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Abstract 

In this paper, we describe the algorithmic options of Release A of LANCELOT, a Fortran 
package for large-scale nonlinear optimization. We then present the results of intensive numerical 
tests and discuss the relative merits of the options. The experiments described involve both 
academic and applied problems. Finally, we propose conclusions, both specific to LANCELOT 
and of more general scope. 
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1. Introduction 

Research in large-scale optimization has been, in recent years, a major subject of 
interest within the mathematical programming community, as is clear from the programs 
of the main conferences and symposia on optimization techniques during this period. 
One such project was initiated by the authors of this paper [12] and has resulted in both 
theoretical contributions and software for large nonlinear optimization problems. A 
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detailed description of the algorithms developed and implemented in LANCELOT, the 
resulting Fortran package, is presented in [15]. The purpose of the present paper is to 
report on the numerical experiments performed with this software on a sizeable 

collection of test problems, and to draw some first conclusions on the respective merits 
of the algorithmic options available in the package. A comparison of LANCELOT and 

MINOS [45] is currently being conducted on a large set of test problems. However, due 
to the diversity of algorithmic options and complexity of these two packages, a fair and 

informative comparison is, in itself, a major research effort. It will be reported on 

separately. 
The paper is organized as follows. Section 2 briefly presents the main features and 

structure of LANCELOT. Section 3 contains a general description of SBMIN, the kernel 
algorithm for the software that handles simple bounds. AUGLG, the component that 

handles the extension to general constraints, is then outlined in Section 4. Section 5 
discusses the various algorithmic options that are available within the package. Section 6 
presents the testing framework and the strategy used to analyze the results. These results 
are then discussed in more detail in Section 7, where the efficiency and robustness of 

various algorithmic options are compared. Finally, some conclusions and perspectives 
are drawn in Section 8. 

2. General features and structure of the LANCELOT package 

2.1. Package presentation 

The purpose of the LANCELOT package is to solve the general nonlinear program- 
ming problem 

min f ( x )  (2.1) 
x ~  n 

subject to the constraints 

c (x )  = 0, (2.2)  

and to the simple bounds 

l i<~x i ~ u  i, i = l  . . . . .  n, (2.3) 

where f and c are assumed to be smooth functions from ~"  into [R and from IR" into 
Nm, respectively. The package is specially intended for problems where n a n d / o r  m are 
large. Indeed, it exploits the (group) partially separable structure (see [12]) of most 
large-scale optimization problems. However, the package can also be applied success- 
fully to small problems. The algorithms are designed to provide convergence of the 

generated iterates to local minimizers from all starting points. 
There is no loss in assuming that all the general constraints are equality constraints, 

as inequality constraints may easily be transformed to equations by the addition of extra 
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slack or surplus variables (see, for example, [31, Section 5.6]). Indeed, LANCELOT 
automatically transforms inequality constraints to equations. This technique is exten- 

sively used in simplex-like methods for large-scale linear and nonlinear programs. 
General features include facilities to compute numerical derivatives, an analytical 

derivative checker and an automated restart. The software also uses a full reverse 

communication interface for greater flexibility and adaptability. 
The package is written in standard ANSI Fortran77. It has already been ported to 

CRAY and IBM mainframes, to Digital VAX minicomputers, and to Digital, Hewlett- 
Packard, IBM, Silicon Graphics and Sun workstations, as well as to DOS-based personal 
computers. A fully automated installation procedure is supported for all these 

machines/systems. Single and double precision versions are available. The program's 
dimensions are also adaptable to fit within machines with different memory sizes. 

Full information on the package is available in [15]. Interested parties should contact 

one of the authors. 

2.2. The algorithmic structure of the package 

Because the purpose of this paper is to discuss the relative merits of several 
algorithmic options within the package, it is necessary to provide first a general 
description of the numerical methods used. The structure of the LANCELOT algorithms 
is summarized in Fig. 1. 

The package (whose algorithmic components appear in the rounded box) reads the 
problem as a set of data and Fortran subroutines (for computing function and derivatives 

Users and problems 
[ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  - [ -  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ,' 

Standard Input Format (SIF) interpreter / 

l 

Direct 

linear 

solvers 

LANCELOT interface 

11 
AUGLG 

11 
SBMIN 

li 
Iterative linear solvers 

i 

Preconditioners 

Fig. 1. Structure of the LANCELOT package. 
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values, as well as other problem related tasks). The way in which these subroutines and 
the associated datafile are produced is not the subject of this paper. It suffices to say that 
they can be written directly by the user, or obtained as the result of the automated 
interpretation of the problem expressed in a more friendly Standard Input Format. These 
techniques are described in detail in [15] and will not be discussed further here. We will 
rather concentrate on the algorithms used by LANCELOT to solve the problem, once 
properly specified. As suggested by the picture, LANCELOT either uses an augmented 
Lagrangian approach (if constraints of the type (2.2) are present), or directly attempts to 
solve problems whose only constraints are simple bounds, (2.3). 

The augmented Lagrangian algorithm AUGLG is outlined in Section 4. Its conver- 
gence theory has been analyzed in [13,16]. This theory guarantees that, under standard 
assumptions, the sequence of iterates calculated by the algorithm converges to a local 
minimizer of the problem. This augmented Lagrangian method proceeds by solving a 
sequence of suitably defined nonlinear optimization problems with simple bound 
constraints. We will call these iterations of the augmented Lagrangian algorithm major  

iterations. 

If the problem under consideration possesses only simple bounds, a specialized 
algorithm, S[3MIN, can be applied. This algorithm is of trust region type and is 
presented in Section 3. Its strong convergence properties have been analyzed in 
[10,38,51]. At the heart of SBMIN, quadratic problems with bound constraints (BQP) 
are solved repeatedly. In fact, a BQP is approximately solved at every SBMIN iteration. 
We call these minor  iterations. 

The process of (approximately) solving the BQP involves the (approximate) solution 
of a linear system of equations. This can be achieved by applying either direct or 
iterative linear solvers. The latter typically require preconditioning, which in turn might 
call specialized versions of the direct solvers, as is shown in the figure above. The 
iterative technique used with the package is preconditioned conjugate gradients. Itera- 
tions at this level are simply called cg-iterafions. Note that some form of precondition- 
ing might require a very problem specific technique; hence there is the possibility to 
return to the user level for such a calculation. 

The three nested iteration levels (major iterations at the augmented Lagrangian level, 
minor iterations at the SBMIN level, and cg-iterations at the BQP level) are illustrated in 
Fig. 2, where the dashed boxes indicate iteration levels that need not be present for all 
problems and all choices of algorithmic options. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

AUGLG: m a j o r  i t e ra t ions  

SBMIN: minor  i t e ra t ions  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

i i 

', BQP:  cg- i tera t ions  ', 

Fig. 2. The nested iteration levels within LANCELOT. 
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As the bulk of the computational work is performed in the minor and cg-iterations, 

we now summarize these parts of the algorithm. The reader is urged to consult Chapter 3 

of [15] for further details. 

3. An outline of SBMIN 

SBMIN is a method for solving the bound-constrained minimization problem defined 

by (2.1) and the simple bound constraints (2.3). Here, f is assumed to be twice-continu- 

ously differentiable and any of the bounds in (2.3) may be infinite. We will denote the 

vector of first partial derivatives, V~f(x), by g (x )  and the Hessian matrix, Vxxf(x), will 
be denoted by H(x). We shall refer to the set of points which satisfy (2.3) as the 

feasible box and any point lying in the feasible box is said to be feasible. 
SBMIN is an iterative method. At the end of the kth iteration, an estimate of the 

solution, x (k), satisfying the simple bounds (2.3), is given. The purpose of the (k + 1)st 

iteration is to find a feasible iterate x (k+ ~) which is a significant improvement on x (k). 
In the (k + 1)st iteration, we build a quadratic model of our (possibly) nonlinear 

objective function, f (x ) .  This model takes the form 

m(*'(x) = f ( x  (*)) +g(x(*))T(x--x (k)) +�89 (3.1) 

where B (*) is a symmetric approximation to the Hessian matrix H(x(k)). We also define 
a scalar _4 (*), the trust-region radius, which defines the trust region, 

II x - x <*> [I -<< ~ ( * ) ,  (3.2) 

within which we trust that the values of m(k)(x) and f(x) will generally agree 
sufficiently. An appropriate range of values for the trust-region radius is accumulated as 
the minimization proceeds. 

The (k + 1)st iteration proceeds in a number of stages. These may be summarized, in 
order, as follows. 

