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Abstract

Much progress has been made in constrained nonlinear optimization in
the past ten years, but most large-scale problems still represent a consid-
erable obstacle.

In this survey paper we will attempt to give an overview of the cur-
rent approaches, including interior and exterior methods and algorithms
based upon trust regions and line searches. In addition, the importance of
software, numerical linear algebra and testing will be addressed. We will
try to explain why the difficulties arise, how attempts are being made to
overcome them and some of the problems that still remain.

Although there will be some emphasis on the LANCELOT and CUTE
projects, the intention is to give a broad picture of the state-of-the-art.

1 Introduction

We shall first state the most general form of the problem that we are addressing,
namely

minimize f(x) (1.1)
TER™

subject to the general (possibly nonlinear) inequality constraints

cj(x) <0, 1<5<, (1.2)
to the (possibly nonlinear) equality constraints

cj(z) =0, I+1<j5<m, (1.3)
and the simple bounds

i<z <u;, 1<i<n. (1.4)

Here, f and the c¢; are all assumed to be twice-continuously differentiable
and any of the bounds in (1.4) may be infinite.

We only expect to obtain local minimizers. This presents no problems in
convex programming, where all local minima are indeed global (for example, in



linear programming), but even for small, general nonlinear programming prob-
lems it is usually extremely difficult to verify globality. For large problems, with
current techniques it is practically impossible. Fortunately, in many situations,
an algorithm that determines local optima suffices.

Our primary interest here is in problems that involve a large number of
variables and/or constraints. Consequently, it seems worthwhile to elaborate
as to what we mean by large. Firstly, this notion is clearly computer dependent.
Secondly, the notion of size is problem dependent. A highly nonlinear problem in
one hundred variables could be considered large, whereas in linear programming
it is possible to solve problems in five million variables. Similarly, it also depends
upon the structure of the problem. Many large-scale nonlinear problems arise
from the modeling of very complicated systems that may be subdivided into
loosely connected subsystems. This structure may often be reflected in the
mathematical formulation of the problem and exploiting it is often crucial if
one wants to obtain an answer efficiently. The complexity of the structure is
often a key factor in assessing the size of a problem. In addition, the notion of
a large problem depends upon the frequency with which one expects to solve
a particular instance or closely related problem. When one anticipates solving
the same class of problems many times, one can afford to expend a significant
amount of energy analyzing and exploiting the underlying structure.

Thus, although it is not possible to state categorically that a problem in,
say, seven hundred variables is large, suffice it to say that, today, a problem
in fifty variables is small and a generally nonlinear problem in five thousand
variables and one thousand nonlinear constraints is large.

At the risk of stating the obvious, the world is not linear and accurate mod-
eling of physical and scientific phenomena often leads to large-scale nonlinear
optimization. In our opinion, the frequent use of linear models is not an indi-
cation that nonlinear problems do not abound. Rather, it is a statement of the
desire to use an algorithm (the simplex method) that is readily understood and
is well-known to be suitable for large problems. We would like to convince you
that you should consider solving nonlinear programs when they are more ap-
propriate. It should be emphasized that solutions to large nonlinear problems
on moderate workstations in a reasonable amount of time are currently quite
possible. Furthermore, in practice one is often only seeking improvement rather
than assured optimality (another reason why local solutions may suffice). This
fact makes problems that at first sight seem impossible (for example, control
problems that one wishes to solve in something like real-time), tractable.

In the past twenty years rather sophisticated and reliable techniques for
small-scale problems have been developed (see Chapters 1 and 3 of Nemhauser
et al., 1989, and the chapters of Bartholomew-Biggs and Fletcher in this vol-
ume). However, efficient algorithms for small-scale problems do not necessarily
translate into efficient algorithms for large-scale problems (see, for example,
Bartholomew-Biggs and Hernandez, 1994). Thus, it is not adequate to take
existing optimization software for small problems and apply it to large ones,
hoping that the increased capacity in computing will take care of the growth
in problem size. By contrast, we could expect that an efficient method for
large-scale problems be at least moderately efficient for small-scale problems.



Notwithstanding, it is essential to know and understand the small-scale back-
ground.

Without a doubt, the availability of powerful workstations and supercom-
puters (both parallel and sequential) has encouraged research in algorithms for
large-scale problems, but the main reason we can solve very large problems is
because we can exploit structure. Moreover, the state-of-the-art of large-scale
nonlinear programming has progressed so much in the past decade that it is
reasonable to ask the question ‘Is it worthwhile to design algorithms that are
unsuitable for large-scale problems?’ At present, the answer is likely to be in
the affirmative, for example, for problems where the cost of function evaluations
is very high or for problems with extremely nonlinear behaviour and /or difficult
scaling.

Furthermore, some of the more mundane tasks, such as the input of prob-
lems, are important and non-trivial issues. The evaluation of results is even
more important and difficult. The scope of some of the problems tackled by
LANCELOT and included in CUTE (see below for more details on these two
packages) contains a large number of nonlinear optimization problems of various
sizes and difficulty, representing both ‘academic’ and ‘real world’ applications.
Both constrained and unconstrained examples are included. The problems we
have solved to date using LANCELOT range from problems with 20,000 variables
and 10,000 nonlinear constraints to small problems with less than 10 variables
and constraints. It is worth mentioning that some of the most difficult problems
are small (for example, LANCELOT has been unable to solve a problem with
149 variables, a quadratic objective function and 100 nonlinear constraints). It
is also worth stating that although LANCELOT was designed with large-scale
problems in mind, it is very suitable for solving small-scale problems.

Of course, there are many details that can contribute to the difficulty of a
problem. Unfortunately, none of us are good at handling them all. Scaling is
a well-known difficulty for which one has methods to try, but it is clear that
we would like to be able to do much better. There are approaches that are
usually effective in handling indefiniteness, but here again one feels that these
are far from ideal. Both primal and dual degeneracy are often perceptible as
difficulties. It is not always clear as to how they can best be tackled.

There is a very real difficulty associated with the fact that many practi-
tioners prefer good solutions to bad models rather than less good solutions to
more accurate (and thus better and probably more complicated) models. In-
deed a related problem that has frequently been an unwelcome accompaniment
to nonlinear optimization is that the user of the software needs to be relatively
sophisticated.

Finally, there are all the problems related to solving systems of symmetric
linear equations, since this is, in many ways, the kernel computation in nonlinear
optimization.



2 Basic Background

Although much of the fundamental background is covered in this volume by
the contributions of Bartholomew-Biggs (1994) and Fletcher (1994), there are
some very basic comments that relate to large-scale optimization that we would
like to mention here.

Firstly, the most basic approach to unconstrained optimization is undoubt-
edly steepest descent. ;From the point of view of storage, this is a splendid
method for large-scale optimization. However, it is intolerably slow since its
convergence rate is linear with a rate constant that may be uncomfortably
close to one. The other extreme is a safeguarded Newton’s method, which has
a second-order convergence rate. But in this case, the standard implementa-
tion requires too much storage (O(n?)) and too much work per iteration (O(n?)
flops). In fact, much of what we need to concern ourselves with is how to do
as little as possible initially (steepest-descent-like) and enough eventually to
guarantee an acceptable convergence rate (Newton-like). In effect, this is the
standard problem of global versus asymptotic behavior, since the weak behavior
of steepest descent is enough to guarantee global convergence (convergence to
a stationary point from any starting point).

One effective technique for large structured problems (mentioned in Sec-
tion 4 of Fletcher, 1994) is intelligent finite differencing (originally due to Curtis
et al., 1974). However, the standard steepest descent/Newton’s method com-
promise is quasi-Newton methods. Once again details are given in Fletcher
(1994), but essentially the idea is to use low rank updates to an initial ap-
proximation to the Hessian matrix (usually a (scaled) identity matrix). These
methods possess a sufficiently fast (superlinear) convergence rate. The updates
can be posed as minimization problems. For example, PSB (see Powell, 1970)
may be determined from

n n
minimize [|U[7 =Y Uj (2.1)
Uern? i=1j=1

subject to the quasi-Newton equations

Us = — Bé
oo_ T (2.2)
where
Bt = B+U
§ = zt—z (2.3)
v = gt-g

Here the superscript + indicates an update, B is the Hessian approximation
and g is the gradient of f.

A natural extension to structured problems is to impose sparsity by consid-
ering (see Toint, 1981a)

minimize ||U||% (2.4)
Uenn’



subject to the constraints

Uj = ~—Bd
v = uT (2.5)
and Ul'j = 0,i5 € 5,

where S specifies the sparsity pattern.

Unfortunately this approach has not turned out to be very successful in
practise (see Sorensen, 1981). On the other hand, the quasi-Newton approach
can be successfully applied to large-scale problems if the partially separable
structure of the problem (see below) is taken into account. If quasi-Newton
methods are preferred to exact second derivatives®, it is thus possible to ap-
proximate the Hessian of each element function f; individually, using a secant
equation of the type (2.3) for each one of them. This technique is called ‘par-
titioned updating’ and was introduced by Griewank and Toint (1982b). This
technique is substantially more successful than the sparse updating method just
described and is provided as an option within the LANCELOT package.

Another compromise between steepest descent and Newton’s method is the
method of conjugate directions. In the large-scale case we tend to think of
it as closer to steepest descent, but in some contexts (good preconditioners,
for example) it may be closer to Newton’s method. Steepest descent with
the inverse of a positive definite Hessian as preconditioner is indeed Newton’s
method.

Conjugate direction methods maintain finite Q-convergence (that is, con-
verge for a positive definite quadratic problem in a finite number of iterations;
no more than n, the dimension of the space). This is not really very rele-
vant for large-scale problems, where n is large. One can think of conjugacy
as a generalization of orthogonality?. Thus it is not that surprising that these
directions can be derived via Gram-Schmidt orthogonalization, either as three-
term recurrences or using Lanczos orthogonalization, although some care has
to be taken to make the process numerically stable (see, for example, Golub
and Loan, 1989, Chapter 9). As a consequence of these recurrences, conjugate
direction algorithms can be implemented storing only a few vectors (three to
five, depending on the precise method used). With exact line searches and ex-
act arithmetic, the method is n-step superlinearly convergent, in general. The
proof depends critically upon restarts — otherwise convergence is linear. In
practise they nearly always converge linearly, but for large n, n-step superlin-
ear is not much better. Of course, what one wants is a fast linear rate, which
preconditioning can achieve.

If we think of Lanczos as

QTAQ =T, (2.6)

where T is tridiagonal and () is the matrix whose columns are the Lanczos
vectors, then the process can also be carried out in block form with 7" block

n our experience, this is very seldom necessary.
2A set of directions {d;}} are G-conjugate for positive definite G if and only if df Gd; = 65,
where §;; is the Kronecker delta.



triangular. One can then work with the blocks separately and exploit a parallel
environment (Nash and Sofer, 1991).

Another way to reduce storage is to use limited memory methods. For
example Liu and Nocedal (1989) (see also Liu and Nocedal, 1988), use an
inverse BFGS update in the form

BT =VTBV + pss?, (2.7)

where p = 1/476 and V = I —py6”. The basic idea is to start with a B that can
be stored efficiently, for example a scaled version of the identity matrix. One
then updates m times, however without storing the updated matrices explicitly
but instead storing the m pairs v and §. Most importantly m is typically very
small, say five. The scaling of the initial matrix is also important. Other recent
references include Byrd et al. (1993) and Zou et al. (1993).

However, it is unclear as to whether the relative success of naive precondi-
tioners, limited memory with small m and naive scaling of the identity matrix
are mostly a consequence of the not very extensive testing that has been carried
out to date. In particular, most problems tested seem to be rather well scaled.

2.1 Solving the Linear System

Typically, the major computational task in optimization is to solve a system
of linear equations that arises from the fact that one uses quadratic models
and stationary points are characterized by gradients being zero. In addition,
optimality conditions and/or reduced methods for constrained problems give
rise to (generalized) least squares problems and linear systems involving the
Karush-Kuhn-Tucker matrix. Thus progress in solving large linear systems has
implications for large-scale optimization (see, for example, the contribution of
Bjorck, 1994, in this volume). If the system is written

Bd = —g (2.8)

then ideally, we would like to combine the determination of B with the solution
of (2.8). If possible we would choose the matrix of exact second derivatives
(maybe in a reduced space) for B. As we will see later, this often can be done
if structure is suitably exploited. The linear system can then be solved using
direct or iterative techniques.

We first consider direct methods. There are two main approaches, namely
multifrontal techniques and sparse Cholesky factorizations. Very briefly, the
former approach tries to assemble the required entries in a piecemeal manner.
Once a complete column and row are assembled one can do the corresponding
elimination, thus building up the corresponding elements of L. and U. For de-
tails see Conn et al. (1993a), Duff et al. (1986, Chapter 10), Duff et al. (1988),
Duff and Reid (1982), Duff and Reid (1983) and Duff and Reid (1993). By con-
trast, the sparse Cholesky factorization primarily tries to order the rows and
columns of B whilst maintaining reasonable stability by including the possibil-
ity of adding appropriate quantities to the diagonals of B, if necessary, (Chapter
3 of Conn et al., 1992b, Gill and Murray, 1974, Gill et al., 1992, Schlick, 1993



and Schnabel and Eskow, 1991). For example, Schnabel and Eskow use Ger-
schgorin bounds to determine the amount to add to the diagonal. They choose
diagonal pivots and change the diagonal as little as is reasonable in order to
maintain sufficient positive definiteness. All the proposed methods use about
O(n?) additional work as compared with standard Cholesky. It is interesting to
remark that these methods are related to lo trust region/Levenberg Marquardt
algorithms, although the latter are using a rank n update rather than the nor-
mally considerably lower rank updates used above, (Hebden, 1973, Levenberg,
1944, Marquardt, 1963 and Moré, 1978).

