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Abstract 

We show how to exploit the structure inherent in the linear algebra for constrained nonlinear 
optimizaüon problems when inequality constraints have been converted to equations by adding slack 
variables and the problem is solved using an augmented Lagrangian method. 
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1. Introducfion 

In this note, we consider  solving the p rob lem 

min imize  f ( x ) 
X E R  n 

sub jec t to  ly <~c(x) <~Uy and lx <~x<~ux 

by int roducing slack variables y to create the equivalent  p roblem 

(1.1)  
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minimize f ( x ) 
X E R  n, y ~ R  rn 

subjectto c ( x ) - y = O  ly~y<~Uy and lx<~X<~Ux. (1.2) 

The use of slack variables is, of course, a well-established technique for dealing with general 
inequalities in linear programming (see, for example, Dantzig, 1963, p. 86, Murtagh, 1981 
or Chvätal, 1983, p. 14) and more recently nonlinear programming (see, for example, 
Murtagh and Saunders, 1978). The conversion to "standard form" has a number of linear- 
algebraic advantages for large problems, see for example Gill et al. (1981), p. 190. 

We attempt to solve (1.2) by a sequential minimization of the augmented Lagrangian 
function (see Powell, 1969 and Hestenes, 1969) 

,a 1 
(Ci(X) - -y i )  2, (1.3) e(x, y, A, ~) =f(x) + zù ai(ci(x) -y i )  +~.. 

i = 1  i = l  

within a region defined by the simple bounds 

ly«.y<~Uy and lx<~X~Ux, (1.4) 

where the components Ai are Lagrange multiplier estimates and/x is a positive penalty 
parameter. Notice that we do not include the simple bounds in the angmented Lagrangian 
function. 

At the heart of any iterative algorithm to minimize (1.3) (for fixed values of A and/x), 
it is usual to construct a quadratic model of the augmented Lagrangian function and (approx- 
imately) minimize this within the region defined by the simple bounds, and, perhaps, a 
trust-region, on x and y. A simple-minded approach to this - in fact the approach taken 
within the LANCELOT code SBMIN (see Conn et al., 1992a) - is to treat all variables in 
the same way. Thus slack variables are not treated differently from the problem variables 
x. If there are many slack variables relative to the number of problem variables- for instance, 
as would be the case for problems where a parameterized (or semi-infinite) constraint is 
approximated by a large number of representatives at discrete values of the parameter- the 
linear algebra will typically involve matrices of O(n + m). The exact order will be deter- 
mined by the number offree variables - i.e., those which are allowed to move unhindered 
by their bounds - at any instant. However, if slack variables are handled explicitly, we shalt 
show that the linear algebra need only involve matrices of order O(n). 

The exploitation of the structure of slack variables has apparently also been used to 
advantage in the MINOS package of Murtagh and Saunders (1980) although this does not 
appear to have been publicized in the open literature. 

def 

Throughout this note, we shall use the following notation. Let p = 1//z. For given x and 
y, we define Lagrange multiplier updates 

def 

A =  A + p(c(x) - y ) .  (1.5) 
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We let g(x) denote the gradient o f f (x ) ,  ai(x ) denote the gradient Vxci(x), A(x) be the 
Jacobian matrix whose rows are ai(x) T and H(x, A) = VxJ(X) + E~=I hiV~xCi(X) be the 
Hessian matrix of the Lagrangian functionf(x) + ATc(x). 

We need to consider the derivatives of (1.3) with respect to x and y. The gradient is 

(g (x )+A(x )T  X) (1.6) 

and an appropriate approximation to the Hessian matrix is 

(B 0~. [A(x)TA(x) 
OJ-e P~ -A(x )  - l X ) ]  ' (1.7) 

AST I 

where B is a suitable approximation to H(x, h). The Hessian approximation aims to mimic 
the structure of the exact second derivatives of (1.3), using known first derivative infor- 
mation, while allowing the possibility of approximating the second order terms. Indeed, we 

may use the exact Hessian matrix if that is convenient. 
Finally, let ./B = { 1, 2 . . . . .  m } and ~ = { 1, 2 . . . . .  n }. Then, if v is a vector with m 

components and O r___ JE, v j  is the vector whose components are v» i E ~ ' .  Furthermore, if 
A is an m by n matrix and f _ c  A/', ALs, j is the matrix whose components are Ai, j, i ~ J ,  
j ~ , f f .  

