured in the execution of Step 2, re-execute Step 2. Otherwise
stop.

End of procedure
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There is no doubt that the procedure can be improved. For instance, one might
wish to avoid recomputing nks but instead update it when two elements are merged.
But, despite its simplistic nature, this scheme will allow us to illustrate the potential
benefits of element merging.

We close this section by mentioning a structural improvement which can some-
times be achieved if the objective function f is group partially separable, that is if it
can be expressed as

f(x) =
q
∑

j=1

gj



aTj x− bj +
∑

i∈Ej

wifi(x)



 , (3.5)

where, for each j = 1, . . . , q, gj is a continuous real function of one real variable, aj is
a given vector of ℜn, bj a given scalar, Ej the set of indices of the element functions fi
appearing in the j-th group, and where the scalars wi are known as weights. We say
that the j-th group is trivial if gj(α) = α. If we now assume that there is more than
one trivial group, it is immediately obvious that all trivial groups could be merged
into a single one with

a =
∑

j∈T

aj , b =
∑

j∈T

bj and E =
⋃

j∈T

Ej, (3.6)

where T is the index set of all trivial groups. This structural modification does not
affect the Hessian times vectors products, and is therefore not immediately relevant
for the objective pursued in this paper. It is however of some practical value, as it
simplifies the data structure associated with the problem description. We thus include
it within the expansion stage of our simple algorithm for structure improvement.

4 Preliminary applications

The element and group merging and expansion techniques described in the previous
section were implemented in Fortran and applied to a number of examples from the
CUTE test problem collection (see Bongartz et al. [2]). On a large number of these
examples, the algorithm produced no modification of the structure. This merely
shows that the initial partially separable structure of many of the CUTE examples
is relatively satisfactory from the point of view adopted here. However, several test
problems were not left unmodified: we report below on the changes produced by our
simple technique on some of them.

We first report the effect of the merging of all trivial groups into a single one, as
discussed at the end of Section 3. Our results are shown in Table 1, where both the
number of groups (under the heading “Groups”) and the total number of nonzero
linear coefficients aj (under the heading “Linear coeff.”) are reported. Each of these
quantities are detailed before (in the “initial” columns, corrresponding to the prob-
lem’s structure as given in the CUTE collection) and after ( in the “tr .merged”
columns) merging of all trivial groups.
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Problem name Groups Linear coeff.
initial tr.merged initial tr.merged

NCB20B 1000 1 19620 1000
TORSION1 5184 1 5184 5184
JNLBRNGA 5329 1 5329 5329
LMINSURF 5476 5476 0 0
OBSTCLBU 5329 1 5329 5329
HAGER3 15000 10001 20000 20000
HILBERTB 1275 1 0 0
SINQUAD 5000 5000 1 1
SCHMVETT 4998 1 0 0
CRAGGLVY 12495 12495 17493 17493

Table 1: The effect of merging trivial groups

The effect of merging trivial groups is clearly apparent in several examples: they
typically only contain trivial groups, but sometimes many of them, in the initial
decomposition. An exception is the HAGER3 example, where this initial merging
only reduces the number of groups by one third. We also see that the total storage
requirement for storing the linear coefficient may substantially decrease with trivial
group merging, as happens for the NCB20B example.

After this preliminary merging is performed, we now turn to the effect of struc-
tural modifications impacting the amount of arithmetic in matrix-vector products.
Our results are summarized in Table 2. In this table, we indicate the effect of the
algorithm on the structure itself, reflected by the number of elements (in the “Ele-
ments” columns). We also present the effect of the structural modifications on our
main criterion, the number of floating point operations in a matrix-vector product Hv

(in the “Flops” columns), as well as on the amount of storage requested for the com-
plete Hessian matrix H , taking symmetry into account (in the “Storage” columns).
The sub-headings “initial”, “expanded” and “merged” respectively correspond to the
initial structure (as given within CUTE), to the structure after element expansion and
after element merging.

We note the following points.

• We first notice the effect of element merging on the number of elements itself.
We see a sometimes significant decrease in the number of elements, in particular
for problem NCB20B. The major reduction on this example is explained by the
fact that this problem has a band structured Hessian of semi-bandwidth 20,
which is originally described as the superposition of 981 principal submatrices
of dimension 20, overlapping each other in 19 variables, to which are added
1000 one dimensional diagonal elements. Merging these elements is thus clearly
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Problem Elements Flops Storage

name initial merged initial expanded merged initial expanded merged

NCB20B 1981 6 393400 393400 209025 207010 207010 105060

TORSION1 20736 18144 103680 82944 72576 20736 62208 57024

JNLBRNGA 21316 18651 106580 85264 74604 21316 63948 58618

LMINSURF 10952 10952 54760 43808 43808 10952 32856 32856

OBSTCLBU 21316 18651 106580 85264 74604 21316 63948 58618

HAGER3 10000 5000 70000 65000 45000 30000 45000 35000

HILBERTB 1275 1275 4950 4950 4900 3725 3725 3724

SINQUAD 14996 9998 34988 29990 24992 14996 24486 22486

SCHMVETT 14994 4998 89964 79968 79968 24990 44982 44982

CRAGGLVY 4998 4998 14994 12495 12495 4998 9996 9996

Table 2: Effect of structure modification on operation count and storage

advantageous.