The iterative method of choice is that of (preconditioned) conjugate gradi-
ents. Thus we need to solve (2.8), where B is a (possibly perturbed) approxi-
mation to the Hessian matrix V., f. The perturbation may be obtained as the
conjugate gradient algorithm proceeds in what we think is an elegant way that
preserves conjugacy, see Arioli et al. (1993).

3 Some Existing Methods

Let us first consider the most venerable and best known nonlinear optimization
algorithm that was designed with large-scale problems in mind. The origins
of MINOS (Murtagh and Saunders, 1987) come from Robinson (1972) and
Rosen and Kreuser (1972). The method can be considered to be an extension
of the simplex method, since both are a reduced gradient technique. Thus the
structure exploited is sparsity and the essential technology used is closely related
to the linear programming technology of the simplex method. In particular,
MINOS replaces

minimize  F(x) + 'z +dly
zeR",yeR™
subject to  f(x) + A1y = by
Asz + A3y = by
and lp <z <u
ly Sy <y
with

minimize  F(z) + Tz +dTy + X (f(2) — f(2)) + 1p(f(2) — f@)T(f(z) -
zeR",yeR™

subject to fle)+A1y=b
Asw + Azy = by
and ly <z <uy (3.2)
ly <y <y,

where f(a:) = f(zk) + Ji(x — xp),

and Jp denotes the Jacobian of f evaluated at xi. We note that the non-
linear contributions to the constraints are linearized. Omne then formulates a
quadratic model for the corresponding augmented Lagrangian objective func-



tion (see Fletcher, 1987, Section 12.2). Writing the activities that are deter-
mined by the general linear constraints as

Av=(B S N)z=b, (3.3)
a basis for the null space is given by the columns of the matrix Z, where
Z'=(-B's]" 1 0). (3.4)
This follows directly from the fact that
AZ=0and (0 0 I)Z=0. (3.5)

Since most of the computation in the outline above involves the inverse of
the basis matrix, B~', it is hardly surprising that exploitation of structure in
this algorithm mimics exploitation of the same structure in the simplex method.

More recent methods that are closely related to sequential quadratic pro-
gramming (see Bartholomew-Biggs, 1994, Section 5, for a general description)
are what Gill et al. (1993b) call transformed Hessian methods (see also Elder-
sveld, 1992). Thus consider the problem

minimize f(x) (3.6)
zeR™
subject to
cj(x) >0, 1<5<U, (3.7)
and the positivity constraints
z; >0 1<i<n. (3.8)

They then try to find (., J) by minimizing a quadratic model of the Lagrangian
subject to a linear model of the constraints (3.7). For large problems the ef-
ficiency of the linear algebra required to solve the created quadratic program
is crucial. One has to repeatedly solve a linear system with the Karush-Kuhn-

Tucker matrix "
k T
( iw 1%" ) , where A, = < 1;1 ) . (3.9)

It is worth remarking that solving such systems has general applicability to
problems with linear constraints (see, for example, Arioli et al., 1993 and Fors-
gren and Murray, 1993). Gill, Murray and Saunders use generalized T'Q) factor-
izations with

A,Q=(0T) and Q"HQ = RTR. (3.10)

Now, the Hessian H required for the gradient of the quadratic program’s ob-
jective function can be determined from

H=Q TRTRQ™. (3.11)



The solution to the quadratic program is completely determined by the up-
per triangular matrix 7', the matrix ) and the first n — ¢ rows of the upper
trapezoidal matrix R. If we let Z denote the first n — ¢ columns of ) and
call the remaining columns of Q, Y, then ZTHZ is the usual reduced Hessian
and QT HQ is the transformed Hessian. Furthermore, Y spans the range space
assoclated with A,,.

In order to avoid changing A,, one adds slacks explicitly and the trick
is to choose )’s that are relatively easily invertible, because of the need for
(3.11). Moreover, only a part of R need be stored and one can arrange not to
lose the structure in H that results from the additional slacks by permuting
A,, appropriately. One can think of this as being a non-orthogonal (and thus
appropriate for large-scale) version of NPSOL (Gill et al., 1986).

The above approaches are line-search based. There are also excellent algo-
rithms that are trust-region based. Once again these are mentioned in Fletcher
(1994, Section 1) and further details and references are given in Moré (1983).
Consider first the unconstrained problem.

The salient features we wish to recall here is that one uses a suitable model
for the objective® that one trusts over a suitable region*. One then compares the
actual reduction with the predicted reduction. If the comparison is sufficiently
favorable, the trust region is expanded and the current point is updated. If it
is sufficiently unfavorable, the trust region is reduced and the current point is
unchanged. Otherwise, only the current point is updated. Continuity guaran-
tees that eventually reduction of the trust region must ensure that the predicted
reduction is close enough to the actual reduction, which in turn guarantees that
the trust region is bounded away from zero. Global convergence is assured as
long as we do as well as minimizing the model, within the trust region, along
the steepest descent direction (which defines the Cauchy point). Eventually the
trust region is irrelevant, which guarantees a fast asymptotic convergence rate
as long as the underlying model optimization is suitably chosen (for example,
a safe-guarded Newton-like method).

The generalization to simple bounds is straightforward. For example, if one
uses the [, norm, then the trust region is a box. The feasible region corre-
sponding to simple bounds is also a box. The intersection of two boxes is a
box. One now defines a generalized Cauchy point as the minimum along the
projected gradient path within the trust region, where the projection is with
respect to the simple bounds. Since we are dealing with boxes the projection
is trivial. Such a projected gradient approach was proposed by McCormick
(1969), and independently in Bertsekas (1982) and Levitin and Polyak (1966).
More recently it has been exploited extensively in the context of large-scale
optimization by many authors, see for example Conn et al. (1988b), Dembo
and Tulowitski (1983), Moré and Toraldo (1989), and Moré and Toraldo (1991).
As in the unconstrained case, global convergence can be guaranteed, provided
one does at least as well as the generalized Cauchy point. One obtains better

3e.g., a quadratic model given by the second-order Taylor’s expansion about the current
point
‘e.g., a sphere or box



convergence, and ultimately a satisfactory asymptotic convergence rate, by fur-
ther reducing the model function. This is the trust region basis for the kernel

algorithm SBMIN (Conn et al., 1988a) of LANCELOT (Conn et al., 1992b). It
can be summarized as follows:

e Find the generalized Cauchy point based upon a local (quadratic) model.
e Fix activities to those at the generalized Cauchy point.

e (Approximately) solve the resulting reduced problem whilst maintaining
account of the trust region and bounds.

e Determine whether the current point is acceptable and update the trust
region radius accordingly.

The supporting theory in Conn et al. (1988a) verifies that the algorithm con-
verges to a first-order stationary point, provided the quadratic model is rea-
sonable. Moreover, the correct activities are identified after a finite number of
iterations if strict complementarity® is satisfied and the activities determined by
the generalized Cauchy point are kept active when the model is further reduced
in the inner iteration.

What makes this approach particularly attractive for large-scale problems
is that the determination of the generalized Cauchy point is easy (and need
not be exact) and one can use suitable unconstrained large-scale techniques.
An example would be truncated, preconditioned conjugate gradients (see, for
example, Steihaug, 1983a, Steihaug, 1983b and Toint, 1981b). Furthermore,
often one is able to exploit the structure in order to use exact second derivatives
(see below). Usually one never needs the Hessian matrix (or its approximation)
but rather the corresponding matrix-vector products. Here again it is possible
to exploit structure. The standard structure to exploit is sparsity and this is
basic to large-scale numerical linear algebra, see for example Duff et al. (1986)
and George and Liu (1981). In addition, most of the improvements in the
simplex method have depended upon such exploitation. LANCELOT exploits a
more general form of structure. The basic idea was first introduced in Griewank
and Toint (1982a). We introduced a slight generalization, exploiting this very

pervasive type of structure, which we call group partial separability. Consider

4
two different functions, fi(x) = z3, and fa(z) = [Z?’:O{]O’OOO x;| , where x €

2,000,000 - \We first note that V. f1 is very sparse® and V. fs is completely

dense. However, the important structure to note is that both functions have an
invariant subspace of dimension 4,999, 999. If we use the linear transformation
w = eTx, where e is the vector of ones, then fo(z) is transformed to w*. Imagine
having sums of such functions, not necessarily independent. Then you have the
fundamental idea. Moreover, it is not unusual to have many similar f;’s with
just different labellings. In fact the economies of storage are such that often
one is able to solve quite large problems on small machines.

A function f(z) is said to be group partially separable if:

®The case where strict complementarity fails to hold is considered by Lescrenier (1991).
5Tt has only one non-zero entry.
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1. the function can be expressed in the form

fz) = igxai(m)); (3.12)

2. each of the group functions g;(«) is a twice continuously differentiable
function of the single variable «;

3. the function '
ai(z) = Z wi7jfj(:v[]}) + aZTx —b; (3.13)
JET;

is known as the i-th group;
4. each of the index sets J; is a subset of {1,...,n¢};

5. each of the nonlinear element functions f; is a twice continuously dif-
ferentiable function of a subset 2l of the variables z. Each function is
assumed to have a large invariant subspace. Usually, this is manifested
by 2l comprising a small fraction of the variables z;

T

6. the gradient a; of each of the linear element functions a;

general, sparse; and

x — b; is, in

7. the w; ; are known as element weights.

An additional degree of freedom may be present in a partially separable
structure. Often a distinction can be made between the elemental variables
(the problem’s variables that effectively occur in the expression of the con-
sidered element) and internal variables associated with a given element”. A
more thorough introduction to group partial separability is given by Conn et
al. (1990a). SBMIN assumes that the objective function f(x) is of this form.

To summarize, we now know that LANCELOT is trust-region based, uses
SBMIN as its kernel algorithm and exploits structure via group partial separa-
bility. We now explain how it is extended to handle general equality constraints.
Inequalities are changed to equalities by the addition of slacks. Like MINOS it
uses the augmented Lagrangian, which we can think of as a Lagrangian with
additional quadratic (exterior) penalty terms.

The objective function and general constraints are combined into a compos-
ite function, the augmented Lagrangian function,

O(x, A\, p) = fx) + Z Aici(x) + i Zci(ﬂv)Q, (3.14)
i=1 i=1

where the components \; of the vector A are known as Lagrange multiplier
estimates, and p is known as the penalty parameter.

The constrained minimization problem (1.1), (1.3) and (1.4) is now solved
by finding approximate minimizers of ® for a carefully constructed sequence of

"For example, in fo above, one could consider w to be an internal variable and the z’s to
be the elemental variables.
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Lagrange multiplier estimates, constraint scaling factors and penalty parame-
ters.
The approach can be summarized as

e Test for convergence.
Convergence occurs when the iterate is sufficiently stationary (i.e., the
projected gradient of the augmented Lagrangian with respect to the sim-
ple bounds is small enough) and the current approximate minimizer of ®
is sufficiently feasible.

e Major iteration.
Use the simple bounds algorithm SBMIN to find a sufficiently stationary
approximate minimizer of ® considered as a function of z and constrained
explicitly by the simple bounds.

e Choice of update.
If sufficiently feasible, update multipliers and decrease the tolerances for
feasibility and stationarity.
Otherwise, decrease the penalty parameter and reset the tolerances for
feasibility and stationarity.

We use first-order updates for the multipliers, namely
A= N+ () /e (3.15)

Reset and update rules for the multipliers, stationarity, feasibility and the
penalty parameter are all analyzed in the theory of Conn et al. (1991) and
Conn et al. (1992d). There we are able to show that under suitable conditions
we converge to a first-order stationary point for the nonlinear programming
problem. Furthermore, if we have a single limit point, we eventually stop re-
ducing the penalty parameter, u. Finally, under somewhat stronger conditions,
one ultimately requires only a single iteration of the simple bounds algorithm
to satisfy stationarity for the outer iteration. This, plus many options, is the
state-of-the-art of LANCELOT A.

4 A Testing Environment

It is not that astonishing that during our research we were soon led to the frus-
trating question of testing and evaluating algorithms for large-scale nonlinear
optimization. Moreover, there is a rapid appreciation of how difficult this task
is — hence the dearth of published nonlinear results obtained with MINOS,
even though it has been available for over fifteen years.

The origin of our so-called standard input format (SIF) in LANCELOT was
that the setting up of test problems that accounted for the group partially sepa-
rable structure was tremendously tiresome. Group partial separability simplifies
the optimization but complicates the input. Conn et al. (1992b, Chapter 2)
provide an introduction to the SIF, including the considerations given to its
design. Chapter 7 of the same reference serves as a detailed manual on the
format.