2. The model 

Let us assume that, in the course of an iterative method to solve (1.2), we have obtained 
the estimate (x, y) of the minimizer of (1.3). We now wish to obtain an improved estimate 
(x ÷, y ÷ ) of the required minimizer. For convenience, we shall often drop the arguments 
x and y; Unless otherwise stated, all functions are assumed to be evaluated at x or (x, y) as 

appropriate. 
In a typical descent method, we construct a simplified model of (1.3) and use an (approx- 

imate) minimizer of this model to predict the (unknown) minimizer of (1.3). The mini- 

mizer of the model within the bounds 

lx<~x+<~ux and ly<~y+<~Uy, (2.1) 

and, if a trust-region method is intended, a trust-region 

for some positive scalar A, is sought. We shall refer to the intersection of the regions defined 
by (2.1) and, if required, (2.2) as the model-feasible region and any point which lies in 
this region is said to be model-feasible. It is particularly convenient when the infinity norm 
is chosen to define the trust-region as then the sides of the simple bound "box"  and the 
trust-region align. 
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We shall be concerned with the case when the quadratic model 

. . ,  (A'~) q~m(x +, y +)--~ q~(x, y, A, p) + ( (x  + - x )  T (y+ _y)T)  g +  

, T,[B + pA TA - pA q (x + 
+½((X+--x)T ( Y + - - Y ) ) t  - p A  pI ]~y+---~)  (2.3) 

is chosen to predict improvements x + and y ÷ to x and y. This model is, of course, just a 
second-order Taylor series approximation using the approximate Hessian (1.7). 

We allow the possibility that a model-feasible correction x b and yb for which 
~m(X b, yb) <~ qbm(X, y) has already been computed and that we are interested in cõmputing 
model-feasible x ÷ and y ÷ for which ~m(X +, y ÷ ) <~ ~m(X b, yb). In trust-region methods, 
the point (x b, yb) might be the (generalized) Cauchy point (see, for example, Moré, 1988 
or Conn et al., 1988). In linesearch methods, it is more normal for (x b, yb) to be (x, y). 

We refer to (x b, yb) as the base point. We note that the gradient of the model at the base 
point is 

(gb +__A:Ab), (2.4) 

where the multiplier estimates A b satisfy 

I~ b = X'+ pA (x b - x) - p ( yb_  y) (2.5) 

and gb is given by 

def 

gb ~_ g + B ( x  b --x), (2.6) 

the quantity gb +ATAb is nothing other than a first-order prediction of the gradient of the 
Lagrangian function at the point x = x b and A = A b. We also note that the multiplier estimates 
(2.5) are first-order predictions of the multiplier updates (1.5) evaluated at the base point. 

3. Linear algebra 

We assume without loss of generality that the first n a problem variables, indexed by Æx, 
and the first ma slack variables, indexed by Æy, are active (i.e., lie on one of their bounds) 
at the base point and are to be fixed during the current iteration. We denote the indices of 
the nl --- n - n= free problem variables and m i ~ m - m a free slack variables by S x  = J \  
~¢~ and J y  = ~ ' \ Æ y  respectively. Herefree is intended to mean both variables which are 
inactive (i.e., lie away from their bounds) and variables which, although active, are free to 
move oft their bounds. We will not concern ourselves here with how to decide which 
variables are free or fixed; the reader should consult, for example, Gill et al. (1981) for 
details of explicit active/working set strategies (Chapters 5 and 6) and Bertsekas (1982) 
for implicit ones. 
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3.1. Direct methods 

We first consider direct methods, that is methods which rely solely on matrix factoriza- 
tions, to solve the model problem. We note that, although we attempt to solve the model 
starting from (x b, yb), all the derivative information that we use is calculated at (x, y). 

If we are using direct methods, the Newton correction (p, q) to the iterate (x b, yb) 
satisfies 

B+pATA 

-- pA gy, ~ex 
p A  jry, .ze x 

I 
0 

¢ b g~,~ + A T ,  d~h ~ 
g~~ + A T, c A  b 

0 
0 

- pAjy..sx 
0 
0 

T T Ol - p A  ~y,  .~x - p A  j r ,  ~ex 0 

_pATy, T 0 0 «x - pA «,, «~ 
pI 0 0 I 
0 pI 0 0 
0 0 0 0 
I 0 0 0 

P . ; / :  

(3.1) 

where 7r x and ~y are Lagrange multipliers associated with the active variables. Using the 
last two block equations of (3.1) to eliminate the variables 

p~¢ = 0  and q~,r=0, (3.2) 

and extracting the second and fourth block equations, we obtain 

(B T AT «x l (PJx l=  ( g J x + A ~  "~~A I (3.3) j , ,  «x + pA ~r, « A ~r, ~rx _ p «y, b T b 

- -  pA«y, «« pI I \qJy /  - ~, - A j ,  1" 

We may factorize the coefficient matrix of (3.3) to obtain 

(Bjx" ~~+pA~,  ~A~, ,  ~~ -pA~y ,~x )  
- p A « »  «~ pI  

= ( ó - P A ~ " ~ ~ ~ ( B ~ « ' ~ x + P A ~ ' j x A ~ r J x ~ )  (3.4) 
pI 1~ - A « »  «x " 