(1) Test for convergence. The calculation is stopped when the projected gradient is 
small enough, that is when 

II x<k) -- P (  x<k> -- g (  x(*>), Z, u)  l[= < E~ 

for some appropriate small convergence tolerance e~, where 

P( x, l, u)i= man(max(l/,  xi), ui). 

holds 

(3.3) 

(3.4) 

(2) Find the generalized Cauchy point of the quadratic model (see Section 3.1). 
(3) Obtain a new point which further reduces the quadratic model within the 

intersection of the feasible box and the trust region (see Section 3.2). 
(4) Test whether there is a general agreement between the values of the model and 

true objective function at the new point. If  so, accept the new point as the next iterate 
(the iteration is then said to be successful). Otherwise, retain the existing iterate as the 
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next iterate (the iteration is unsuccess2tid). In either case, adjust the trust region radius as 
appropriate (see Section 3.2.4 of [15]). 

3.1. The generalized Cauchy point 

The approximate minimization of the quadratic model (3.1) within the intersection of 

the feasible box and the trust region at the (k + 1)st iteration is accomplished in two 

stages. In the first, we obtain the so-called generalieoed Cauchy point (GCP), which is 

the result of this minimization carried out only on the path defined by the projection of 

the model 's  negative gradient onto this intersection. This point is important mostly 

because convergence of the algomhm to a point at which the projected gradient is zero 

can be guaranteed provided the value of the quadratic model at the end of each minor 

iteration is no larger than that at the generalized Cauchy point (see [10]). 

An efficient algorithm for this calculation, ,,,,'hen the trust region is defined in the 

infinity-norm (the LANCELOT default), is given in [11]. However, it is not necessary 

that the generalized Cauchy point be calculated exactly. Indeed, a number of authors 

have considered approximations which are sufficient to guarantee convergence (see 

[6-8,40,51]). Consequently we provide the option of using the approximation suggested 
by Mo,d in [40]. Since in our experience this option has proved to be less reliable and 

less efficient than the exact calculation, we will not discuss it further. Interested readers 
are referred to [15]. 

3.2. Beyond the generalized Cauchy point 

We have ensured that SBMIN will converge by determining the generalized Cauchy 

point. Convergence at a reasonable rate is achieved by, if necessary, further reducing the 
quadratic model. 

Those variables which lie on their bounds at the generalized Cauchy point are fixed. 
Attempts are then made to reduce the quadratic model by changing the values of the 

remaining free variables. Let x Ik'j) be the obtained generalized Cauchy point and let 
x (k'i~, j = 2, 3 . . . . .  be distinct points such that: 

�9 x (~'.i) lies within the intersection of the feasible box and the trust region; 

�9 those variables which lie on a bound at x (k'~) lie on the same bound at x(k'.i); 
�9 x tkj+ ~) is constructed from x (k-i) by 

(1) determining a nonzero search direction p(k.i) for which 

E c*,r (3.5) m" ~, .'r(e'jl) T p  (k'j) < 0:, 

(2) finding a steplength o?kJ)>  0 which minimizes m(~)(.r (~ J)+ c~p (k'j)) w i t h i n  

the intersection of  the feasible box and the trust region; and 
(3) setting 

x (~'j+ ~) = .r (k'i) + c~(k'-J~p {k4). (3.6) 
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This process is stopped when the norm of the free gradient of  the model at x (t'J) is 
sufficiently small. The free gradient of  the model is 

O(V,m'~)(x(~J)) ,  x (.4), l, u), (3.7)  

where the operator 

{y~, if I i < x i < u  i, 
Q( y, x,  l, u)i = 0, otherwise, 

(3 

zeros components of the gradient corresponding to variables which lie on their bounds. 
In LANCELOT,  we stop when 

[10(V~m(*)(x(*'J)), x (*'J), l, u)l[ ~< 11Q(V,m(*)(x(*)), x (*''), l, u)[1 t . s  (3.9)  

which is known (see [38]) to guarantee that the convergence rate of the method is 
asymptotically superlinear. 

There is much flexibility in obtaining a search direction which satisfies (3.5). We 
determine such a direction by finding an approximation to the minimizer of the 

quadratic subproblem (3.1), where certain of the variables are fixed on their bounds but 
the constraints on the remaining variables are ignored. Specifically, let ,.:(*'J) be a set 

of indices of  the variables which are to be fixed, let e~ be the ith column of the n by n 
identify matrix 1 and let i (*'j) be the matrix made up of columns er i f f d  r Now 
define 

~(k,:)_ i(k4)Vg(k.j) and ~k,j) = i(k.j)'rB(k.j)i(k.i)" (3.10) 

Then the quadratic model (3.1) at x (k'j) + p ,  considered as a function of the free 
variables ~ = i(k':)'rp, is 

i ~ 'r~(k.j~ (3.1 1 ) = x + + ,. ,.. 

We may attempt to minimize (3.11) using either a direct or iterative method. 
In a direct minimization of (3.11), one factorizes the coefficient matrix ~(k,j). If  the 

factors indicate that the matrix is positive definite, the Newton equations 

B(~'J)~*'J) = - ~(*'J) (3.12) 

may be solved and the required search direction p(* 'J)= ~(*.J)fi(k.D recovered. If, on the 
other hand, the matrix is merely positive semi-definite, a direction of linear infinite 
descent or a weak solution to the Newton equations can be determined. Finally, if the 
matrix is truly indefinite, a direction of negative curvature may be obtained. 

In an iterative minimization of (3.11), the index set J:(k'J) may stay constant over a 
number of iterations, while at each iteration the search direction may be calculated from 
the current model gradient and Hessian B(*'J) and previous search directions. The 
iterative method used in LANGELOT is the method of conjugate gradients. The 
convergence of such a method may be accelerated by preconditioning (see below). In 
fact the boundary between a good preconditioned iterative method and a direct method 
is quite blurred. 
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4. An outline of AUGLG 

AUGLG is a method for solving the generally-constrained minimization problem 
defined by (2.1)-(2.3). As above, f and the cj are all assumed to be twice-continuously 
differentiable and any of the bounds in (2.3) may be infinite. 

The objective function and general constraints are combined into the augmented 
Lagrangian 

IFI 1 Irtl 

4 (  x, A, S, /x) = f ( x )  + i=, y" Aici(x) + 2--~i~=l siici( x)2, (4.1) 

where the components A s of the vector A are known as Lagrange multiplier estimates, 
the entries sii of the diagonal matrix S are positive scaling factors, and /x is known as 
the penalty parameter. 

The constrained minimization problem (2.1)-(2.3) is now solved by finding approxi- 
mate minimizers of �9 subject to the simple bounds (2.3), for a carefully constructed 
sequence of Lagrange multiplier estimates, constraint scaling factors and penalty param- 
eters. 

The (k + 1)st major iteration of AUGLG is made up of three steps. At the start of the 
iteration, Lagrange multiplier estimates, A (k~, constraint scaling factors, S (k), and a 
penalty parameter/x (~) are given. The steps performed may be summarized, in order, as 
follows. 

(1) Test for convergence. The calculation is stopped when the projected Lagrangian 
gradient and the constraint violation are both small enough, that is when 

IIx~)-P(x ~ -  VxL(" x~, A ~>), l, u)ll= ~ ~, and [[c(xCk~)ll=<,c (4.2) 

hold for some appropriate small convergence tolerances e t and eL. 
(2) Use SBMIN to find an approximate minimizer, x (k+I), of the augmented 

Lagrangian function ~ ( x ,  A (k), S (~), /z ~)) in the feasible box, (2.3). This approximate 
minimization is terminated when 

II x ~+ ~) - P ( x  ~+ .7 _ V,~( x<~+ ,), ,X(~), S(~, ~z~k)), 1, u)II-<< w <k) (4.3) 

is satisfied for some tolerance w ~k). 
(3) Update the Lagrange multiplier estimates or the penalty parameter, depending on 

the value of II c(x ~§ ~)11, in addition to convergence and feasibility tolerances and 
constraint scaling factors (see Section 3.4.3 of [15]). 

5. Algorithmic options within LANCELOT 

We now discuss the most successful algorithmic options available in LANCELOT. 
We refer the reader to [15] for a comprehensive description of all options, and to [18] for 
exhaustive numerical results. 
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5.1. Constraint and variable scaling 

LANCELOT allows the user to specify variable and constraint scalings as input 
parameters and the scalings are then used implicitly by the algorithms. It is also possible 
to construct automatic scalings independent of the minimization routines by applying the 
matrix equilibration algorithm of Curtis and Reid [20] to the matrix formed by 
augmenting the constraint Jacobian with the objective function gradient. The resulting 
scale factors may then be used as scalings for the nonlinear problem (see Section 3.5 of 
[15]). Specifically, LANCELOT uses the implementation given by MC29 in the Harwell 
Subroutine Library. This automatic scaling procedure is available as an option within 
LANCELOT and will be referred to as the "scaling" option. Note that the stopping 
criteria (3.3) and (4.2) are suitably adapted to reflect scaling when this option is invoked. 