Additional requirements in a suitable testing environment include

12



e a large database of test problems and a means of managing it,

e the ability to compare results with the best of the existing optimization
packages,

o facilities to test algorithmic ideas on the collection of problems, and finally
e making this all freely available to the community.

Hence the Constrained and Unconstrained Testing Environment of CUTE
(Bongartz et al., 1993). This offers a large growing database of test problems
written in SIF. The test set covers, amongst others,

e the ‘Argonne test set’” (Moré et al., 1981), the Testpack report (Buck-
ley, 1989), the Hock and Schittkowski collection (Hock and Schittkowski,
1981), the Dembo network problems (Dembo, 1984), the Moré-Toraldo
quadratic problems (Moré and Toraldo, 1991), the Boggs-Tolle problems
(Boggs and Tolle, 1989), the Toint-Tuyttens network model problems
(Toint and Tuyttens, 1990), and Gould’s quadratic programming prob-
lems (Gould, 1991),

e most problems from the PSPMIN collection (Toint, 1983),

e problems inspired by the orthogonal regression report by Gulliksson (Gul-
liksson, 1990),

e some problems from the Minpack-2 test problem collection (Averick et
al., 1991, Averick and Moré, 1991) and from the second Schittkowski
collection (Schittkowski, 1987) and

e a large number of original problems from a variety of application areas.

Each problem comes with a classification listing the type of problem, degree
of available derivatives, origin and size. There are tools provided to create,
maintain and update the classification database and also to select problem SIF
files on the basis of the classifications. Furthermore, we realize that not ev-
eryone, especially non-users of LANCELOT, is equally enthusiastic about using
partial separability and the SIF. However, the database of test problems pro-
vided by CUTE is clearly very useful. Thus CUTE provides tools to allow an
interface between problems, specified using the SIF, and other existing non-
linear programming packages, in addition to providing a relatively easy means
of building interfaces with new algorithms. When applicable these tools are
provided in sparse and dense formats.
At the present time, interfaces are available for the following:

e MINOS (see above)
We currently have interfaces for MINOS 5.3 and MINOS 5.4.

e NPSOL of Gill et al. (1986)
This package is designed to minimize smooth functions subject to con-
straints, which may include simple bounds, linear constraints, and smooth

13



nonlinear constraints. The software uses a sequential quadratic pro-
gramming algorithm, where bounds, linear constraints and nonlinear con-
straints are treated separately. Unlike MINOS, NPSOL stores all matrices
in dense format, and is therefore not intended for large sparse problems.

e OSL of International Business Machines Corporation (1990)
This package obtains solutions to quadratic programming problems where
the Hessian matrix is assumed positive semidefinite. It is intended to be
suitable for large-scale problems.

e TENMIN of Schnabel and Chow (1991)

This package is intended for problems where the cost of storing one n by
n matrix (where n is the number of variables), and factoring it at each
iteration, is acceptable. The software allows the user to choose between a
tensor method for unconstrained optimization, and an analogous standard
method based upon a quadratic model. The tensor method bases each
iteration upon a specially constructed fourth-order model of the objective
function that is not significantly more expensive to form, store, or solve
than the standard quadratic model.

e UNCMIN of Koontz et al. (1985) that corresponds closely to
the pseudocode in Dennis and Schnabel (1983)
This package is designed for unconstrained minimization and has options
that include both line search and trust region approaches. The provided
options include analytic gradients or difference approximations with ana-
lytic Hessians or finite difference Hessians (from analytic or finite differ-
ence gradients) or secant methods (BFGS).

e VA15 of Liu and Nocedal (1989)
This package solves general nonlinear unconstrained problems using a
limited memory BFGS method. It is intended for large-scale problems.

e VE09 of Gould (1991)
This package obtains local solutions to general, non-convex quadratic pro-
gramming problems, using an active set method, and is intended to be
suitable for large-scale problems.

e VE14 of Conn et al. (1993g)
This package solves bound-constrained quadratic programming problems
using a barrier function method and is again intended to be suitable for
large-scale problems.

e VF13 of Powell (1982)
This package solves general nonlinearly constrained problems using a se-
quential quadratic programming technique.

VA15, VE09, VE14 and VF13 are part of the Harwell Subroutine Library
(1993).
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5 Further Developments

Having described LANCELOT A, we now consider future developments. Firstly
it is obvious that we would like to learn from our experiences with LANCELOT
A, but this is not necessarily easy. Unfortunately one soon discovers that one
should do a great deal of testing, including experience with the best competitive
algorithms on the same non-trivial problems. However one also discovers that
(fortunately, occasionally) relatively innocuous seeming changes, like changing
the initial trust region size from one to two, may change the solution time
by several orders of magnitude. A more detailed example of the difficulties of
definitive testing is illustrated by the following tale. Amongst our many ap-
plications we have some in structural optimization that give rise to minimax
problems which, when posed as nonlinear programming problems, contain very
many more inequality constraints than variables (see, for example, Achtziger et
al., 1992). Consequently if they are solved via LANCELOT A it is necessary to
add very many slack variables. In fact the particular incidence we have in mind
involved a discrete plate problem® with 343 variables and 8,958 inequality con-
straints. Thus, with the addition of slacks, one has a problem in 9,301 variables
and 8,958 equality constraints. The run we made with the LANCELOT default
parameters took 117 hours on an IBM RISC/6000 320 — not particularly en-
couraging! This provided one motivating factor for us to consider handling
inequalities directly via barrier functions.

We now consider barrier functions and their extension in more detail. As
is discussed in Bartholomew-Biggs (1994, Section 4), historically a shift was
introduced to the quadratic penalty function to avoid updating the penalty
parameter more than a finite number of times, thus giving the multiplier meth-
ods/augmented Lagrangian functions already used above. It seems reasonable
to consider doing the same for logarithmic barrier functions and indeed in re-
cent years there has been a flurry of activity in this area (Breitfeld and Shanno,
1993a, Breitfeld and Shanno, 1993b, Conn et al., 1992a, Freund, 1991, Gill et
al., 1988, Jittorntrum and Osborne, 1980, Jensen and Polyak, 1993, Nash et
al., 1993, Polyak, 1992 and Powell, 1992).

To see the augmented Lagrangian as a shifted/modified quadratic penalty

function we note that (3.14) is equivalent to ®(z, A, u1) — ﬁ ", s7, where
. 1 & 9
O(w, A p) = fl@) + o7 > [eiz) +si°, (5.1)
i=1

and the shifts s; = uX;. Note that if we assume that the \; are bounded, y — 0
implies that s; — 0. But then we can say that the problem

minimize f(x) (5.2)
zeR™
subject to
ci(x)+s =0, 1<i<m, (5.3)

8Known as HAIFAL.SIF in the CUTE distribution.

15



converges to

minimize f(x) (5.4)
zeR™
subject to
ci(z) =0, 1<i<m, (5.5)

as p tends to zero. But (5.1) is the quadratic penalty function for (5.2) and
(5.3), and the problem given by (5.2) and (5.3) is equivalent to

minimize f(x) (5.6)
zeR™
subject to
1
2—[@(3:) +52=0, 1<i<m, (5.7)
S

provided that s; # 0. Now the classical Lagrangian for this latter formulation
is

2i i )+ si)* = Dz, \ ), (5.8)

with s; = puA;. Thus one can think of this as a Lagrangian quadratic penalty
function.

Let us now consider a similar development for the logarithmic barrier func-
tion,

U(z, A, s) ,uZlog ci(z) + si], (5.9)

corresponding to the problem

minimize f(x) (5.10)
rzeR"
subject to
ci(z) >0, 1<i<m. (5.11)

Taking p = \;s; we rewrite this as
U(z, A, s) Z)\ silog [ci(x) + s4], (5.12)

with corresponding first-order update

Analogously to the presentation above, Polyak points out that (5.11) is equiv-
alent to
silog[l 4+ ci(z)/s;] >0, 1<i<m, (5.14)
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and the classical Lagrangian for the problem (5.10), subject to (5.14), is given
by ¥(z, A, s), where

U(z,\,s) = flz) - Z)‘isi log [1 4 ¢i(x)/si] - (5.15)
i=1

But then ¥ = ¥ — ;3™ log [s;], and the last term is independent of .

Gill et al. (1988) carried out their analysis for linear programs, chose s; =
uX; and used g to control the algorithm. Polyak (1992) used s; = p and
established convergence under the assumption that the Jacobian is full rank
and second-order sufficiency and strict complementarity hold. He and Jensen
(Polyak, 1992 and Jensen and Polyak, 1993) were able to prove stronger results
for linear, quadratic and convex programs. They use A; to control the algorithm
asymptotically. In Conn et al. (1992a) we use s; = pA?, where 0 < a <
1, with multiplier updates given by (5.13) when appropriate. We accept or
reject the multiplier update after approximate inner minimization based upon
the relative degree to which we satisfy the complementary slackness conditions
written as ci)\;F /si. If the multiplier update is rejected then we update the
penalty parameter. We include a complete convergence analysis and prove that
the penalty parameter is updated only a finite number of times. In addition,
asymptotically we require only one inner iteration per outer iteration (see Conn
et al., 1992e). Finally, we shift the starting point via an auxiliary problem when
necessary (see Conn et al., 1992a, for details)

Now let us consider the numerical results for this Lagrangian barrier ap-
proach — more precisely, we consider the modified barrier approach of Jensen
et al. (1992) with additional quadratic terms. For the discrete plate problem
above, it now takes 31 minutes and 54 seconds to determine the solution, which
is clearly much better than running LANCELOTwith the default options.’

However, to emphasize some of the difficulties inherent in evaluating soft-
ware for large-scale problems, when we tried different values of the penalty
parameter within LANCELOT A (the results obtained with Jensen et al., 1992,
already included some tuning) we obtained the result in 4 hours, 24 minutes
and 28 seconds, which already represents considerable improvement over the
time using the default penalty parameter value. This improvement is especially
noteworthy when one considers that LANCELOT solves the problem in 9,301
variables as opposed to the 343 of the barrier approach. For the record, MINOS
5.3 took 2 hours, 36 minutes and 30 seconds and MINOS 5.4 took 1 hour and
30 minutes.

But the story is not yet over. With a little more thought one can rear-
range the linear algebra so that the effective size of the augmented Lagrangian
approach is equivalent to that of the Lagrangian barrier approach.

To see this, consider Newton’s method for minimizing the augmented La-
grangian, with slacks y added to the inequalites. Then the corresponding aug-

9 Apparently Ben-Tal and Bendsge (1993) is an even more successful approach to this class
of structural problems.
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mented Lagrangian becomes

O,y ) = f(2) + 3 Nileilw) — i) + i Sl — gt (5.16)

i=1 i=1

The linear system that arises is given by

B+ ATA —AT/u \ (pe\_ [ g+ATA
) e

Noting that the coefficient matrix can be factored as

I —AT/ B 0
(5 ) (500)

one can determine the search direction from!0
qQy = _IUS‘ B )
4z = —(g9+ AT)\) + ﬁATqy (5.19)
Bp, = qq '
and p, = g, — Ap,.

Clearly the only significant work is the third equation with the coefficient matrix
B. Details are given in Conn et al. (1992h).

At this point it is worth mentioning that eliminating slack variables is not
the only motivation for considering Lagrangian barrier techniques. In partic-
ular, the success of interior methods in linear programming (see, for example,
Shanno, 1994, in this volume) suggests that they may be less sensitive to de-
generacy. Moreover there is numerical evidence that the Lagrangian barrier
approach is superior to standard barrier function methods when applied to
problems with simple bounds (see Conn et al., 1993g and Nash et al., 1993)
and preliminary evidence suggests that the same is true for more general con-
straints (see Breitfeld and Shanno, 1993a, and Breitfeld and Shanno, 1993b).

However, there are difficulties associated with the fact that one needs to
remain feasible with respect to the shifted constraints, the fact that we lack
experience (even for small dense problems) with this approach and finally and
perhaps most importantly, the fact that a quadratic model is not a good model
for a logarithmic barrier function.

In our attempts to improve the current version of LANCELOT we have con-
tinued our research along both theoretical and practical lines. One area we
have pursued is that of using a structured trust region, which we motivate here
by considering the following example:

. . . 2
minimize 2 + (z1 + x2)? + @2773)°,
TeR?

(5.20)

19Equation (5.19) is only true if none of the slacks are active, but similar simplifications are
possible when there are active slacks.
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Suppose we take three element functions 22, (v1 + z2)? and e(@2123)*  Tradi-
tional trust region methods will tend to keep the radius unnecessarily small
because of the third element, even though the first two elements are perfectly
modeled by a quadratic. Thus if z; is far from its optimal value, it may be
prevented from changing rapidly only because of a global trust region dictated
by the third element. It is natural to think of using separate trust regions for
separable problems. The idea is to generalize this by having a separate trust
region for each element. In addition, we need an overall model on an overall
trust region. The trust region for each element constrains only the variables for
that element. Details are given in Conn et al. (1992f).