The important point here is that when we zero the upper right block of the matrix on the 
left-hand-side of (3.4), this also zeros the A«» «« terms in its upper left block. Thus we 
may solve (3.3) by successively solving the pair of intermediate equations 

(ö -oA•"p, « x t ( ; ) = - (  g'~+A''«xAb~_Ab ] (3.5) 
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and 

( B « « ' ~ x + p A T y ' J x A d » J x  O l ( P « x i = ( v l  (3.6) 
- A « r  ' «~ I1 kq«e] kwl" 

The first of these (3.5) yields that 

_b A T Ab W=/xAbe and v = - g ~ x  - dy ,«x  dy ,  (3.7) 

where once again we see complete cancellation between the A«» Jx terms in the second 
equation in (3.7), and both solutions are obtained without any inversions. Then we can 

obtain p«~ from (3.6) by solving 

(Box, «~ +pATe, j~Ady, «x)P.Jx b T = -- (g«x  +Ade, «~Aby) (3.8) 

and thus recover, again without inversion, q~y from 

q Je =/~Abe +A«y. «~P«x. (3.9) 

Hence, the only system of equations that needs an explicit solution, (3.8), requires the 

factorization of an ni by ni matrix. Note that, if the Newton equations are to correspond to 
the minimizer of a convex model, one needs to ensure that Box" «~ +pATe, ~xAde, ~x is 
positive definite. 

If the Newton step lies outside the model-feasible region, one can perform a linesearch 
for the model along the piecewise linear path obtained by projecting the arc 
(x b + ap, yb + aq),  « i> 0, back into the model-feasible region (see Bertsekas, 1982, or 

Conn et al., 1988). Furthermore, additional Newton steps may be performed, using reduced 
or (perhaps) increased sets of free variables and starting from the newly calculated point, 
if a more accurate solution of the model problem is required (see, for instance, Conn et al., 
1992a, Section 3.2.3). 

The authors are aware that other derivatives of the above result are possible. The descrip- 
tion given here is intended to emphasize the reduction in computational effort possible when 
the structure inherent in the linear system (3.3) is properly exploited. 

3.2. Iterative methods 

If  we wish to use an iterative method to (approximately) solve the model problem, we 

need to ensure that the resulting search direction is a descent direction for the model at the 
base point. We now show that we may guarantee this merely by finding a vector pj.~ for 
which 

T b + d L  b P J x ( g J x  , (3.10) «XA ~~¢'y) < 0. 

For then, having obtained such a p o  x, we use (3.9) to find q«e" It now follows from (3.2), 
(3.9) and (3.10) that, as 
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B b - F A T A b ~  T b _T Ab (pTqT) --A t' )=p:~(g:x+AT, , fxAb)__qjy  Jy 

T ( b +AT,,  A b /xA~A~,<O,  (3.11) =P:x g:x :x ~ ' , ) -  

the overall search direction is a descent direction for the model at the base point. 

So long as B:x" :x+pAT,.  j xAsgy ,  J x  is positive definite, we can find a P«x which 
satisfies (3.10) by applying a de scent method to (approximately) minimize the model 

der 

--- 1_~ :B +pATy, jxAs¢y .:x)P:x ~(P«x) it' xt :«, :x 

T b +p:x(g«~ +AT,, A b :~  ~,~) (3.12) 

starting from the estimate p:~ = 0. Hence. using the convexity of ~,  we have that 

T b p~r~(g:~ +ATy, : xA~  r) ~< ~(p:~) < ge(0) =0 ,  (3.13) 

which gives (3.10). An appropriate descent method is, for instance, the truncated conjugate- 
gradient method (see, for example, Dembo et al., 1982 or Toint, 1981 ). 

Once again, the new iterate may have to be projected back into the model-feasible region 
to maintain model-feasibility and, if desired, the appropriate iterative process can be 
restarted. 

4. Discussion 

A number of the options within the software package SBMIN require that the matrix 
(3.4) is formed and factorized. This has several disadvantages: 

• The matrix is of dimension ni + mi, rather than the dimension n/of  

B:x, :~ +pATy, :xA~«» :x. (4.1) 

When there are many inequality constraints present, this implies that considerable extra 
work will be performed. 

• When a direct method is used, even if the pivot sequence is chosen to eliminate the 
slack variables first, no account is taken of the fact that the Schur complement after mi pivots 
(that is, the matrix which remains to be factorized after mi pivots in the factorization of 
(3.4)) is precisely the matrix (4.1). That is, as we have already mentioned, there would 
be exact cancellation of the term pAT:y, j x A :  » Jx in the Schur complement in exact arith- 
metic. Failure to exploit this exact cancellation can be harmful in two ways. Firstly, the 
pivot ordering is based on a syrnbolic factorization, which would not recognize such a 
cancellation. Thus significantly more space may be reserved for the factorization than is in 
fact warranted, and indeed it is even conceivable that the factorization may fail for lack of 
space when in reality there is sufficient room to hold the nonzeros in the factors. Secondly, 

if no account is taken of the cancellation which should occur in the positions once occupied 
by the T pAry, :gA:» «« terms, unnecessary floating point operations may be performed to 
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calculate values that we are entitled to treat as zero, but that may be " smal l '  when calculated 

with finite precision. 