5.2. Linear solvers 

Most of the LANCELOT algorithmic options are related to the way in which an 
(approximate) minimizer of (3.11) is computed. This is hardly surprising since one 
expects the burden of the numerical calculation to be at this level. 

5.2.1. Direct methods 
Once the set d ~ ' ( k ' j )  is determined, the nature of the quadratic model restricted to the 

subset of free variables is characterized by the inertia of the matrix B(*'J). If all the 
eigenvalues of B(*'J) are strictly positive, the unique minimizer of (3.11) is given as the 
solution to the Newton equations (3.12). In all other cases, the model (3.11) is either 
singular or unbounded below. 

The use of a sparse multifrontal direct method to solve large-scale optimization 
problems has been advocated in [9]. Briefly, the matrix ~(k,j) is factorized using the 
Harwell Subroutine Library code MA27 [26,27] as 

~(k,j) = ~ (*../~Z(k.j)~(,.j)~(,.j)T- n (k.j)r, (5.1) 

where ~(k,j) is a permutation matrix, L(*'J) is unit lower triangular and D(~'J) is 
block-diagonal with 1 x 1 and 2 X 2 diagonal blocks. The inertia of ~(k.j) and ~(*.J) are 
identical. 

An option within LANCELOT, denoted by the "seml t f "  symbol, has the key 
property that the Newton direction is always chosen if ~(k.j) is positive definite and is 
based on the modified Cholesky methods of Schnabel and Eskow [49]. Here, we form a 
factorization 

~(k , j )  ..[_ F_(k.j) = 7_Jk,j)~(k,j)~(k,j)T, (5.2) 

where Z (k'-~) is unit lower triangular, ~(k,j) is positive definite and diagonal, and ~(k,i) is 
positive semi-definite, diagonal and nonzero only when ~(,.j) is not (sufficiently) 
positive definite. It is straightforward to modify the Harwell subroutine MA27 to 



8 2  A.R. Corm et al. / Mathematical Programming 73 (1996) 73-110 

achieve this factorization. Now, the modified Newton equations 

(~(k , j )  + fx~,j~) ~(~,j) = _ ~,(k.j) (5 .3 )  

are solved to obtain a suitable search direction. More than one cycle of improvement 
beyond the Cauchy point is allowed with this option. 

We stress that an advantage of this technique is that B (k) will typically not be 
modified as we approach the solution to the problem. Moreover, provided the trust-re- 

gion radius is sufficiently large that the Newton step (3.12) may be taken, we would also 

expect to take very few inner-iterations (indeed, in the nondegenerate case, one) before 

(3.9) is satisfied. 
Another option of the package, based on factorizing B(*J) instead of ~(k.j) + F(k,j), 

is discussed in [9]. Its performance is generally inferior to that of semN.  

5.2.2. Iterative methods 
In LANCELOT, the iterative method of choice is the method of conjugate gradients 

(see, for example, [31, Section 4.8.3] or [32, Sections 10.2 and 10.3]). Such a method 
attempts to find a stationary point of a quadratic function, in our case (3.11), by 
generating a sequence of (conjugate) search directions, ~(k4). If ~(k4) is not positive 
definite, the sequence of conjugate gradients may terminate with a direction along which 
the model (3.11) is either constant or unbounded below. 

The convergence of the conjugate gradient method may be enhanced by precondition- 
ing the coefficient matrix ~(k.j). A preconditioner is a symmetric, positive definite 
matrix P(~'J) which is chosen to make the eigenvalues of the product F (k'j)- ~(k,j) 
cluster around as few distinct values as possible. We have tried to supply a representa- 
tive cross-section of widely used preconditioners. We recognize that users may have a 
better idea of a good preconditioner for their problem by allowing them to provide their 
o w n ,  

Band preconditioners. Many application areas give rise to problems whose Hessian 
matrices are banded. A band matrix is a matrix B for which bij  = 0 for all [i - - j [  > mb. 
The smallest integer m b for which this is so is known as the semi-bandwidth of the 
matrix. The significant property as far as we are concerned is that, if B is positive 
definite, the Cholesky factors fit within the band. Moreover, clever storage schemes 
have been constructed to make the factorization and subsequent solutions extremely 
efficient (see, for example, [25, Section 10.2] and [29, Chapter 4]). We offer a band 
preconditioner within LANCELOT. This works in two stages. The desired semi-band- 
width, m b, is assumed to have been specified. The band matrix ~(k.j), with semi-band- 
width m b, is chosen so that 

M.[['J) = B~'-/), for all [i - l] ~< m,,. (5.4) 

Then, we obtain a modified Cholesky factorization of ~}k.j), as described in Section 
5.2.1. 

When ~(k..0 is positive definite and rn b is chosen large enough, the preconditioned 
conjugate gradient method will converge in a single iteration. The effect of the 
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preconditioner in other cases has not been formally analyzed. Band preconditioners are 
denoted below by "ban0(mb)" .  

Incomplete factorization preconditioners. It is sometimes possible to construct 
good preconditioners for specially structured problems by either rejecting all fill-in 
during the factorization or by tolerating a modest amount. Such incomplete factorization 

preconditioners are very popular with researchers in partial differential equations and it 
is possible to get off-the-shelf software to form them. We include in LANCELOT the 

example MA31, due to Munksgaard [44], from the Harwell Subroutine Library. We 
denote this option by " m u n k s g " .  

Full-matrix preconditioners. Finally, as we alluded to in Section 5.2.2, if space 
permits and ~(k,j) is positive definite, one can always use a complete factorization of 

~(k,j) as a preconditioner. However, if ~k,j) is not positive definite, it is possible to use 

the modification (5.2) suggested in Section 5.2.1 to determine a preconditioner. 
We consider two possible ways to obtain the perturbation matrix ~(k.j) in (5.2). The 

first is, as above, the modified factofization algorithm proposed by Schnabel and Eskow 
in [49]. We will use " s e p r c "  to denote this strategy. 

It is worthwhile noting the parallel between seprc  and semltf. They both use the 
direct modified factorization of B(*'J) to compute the Newton direction in the subspace 
of free variables. They differ in that this process is stopped in seprc  as soon as the only 
bounds encountered are trust region bounds, while the minimization may be pursued, in 
semltf, along the trust region boundaries. 

The second is another modification of MA27 advocated by Gill, Murray, Poncel~on 
and Saunders in [30]. Here, the factorization (5.1) is not modified as it is formed, but it 
is instead computed and then modified. The resulting algorithmic option is denoted 
below by "gmpsprc". 

Expanding Band Preconditioners. One further possibility is to use an expanding 
band preconditioner. Consider the band matrix M!k'J~ given by (5.4), where the 
semi-bandwidth m b is given by 

n, i f [ l x (* l -P(x (*~-g(x*) , l , u ) [ l<~lO-2 ,  
nl(b k ) = I 7n ,  if lO -~" < II x ~> - P ( x  ~ - g ( x ~ ) ,  l, u)II .< I 0 - ' ,  ( 5 . 5 )  

~ n, otherwise. 

The idea is to select the semi-bandwidth rn(b k) at each iteration to reflect the speed and 
accuracy which one wants from the preconditioned conjugate gradient method. In 
particular, if low accuracy is required, a preconditioner with a small semi-bandwidth 
(such as a diagonal preconditioner) is often very effective. But if high accuracy is 
desired, it may be better to pick a preconditioner which is a better approximation to 
~ ( k , j ) .  

Having obtained the preconditioner, we obtain a modified Cholesky factorization of 
M[['J), as described in Section 5.2.1. However, unlike the band preconditioners de- 
scribed above, the matrix and its factorization are stored as a general sparse, rather than 
band, matrix. 
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We realize that further sophistication may be desirable but have found that this 
simple scheme is effective in practice. This preconditioning option will be denoted by 
"expband". 

5.3. Derivative approximations 

Further algorithmic options in LANCELOT are related to the various ways in which 
derivatives or their approximations are computed. However, the structure of these 

derivatives crucially depends on the structure of the nonlinear functions themselves. In 

order to derive an efficient algorithm for large-scale calculations, we first need to know 
a way to handle the structure typically inherent in functions of many variables. 