Another problem that one might associate with that of group partial sep-
arability is determining a suitable partitioning into groups and elements. In
general this is a difficult problem to do optimally but there are two simpler
versions that we have considered. The first is that of ‘blowing up the inter-
nal variables’ and the second is that of ‘merging elements and trivial groups’.
Since the main computational cost within the conjugate gradient algorithm is
the multiplication of the involved matrix with a vector, we see that the cost is
certainly dependent upon the representation of the matrix. In the two cases
above the trade-off between computing speed and storage requirements is read-
ily determined and can be motivated by geometrical considerations.

For element merging, say between two elements, one needs to consider the
amount of overlap of the element Hessians (see Figure 1). If the area of the

Figure 1: Two elements in the Hessian matrix

overlap box in the center is greater than the sum of the two areas of the zero
blocks then it is worth doing merging. Details are given in Conn et al. (1993d).

For blow up consider the following representation (Figure 2) of the blown
up Hessian, the block on the left hand side, to that of its internal form, the
middle block on the right hand side!'!. In this case the blow up is recommended
when the total area of the last three blocks is greater than the area of the first
block. Once again the reader is referred to Conn et al. (1993d) for details, but

1The last block represents the transformation matrix from elemental to internal variables
and the first block on the right hand side is just its transpose.
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Figure 2: Elemental vs internal Hessian representation

suffice it to add that in some cases substantial improvements can be realized in
this simple manner for both types of reformulation (see also Dayde et al., 1994,
for an application of similar ideas to preconditioners. In their case it often pays
to merge elements even when more zeros are introduced than described here,
as better vectorization is possible with bigger blocks.).

Another development for large-scale problems is our work on what we call
iterated subspace minimization, which we describe below in the context of un-
constrained optimization (1.1). The usual framework is to model f and then
do a reasonable amount of work to ‘optimize’ the model, considering only what
happens to the true function one-dimensionally. In line search methods the
significant work determines the search direction and the true function deter-
mines the step-size, whilst in the case of trust region algorithms, the model
determines the Cauchy point (and better) and the true function determines the
trust region radius. Our motivation is that one does not appear to be using
the multidimensional information obtained in the model optimization as well
as one might. In addition, we observe that there are high quality algorithms
available for solving small-scale problems.

This suggests the following scheme:

1. Determine a full-rank subspace matrix Sy € R™"*%¢, where s, < n.

2. Approximately solve the si-dimensional minimization problem

minimize f(xy + Sky), (5.21)
yeRk
and set
Tiy1 = (approx) arg min f(z + Sky), (5.22)
yERk

where we note that we are using the true function f in (5.22).
This begs the following important questions:

e What is a good choice for s;?
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e How do we determine the matrix Sj?

e What do we mean by “approximate” when solving problem (5.21)7?

Are there methods which are particularly appropriate for solving (5.21)?
e What can we say about the convergence of such a method?

e If we can establish convergence, what can we say about its asymptotic
rate?

As we discussed at the beginning of this paper, as long as S; contains some-
thing like the steepest descent direction with a sufficient decrease condition,
global convergence is assured. Furthermore, if a Newton-like direction is also
represented, we can expect a good asymptotic rate of convergence. Thus we
propose to take for our columns of Sy a few directions generated by a pre-
conditioned conjugate gradient algorithm, including the first, and a truncated
Newton direction.

As an indication of the usefulness of CUTE, we were able to readily test
this idea on thirty-nine unconstrained problems in the database'?. The average
size of the problems tested was around one thousand variables. Compared
with the default version of LANCELOT, the new idea was at least twice as fast
eleven times, at least ten times as fast twice and twice as slow five times. The
remaining problems had comparable times. Details are given in Conn et al.
(1994).

In many ways LANCELOT A’s major defect is in the way it handles linear
constraints. Incorporating them into an augmented Lagrangian function in-
creases their complexity. Thus, in addition to keeping simple bounds explicitly
outside the objective function, we wanted to also consider doing the same for
linear constraints. The difficulty is that although it is trivial to carry out pro-
jections to maintain feasibility with respect to the bounds, it is not so trivial
to do the same for linear constraints. In an attempt to improve on this, we
first looked at a more general approach that made use of inexact projections
on convex constraints. We used an approximate generalized Cauchy point and
required that Goldstein-like conditions are met. Briefly, we require a feasible
step within the trust region, sufficient decrease on the model functions, a suf-
ficiently large step to prevent premature termination and we ask that we do a
fixed percentage as well as the minimum value of the linearized model in the
intersection of the feasible region within a ball of radius greater than or equal
to the step. Details are given in Conn et al. (1993b). In the case of nonlin-
ear networks, Sartenaer (1993) has obtained some very encouraging numerical
results along these lines.

In addition we have extended our previous theory developed for the aug-
mented Lagrangian function to the case where the linear constraints are not
incorporated into the objective function. Moreover, as for Karmarkar (1984),
we do not exclude the possibility of incorporating the simple bounds into the

12That is all those available, with the exception of problems which took excessive CPU time
(more than 30 minutes) or were variations on the reported problems.
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objective function. The inner iterations are terminated when we are ‘suffi-
ciently critical’ — based upon identification of the linear constraints that are
‘dominant’. Details are given in Conn et al. (1993e) and Conn et al. (1993f)
and we are currently preparing similar results for the Lagrangian barrier and
mixed cases. We also incorporate the possibility of partitioning the constraints,
with separate penalty parameters associated with each partition.

It should be pointed out that these issues are also relevant for the case
of near-linear constraints, where, in particular, the idea used in MINOS of
considering the deviation from linearity should be a good one.

Some work has been carried out to exploit particular computer architectures.
The assumed partially separable form may be exploited in many ways on parallel
machines (see, for example, Saludjian, 1993, and Dayde et al., 1994). British
Gas are currently experimenting with a parallel LANCELOT-like method for the
national gas network.

6 Other Recent Progress

Let us now look at some of the recent work of our colleagues. We first consider
the trust region approach of Lalee et al. (1993) that is designed for equality
constrained problems. The method uses either exact second derivatives or lim-
ited memory quasi-Newton. It is intended for large-scale problems and is based
on the trust region approach of Omojokun (1991). It uses two trust region
problems:

e a vertical step that determines the nearest feasible point (measured by
the norm of the linearized residuals) in a shrunken trust region, and

e a horizontal step that minimizes the model function in the trust region
restricted to the null space of the constraint gradients.

This has been implemented as the algorithm ETR and a suitable interface using
the CUTE tools has been written.

Defining Z as in reduced gradient methods, B as an approximation to the
Hessian of the Lagrangian, the subscript k to denote iteration k, and

Af=(B N) (6.1)
72" =— (BN 1), (6.2)
the vertical step is given by
minimize || A} v 4 | (6.3)
veR™
subject to
lv]] < 0.8A. (6.4)

13 T . . .
3a¢ r — b; < Kiw, for some constant k1, where w is the stationarity tolerance.
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Writing d = v + Zpu, the horizontal step is given by

1
minimize (gx + Bkvk)TZku + §uTZ,F£Bkau (6.5)
ueR”

subject to

| Zkull < A (6.6)

The merit function is f(x)+ p|lc(z)||2. The implementation uses a modification
of MA28 (Duff, 1977) and the limited memory method uses a new compact
representation (Byrd et al., 1994), since otherwise the matrix-vector products
do not take advantage of sparsity and must work with the Hessian rather than
its inverse.

Motivated by real problems in process engineering, Biegler et al. (1993b)
and Biegler et al. (1993a) have an implementation of the algorithm of Coleman
and Conn (1982) and Coleman and Conn (1984) that is a quasi-Newton algo-
rithm. It is designed for large-scale problems with a small associated reduced
space. The reduced Hessian is updated but a correction vector is incorporated
to approximate the cross term ZTBYdy, where Z is the matrix whose columns
span the null space of the activity gradients, Y does the same for the range
space and d is the component of the step in the range space. This is done with
little extra cost and a one-step Q superlinear asymptotic convergence rate is
maintained. The fundamental issue is that, for large-scale problems, computing
orthogonal bases is expensive. However, with non-orthogonal bases, the vertical
or range space component Yd, can be very large and ignoring the cross term
can result in a poor step. Thus Biegler et al. use updates on Z7 B and then
compute ZTB(Yd,) and Z +TB‘F(Ydy). The former is used in the horizontal or
null space step and the latter is used to update ZT BZ. Moreover, these steps
are ‘juggled’ differently, the first being used to guarantee sufficient descent and
the second to ensure boundedness of ZTBZ. An interface for CUTE is avail-
able. The approach has been extended via limited memory quasi-Newton to
the case where the reduced space is not small, again making use of the compact
representation of Byrd et al. (1994).

An extension of generalized reduced gradient methods (Abadie and Carpen-
tier, 1966 and Lasdon et al., 1978) to the large-scale case has been incorporated
in CONOPT (Drud, 1985, Drud, 1993) and in the work of Smith and Lasdon
(1992), which also makes use of the limited memory approach.

A unique approach is that of reflective Newton methods (Coleman and Li,
1992d and Coleman and Li, 1992c). This relates to the idea of replacing z; > 0
by z; = |y;| and replacing

minimize f(x) (6.7)
zeR™
subject to
=0 (6.8)
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minimize f(y), (6.9)
yeR™

where f(y) = f(|z|). Amongst its advantages is the fact that this transforma-
tion does not introduce new minima, one is able to use fixed data structures
and strict feasibility is maintained. The method is designed for large problems.
The piecewise linear path in z-space that corresponds to a search direction in
y is easily determined. They need a generalization of the Armijo-Goldstein cri-
teria and a condition to ensure constraint compatibility. This latter definition
ensures that if z is close to a boundary one is able to take a large enough step!?.
In addition, a consistency property guarantees that a first-order step converging
to zero implies convergence to a stationary point. The method is implemented
for simple bounds and is currently being extended to linear equality constraints.
The Newton-like iterations are carried out in a scaled trust-region framework,
solved in a dog-leg like method (see Powell, 1975 and Munksgaard and Reid,
1983). Asymptotically a step-size of one is taken and thus second-order conver-
gence is attained.

We have already mentioned that barrier/interior techniques are currently a
very active area of research. Nash and Sofer (1993) use a logarithmic barrier
function and handle the associated ill-conditioning by using an approximate
(explicit) formula for the Newton direction. This formulation (that projects
orthogonally to the constraints that cause the ill-conditioning) becomes more
accurate as the penalty parameter becomes smaller. In addition they use a spe-
cial line search as in Murray and Wright (1976) (see also Murray and Wright,
1992), a preconditioned truncated Newton method and extrapolation as in Fi-
acco and McCormick (1968). Finally they use an expanded form of the Hessian
of the barrier function and finite differences to derive efficient matrix-vector
products. They report numerical results on simple bound constrained problems
as large as 100,000 variables. Nash et al. (1993) use a similar implementation
of a modified (shifted /Lagrangian) logarithmic barrier function with additional
quadratic terms. More specifically, writing ¢ = ¢;(z) and considering a single
barrier term W, they use the term

U(p~tt+1) =log(ptt+1) ift>—pu/2,
=q(t) ift < —p/2.

Here the quadratic, ¢, interpolates q(—p/2),q (—p/2) and ¢ (—pu/2) with the
corresponding logarithmic values. Interestingly, in this context they abandoned
the special line search of Murray and Wright (1976)'°. The numerical results
reported were better than using just the barrier function.

Breitfeld and Shanno had similar computational results. They used CON-
MIN (Shanno and Phua, 1980), which is a limited memory BFGS/CG algo-
rithm. In Breitfeld and Shanno (1993a), they suggested replacing equalities by

(6.10)

4 This, in turn, ensures that the distance to breakpoints remains bounded away from zero.
Reflections are likely to be suitable if the angle is reasonable.

15This suggests that the singularity can be taken care of by adding quadratic terms rather
than using a special line search. Breitfeld and Shanno (1993b) made the same observation.
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two inequalities which are then shifted. They claim that this is preferable to
using an augmented Lagrangian to handle equalities. However, the numerical
results to date must still be considered very preliminary.

We now report on some numerical experience and testing in general. Ex-
tensive numerical results are available for LANCELOT in Conn et al. (1992c)
and Conn et al. (1993c). These describe tests using all the LANCELOT op-
tions on about one thousand problem instances. The basic conclusions are that
LANCELOT appears to be very robust and the symmetric rank one update is
the best quasi-Newton update in that trust-region context (see also Byrd et
al., 1993a, who based upon their convergence analysis, recommend updating
even when steps are rejected). ;From the point of view of general comparisons,
there is not a great deal of large-scale experience!® in the published litera-
ture. Eldersveld et al. (1993) looked at very sparse problems that have the
possibility of having a large reduced space (dimension greater than 700) and
where the functions are expensive to evaluate. They considered 109 problems
with from 40 to 2,400 variables. They compared NPSOL (Gill et al., 1986),
which was not designed for large sparse problems; MINOS, which, although de-
signed for the large-scale case, prefers small reduced subspaces; NLPSPR (Betts
and Frank, 1994), which is a sequential quadratic programming method that
uses Schur complements on an (increasing) Karush-Kuhn-Tucker matrix; and
LSSQP (Gill et al., 1993a and Gill et al., 1993b), which is a transformed Hessian
method. Their main conclusions were that NLPSPR was best (although they
admit a bias since the code was designed for the class of problems they tested),
MINOS was rather disappointing, NPSOL was robust for those problems for
which enough storage was available and LSSQP performs well when the reduced
space is less than two hundred dimensional. We are currently (Bongartz et al.,
1994c), doing an extensive comparison between MINOS and LANCELOT using
the CUTE database. We would like to identify, amongst other details, the class
of problems for which each is most appropriate and verify if these findings agree
with our preconceptions. As for Eldersveld et al. (1993), our preliminary re-
sults are that MINOS is not as robust as one would hope, but one should bear
in mind that, firstly, we have more expertise with LANCELOT and, secondly,
the basis for MINOS is now rather old technology.