• As expected, the overall number of floating point operations needed to compute
Hv is steadily decreasing for all examples. Although not very striking on prob-
lem HILBERTB, the gain exceeds 10% on all other cases. Furthermore, it can
be extremely important, for instance for problems NCB20B and HAGER3. This
good performance on NCB20B is again explained by the significant amount of
overlap between elements in the initial decomposition.

Other cases of interest are TORSION1, JNLBRNGA and OBSTCLBU. These
problem are quadratic with a structure arising from the discretization of a two
dimensional variational problem. In the original description, the diagonal terms
of the Hessian were separated from the off-diagonal terms. They are included
in principal submatrices of dimension larger than one in the modified structure.

It is important to emphasize here that the reduction obtained is very worthwhile,
even if it is modest. Indeed, matrix-vector products of the form Hv occur
at every conjugate gradient iteration in the (approximate) solution of (2.2),
and this latter system needs to be solved at every iteration of a truncated
Newton’s method. For instance, a total of 3819 conjugate gradient iterations
are required by LANCELOT (with default settings) to reduce the norm of the
objective function’s gradient below 10−7 for NCB20B , a moderately difficult
unconstrained problem in 1000 variables. Moreover, if the considered problem
has constraints and an augmented Lagrangian (see Powell [11], Bertsekas [1] or
Conn et al. [5]) or a Lagrangian barrier (see Conn et al. [6]) approach is used,
there may even be several sequences of Newton’s iterations [in other words,
we solve several (bound-constrained) optimization problems], which typically
results in a relatively large number of conjugate gradient iterations to solve the
problem.
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• If we now consider the memory requirements, we see that expansion, whenever
it occurs, clearly increases the necessary storage by a factor which, in our exam-
ples, could be as much as three. We may also conclude from these results that
the internal representation is often very efficient (in terms of space) compared to
elemental representation. This may be an important observation when storage
becomes an issue, either because of the mere size of the problem, or because of
restrictions due to a particular computer platform.

• The computational gain obtained by element expansion is often comparable to
that obtained by element merging. But the previous remark indicates that the
benefit from element expansion is obtained at some storage cost. In contrast,
element merging typically reduces both storage and arithmetic.

5 Discussion

We have introduced the concepts of element merging and expansion within a given
partially separable structure, and have proposed a simple use of these concepts to
improve the structure from a very specific point of view: that of optimizing the amount
of arithmetic in matrix-vector products of the type arising in conjugate gradients. We
have also shown that our proposal can have a clearly beneficial effect on problems
whose initial decomposition may be natural, but suboptimal from the point of view
of optimizing the amount of arithmetic in matrix-vector products.

It is very clear that merging and expansion may have other kinds of impact on
optimization algorithms. An interesting other instance is when partitioned quasi-
Newton approximation schemes (see Griewank and Toint [9]) are used to determine
the Hessian matrix H , as is a possibility in LANCELOT. In this case the definition of
an element is crucial because a different secant equation is enforced per element. The
decomposition then induces the structure of the Hessian matrix, and the off-diagonal
zero blocks of Figure 2 do not appear when two elements are merged. Hence one
typically obtains different approximations for two elemental Hessians, depending on
whether they are merged or not. As the quality of the Hessian’s approximation is
crucial for the overall behaviour of the minimization algorithm (in terms of iterations,
for example), we may observe a direct effect of element merging at this very aggregate
level. We refer the interested reader to Toint [12] for an analysis of this effect in the
context of large-scale nonlinear least-squares calculations.

We also note here that computer architecture may play an important role in the
decisions considered here. Indeed element merging is directly related to the granu-
larity of the matrix-vector product calculations. If parallel processors are available,
the optimum level of granularity may vary depending on what particular machine is
considered, and good merging schemes should therefore vary accordingly.

Finally, we note that the techniques considered above are largely independent of
the ordering of the variables and/or elements, inasmuch as they are based on lists
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of elements involving given variables. However, some dependency on the ordering is
still present because we attempt to merge the first and subsequent elements in each
such list. It is difficult to say from our preliminary experience in what measure this
dependence plays a significant role in the final results.

Despite its direct practical interest, we of course realize that the research described
in this paper is very limited in scope. We hope that it will encourage further research
into better ways to improve the structural description of large optimization problems.
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