A function f ( x )  is said to be group partially separable if: 
(1) the function can be expressed in the form 

ng 

f ( x ) =  Y',gi(c~i(x)), where a i ( x  ) =  • w i j ~ ( x  U]) + a m x - b  i (5.6) 
i= t j e J ,  

(%(x) is known as the ith group); 
(2) each of the group functions gi(c~) is a twice continuously differentiable function 

of the single variable a ;  
(3) each of the index sets ,.el is a subset of {1 . . . . .  n,.}, where n c is the number of 

nonlinear element functions; 
(4) each of the nonlinear element functions fj is a twice continuously differentiable 

function of a subset x [j] of the variables x. Each function is assumed to have a large 
invariant subspace. Usually, this is manifested by x IA comprising a small fraction of the 

variables x. 
This structure is extremely general. Indeed, any function with a continuous, sparse 

Hessian matrix may be written in this form (see [34]). A more thorough introduction to 
group partial separability is given in [12]. LANCELOT assumes that the objective 
function f ( x )  is of this form. When equality constraints are present, they are handled via 
the augmented Lagrangian and thus become part of the objective function for the 
subproblem given to SBMIN. Each such constraint then gives rise to the group function 
c~2/2/x, which imposes the restriction that each equality constraint has only a single 

group. 
One of the main advantages of the group partially separable structure is that it 

considerably simplifies the calculation of derivatives of f (x ) .  If we consider (5.6), we 
see that we merely need to supply derivatives of the nonlinear element and group 
functions. LANCELOT then assembles the required gradient and, possibly, Hessian 
matrix of f from this information. 

The gradient of (5.6) is given by 

V~f(x) = E g',(%(x))V~%(x), 
i = l  

where g~ o~,(x) = [11 wi , jEh(  x ) + a , .  
J~'~i 

(5.7) 
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Similarly, the Hessian matrix of the same function is given by 

r,.~f(x) = E g"(~ r,-~ (~7, ee,(x)) T+ E g:(oe,(x))V,.,.cx~(x), 
i = 1  i = l  

where the Hessian matrix of the ith group is 

= E w,.Z,JA xlJl). 
j ~ ,5"-, 

(5.8) 

(5.9) 

Notice that the Hessian matrix is the sum of two different types of terms. The first ~s 

a sum of rank-one terms involving only first derivatives of the nonlinear element 
functions. The second involves second derivatives of the nonlinear elements. 
LANCELOT assumes that the first and second derivatives of the group functions are 
available. This is frequently the case in practice. 

The quadratic model (3.1) uses the gradient of f by default. However, LANCELOT 
provides an option (which we will denote by " f d g " )  with which this gradient is 
evaluated by finite differences (see Section 3.3.2.3 of [15]). LANCELOT also offers two 
choices for the Hessian matrix of (3.1). 

�9 We can calculate the true first and second derivatives of each nonlinear element 
and group function and use the exact Hessian B (~) = 77, ,f( x(~)). 

�9 We can calculate the true first and second derivatives of each group function, 
calculate the first derivatives of the nonlinear elements but use approximations, 

BI jt(~), to their second derivatives. We then use the approximation 

B'k' = E g': (oei(x(k))) V~c~i(.x-ok)) (V,.c~,(x(k')) T 
i=i  

ng 

+ E g',(o,,(x",))8?', 
i = I  

(5.1o) 

where B} ~) satisfies 

B} k)= Y', wi.jB[J](k) (5.11) 
j ~ J ,  

for some suitable matrices B t4~k). 

We strongly recommend the use of exact second derivatives whenever they are 
available. LANCELOT fully exploits this information. In our experience, because of the 
advantages of using partial separability, exact second derivatives are often available by 
direct calculation. Alternatively, one may use automatic differentiation tools (see 
[24,33], for instance). Using exact second derivatives is therefore the default option in 
the package. 

However, it may sometimes be useful to approximate the matrices (5.11 ). LANCELOT 
presently uses the same type of derivative approximation for all elements. The symmet- 
tic-rank-one (SR1), Broyden-Fletcher-Goldfarb-Shanno (BFGS), Powell-symmetric- 
Broyden (PSB) and Davidon-Fletcher-Powell (DFP) updates are provided. We present 

here the results of the first two choices, which are referred to as the " s t 1 "  and " b f g s "  
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options respectively, since overall they were the most satisfactory. See [23,28,31] for 
further details on these updating formulae, ,and Section 3.3.2.3 of  [15] for a more 

detailed discussion of how these updates are implemented. 

5.4. Accurate solution of the BQP 

Finally, the last option considered in this paper allows the user to specify that the 

minimization of the objective function model has to be accurate within the intersection 

of the feasible region for the bound constraints and the trust region. In Section 3.2, we 

gave a general framework for obtaining a new iterate that is "be t te r"  than the 

generalized Cauchy point. At each stage, an approximation to the minimizer of the 

model is sought while some of the variables are held fixed at bounds. This set of  fixed 

variables, S (k'J), always includes those which were fixed at the generalized Cauchy 

point. In SBM/N, we also include by default all variables which encounter bounds at 

x (k'J), for j > 0 until the test (3.9) is satisfied. Then, optionally, we may free all variables 

except those which were fixed at the generalized Cauchy point and perform one or more 

further cycles. This optional process, denoted by " a c c b q p " ,  is terminated when 

releasing variables does not improve the model value. This is detected when (3.9) and 

l, x "  J'), x l, ,,) 

are satisfied. At the start of each cycle, we also compute a new generalized Cauchy 
point for the model fixing the variables which were on a bound at the original Cauchy 

point. This recursive use of  SBMIN is guaranteed to satisfy (3.9) if a sufficient number 
of  cycles is performed. 

6. The numerical  tests: f r amework  and p rocedure  

6.1. Basic approach 

There are many ways to test a complicated, general purpose code like LANCELOT, 
and even more ways to present the results of these tests. We now briefly discuss the 

fundamental choices we made when designing our tests and which influence our 

treatment of  the results in this paper. 
Our first decision was to test and report on a large number of  test cases. In our 

experience, this is essential for a true assessment of reliability and performance, as 
smaller test sets are more likely to introduce unwanted bias. 

Our second choice was to limit the comparison to reliability and efficiency aspects. 

Other potential criteria, such as ease of  use, accuracy of solutions and availability, did 

not seem to be as significant when testing a single package. 

Our final decision was to present both aggregate and relatively disaggregate perfor- 

mance measures. Specifically, we chose the average performance as our aggregate 
measure but also report on the ranking of  the algorithmic variants in five performance 
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classes (excellent, good, satisfactory, fair and poor). The performance was averaged 

across many problems which differ, sometimes substantially, in size, nonlinearity or type 

of constraints. 

Although the choice of the average sometimes obscures the performance of  algorith- 

mic variants on the easier problems in comparison with the harder ones, it nevertheless 

seems to correspond to our intuitive appraisal of the variants after our experience of 

running extensive tests. This is especially true when one also considers the associated 

rankings, as we hope is apparent later in this section. Furthermore, there is little 

agreement within the optimization community on alternative aggregate measures. 

The authors of course realize that this scheme is not the only one that can be 

defended. It is however hoped that it provides a sufficient basis to make the testing 

discussed in this section of interest. 

6.2. The test problems 

The numerical tests with LANCELOT that we are about to describe were conducted 

using the Constrained and Unconstrained Testing Environment (CUTE) collection of 

nonlinear test problems (see [4]). This collection contains a large number of nonlinear 

optimization problems of various sizes and difficulty, representing both academic and 

real world applications. As the title of  the collection implies, constrained and uncon- 

strained examples are included. For our tests, we have used 624 instances of  uncon- 

strained (or bound constrained) problems and 319 instances of constrained problems. 

These 943 instances are derived from 398 different problems, the additional examples 

being determined by varying the dimension. It is of course undesirable to describe all 

these examples in the present paper. It will suffice to say that our test set covers, 
amongst others, 

�9 the "Argonne  test set" [42], the Testpack report [5], the Hock and Schittkowski 

collection [36], the Dembo network problems (see [21]), the Mor~-Toraldo 

quadratic problems [43], the Toint-Tuyttens network model problems [52], 
�9 most problems from the PSPMIN collection [50], 2 

�9 problems inspired by the orthogonal regression report by Gulliksson [35], 

�9 some problems from the Minpack-2 test problem collection 3 [2,3] and from the 
second Schittkowski collection [47], 

�9 a number of original problems from various application areas. 
We present some of the problems characteristics in Figs. 3 and 4 and in Table 1. 

�9 Fig. 3 shows the distribution of  the problems' dimensions. 

�9 Fig. 4 illustrates the distribution of the ratio m / n ,  where m is the total number of  
general equality and inequality constraints. The higher this ratio, the more 

constrained the problem. Only constrained problems (m > 0) are considered in this 
statistic. 

2 Some trivial problems were skipped and also problems for which different local minima were known. 
3 The problems that we could reconstruct from the data given in the report. 



88 A.R. Corm et a l . /  Mathematical Programming 73 (1996) 73-110 

(5000,100001 

(1( 

(5oo, 1 ooo] 

(48.7%) 

(100,50C 

(50,100] (11.9% I 

Fig. 3. Distribution of  problem dimensions. 