Bouaricha and colleagues (Bouaricha and Gould, 1994, Bouaricha and Schn-
abel, 1994a, Bouaricha and Schnabel, 1994b and Bouaricha and Tuminaro,
1994) are extending the earlier work on tensor methods of Schnabel and Chow
(1991) and Schnabel and Frank (1984) to large-scale problems. The basic idea of
tensor methods is to base each iteration on a higher order model than standard
methods, but in such a way that there is almost no increased cost. The moti-
vation is to improve upon the standard methods when applied to non-singular
and (especially) singular problems. As for non-tensor methods, the extension to
large problems suggests the use of finite differences, the replacement of orthog-
onal decompositions and the exploitation of structure. However, because of the
nature of the tensor terms, a basic question here is will information in small
dimensional subspaces (and in what form) help when the underlying problem

16Tndeed, there isn’t much recent extensive testing for small-scale problems.
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is large?
Finally, we should not forget there are methods designed for specially struc-
tured large-scale nonlinear programming problems. Some examples follow.

e For nonlinear least-squares problems: Ben Daya and Shetty (1988), Cole-
man and Plassman (1988), Coleman and Plassman (1992), Golub et al.
(1986), Gulliksson (1990), Gulliksson (1993), Kaufman and Sylvester (1993),
Toint (1987b) and Toint (1987a).

e For minimax, [,, I and I problems: Coleman and Li (1992a), Coleman
and Li (1992b), Dax (1993), Li (1993b), Li (1993a), Jonasson and Madsen
(1992) and Sklar and Armstrong (1993).

e For quadratic programming problems (including those constrained only
by simple bounds): Coleman and Hulbert (1993a), Coleman and Hul-
bert (1993b), Gould (1991), Juidice and Pires (1989), Moré and Toraldo
(1989), Moré and Toraldo (1991), Soares et al. (1993) and Vanderbei and
Carpenter (1993).

e For nonlinear network problems: Ahlfeld et al. (1987), Dembo (1986),
Sartenaer (1993), Toint and Tuyttens (1990), Toint and Tuyttens (1992),
Zenios and Mulvey (1986), Zenios and Mulvey (1988), Zenios and Pinar
(1989).

e For location problems: Bongartz et al. (1994a), Bongartz et al. (1994b)
and Calamai and Conn (1987).

e For linear complementarity problems: Jidice and Pires (1993) — see also
Judice (1994), in this volume.

Finally we have said little about automatic differentiation or special archi-
tectures. The former still do not seem to have had as much impact in optimiza-
tion as one might have hoped. Besides the chapter in this volume (Dixon, 1994),
we refer the reader to Bischof et al. (1991), Bischof and Griewank (1992), Dixon
et al. (1988), Griewank (1989), Griewank and Corliss (1991) and Griewank et
al. (1993). For the latter the reader is referred to the chapter of Schnabel in
this volume (Schnabel, 1994) and Zenios (1989).

7 In conclusion

We hope we have convinced some of you that it is possible to solve large nonlin-
ear problems in thousands of variables in acceptable time on reasonable work-
stations. Moreover software packages are available and it is worth pointing out
that, although they are designed for large-scale problems, some of them can
nevertheless be excellent for the small-scale case. Our hope is that, in the not
too distant future, practitioners will be solving nonlinear models rather than
linear ones, when the former is the most appropriate one to consider. We also
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have taken some pains to emphasize the importance of testing. In our opin-
ion, nobody should be publishing papers whose main purpose is to describe
an algorithm that is intended to be practically useful, unless they also provide
evidence that the algorithm is competitive on significant problems. Even more
obvious is the statement that it is meaningless to propose algorithms for large-
scale problems and report numerical results only for problems in a few hundred
variables.

Besides the relevant chapters in this volume, very good background reading
in linear, constrained and unconstrained nonlinear programming is provided in
the chapters of Goldfarb and Todd (1989), Dennis and Schnabel (1989) and Gill
and Murray (1989) in the book by Nemhauser et al. (1989). Recent articles
and books devoted primarily to large-scale optimization include Coleman and
Li (1990), Coleman (1993), Conn et al. (1989), Conn et al. (1990b), Conn et
al. (1992b), Conn et al. (1992g) and Wright (1991). The book by Moré and
Wright (1993), besides having a useful introduction to the theory, indicates the
available software. Some examples of applications are given in Biegler (1992),
Chinchalkar and Coleman (1993), Coleman and Liao (1993), Coleman et al.
(1992), Dunn (1993), Falk and McCormick (1986), Hager (1990), Jones (1967),
Kunish and Sachs (1992), Liao (1993), McCormick (1972), McCormick and
Sofer (1991), Schrady and Choe (1971), Werbos (1988) and Wu (1993).

Finally, in a subject this complex, a single short article, necessarily, is only
able to give an idea of the nature of the main issues in the current research.
Moreover we have no doubt that our own particular biases show. Nevertheless
we hope that the text and the references will be useful to those interested in
what currently is an exciting and vibrant research area.

References

[Abadie and Carpentier, 1966] J. Abadie and J. Carpentier. Généralisation de
la méthode du gradient réduit de Wolfe au cas des contraintes non-linéaires.
In D.B. Hertz and J. Melese, editors, Proceedings IFORS Conference, pages
1041-1053. J. Wiley and Sons, Amsterdam, 1966.

[Achtziger et al., 1992] M. Achtziger, M. P. Bendsge, A. Ben-Tal, and J. Zowe.
Equivalent displacement based formulations for maximum strength topology
design. Impact of Computing in Science and Engineering, 4:315-345, 1992.

[Ahlfeld et al., 1987) D. P. Ahlfeld, R. S. Dembo, J. M. Mulvey, and S. A.
Zenios. Nonlinear programming on generalized networks. ACM Transactions
on Mathematical Software, 13(3):350-367, 1987.

[Arioli et al., 1993] M. Arioli, T. F. Chan, I. S. Duff, N. I. M. Gould, and
J. K. Reid. Computing a search direction for large-scale linearly constrained
nonlinear optimization calculations. Technical Report TR/PA/93/34, CER-
FACS, Toulouse, France, 1993.

27



[Averick and Moré, 1991] B. M. Averick and J. J. Moré. The Minpack-2 test
problem collection. Technical Report ANL/MCS-TM-157, Argonne National
Laboratory, Argonne, USA, 1991.

[Averick et al., 1991] B. M. Averick, R. G. Carter, and J. J. Moré. The
Minpack-2 test problem collection (preliminary version). Technical Report
ANL/MCS-TM-150, Argonne National Laboratory, Argonne, USA, 1991.

[Bartholomew-Biggs and Hernandez, 1994] M. C. Bartholomew-Biggs and M.
de F. G. Hernandez. Modifications to the subroutine OPALQP for dealing

with large problems. Journal of Economic Dynamics and Control, 18:185—
204, 1994.

[Bartholomew-Biggs, 1994] M. C. Bartholomew-Biggs. Algorithms for general
constrained nonlinear optimization. In E. Spedicato, editor, Algorithms for
continuous optimization: the state of the art. Kluwer Academic Publishers,
Dordrecht, The Netherlands, 1994.

[Ben Daya and Shetty, 1988] M. Ben Daya and C. M. Shetty. Polynomial bar-
rier function algorithm for convex quadratic programming. Research Report
J85-5, School of ISE, Georgia Institute of Technology, Atlanta, Georgia, 1988.

[Ben-Tal and Bendsge, 1993] A. Ben-Tal and M. P. Bendsge. A new method for
optimal truss topology design. SIAM Journal on Optimization, 3(2):322-358,
1993.

[Bertsekas, 1982] D. P. Bertsekas. Projected Newton methods for optimization
problems with simple constraints. SIAM Journal on Control and Optimiza-
tion, 20(2):221-246, 1982.

[Betts and Frank, 1994] J. T. Betts and P. D. Frank. A sparse nonlinear opti-
mization algorithm. Journal of Optimization Theory and Applications, 82(3),
1994, to appear.

[Biegler et al., 1993a)] L.T. Biegler, J. Nocedal, and C. Schmid. Numerical ex-
perience with a reduced Hessian method for large-scale constrained optimiza-
tion. Research Report (in preparation), EE and CS, Northwestern University,
Evanston, Illinois, 1993.

[Biegler et al., 1993b] L.T. Biegler, J. Nocedal, and C. Schmid. A reduced
Hessian method for large-scale constrained optimization. Research Report
NAM-03, EE and CS, Northwestern University, Evanston, Illinois, 1993.

[Biegler, 1992] L.T. Biegler. Optimization strategies for complex process mod-
els. Advances in Chemical Engineering, 18:197-256, 1992.

[Bischof and Griewank, 1992] C. Bischof and A. O. Griewank. ADIFOR: A
FORTRAN system for portable automatic differentiation. Technical Report
MCS-P317-0792, Argonne National Laboratory, Argonne, USA, 1992.

28



[Bischof et al., 1991] C. Bischof, A. Carle, G. Corliss, P. Hovland, and A. O.
Griewank. ADIFOR: Generating derivative codes from Fortran programs.
Technical Report MCS-P263-0991, Argonne National Laboratory, Argonne,
USA, 1991.

[Bjorck, 1994] A. Bjorck. Generalized and sparse least squares problems. In
E. Spedicato, editor, Algorithms for continuous optimization: the state of the
art. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1994.

[Boggs and Tolle, 1989] P. T. Boggs and J. W. Tolle. A strategy for global
convergence in a sequential quadratic programming algorithm. STAM Journal
on Numerical Analysis, 26(3):600-623, 1989.

[Bongartz et al., 1993] 1. Bongartz, A. R. Conn, N. I. M. Gould, and Ph. L.
Toint. CUTE: Constrained and Unconstrained Testing Environment. Re-
search Report RC 18860, IBM T. J. Watson Research Center, Yorktown
Heights, USA, 1993.

[Bongartz et al., 1994a] 1. Bongartz, P. H. Calamai, and A. R. Conn. A pro-
jection method for /, norm location-allocation problems. Mathematical Pro-
gramming, 1994, to appear.

[Bongartz et al., 1994b] I. Bongartz, P. H. Calamai, and A. R. Conn. A second-
order algorithm for the continuous capacitated location-allocation problem.
Research Report (in preparation), IBM T. J. Watson Research Center, York-
town Heights, USA, 1994.

[Bongartz et al., 1994c| I. Bongartz, A. R. Conn, N. I. M. Gould, and Ph. L.
Toint. A numerical comparison between the LANCELOT and MINOS pack-

ages for large-scale nonlinear optimization. Research Report (in preparation),
IBM T. J. Watson Research Center, Yorktown Heights, USA, 1994.

[Bouaricha and Gould, 1994] Ali Bouaricha and N. I. M. Gould. Tensor meth-
ods for large sparse unconstrained minimization problems. Technical report
(in preparation), CERFACS, Toulouse, France, 1994.

[Bouaricha and Schnabel, 1994a] Ali Bouaricha and R.B. Schnabel. A software
package for large sparse nonlinear equations using tensor methods. Technical
report, (in preparation), CERFACS, Toulouse, France, 1994.

[Bouaricha and Schnabel, 1994b] Ali Bouaricha and R.B. Schnabel. A software
package for large sparse nonlinear least squares using tensor methods. Tech-
nical report, (in preparation), CERFACS, Toulouse, France, 1994.

[Bouaricha and Tuminaro, 1994] Ali Bouaricha and R. Tuminaro. Tensor-
Krylov methods for large nonlinear equations on sequential and parallel com-
puters. Technical report, (in preparation), CERFACS, Toulouse, France,
1994.

[Breitfeld and Shanno, 1993a] M. G. Breitfeld and D. Shanno. Preliminary
computational experience with modified log-barrier functions for large-scale

29



nonlinear programming. Research Report RRR 08-93, Rutgers Center for
Operations Research, New Brunswick, USA, 1993.

[Breitfeld and Shanno, 1993b] M. G. Breitfeld and D. F. Shanno. Computa-
tional experience with modified log-barrier methods for nonlinear program-
ming. Research Report RRR 17-93, Rutgers Center for Operations Research,
New Brunswick, USA, 1993.

[Buckley, 1989] A. G. Buckley. Test functions for unconstrained minimization.
Technical Report CS-3, Computing Science Division, Dalhousie University,
Halifax, Canada, 1989.

[Byrd et al., 1993a] R. H. Byrd, H.F. Khalfan, and R. B. Schnabel. Analysis
of a symmetric rank-one trust region method. Technical Report CU-CS-657-
93, Department of Computer Science, University of Colorado at Boulder,

Boulder, USA, 1993.