• An iterative method may suffer for three main reasons. Firstly, the work per iteration 

will be larger as the system is both bigger and contains more nonzeros. Secondly, if  (4.1) 

is positive definite, the spectrum of  (3.4) will be larger than that of  (4.1) (because of  the 

interlacing eigenvalue property of  the matrices following a block-elimination; see, for 

instance, Wilkinson,  1965, p. 103), thereby decreasing the theoretical rate of  convergence 

of  many iterative methods including the conjugate gradient method. Finally, and perhaps 

not so importantly in practice, a finite convergence result would occur after at most ni + 

mi rather than ni iterations if  infinite precision arithmetic were used. 

We believe that the performance of  our optimization package LANCELOT will 

improve considerably if  the structure of  the slack variables is properly exploited, especially 

when m >> n. This will place the work per iteration at the same level as is possible for 

methods, such as those based on the sequential minimization of  barrier or Lagrangian barrier 

functions (see, for example,  Wright,  1992 or Conn et al., 1992b), which treat inequality 

constraints directly. 

Acknowledgement 

The authors would like to thank an anonymous referee whose report was almost as long 

as the original manuscript  and whose comments have greatly improved the final presentation. 

References 

D.P. Bertsekas, "Projected Newton methods for optimization problems with simple constraints," S1AM Journal 
on Control and Optimization 20 (1982) 221-246. 

V. Chvätal, Linear Programming (W.H. Freeman, New York, USA, 1983). 
A.R. Conn, N.I.M. Gould and Ph.L. Toint, "Global convergence ofa class of trust region algorithms for optimi- 

zation with simple bounds," S1AMJournal on NumericalAnalysis 25 (1988) 433-460. See also same journal 
26 (1989) 764-767. 

A.R. Conn, N.I.M. Gould and Ph.L. Toint, LANCELOT: A Fortran Package for Large-scale Nonlinear Optimi- 
zation (Release A), Number 17 in Springer Seiles in Computational Mathematics (Springer Verlag, Heidel- 
berg, Berlin, New York, 1992a). 

A.R. Conn, N. Gould and Ph.L. Toint, "A globally convergent Lagrangian barrier algorithm for optimization with 
general inequality constralnts and simple bounds," Research Report RC 18049, IBM T.J. Watson Research 
Center (Yorktown Heights, NY, 1992b ). 

G.B. Dantzig, Linear Programming and Extensions (Princeton University Press, Princeton, NJ, USA, 1963). 
R.S. Dembo, S.C. Eisenstat and T. Steihaug, "Inexact-Newton methods," SIAM Journal on Numerical Analysis 

19 (1982) 400-408. 
P.E. Gill, W. Murray and M.H. Wright, Practical Optimization (Academic Press, London and New York, 1981 ). 
M.R. Hestenes, "Multiplier and gradient methods," Journal ofOptimization Theory and Applications 4 (1969) 

303-320. 
J.J. Moré, "Trust regions and projected gradients," in: M. Iri and K. Yajima, eds., System Modeling and Optim- 

ization, Volume 113, Lecture notes in control and information sciences (Springer Verlag, Berlin, 1988) pp. 
1-13. 



A.R. Conn et aL / Mathematical Programming 67 (1994) 89-97 97 

B.A. Murtagh and M.A. Saunders, ' 'Large-scale linearly constrained optimization," Mathematical Programming 
14 (1978) 41-72. 

B.A. Murtagh and M.A. Saunders, "MINOS/Augmented user's manual," Technical Report SOL80-14, Depart- 
ment of Operaüons Research, Stanford University (Stanford, CA, USA, 1980). 

B.A. Murtagh, Advanced Linear Programming (McGraw-Hill Book Co., New York, 1981 ). 
M.J.D. Powell, "A method for nonlinear constmints in minimization problems," in: R. Fletcher, ed., Optimization 

(Academie Press, London and New York, 1969) pp. 283-298. 
Ph.L. Toint, "Towards an efficient sparsity exploiting Newton method for minimization," in: I.S. Duff, ed., Sparse 

Matrices and their Uses (Academie Press, London, 1981) pp. 57-88. 
J.H. Wilkinson, The Algebraic Eigenvalue Problem (Clarendon Press, Oxford, UK, 1965). 
M.H. Wright, "Interior methods for constrained optimization," Acta Numerica 1 (1992) 341-407. 