�9 Table  1 reports the number  of  p rob lems  for which a g iven character is t ic  l ies in one 

of five possible  intervals  [0, 0.2], (0.2, 0.4], (0.4, 0.6], (0.6, 0.8] and (0.8, 0.1]. 

Four  character is t ics  are examined.  These are 

- the relatiue nonlinearity of the objectiue fimction, that is the ratio 

def number  of  nonl inear  groups in the objec t ive  

U~ -- -- number  of  groups in the objec t ive  ' (6 .1 )  
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Fig. 4. Distribution of  tile relative number  of  constraints m / n. 
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Table 1 
Further problems characteristics 

89 

~oj 48 0 13 2 880 

~ons 139 5 20 8 193 
n b / n  573 25 38 14 293 
Y 99 5 7 13 241 

where the groups are defined in (5.6) and where a group is declared nonlinear if 

it contains at least one nontrivial nonlinear element function or if its associated 

group function is nonlinear; 

- the relative nonlinearity of the constraints, i.e., 

def number of nonlinear constraints 

~'con~ = number of constraints ' (6.2) 

where the bounds have been excluded from the denominator; 

- the proportion n J n  variables subject to bound constraints; 

- the proportion of equality constraints, that is of the ratio 

def number of equality constraints 
Y = (6.3) 

m 

We note the following points. 

�9 The majority of the problems are not very large. However, we recall that testing 

LANCELOT on small problems is meaningful because the package is also 

intended to solve small-scale problems. Furthermore, the classes of  larger prob- 
lems are far from empty, and we note the presence of examples with more than 

15 000 variables. 
�9 Most large problems tend to have a somewhat regular structure. As a result, most 

groups in these problems tend to be structurally similar. This is noticeable in the 

distribution of  the relative nonlinearity of the objective function and constraints, 

where either most or very few, if any, groups are nonlinear. The same phe- 
nomenon is also observed for the proportion of bounded variables which tends to 

be either very low or close to one. 
�9 There are very few problems involving considerably more general constraints than 

variables. Many of the problems arise as nonlinear systems of equations, while a 

fair proportion have approximately half as many constraints as variables. We 
nevertheless note the presence of  problems where the number of constraints is 

substantially greater than n. 

Bearing in mind that one of  the LANGELOT's  features is its ability to handle large 
problems, we also selected, amongst the 943 tests problems, all problems in more than 

500 variables. This subset contains 268 problems, that is 28.1% of the complete set. The 

algorithmic conclusions corresponding to the complete problem set and the subset are 
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BEGIN 

check-derivatives 

ignore-derivative-bugs 

exact-second-derivatives-used 

bandsolver-preconditioned-cg-solver-used 5 

exact-cauchy-point-required 

trust-region-radius 1.0D+O 

maximum-number-of-iterations i000 

print-level -i 

start-printing-at-iteration 0 

stop-print•177 1000 

END 

Fig. 5. The LANCELOT default specification file. 

interesting to compare because only the latter depends more obviously on the way in 

which the problem structure is handled. 

6.3. The testing procedure 

Before detailing the testing procedure, we recall tile default algorithmic choice for 

LANCELOT: 
�9 no variable/constraint scaling, 

�9 a conjugate gradient linear solver is used with a banded preconditioner of  
semi-bandwidth 5 (band(5)), 

�9 analytical second derivatives are used, as well as analytical gradients, 

�9 an exact Cauchy point calculation is used, 
�9 the f,~-nonn is used for defining the trust region. 

For our tests we also set the maximum number of iterations to 1000, the maximum 
cpu-time to 18000 s, the initial trust region radius to 1.0 and disabled all printing. The 

accuracy requirements were set to the LANCELOT defaults, that is e t = E~ = 10 -5. We 
also turned the derivative checker on but chose to ignore its warning messages. Of 

course, all derivatives were checked before the actual tests. For the sake of  complete- 
ness, the default LANCELOT specification file is given in Fig. 5. 

We next considered basic variants of this default choice, that is a choice of 
algorithmic options that differs in just one instance from the default. The basic variants 
are ;  

noprc:  no preconditioner is used within the conjugate gradient solver, i.e., ~(k.y)= I 
(see Section 5.2.2), 

band(0):  a diagonal preconditioner is used for the conjugate gradient solver (see Section 

5.2.2), 
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band(l): a tridiagonal preconditioner is used for the conjugate gradient solver (see 

Section 5.2.2), 
band(10): a 21-diagonals preconditioner is used for the conjugate gradient solver (see 

Section 5.2.2), 

expband: an expanding band preconditioner is used for the conjugate gradient solver 
(see Section 5.2.2), 

munksg: an incomplete factorization preconditioner is used for the conjugate gradient 
solver (see Section 5.2.2), 

seprc:  a full matrix preconditioner using the Schnabel-Eskow modified factorization is 

used for the conjugate gradient solver (see Section 5.2.2), 
grnpsprc: a full matrix preconditioner using the Gill-Murray-Poneel6on-Saunders 

modified factorization is used for the conjugate gradient solver (see Section 5.2.2), 

semltf: a modified multifrontal direct linear solver is used (see Section 5.2.1), 
st1: the symmetric-rank-one quasi-Newton formula is used to approximate second 
derivatives (see Section 5.3), 

bfgs: the Broyden-Fletcher-Goldfarb-Shanno quasi-Newton formula is used to approx- 
imate second derivatives (see Section 5.3), 

scaling: automatic variable/constraint scaling is used, with scalings computed at the 
starting point (see Section 5.1), 

accbqp:  an accurate solution to the BQP is sought (see Section 5.4). 

To this list we added the fdg variant which uses finite difference approximation to 
gradients and the symmetric-rank-one quasi-Newton formula for approximating second 
derivatives (see Section 5.3). These variants and the default gives a list of 15 different 
algorithmic choices. 

Note that the variants scaling, semltf, expband, seprc, gmpsprc and munksg 
depend on code from the Harwell Subroutine Library. Their use is therefore only 
possible for users with a suitable licence. As a consequence, they could not be selected 
as defaults for the package. 

We then tested all of these fifteen choices on the complete problem set, which 
amounted to running 15 • 943 = 14 145 test cases. A total of 5658 additional cases were 
also run to evaluate the less successful options not discussed in this paper. These tests 
were performed on two Digital DECstations 5000/200 with 48 MBytes of memory, 
using the Ultrix f-/7 compiler (version 3.0-2) without optimization. 4 The CPU-times on 
both machines were checked for consistency. 

7. The numerical  tests: results and discussion 

It is of course impossible to detail the complete set of results obtained on nearly 
fifteen thousand test cases in a journal article. We will therefore present and discuss 

4 An error in the Fortran optimizer of this version prevented its use with the package. 
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summaries  and averages  extracted f rom these results. A technical  report conta ining the 

comple te  results is h o w e v e r  avai lable [18]. 

7.1. Reliabil i ty 

7.1.1. General  assessment  

We first present  results on the reliabil i ty and failures on the f i f teen a lgor i thmic  

variants. Results  are g iven  in Table  2, where the occurrences  o f  the L A N C E L O T  exit 

condi t ions  are reported for all f if teen variants in the case o f  the comple te  test set and the 

selected subset. The  co lumn  headings  correspond to the fo l lowing  possible situations. 

SUCC: The min imiza t ion  was successful ly  terminated.  

stall:  The  min imiza t ion  could not progress  further,  the stepsize being smal ler  than 

relat ive machine  precision.  Not  all runs terminated in this way  are unsuccessful  f rom the 

user ' s  point  o f  v iew,  as it happens  in several  cases that the a lgor i thm is " s t a l l e d "  very 

near the solution. 

irlfs: The  package  could not find a feasible  point  for the considered problem.  

m e r e :  The  workspace  required for handl ing the considered problem is larger  than three 

mil l ion double precision a n d / o r  three mil l ion integer numbers.  

i ters:  The run was terminated after 1000 iterations without  convergence .  

cpu :  The  run was terminated after 18 000 C P U  seconds (5 h) wi thout  convergence .  

e r ror :  An ari thmetic error occurred in the s u b p r o g a m s  evaluat ing  the p rob lem depen- 

dent funct ions a n d / o r  der ivat ives .  This  typically occurs  when the iterates produced  by 

the algori thm " w a n d e r  o f f "  the part o f  the feasible  region where  the values  o f  the 

objec t ive  and constraints are of  manageab le  size. 