[Byrd et al., 1993] R. H. Byrd, P. Lu, and J. Nocedal. A limited memory al-
gorithm for bound constrained optimization. Technical Report NAM-08,
Department of Electrical Engineering and Computer Science, Northwestern
University, Evanston, Illinois, 1993.

[Byrd et al., 1994] R. H. Byrd, J. Nocedal, and R. B. Schnabel. Representa-
tion of quasi-Newton matrices and their use in limited memory methods.
Mathematical Programming, Series A, 1994, to appear.

[Calamai and Conn, 1987] P. H. Calamai and A. R. Conn. A projected newton
method for [, norm location problems. Mathematical Programming, 38:75—
109, 1987.

[Chinchalkar and Coleman, 1993] S. Chinchalkar and T. F. Coleman. Parallel
structural optimization applied to bone remodeling on distributed memory
machines. Technical Report CTC93TR146, Advanced Computing Research
Institute, Cornell Theory Center, Cornell University, Ithaca, USA, 1993.

[Coleman and Conn, 1982] T.F. Coleman and A. R. Conn. Nonlinear program-
ming via an exact penalty function method: Global analysis. Mathematical
Programming, 24(3):137-161, 1982.

[Coleman and Conn, 1984] T. F. Coleman and A. R. Conn. On the local con-
vergence of a quasi-Newton method for the nonlinear programming problem.
SIAM Journal on Numerical Analysis, 21(4):755-769, 1984.

[Coleman and Hulbert, 1993a] T. F. Coleman and L. Hulbert. A direct active
set method for large sparse quadratic programs with simple bounds. Mathe-
matical Programming, pages 373406, 1993.

[Coleman and Hulbert, 1993b] T. F. Coleman and L. Hulbert. A globally and
superlinearly convergent algorithm for convex quadratic programs with sim-
ple bounds. SIAM Journal on Optimization, 3:298-321, 1993.

30



[Coleman and Li, 1990] T. F. Coleman and Y. Li, editors. Large Scale Numer-
ical Optimization. STAM, Philadelphia, USA, 1990.

[Coleman and Li, 1992a] T. F. Coleman and Y. Li. A global and quadratic
affine scaling method for linear [; problems. Mathematical Programming,
56:189-222, 1992.

[Coleman and Li, 1992b] T. F. Coleman and Y. Li. A global and quadratically-
convergent method for linear [, problems. SIAM Journal on Scientific and
Statistical Computing, 29:1166-1186, 1992.

[Coleman and Li, 1992c] T. F. Coleman and Y. Li. On the convergence of
reflective Newton methods for large-scale nonlinear minimization subject to
bounds. Technical Report CTC 92TR110, Cornell Theory Center, Ithaca,
USA, 1992.

[Coleman and Li, 1992d] T.F. Coleman and Y. Li. A reflective Newton method
for minimizing a quadratic function subject to bounds on the variables. Tech-
nical Report CTC 92TR111, Cornell Theory Center, Ithaca, USA, 1992.

[Coleman and Liao, 1993] T.F. Coleman and A. Liao. An efficient trust region
method for unconstrained discrete-time optimal control problems. Techni-
cal Report CTC93TR144, Advanced Computing Research Institute, Cornell
Theory Center, Cornell University, Ithaca, USA, 1993.

[Coleman and Plassman, 1988] T. F. Coleman and P. E. Plassman. Solution of
nonlinear least-squares problems on a multiprocessor. In Parallel Computing,
pages 44-80. Springer Verlag, Berlin, 1988.

[Coleman and Plassman, 1992] T. F. Coleman and P. E. Plassman. A paral-
lel nonlinear least-squares solver: theoretical analysis and numerical results.
SIAM Journal on Scientific and Statistical Computing, 13:771-793, 1992.

[Coleman et al., 1992] T. F. Coleman, D. Shalloway, and Z. Wu. Isotropic ef-
fective energy simulated annealing searches for low energy molecular cluster
states. Technical Report CTC92TR113, Advanced Computing Research In-
stitute, Cornell Theory Center, Cornell University, Ithaca, USA, 1992.

[Coleman, 1993] T. F. Coleman. Large Scale Numerical Optimization: Intro-
duction and overview. In J. Williams and A. Kent, editors, Encyclopedia of
Computer Science and Technology, Volume 28, supplement 13, pages 167—
196. Marcel Dekker, New York, USA, 1993.

[Conn et al., 1988a] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. Global
convergence of a class of trust region algorithms for optimization with simple
bounds. SIAM Journal on Numerical Analysis, 25:433-460, 1988. See also
same journal, 26:764-767, 1989.

[Conn et al., 1988b] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. Testing a
class of methods for solving minimization problems with simple bounds on
the variables. Mathematics of Computation, 50:399-430, 1988.

31



[Conn et al., 1989] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. Large-scale
optimization. Mathematical Programming, Series B, 45(3), 1989.

[Conn et al., 1990a] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. An intro-
duction to the structure of large scale nonlinear optimization problems and
the LANCELOT project. In R. Glowinski and A. Lichnewsky, editors, Com-
puting Methods in Applied Sciences and Engineering, pages 42-54. STAM,
Philadelphia, USA, 1990.

[Conn et al., 1990b] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. Large-scale
optimization — applications. Mathematical Programming, Series B, 48(1),
1990.

[Conn et al., 1991] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. A glob-
ally convergent augmented Lagrangian algorithm for optimization with gen-

eral constraints and simple bounds. SIAM Journal on Numerical Analysis,
28(2):545-572, 1991.

[Conn et al., 1992a] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. A glob-
ally convergent Lagrangian barrier algorithm for optimization with general
inequality constraints and simple bounds. Research Report RC 18049, IBM
T. J. Watson Research Center, Yorktown Heights, USA, 1992.

[Conn et al., 1992b] A.R. Conn, N.I. M. Gould, and Ph. L. Toint. LANCELOT :
a Fortran package for large-scale nonlinear optimization (Release A), Vol-
ume 17 of Springer Series in Computational Mathematics. Springer Verlag,
Heidelberg, Berlin, New York, 1992.

[Conn et al., 1992c] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. Numerical
experiments with the LANCELOT package (Release A) for large-scale nonlin-
ear optimization. Research Report RC 18434, IBM T. J. Watson Research
Center, Yorktown Heights, USA, 1992.

[Conn et al., 1992d] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. On the
number of inner iterations per outer iteration of a globally convergent algo-
rithm for optimization with general nonlinear equality constraints and simple
bounds. In D.F Griffiths and G.A. Watson, editors, Proceedings of the 14th
Biennial Numerical Analysis Conference Dundee 1991, pages 49-68. Long-
mans, 1992.

[Conn et al., 1992¢] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. On the
number of inner iterations per outer iteration of a globally convergent al-
gorithm for optimization with general nonlinear inequality constraints and
simple bounds. Research Report RC 18382, IBM T. J. Watson Research
Center, Yorktown Heights, USA, 1992.

[Conn et al., 1992f] A. R. Conn, Nick Gould, and Ph. L. Toint. Convergence
properties of minimization algorithms for convex constraints using a struc-
tured trust region. Research Report RC 18274, IBM T. J. Watson Research
Center, Yorktown Heights, USA, 1992.

32



[Conn et al., 1992g] A. R. Conn, Nick Gould, and Ph. L. Toint. Large-scale
nonlinear constrained optimization. In Jr. R. E. O’Malley, editor, Proceedings
of the Second International Conference on Industrial and Applied Mathemat-
ics, pages 51-70. STAM, Phildelphia, USA, 1992. (Also in M.S. Moonen, G.H.
Golub and B.L.R DeMoor, editors, Linear Algebra for Large-Scale and Real-
Time Applications, Volume 232 of NATO ASI Series E: Applied Sciences.
Kluwer Academic Publishers, 1993.)

[Conn et al., 1992h] A. R. Conn, Nick Gould, and Ph. L. Toint. A note on
exploiting structure when using slack variables. Research Report RC 18435,
IBM T. J. Watson Research Center, Yorktown Heights, USA, 1992.

[Conn et al., 1993a] A. R. Conn, N. I. M. Gould, M. Lescrenier, and Ph. L.
Toint. Performance of a multifrontal scheme for partially separable opti-
mization. In Advances in numerical partial differential equations and opti-

mization, Proceedings of the Sixth Mexico-United States Workshop. Kluwer
Academic Publishers, 1993.

[Conn et al., 1993b] A. R. Conn, N. I. M. Gould, A. Sartenaer, and Ph. L.
Toint. Global convergence of a class of trust region algorithms for opti-
mization using inexact projections on convex constraints. SIAM Journal on
Optimization, 3(1):164-221, 1993.

[Conn et al., 1993c] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. Complete
numerical results for LANCELOT Release A. Research Report RC 18750,
IBM T. J. Watson Research Center, Yorktown Heights, USA, 1993.

[Conn et al., 1993d] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. Improving
the decomposition of partially separable functions in the context of large-
scale optimization: a first approach. In W. W. Hager, D. W. Hearn, and
P.M. Pardalos, editors, Large Scale Optimization: State of the Art. Kluwer
Academic Publishers, 1993.

[Conn et al., 1993e] A. R. Conn, Nick Gould, A. Sartenaer, and Ph. L. Toint.
Local convergence properties of two augmented Lagrangian algorithms for
optimization with a combination of general equality and linear constraints.
Research Report RC18901, IBM T. J. Watson Research Center, Yorktown
Heights, USA, 1993.

[Conn et al., 1993f] A. R. Conn, Nick Gould, A. Sartenaer, and Ph. L. Toint.
Local convergence properties of a Lagrangian barrier algorithm for optimiza-
tion with a combination of general inequality and linear constraints. Re-
search Report (in preparation), IBM T. J. Watson Research Center, York-
town Heights, USA, 1993.

[Conn et al., 1993g] A. R. Conn, Nick Gould, and Ph. L. Toint. A note on
using alternative second-order models for the subproblems arising in barrier
function methods for minimization. Research Report RC18898, IBM T. J.
Watson Research Center, Yorktown Heights, USA, 1993.

33



[Conn et al., 1994] A. R. Conn, Nick Gould, A. Sartenaer, and Ph. L. Toint.
On iterated-subspace minimization methods for nonlinear optimization. Re-
search Report (in preparation), IBM T. J. Watson Research Center, York-
town Heights, USA, 1994.

[Curtis et al., 1974] A. Curtis, M. J. D. Powell, and J. Reid. On the estimation
of sparse Jacobian matrices. Journal of the Institute of Mathematics and its
Applications, 13:117-119, 1974.

[Dax, 1993] A.Dax. A row relaxation method for large minmax problems. BIT,
33:262-273, 1993.

[Dayde et al., 1994] M. Dayde, J.-Y. L’Excellent, and N. I. M. Gould. On the
use of element by element preconditioners to solve large-scale partially sepa-
rable optimization problems. Technical Report (in preparation), CERFACS,
Toulouse, France, 1994.

[Dembo and Tulowitski, 1983] R. S. Dembo and U. Tulowitski. On the mini-
mization of quadratic functions subject to box constraints. School of Orga-

nization and Management Working paper series B no. 71, Yale University,
1983.

[Dembo, 1984] R. S. Dembo. A primal truncated-Newton algorithm with ap-
plication to large-scale nonlinear network optimization. Technical Report 72,
Yale School of Management, Yale University, New Haven, USA | 1984.

[Dembo, 1986] R. S. Dembo. The performance of NLPNET, a large scale non-
linear network optimizer. Mathematical Programming, Series B, 26:245-249,
1986.

[Dennis and Schnabel, 1983] J. E. Dennis and R. B. Schnabel. Numerical meth-
ods for unconstrained optimization and nonlinear equations. Prentice-Hall,

Englewood Cliffs, USA, 1983.

[Dennis and Schnabel, 1989] J. E. Dennis and R. B. Schnabel. Unconstrained
optimization. In G.L. Nemhauser, A.H.G. Rinnooy Kan, and M.J. Todd, edi-
tors, Optimization, Volume 1 of Handbooks in Operations Research and Man-
agement Science, pages 73—170. North-Holland, Amsterdam, The Nether-
lands, 1989.

[Dixon et al., 1988] L. C. W. Dixon, P. Dolan, and R. Price. Finite element
optimization: the use of structured automatic differentiation. In A. Osiadacz,
editor, Simulation and Optimization of Large Systems, pages 117-141. Oxford
University Press, Oxford, 1988.

[Dixon, 1994] L. C. W. Dixon. Automatic differentiation and continuous opti-
mization. In E. Spedicato, editor, Algorithms for continuous optimization:
the state of the art. Kluwer Academic Publishers, Dordrecht, The Nether-
lands, 1994.

34



[Drud, 1985] A. Drud. CONOPT: a GRG code for large sparse dynamic non-
linear optimization problems. Mathematical Programming, 31(2):153-191,
1985.

[Drud, 1993] A. Drud. CONOPT: a large-scale GRG code. Technical report,
ARKI Consulting and Developing, Bagsvaerd, Denmark, 1993.

[Duff and Reid, 1982] I. S. Duff and J. K. Reid. MA27: A set of Fortran subrou-
tines for solving sparse symmetric sets of linear equations. Report R-10533,
AERE Harwell Laboratory, Harwell, UK, 1982.

[Duff and Reid, 1983] 1. S. Duff and J. K. Reid. The multifrontal solution of
indefinite sparse symmetric linear equations. ACM Transactions on Mathe-
matical Software, 9(3):302-325, 1983.

[Duff and Reid, 1993] I.S. Duff and J. K. Reid. MA47: A set of Fortran subrou-
tines for solving sparse symmetric sets of linear equations. Research Report
(to appear), Rutherford Appleton Laboratory, Chilton, England, 1993.

[Duff et al., 1986] 1. S. Duff, A. M. Erisman, and J. K. Reid. Direct methods
for sparse matrices. Clarendon Press, Oxford, UK, 1986.

[Duff et al., 1988] I.S. Duff, N. I. M. Gould, M. Lescrenier, and J. K. Reid. The
multifrontal method in a parallel environment. In M. G. Cox and S. J. Ham-
marling, editors, Reliable Scientific Computation. Oxford University Press,

Oxford, UK, 1988.

[Duff, 1977] 1. S. Duff. MA28: A set of Fortran subroutines for sparse unsym-
metric linear equations. Report R-8730, AERE Harwell Laboratory, Harwell,
UK, 1977.

[Dunn, 1993] J. C. Dunn. Second-order multiplier update calculations for op-
timal control problems and related large-scale nonlinear programs. SIAM
Journal on Optimization, 3(3):489-502, 1993.

[Eldersveld et al., 1993] S. K. Eldersveld, J. T. Betts, and W. P. Huffman.
A performance comparison of nonlinear programming algorithms for large
sparse problems. Presented at the Fourth Stockholm Optimization Days,
Royal Institute of Technology, Stockholm, 16-17 August, 1993.

[Eldersveld, 1992] S. K. Eldersveld. Large-scale sequential quadratic program-
ming algorithms. Technical Report SOL 92-4, Department of Operations
Research, Stanford University, Stanford, USA, 1992.

[Falk and McCormick, 1986] J. E. Falk and G. P. McCormick. Computational
aspects of the international coal trade model. In P.T. Harker, editor, Spacial
price equilibrium: Advances in theory, computation and application, Volume

249 of Lecture Notes in Economics and Mathematical Systems. Springer Ver-
lag, Berlin, 1986.

35



[Fiacco and McCormick, 1968] A. V. Fiacco and G. P. McCormick. Nonlinear
Programming: Sequential Unconstrained Minimization Techniques. J. Wiley
and Sons, New York, 1968. Reprinted as Classics in Applied Mathematics 4,
SIAM, 1990.

[Fletcher, 1987] R. Fletcher. Practical Methods of Optimization. J. Wiley and
Sons, Chichester, second edition, 1987.

[Fletcher, 1994] R. Fletcher. Algorithms for unconstrained optimization. In
E. Spedicato, editor, Algorithms for continuous optimization: the state of
the art. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1994.

[Forsgren and Murray, 1993] A. L. Forsgren and W. Murray. Newton methods
for large-scale linear equality-constrained minimization. SIAM Journal on
Matriz Analysis and Applications, 14:560-587, 1993.

[Freund, 1991] R. M. Freund. Theoretical efficiency of a shifted-barrier-function
algorithm for linear programming. Linear Algebra and Applications, 152:19—
41, 1991.

[George and Liu, 1981] A. George and J. W.-H. Liu. Computer solution of large
sparse positive definite systems. Prentice-Hall, Englewood Cliffs, USA, 1981.

[Gill and Murray, 1974] P. E. Gill and W. Murray. Newton-type methods for
unconstrained and linearly constrained optimization. Mathematical Program-
ming, 28:311-350, 1974.

[Gill and Murray, 1989] P. E. Gill and W. Murray. Constrained optimization.
In G.L. Nemhauser, A.H.G. Rinnooy Kan, and M.J. Todd, editors, Opti-

mization, Volume 1 of Handbooks in Operations Research and Management
Science, pages 73—170. North-Holland, Amsterdam, The Netherlands, 1989.

[Gill et al., 1986] P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright.
User’s guide for NPSOL (version 4.0): A Fortran package for nonlinear pro-
gramming. Technical Report SOL86-2, Department of Operations Research,
Stanford University, Stanford, California 94305, USA, 1986.

[Gill et al., 1988] P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright.
Shifted barrier methods for linear programming. Technical Report SOL&8-9,
Department of Operations Research, Stanford University, Stanford, Califor-
nia 94305, USA, 1988.

[Gill et al., 1992] P. E. Gill, W. Murray, D. B. Ponceléon, and M. A. Saunders.
Preconditioners for indefinite systems arising in optimization. SIAM Journal
on Matrix Analysis and Applications, 13:292-311, 1992.

[Gill et al., 1993a] P.E. Gill, W. Murray, and M.A. Saunders. Large-scale SQP
methods and their application in trajectory optimization. In R. Bulirsch and
D. Kraft, editors, Control Applications of Optimization, International Series
of Numerical Mathematics. Birkhauser, Basel, Boston, Stuttgart, 1993.

36



[Gill et al., 1993b] P.E. Gill, W. Murray, and M.A. Saunders. Transformed
Hessian methods for large-scale constrained optimization. Presented at the
Fourth Stockholm Optimization Days, Royal Institute of Technology, Stock-
holm, 16-17 August, 1993.

[Goldfarb and Todd, 1989] D. Goldfarb and M. J. Todd. Linear programming.
In G.L. Nemhauser, A.H.G. Rinnooy Kan, and M.J. Todd, editors, Opti-
mization, Volume 1 of Handbooks in Operations Research and Management
Science, pages 73-170. North-Holland, Amsterdam, The Netherlands, 1989.

[Golub and Loan, 1989] G. H. Golub and C. F. Van Loan. Matriz Computa-
tions. Johns Hopkins University Press, Baltimore, second edition, 1989.

[Golub et al., 1986] G. H. Golub, P. E. Manneback, and Ph. L. Toint. A com-
parison between some direct and iterative methods for large scale geodetic
least squares problems. SIAM Journal on Scientific and Statistical Comput-
ing, 7(3):799-816, 1986.

[Gould, 1991] N.I. M. Gould. An algorithm for large-scale quadratic program-
ming. IMA Journal of Numerical Analysis, 11(3):299-324, 1991.

[Griewank and Corliss, 1991] A. Griewank and G. F. Corliss. Automatic Dif-
ferentiation of Algorithms: Theory, Implementation, and Application. STAM,
Philadelphia, USA, 1991.

[Griewank and Toint, 1982a] A. Griewank and Ph. L. Toint. On the uncon-
strained optimization of partially separable functions. In M. J. D. Powell,
editor, Nonlinear Optimization 1981, pages 301-312. Academic Press, Lon-
don and New York, 1982.

[Griewank and Toint, 1982b] A. Griewank and Ph. L. Toint. Partitioned vari-
able metric updates for large structured optimization problems. Numerische
Mathematik, 39:429-448, 1982.

[Griewank et al., 1993] A. O. Griewank, D. Juedes, J. Srinivasan, and C. Tyner.
ADOL-C, a package for the automatic differentiation of algorithms written
in C/C++. ACM Transactions on Mathematical Software, 1993, to appear.

[Griewank, 1989] A. Griewank. On automatic differentiation. In M. Iri and
K. Tanabe, editors, Mathematical Programming: recent developments and
applications, pages 83-108. Kluwer Academic Publishers, Dordrecht, The
Netherlands, 1989.

[Gulliksson, 1990] M. Gulliksson. Algorithms for Nonlinear Least Squares with
Applications to Orthogonal Regression. PhD thesis, Institute of Information
Processing, University of Umea, S-901 87 Umea, Sweden, 1990.

[Gulliksson, 1993] M. Gulliksson. Algorithms for weighted nonlinear least
squares problems — especially surface fitting problems. Presented at the
Fourth Stockholm Optimization Days, Royal Institute of Technology, Stock-
holm, 16-17 August, 1993.

37



[Hager, 1990] W. W. Hager. Multipliers methods for nonlinear optimal control.
SIAM Journal on Numerical Analysis, 27(4):1061-1080, 1990.

[Harwell Subroutine Library, 1993] Harwell Subroutine Library. A catalogue of
subroutines (release 11). Advanced Computing Department, Harwell Labo-
ratory, Harwell, UK, 1993.

[Hebden, 1973] M. D. Hebden. An algorithm for minimization using exact
second derivatives. Technical Report T.P. 515, AERE Harwell Laboratory,
Harwell, UK, 1973.

[Hock and Schittkowski, 1981] W. Hock and K. Schittkowski. Test Ezamples
for Nonlinear Programming Codes, Volume 187 of Lectures Notes in Eco-
nomics and Mathematical Systems. Springer Verlag, Berlin, 1981.

[International Business Machines Corporation, 1990] International
Business Machines Corporation. Optimization Subroutine Library: Guide
and Reference, second edition, 1990.

[Jensen and Polyak, 1993] D. Jensen and R. Polyak. On the convergence of
a modified barrier method for convex programming. Research Report RC
18570, IBM T. J. Watson Research Center, Yorktown Heights, USA, 1993.

[Jensen et al., 1992] D. Jensen, R. Polyak, and R. Schneur. Numerical expe-
rience with modified barrier functions method for linear programming. Re-
search Report RC 18415, IBM T. J. Watson Research Center, Yorktown
Heights, USA, 1992.

[Jittorntrum and Osborne, 1980] K. Jittorntrum and M. Osborne. A modified
barrier function method with improved rate of convergence for degenerate
problems. Journal of the Australian Mathematical Society (Series B), 21:305—
329, 1980.

[Jénasson and Madsen, 1992] K. Jénasson and K. Madsen. Corrected sequen-
tial linear programming for sparse minimax optimization. Technical Report
NI-92-06, Institute for Numerical Analysis, Technical University of Denmark,
2800 Lyngby, Denmark, 1992.

[Jones, 1967] A. P. Jones. The chemical equilibrium problem: An application
of SUMT. Technical Report RAC-TP-272, Research Analysis Corporation,
Research Analysis Corporation, McLean, Virginia, USA, 1967.

[Judice and Pires, 1989] J. J. Judice and F. M. Pires. Direct methods for convex
quadratic programs subject to box constraints. Technical report, Universi-
dade de Coimbra, 300 Coimbra, Portugal, 1989.

[Judice and Pires, 1993] J. J. Judice and F. M. Pires. A block principal pivoting
algorithm for large-scale strictly monotone linear complementary problems.
Technical report, Universidade de Coimbra, 300 Coimbra, Portugal, 1993. To
appear in Computers and Operations Research.

38



[Judice, 1994] J. J. Judice. Algorithms for linear complementarity problems.
In E. Spedicato, editor, Algorithms for continuous optimization: the state of
the art. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1994.

[Karmarkar, 1984] N. Karmarkar. A new polynomial-time algorithm for linear
programming. Combinatorica, 4:373-395, 1984.

[Kaufman and Sylvester, 1993] L. Kaufman and G. Sylvester. Seperable non-
linear least-squares with multiple right-hand sides. SIAM Journal on Matriz
Analysis and Applications, 13:68-89, 1993.

[Koontz et al., 1985] J.E. Koontz, R.B. Schnabel, and B.E. Weiss. A modular
system of algorithms for unconstrained minimization. ACM Transactions on
Mathematical Software, 11:419-440, 1985. Also available as Technical Report
CU-CS-240-82, Department of Computer Science, University of Colorado,
Boulder, CO.

[Kunish and Sachs, 1992] K. Kunish and E. W. Sachs. Reduced SQP methods
for parameter identification problems. SIAM Journal on Numerical Analysis,
29(6):1793-1822, 1992.

[Lalee et al., 1993] M. Lalee, J. Nocedal, and T. Plantenga. On the implemen-
tation of an algorithm for large-scale equality constrained optimization. EE
and CS Technical Report, Northwestern University, Evanston, USA, 1993.

[Lasdon et al., 1978] L. S. Lasdon, A. D. Waren, A. Jain, and M. Ratner. De-
sign and testing of a generalized reduced gradient code for nonlinear pro-
gramming. ACM Transactions on Mathematical Software, 4:34-50, 1978.

[Lescrenier, 1991] M. Lescrenier. Convergence of trust region algorithms for
optimization with bounds when strict complementarity does not hold. SIAM
Journal on Numerical Analysis, 28(2):476-495, 1991.

[Levenberg, 1944] K. Levenberg. A method for the solution of certain problems
in least squares. Quarterly Journal on Applied Mathematics, 2:164—168, 1944.

[Levitin and Polyak, 1966] E. S. Levitin and B. T. Polyak. Constrained mini-
mization problems. USSR Comput. Math. and Math. Phys., 6:1-50, 1966.

[Li, 1993a] Y. Li. A globally convergent method for I, problems. SIAM Journal
on Optimization, 3:609-629, 1993.

[Li, 1993b] Y. Li. Solving l,-norm problems and applications. Technical Report
P
CTC93TR122, Cornell Theory Center, Cornell University, Ithaca, USA, 1993.

[Liao, 1993] Aiping Liao. Some efficient algorithms for unconstrained discrete-
time optimal control problems. Technical Report CTC93TR159, Advanced
Computing Research Institute, Cornell Theory Center, Cornell University,
Ithaca, USA, 1993.