Table 2 
Successes and failures per variant 

Variant Complete set (943 problems) Selected subset (265 problems) 

succ stall infs mere iters cpu error succ stall infs mem iters cpu error 

default 865 11 7 0 3l 26 3 231 3 0 0 9 22 0 
noprc 850 6 13 0 35 36 3 221 l 1 0 14 28 0 
band(O) 844 21 12 0 30 33 3 220 4 0 0 12 29 0 
band(l) 862 14 9 0 30 26 2 232 1 0 0 l0 22 0 
band(10) 864 13 I0 0 27 26 3 228 5 0 0 10 22 0 
expband 866 7 8 3 25 25 9 225 1 2 2 7 24 4 
munksg 851 7 13 2 28 39 3 221 0 1 1 5 37 0 
seprc 878 11 7 2 22 21 2 239 1 1 1 3 20 0 
gmpsprc 861 9 7 9 26 21 10 222 2 1 8 5 21 6 
semltf 812 5 II 2 65 43 5 197 0 4 1 20 42 1 
srl 865 17 9 0 25 24 3 231 5 0 0 8 21 0 
bfgs 796 15 12 0 87 23 I0 207 5 1 0 25 21 6 
scaling 806 46 21 0 29 27 14 206 12 9 0 11 24 3 
accbqp 858 14 7 0 15 49 0 221 1 0 0 3 40 0 
fdg 787 19 11 0 91 28 7 203 6 0 0 28 25 3 
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Note that the algorithmic variants have been ordered, in this table and subsequent 
figures, to allow for an easy comparison of all preconditioned iterative techniques 

(themselves ordered by increasing semi-bandwidth, from noprc to gmpsprc) and of 
these techniques with a direct method (semltf). The default variant has been isolated for 
easier reference. The two quasi-Newton variants (sr] and bfgs) are then presented next 

to each other, followed by the more disparate options (scaling, accbqp  and fdg). 
From this table, we can draw the following conclusions. 

(1) The reliability of the default algorithmic choice is good (91.7% on the complete 

problem set), nearly identical to that of the expanding band preconditioner variant 

expband (91.8% on the complete set), and only marginally surpassed by that of the 
Schnabel-Eskow preconditioner used in conjunction with conjugate gradients (93.1% on 
the complete set). 

The default choice of a semi-bandwidth of 5 also seems to provide excellent reliability 

amongst the banded preconditioners, both for the complete problem set and the subset. 
(2) The robustness of the best partitioned quasi-Newton scheme (SR1) appears to be 

excellent compared with the use of exact second derivatives, even for large problems. 
This approach therefore confirms its potential amongst quasi-Newton techniques for 
large-scale applications, at least from the reliability point of view. 

(3) The scaling variant does not show a globally improved robusmess compared with 
the default. It is the variant most often stalled. This illustrates the difficulty of designing 
good automatic scaling procedures. It is however worthwhile to note that the scaling 
variant did solve badly scaled problems where other variants failed. Keeping such an 
option available therefore seems to be of some value, but it should not be used as a 
default. 

(4) It is somewhat surprising that the gmpsprc  variant has a significantly lower 
reliability than the other full matrix preconditioner seprc  on the selected test set (and 
hence also on the complete set). 

One of the reasons is that the Gill-Murray-Poncel~on-Saunders technique seems to 
generate more arithmetic errors and to run out of memory more often than the 
Schnabel-Eskow method. On closer analysis, the occurrence of overflow with the 
Gill-Murray-Poncel~on-Saunders modified factorization seems to be due to numerical 
difficulties for some singular or nearly singular matrices. The observed problems are 
probably caused by the low value of the threshold under which eigenvalues are 
perturbed to ensure positive definiteness of the preconditioning matrix. According to 
[30], this threshold is set to the machine precision. A posteriori experiments with the 
threshold raised to (machine precision) 3/4 (as is used in the Schnabel-Eskow modifica- 
tion) indicate that the overflow problems can be avoided. These observations are 
consistent with the conclusions of Schlick in [48], where she observes that enforcing a 
small modification E(~-J) in (5.3) might not be beneficial for fast convergence. 

A second reason that gmpsprc more often fails because of excessive memory 
requirements. This difference between gmpsprc  and seprc  is due to a possibly larger 
fill-in the Gill-Murray-Poncel~on-Saunders technique caused by changes in the pivot- 
ing order to preserve stability. As the Schanbel-Eskow modified factorization maintains 
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positive definiteness of the matrix during the factorization, no such changes are 

necessary. 

(5) We also note the substantial gain in robustness obtained by using a full matrix 

factorization as preconditioner. The variant seprc is indeed significantly more reliable 

than its direct counterpart semltf. 

(6) The accbqp variant, being more computationally intensive, runs out of time most 

often. If we assume that some of the truncated computations would effectively terminate 

successfully, given additional time, this variant probably ranks as the most reliable, but 

at the expense of substantial additional effort. 

(7) There does not seem to be a real robustness advantage in using an incomplete 

factorization preconditioner (munksg) over a banded one for the problems of our test 

set. One must however notice that discretized continuous problems do not constitute a 

majority of the tested cases. As incomplete factorizations have earned their good 

reputation on such problems, one could probably expect a better performance of the 

munksg variant if the proportion of discretized problems increased. 

(8) Using finite difference approximations for the first derivatives of the problem's 

function somewhat reduces the reliability of the package, but fdg still managed to solve 

83% of the problems, a quite acceptable score. 
We conclude our general reliability analysis by noting that 919 of the 943 problems 

were solved by at least one variant, while 6t7 were solved by all of them. This indicates 

an excellent reliability of the complete package (97.5%) on our large test problem 
collection, but also the relative lack of robustness for certain algorithmic variants. 

Amongst the 265 problems of the subset, 254 (95.8%) were solved by at least one 
variant and 139 (52.5%) by all variants, indicating that the overall good performance 

does not deteriorate much when only the larger problems are considered. 

7.1.2. Further discussion o/" the unsolved problems 
We now comment on the 24 problems in the complete test set that were not solved, 

within the given iterations and time limits, by any variant. These problems are listed in 

Table 3, where we also indicate some of their characteristics. These characteristics may 
provide some insight into why LANCELOT found them difficult. 

We first note that fifteen of these problems could be solved by the package, but their 

solution required a number of iterations exceeding 1000 and/or  a total cputime over 5 
hs. It was also sometimes necessary to reduce the initial value of the penalty parameter 

below its default value or to combine the features of two of the variants. A further five 

problems could be "nearly solved" in the sense that a point was found which did not 

satisfy the critically conditions (4.2) within the required tolerance of 0.00001, but was 
essentially the problem's solution. Amongst these latter problems, one finds constrained 

cases (HS84, HS99, HS116) where the penalty parameter was reduced by LANCELOT 

to very small values (below 10-7), which caused subproblem ill-conditioning and slow 

overall progress. More details are available in the Appendix on the specific options used 
and timings ['or the solution of these twenty problems. 

Four problems remain that could not be solved by LANCELOT. These are HS99EXP, 
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Table 3 
24 difficult problems for LANCELOT 

95 

Problem n m V e r y  Degenerate Badly Solved by 
name nonlinear conditioned LANCELOT 

AGG 163 488 ( Nearly 
CHEMRCTA 5000 5000 ,/ ,/ Yes 
CORKSCRW 4497 3500 ~I ~/ Yes 
CORKSCRW 8997 7000 ~ ( Yes 
ERRINBAR 18 9 Yes 
HS84 5 3 r Nearly 
HS93 6 2 ~/ Yes 
HS99 7 2 ~/ ,/ Nearly 
HS 103 7 6 ( Nearly 
HS116 13 15 v' Nearly 
HS99EXP 31 21 ~/ ,/ No 
LEWISPOL 6 9 Yes 
LUBRW 149 100 ,/ No 
LUBRIF 749 500 v' No 
MARATOSB 2 0 ~/ Yes 
NGONE 497 31 373 ,/ v' No 
NOMSQRT 529 0 ~/ Yes 
NOMSQRT 1024 0 ~/' Yes 
OBSTCLAE 15 625 0 Yes 
OPTMASS 606 505 ( ,./ Yes 
OPTM ASS 1206 1005 r ( Yes 
OPTMASS 3006 2505 ,/ v' Yes 
SVANBERG 5000 5000 Yes 
TENBARS4 18 9 ~/ Yes 

N G O N E  and L U B R I F  (in 149 and 749 variables).  HS99EXP is a variant  on the 99th 

problem in the Hock and Schittkowski collect ion [36]. N G O N E  is a two-d imens iona l  

geometry problem involv ing  a very large number  of inequali ty constraints.  Final ly ,  

LUBRFF is the e las to-hydrodynamic  lubrif icat ion nonl inear  complementar i ty  problem 

described in [37,41], which is notor iously difficult  to solve by pure nonl inear  opt imiza-  

tion techniques. It is interesting to note that the difficulty of solving these problems 

seems to arise not from their size, but  rather from their nonl ineari ty  a n d / o r  degeneracy.  

7.1.3. Convergence to d(~erent critical points 

If we now wish to compare the relative eff iciency of  these variants, the only runs that 

can really be compared for each variant are those that successfully produce a well 

specified critical point.  We therefore remove from our comparison all runs for which the 

variant under  considerat ion converged to a critical point whose associated objective 

function value does not  correspond (within 0 .001%) to the lowest critical value found 

for the problem. In total, 617 problems from the complete set and 139 from the subset  

were successfully solved (according to this criterion) by all variants. In what fol lows we 

comqne our attention to these problems. Fig. 6 indicates how many problems per variant  

gave rise to different local optima. 
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delault noprc band(l) expband seprc semlil srl accbqp 
band(O) band(lO) munksg grnpspm bfgs scaling 

Fig. 6. Number of successful runs to alternative critical points per variant. 

fdg 

7.2. N u m b e r  o f  m i n o r  i tera t ions  

We now start comparing the algorithmic variants for relative efficiency, and first turn 

our attention to the number of  minor iterations required by the variants to find the 

solution. We recall that the problem's  objective function and constraints (if  any) are 

evaluated exactly once per such iteration for all variants except fdg, where additional 

evaluations are required to estimate the first derivatives. We also note that LANCELOT 

only recomputes the value of the objective function's  and constraints '  elements whose 

variables have been modified since the last evaluation: this sometimes implies a 

substantial reduction in the computational effort required for such an evaluation. 

Fig. 7 shows the average number of iterations required for solution (on the problems 

that were successfully solved by all variants). Fig. 8 presents an overall view of the 

relative ranking of the variants based on the number of iterations. All fifteen variants 

were ranked (where best means ranked first and failed means not ranked at all) for each 

of these 617 problems. We then counted the number of times that a given variant had a 

given rank. We finally clustered the obtained rankings in classes 5 (excellent: ranks 1 to 

3, good: 4 to 6, satisfactory: 7 to 9, fair: 10 to 12. poor: 13 to 15) which are then 

5 Of course, these classes should be understood as an indication of performance only relative to that of other 
LANCELOT variants. 
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7. Average number of iterations for 617 problems solved by all variants. 

35 

displayed in a bar chart. For instance, the darker area in the bar corresponding to the 
soprc variant indicates that this variant is excellent (that is, amongst the three best) for 
454 problems, an impressive performance. 
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Fig. 8. Ranking by iterations for 617 problems solved by all variants. 
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F.g 9. A,,eragc number of iterations for 139 problems of the subset solved by all v;uiants. 

Figs. 9 and 10 present the corresponding averages 
c ] successlul.y solved problems of subset. 

We now draw some conclusions from these figures. 
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Fig. 10. Ranking by iterations for 139 problems of the subset solved by' all variants. 
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(1) We Lmmediately note the good results obtained by the semltf variant for the 

complete problem set. Although less reliable than its preconditioning counterpart seprc,  
it seems to require fewer iterations to converge when it does so, but the difference is 

admittedly marginal. 
(2) The accbqp variant requires amongst the least number of minor iterations. This is 

not a surprise, since this variant puts more work in an iteration and one therefore expects 

that less of these more costly iterations are needed. 
(3) The seprc  variant also seems to require fewer iterations on average than the other 

full factorization preconditioner variant gmpsprc .  
(4) The default variant appears to be reasonably efficient in terms of minor iterations 

amongst the tested variants, although not amongst the best. It is however remarkable that 

it is the variant whose behaviour is least often in the worst ranking variants, as is shown 
by the size of the " p o o r "  class (in Fig. 8). This last characteristic is also displayed by 
the seprc and accbqp  variants on the subset (see Fig. 10). 

(5) Amongst the quasi-Newton wtriants, the srl  variant appears to require substan- 
tially fewer iterations and function evaluations than its bfgs counterpart. 

(6) The need to estimate gradients by finite differences also causes the number of 
iterations to increase, as can be deduced by comparing the performance of the fdg and 
srl  variants. 

7.3. Number of cg-iterations 

We now examine the total number of conjugate gradient iterations per minor iteration 
required to solve the test problems by each variant using an iterative linear solver. What 
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band(O) 
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Fig. 11. Average 
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fraction of cg-iterations per minor iteration for 617 problems solved by all v,'kri~mts. 
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Fig. 12. Average fraction of cg-iterations per minor iteration lbr 139 problems of the subset solved by all 
v33"iRnts. 

is really compared in this section is the overall effect of the various preconditioners and, 

to some extent, the conditioning of the Hessian matrices generated by the different 
variants. 

Fig. 11 shows the average "fraction of cg-iterations" per minor iteration and per 

problem variable, the average being taken on the 617 problems in the complete set. This 
fraction indicates how many cg-iterations were performed on average, compared to the 

problem size. Since conjugate gradients are expected to terminate in at most n 
cg-iterations on a linear system of size n, the reported measures are all between zero and 

one. We note that the measure is approximate for two reasons. Firstly, the number of 

free variables at any given iterations can be lower than the number of problem variables. 
Secondly, the conjugate gradient iterations may have to be restarted when bounds are 
encountered. We nevertheless believe that the comparison amongst variants is instruc- 

tive. Fig. 12 presents the same measure taken on the 139 problems of the subset. 

(1) As anticipated, the full-matrix preconditioners are the clear winners in terms of 
number of cg-iterations, This behaviour is even more marked on the problem subset. 

Note that expband can be considered to a full-matrix preconditioner in a vicinity of the 

problem's solution, because of (5.5). 
(2) Another expected conclusion is that the quality of the preconditioner seems to 

increase with the semibandwidth, when a band preconditioner is used. This is clearly 

apparent when examining the results for noprc, band(O), band(l), default (which is 

equivalent to band(5)) and band(10). Why the expband variant does not really fit in 

this framework for the complete problem set is not clear, but may be because of the 

non-asymptotic behaviour. 

(3) The incomplete factorization preconditioner munksg shows excellent behaviour. 
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Indeed its performance is nearly comparable to that of the full-matrix variants on the 

complete problem set. 
(4) Solving the BQP accurately of course requires more cg-iterations, and we observe 

this effect when comparing default and accbqp.  This is especially noticeable on the 

problems of the subset, because they are larger. 
(5) The scaled variant scaling is somewhat less efficient than the default unscaled 

variant on the complete problem set, which is again an indication that scaling should not 

be applied blindly to every problem. Its performance is however improved on the larger 

problems of the subset. 
(6) The quasi-Newton approximations to the second derivatives do not seem to 

generate matrices that are, on average, worse conditioned than their analytic counter- 
parts, as is shown by the comparable values for the default, bfgs and srl  variants. The 
fact that gradients are estimated by differences in fog does not seem to considerably 

impact the conditioning of the Hessian either, as can be seen by comparing this variant 

with srl. 
(7) The reported measures are typically smaller for the subset than for the complete 

problem set. This is anticipated as conjugate gradient solvers often require a number of 
iterations that is more dependent on conditioning and eigenvalue distribution than on 
system size. Increasing size therefore produce lower measures if one assume that the 
larger problems have an eigenvalue structure that is, on average, not worse than that of 
smaller ones. 

7.4. Computational effort 

We next compare our fifteen algorithmic variants on the basis of their requirements in 
CPU-time. Fig. 13 shows the average CPU-time (in seconds) required for solution, the 
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Fig. 13. Average CPU-time for 617 problems solved by all variants. 
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Fig. 14. Ranking by CPU-time for 617 problems solved by all variants. 

average being taken on the 617 problems in the complete set that were successfully 
solved by all methods. Fig. 14 presents a overall view of the relative ranking of the 
variants based on CPU-time. This figure was constructed in the same way as Fig. 8. 
Figs. 15 and 16 present the corresponding average and ranking results for the selected 
subset of test problems. 
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Fig. 15. Average CPU-time for } 39 problems of the subset solved by all variants. 
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Fig. 16. Ranking by CPU-time for 139 problems of the subset solved by all variants. 

Some interesting conclusions can be drawn from these figures. 
(1) The results obtained by the semltf variant are noteworthy. Although its ranking 

compared with the other variants is amongst the best, its average performance is the 
poorest. This is caused by the poor behaviour of the variant on a few large unconstrained 
problems where the Hessian matrix is indefinite in the early iterations. In these cases, 
the strategy to move along a direction of negative curvature, as in the iterative variants, 
seems more appropriate than repeatedly calculating a modified Newton direction in 
smaller and smaller subspaces (corresponding to faces of the trust region), each time 
recomputing a suitably modified factorization. It should however be noted that, despite 
its strong effect on average scores, this behaviour occurs rarely, as can be seen from the 
comparative ranking of the variant. 

(2) The default and band( l )  variants appear to be the fastest on average. Their 
ranking confirms this excellent behaviour, both for the complete problem set and the 
subset. 

(3) The full-matrix preconditioned variant soprc  appears to be quite efficient on 
average, compared to other preconditioners. 