39



[Liu and Nocedal, 1988] D. C. Liu and J. Nocedal. Test results of two limited
memory methods for large scale optimization. Technical Report NAM 04,
Department of EE and CS, Northwestern University, Evanston, IL, 1988.

[Liu and Nocedal, 1989] D. C. Liu and J. Nocedal. On the limited memory
BFGS method for large scale optimization. Mathematical Programming, Se-
ries B, 45:503-528, 1989.

[Marquardt, 1963] D. Marquardt. An algorithm for least-squares estimation of
nonlinear parameters. SIAM Journal on Applied Mathematics, 11:431-441,
1963.

[McCormick and Sofer, 1991] G. P. McCormick and A. Sofer. Optimization
with unary functions. Mathematical Programming, 52:167-179, 1991.

[McCormick, 1969] G. P. McCormick. Anti-zig-zagging by bending. Manage-
ment Science, 15(5):315-320, 1969.

[McCormick, 1972] G. P. McCormick. Computational aspects of nonlinear pro-
gramming solutions to large-scale inventory problems. Technical Report
Technical Memorandum Serial T-63488, Department of Operations Research,
George Washington University, Washington DC 20052, 1972.

[Moré and Toraldo, 1989] J. J. Moré and G. Toraldo. Algorithms for bound
constrained quadratic programming problems. Numerische Mathematik,
14:14-21, 1989.

[Moré and Toraldo, 1991] J. J. Moré and G. Toraldo. On the solution of large
quadratic programming problems with bound constraints. SIAM Journal on
Optimization, 1(1):93-113, 1991.

[Moré and Wright, 1993] J. J. Moré and S. J. Wright. Optimization Software
Guide. SIAM, Philadelphia, USA, 1993.

[Moré et al., 1981] J. J. Moré, B. S. Garbow, and K. E. Hillstrom. Testing
unconstrained optimization software. ACM Transactions on Mathematical
Software, 7(1):17-41, 1981.

[Moré, 1978] J. J. Moré. The Levenberg-Marquardt algorithm: implementation
and theory. In G. A. Watson, editor, Proceedings Dundee 1977. Springer
Verlag, Berlin, 1978. Lecture Notes in Mathematics.

[Moré, 1983] J. J. Moré. Recent developments in algorithms and software for
trust region methods. In A. Bachem, M. Grotschel, and B. Korte, editors,
Mathematical Programming: The State of the Art, pages 258-287. Springer
Verlag, Berlin, 1983.

[Munksgaard and Reid, 1983] N. A. Munksgaard and J. K. Reid. NS02, a For-
tran subroutine for solving sparse sets of non-linear equations by Powell’s
dog-leg algorithm. Technical Report R11047, AERE Harwell Laboratory,
Harwell, UK, 1983.

40



[Murray and Wright, 1976] W. Murray and M. H. Wright. Efficient line search
algorithms for the logarithmic barrier function. Technical Report SOL76-18,
Department of Operations Research, Stanford University, Stanford, Califor-
nia 94305, USA, 1976.

[Murray and Wright, 1992] W. Murray and M. H. Wright. Line search proce-
dures for the logarithmic barrier function. Numerical analysis manuscript
92-01, AT&T Bell Laboratories, Murray Hill, USA, 1992.

[Murtagh and Saunders, 1987] B. A. Murtagh and M. A. Saunders. MINOS 5.1
USER’S GUIDE. Technical Report SOL83-20R, Department of Operations
Research, Stanford University, Stanford, USA, 1987.

[Nash and Sofer, 1991] S. G. Nash and A. Sofer. A general-purpose parallel
algorithm for unconstrained optimization. SIAM Journal on Optimization,
1:530-547, 1991.

[Nash and Sofer, 1993] S. G. Nash and A. Sofer. A barrier method for large-
scale constrained optimization. ORSA Journal on Computing, 5(1):40-53,
1993.

[Nash et al., 1993] S. G. Nash, R. Polyak, and A. Sofer. A numerical com-
parison of barrier and modified barrier methods for large-scale constrained
optimization. Technical Report 93-02, Department of Operations Research,
George Mason University, Fairfax, Virginia 22030, 1993.

[Nemhauser et al., 1989] G. L. Nemhauser, A. H. G. Rinnooy Kan, and M. J.
Todd. Optimization, Volume 1 of Handbooks in Operations Research and
Management Science. North-Holland, Amsterdam, 1989.

[Omojokun, 1991] E. O. Omojokun. Trust region algortihms for optimization
with nonlinear equality and inequality constraints. PhD thesis, Department
of Computer Sciences, University of Colorado, Boulder, USA, 1991.

[Polyak, 1992] R. Polyak. Modified barrier functions (theory and methods).
Mathematical Programming, 54(2):177-222, 1992.

[Powell, 1970] M. J. D. Powell. A new algorithm for unconstrained optimiza-
tion. In J. B. Rose, O. L. Mangasarian, and K. Ritter, editors, Nonlinear
Programming. Academic Press, New York, 1970.

[Powell, 1975] M. J. D. Powell. Convergence properties of a class of minimiza-
tion algorithms. In O. L. Mangasarian, R.R. Meyer, and S.M. Robinson,
editors, Nonlinear Programming, 2. Academic Press, New York, 1975.

[Powell, 1982] M.J.D. Powell. Extensions to subroutine VF02. In R.F. Drenick
and F. Kozin, editors, Systems Modelling and Optimization. Lecture notes

in control and Information sciences 38, pages 529 — 538. Springer-Verlag,
Berlin, 1982.

41



[Powell, 1992] M. J. D. Powell. Some convergence properties of the shifted log
barrier method for linear programming. Technical Report DAMTP NA7,
Department of Applied Mathematics and Theoretical Physics, Cambridge
University, Cambridge, UK, 1992.

[Robinson, 1972] S. M. Robinson. A quadratically convergent algorithm for
general nonlinear programming problems.  Mathematical Programming,
3:145-156, 1972.

[Rosen and Kreuser, 1972] J. B. Rosen and J. Kreuser. A gradient projection
algorithm for nonlinear constraints. In F. A. Lootsma, editor, Numerical
Methods for Nonlinear Optimization, pages 39-43. Academic Press, London,
1972.

[Saludjian, 1993] L. Saludjian. Etude d’une version parallele de Lancelot dans
Penvironment de programmation par tranferts de message PVM. Rapport
de stage de diplome d’études approfondies, Toulouse, France, 1993.

[Sartenaer, 1993] A. Sartenaer. A class of trust region methods for nonlinear
network optimization problems, including numerical experiments. Technical
Report 93/21, Department of Mathematics, FUNDP, Namur, Belgium, 1993.
To appear in STAM Journal on Optimization.

[Schittkowski, 1987] K. Schittkowski. More Test Examples for Nonlinear Pro-
gramming Codes, Volume 282 of Lecture notes in economics and mathematical
systems. Springer Verlag, Berlin, 1987.

[Schlick, 1993] T. Schlick. Modified Cholesky factorizations for sparse precon-
ditioners. SIAM Journal on Scientific and Statistical Computing, 14(2):424—
445, 1993.

[Schnabel and Chow, 1991] R.B. Schnabel and T.-T. Chow. Tensor methods
for unconstrained optimization using second derivatives. SIAM Journal on
Optimization, 1(3):293-315, 1991.

[Schnabel and Eskow, 1991] R. B. Schnabel and E. Eskow. A new modified
Cholesky factorization. SIAM Journal on Scientific and Statistical Comput-
ing, 11:1136-1158, 1991.

[Schnabel and Frank, 1984] R. B. Schnabel and P. D. Frank. Tensor methods
for nonlinear equations. SIAM Journal on Numerical Analysis, 21(5):815—
843, 1984.

[Schnabel, 1994] R. B. Schnabel. Parallel nonlinear optimization. In E. Spedi-
cato, editor, Algorithms for continuous optimization: the state of the art.
Kluwer Academic Publishers, Dordrecht, The Netherlands, 1994.

[Schrady and Choe, 1971] D. A. Schrady and U. C. Choe. Models for multi-
item continuous review inventory policies subject to constraints. Naval Re-
search Logistics Quarterly, 18:451-463, 1971.

42



[Shanno and Phua, 1980] D. F. Shanno and K. H. Phua. Remark on algorithm
500. ACM Transactions on Mathematical Software, 6:618-622, 1980.

[Shanno, 1994] D. F. Shanno. Algorithms for linear programming. In E. Spedi-
cato, editor, Algorithms for continuous optimization: the state of the art.
Kluwer Academic Publishers, Dordrecht, The Netherlands, 1994.

[Sklar and Armstrong, 1993] M. G. Sklar and R. D. Armstrong. Lagrangian
approach for large-scale distance value estimation. Computers Operations
Research, 20:83-93, 1993.

[Smith and Lasdon, 1992] S. Smith and L. Lasdon. Solving large sparse non-
linear programs using GRG. ORSA Journal on Computing, 4:2-15, 1992.

[Soares et al., 1993] J. Soares, J. J. Judice, and F. Facchinei. An active set
Newton’s algorithm for large-scale nonlinear programs with box constraints.
Technical report, Universidade de Coimbra, 300 Coimbra, Portugal, 1993.

[Sorensen, 1981] D. C. Sorensen. An example concerning quasi-Newton esti-
mates of a sparse Hessian. SIGNUM Newsletter, 16:8-10, 1981.

[Steihaug, 1983a] T. Steihaug. The conjugate gradient method and trust re-
gions in large scale optimization. SIAM Journal on Numerical Analysis,
20(3):626-637, 1983.

[Steihaug, 1983b] T. Steihaug. Local and superlinear convergence for truncated
iterated projection methods. Mathematical Programming, 27:199-223, 1983.

[Toint and Tuyttens, 1990] Ph. L. Toint and D. Tuyttens. On large scale
nonlinear network optimization. Mathematical Programming, Series B,
48(1):125-159, 1990.

[Toint and Tuyttens, 1992] Ph. L. Toint and D. Tuyttens. LSNNO: a Fortran
subroutine for solving large scale nonlinear network optimization problems.
ACM Transactions on Mathematical Software, 18(3):308-328, 1992.

[Toint, 1981a] Ph. L. Toint. A sparse quasi-Newton update derived variation-
ally with a non-diagonally weighted Frobenius norm. Mathematics of Com-
putation, 37(156):425-433, 1981.

[Toint, 1981b] Ph. L. Toint. Towards an efficient sparsity exploiting Newton
method for minimization. In I. S. Duff, editor, Sparse Matrices and Their
Uses, pages 57- -88. Academic Press, London, 1981.

[Toint, 1983] Ph. L. Toint. Test problems for partially separable optimization
and results for the routine PSPMIN. Technical Report 83/4, Department of
Mathematics, FUNDP, Namur, Belgium, 1983.

[Toint, 1987a] Ph. L. Toint. On large scale nonlinear least squares calculations.
SIAM Journal on Scientific and Statistical Computing, 8(3):416-435, 1987.

43



[Toint, 1987b] Ph. L. Toint. VE10AD, a routine for large scale nonlinear least
squares. Harwell Subroutine Library, 1987.

[Vanderbei and Carpenter, 1993] R. J. Vanderbei and T. J. Carpenter. Sym-
metric indefinite systems for interior point methods. Mathematical Program-
ming, Series A, 58(1):1-32, 1993.

[Werbos, 1988] P. Werbos. Backpropagation: past and future. In Proceedings
of the 2nd International Conference on Neural Networks. IEEE, New York,
1988.

[Wright, 1991] M. H. Wright. Optimization and large scale computation. In
J.P. Mesirov, editor, Very Large Scale Computation in the 215¢ Century, pages
341-407. SIAM, Philadelphia, 1991.

[Wu, 1993] Z. Wu. The effective energy transformation scheme as a general
continuation approach to global optimization with application to molecular
conformation. Technical Report CTC93TR143, Advanced Computing Re-
search Institute, Cornell Theory Center, Cornell University, Ithaca, USA,
1993.

[Zenios and Mulvey, 1986] S. A. Zenios and J. M. Mulvey. Nonlinear network
programming on vector supercomputers: A study on the CRAY X-MP. Op-
erations Research, 34(5):667-682, 1986.

[Zenios and Mulvey, 1988] S. A. Zenios and J. M. Mulvey. Vectorization and
multitasking of nonlinear network programming algorithms. Mathematical
Programming, Series A, 42(2):449-470, 1988.

[Zenios and Pinar, 1989] S. A. Zenios and M. C. Pinar. Parallel block-
partitioning of truncated Newton for nonlinear network optimization. Tech-
nical Report 89-09-08, Decision Sciences Department, The Wharton School,
University of Pennsylvania, Philadelphia, USA, 1989.

[Zenios, 1989] S. A. Zenios. Parallel optimization: current status and an anno-
tated bibliography. ORSA Journal on Computing, 1:20-43, 1989.

[Zou et al., 1993] X. Zou, I.M. Navon, M. Berger, K. H. Phua, T. Schlick, and
F. X. LeDimet. Numerical experience with limited-memory quasi-Newton
and truncated Newton methods. SIAM Journal on Optimization, 3(3):582—
608, 1993.

44