(4) The scaling variant seems to be somewhat handicapped by the additional work 
required to compute and handle the variable and constraints " typical"  values. Its 
average performance is indeed somewhat worse than that of the default variant. Its 
ranking is comparable that that of default on the complete set, but worse on the subset. 

(5) The relatively acceptable performance of the noprc variant seems to indicate that 
most of the test problems are reasonably well scaled. 
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(6) The behaviour of banded preconditioners with varying semi-bandwidth is worth a 
comment. We already noted the good performance of the tridiagonal preconditioner 
(band(I)) and the default (band(5)), both on the complete problem set and on the 
subset. The band(10) variant uses more CPU-time as the advantage of improved 

preconditioning is offset by the higher price of the preconditioner. The good perfor- 
mance of the expanding band variant expband,  compared with band(]  0), seems to be 

due to the general sparse storage scheme used, which is preferable to the band storage 
for matrices with higher bandwidth. 

(7) The more costly iterations of accbqp  clearly cause the relatively large average 
CPU-time of this variant on the complete problem set. However, as the expense of 
CPU-time is mostly confined to large problems, and as there are comparatively few such 

problems in the complete test set, the method ranks reasonably highly. This observation 

is strengthened by the relatively poor ranking of this variant for the large problems of 
the subset. 

(8) Amongst the quasi-Newton variants, sr3 appears to be the most efficient. Its 
ranking is also consistently better than that of bfgs. 

(9) The work involved in approximating the gradients by differences causes fdg to be 
slower than srl on average. This effect is enough to cause the relative ranking of fdg to 
fall substantially behind that of s r l .  

7.5. Add i t iona l  c o m m e n t s  

We did not discuss above the relative number of unsuccessful iterations for each 
variant. This number is on ave r age  below one per problem for each variant. It seems to 
indicate that the trust region management used in LANCELOT is adequate for handling 
a large class of nonlinear problems. 

Besides its algorithmic choices, LANCELOT allows the user to select a number of 
non-algorithmic options, such as element and group derivative checking, level of 
printout and frequency at which intermediate data is saved for a possible subsequent 
restart. None of these options has a significant impact on the overall execution time of 
the package. The only observable increase in CPU-time occurs when a very detailed 
printout is required at every iteration of a large scale problem. As one would expect, this 
effect is slightly more marked for constrained cases, where the details of the major 
iterations have to be printed as well. 

We finally indicate some weak points of LANCELOT (Release A) that we have 
observed in examining the detailed runs, but that cannot be inferred directly from the 
summaries presented above. 

(1) When the number of inequality constraints is large compared with the number of 
variables, the package currently adds slack variables to transform all inequalities into 
equalities, which results in a substantial increase in the effective problem size. Although 
convergence is usually obtained, the computational effort can be relatively large 
compared with method that use inequality constraints directly (see [14], for instance). 
The authors are well aware of this aspect of their implementation, and have recently 
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given in [19] a method to overcome this difficulty, although it has not been incorporated 
in the software. 

(2) No special provision is made in the present code for linear network constraints, or 
even for linear constraints. Again, LANCELOT seems to be robust in that convergence 
is obtained for problems with this kind of structure, but special purpose algorithms are 
often much more efficient (see [1,22,46,52,53], for instance). 

(3) The ability of the generalized Cauchy point to determine the correct active set is 
disappointing in practice. In many examples, the correct active set is actually found in 
the conjugate gradient or direct matrix improvement beyond the GCP, at considerable 
cost. Although the GCP asymptotically identifies the correct active set as predicted by 
the theory (see [10], for instance), this is often at the end of a long calculation. A 
strategy treating the bounds through barrier functions (as proposed in [14]) might 
therefore be a useful alternative. 

8. Conclusions 

We first described the algorithms contained in Release A of the LANCELOT package 
for large-scale nonlinear optimization. We also analyzed the user-selectable variants. We 
finally presented and discussed the results of extensive numerical tests with these 
variants. 

The main conclusions of these tests, as far as the package is concerned, are as 
follows. 

(1) The package is capable of solving a wide class of nonlinear optimization 
problems, including many large-scale examples. 

(2) The package is relatively more efficient for unconstrained and bound constrained 
problems and for generally constrained problems for which the number of constraints 
does not substantially exceed the problem dimension. 

(3) The default algorithmic choice in the package appears to be both reliable and 
acceptably efficient, compared to other variants. 

(4) Some algorithmic choices (automatic scaling, accurate solution of the inner BQP) 
should not be used automatically, but may provide excellent behaviour on some harder 
problems. 

Beyond these conclusions relative to the LANCELOT package, our tests also reveal 
the following points of more general interest. 

(1) The difficulty of solving a problem is more often linked to its degree of 
nonlinearity than to its size. 

(2) The use of direct factorization appears to be most robust when used as precondi- 
tioners for a conjugate gradient linear solver. 

(3) The use of exact second derivatives is recommended whenever available. How- 
ever, the partitioned symmetric-rank-one technique, as embedded in the package, gives 
very satisfactory reliability and efficiency (compared to other variants) when analytic 
second derivatives are not available. 
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(4) When analytical first derivatives are not available, finite difference approxima- 
tions to the gradients coupled with SRI quasi-Newton Hessian updating is an acceptably 

robust technique, even for large problems. 
(5) The use of full factorizations appears to be reliable for the class of problems 

analyzed in this paper. It is however expected that this technique would appear less 
promising if even larger problems were considered. In contrast, banded preconditioners 

would probably extend well to larger problems. 
Of course, only continued experience with LANCELOT will really show its strengths 

and weaknesses. The authors very much hope to be informed by the users of the package 

of the (undoubtedly many) aspects where improvements are possible. Progress is 
expected to come both from the point of view of the algorithms (see [14,17], for 
example) and from that of the implementation details themselves. It is also clear that 

further comparisons with other packages are desirable, in particular to better assess the 
efficiency of LANCELOT in a wider context. The ongoing comparison with MINOS 
should thus provide useful additional conclusions, when completed. At this stage, the 
results discussed above certainly offer the hope that the software will prove useful in the 

increasingly important arena of large-scale nonlinear optimization. 
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Appendix 

The purpose of this section is to report the details of what algorithmic options were 
used to solve the problem discussed in Section 7.1.2, when this proved possible, as well 
as the corresponding number of minor iterations, cg-iterations and CPU-time. These 
details are given in Table 4, where the two columns serve to identify the problem, the 
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Table 4 
Detailed algorithmic choices and performance for the problems solved using nonstandard variants 

107 

Problem n Basic Additional Minor cg CPU-time Note 
name variant specification iterations iterations (s) 

AGG 163 seprc 266 76817 6013 (1) 
CHEMRCTA 5000 seprc scaling 35 64 760 
CORKSCRW 4497 seprc 122 60078 40033 
CORKSCRW 8997 seprc 126 2 1 5 5 0 2  264573 
ERRINBAR 18 default 4053 30881 570 
HS84 5 default 74 403 7 (2) 
HS93 6 default /.t o = 10 -2 44 75 4 
HS99 7 default /~o = 10-5 32 28 3 (2) 
HSI03 7 default accbqp mad /.t o - 10 2518 34780 460 (2) 
HS116 13 seprc /x o = 10 -5 4108 15932 458 (2) 
LEWISPOL 6 default  ,% = 10- ~0 I8 22 2 
MARATOSB 2 default 1715 1286 144 
NOMSQRT 529 seprc accbqp 225 4421 5239 
NOMSQRT 1024 seprc accbqp 510 2 7 4 3 5 5  559376 
OBSTCLAE 15625 default 5 7450 39588 
OPTMASS 606 seprc /x o = 10 -4 3744 6268 2731 
OPTMASS 1206 seprc iz o = 10 4 13320 25033 18644 
OPTMASS 3006 seprc /z o = 1 0  - 4  44309 76825 149512 
SVANBERG 5000 default  100 12985 46730 
TENBARS4 18 default 2690 21031 372 

third indicating the basic variant used and the fourth what further modification of this 

variant have been specified, if any. When the name of another variant is mentioned in 

this column, this means that the features of both the variants of columns three and four 

are used. For instance, CHEMRCTA was solved by using the seprc  variant (Schnabel-  

Eskow preconditioning) with constraints and variables scaling, as specified in the variant 

scal ing.  Columns five, six and seven indicate the associated number of minor iterations, 

cg-iterations and the CPU-time required for LANCELOT to terminate. The last column 

refers to the following comments. 

(1) The standard sep rc  variant fails because the step generated by the algorithm is 

insignificantly small at a point where the projected gradient is not small, but this seems 

to be due to problem scaling and degeneracy. The optimal objective function produced 

by MINOS ( - 3 5 9 9 1 7 6 7 . 2 9 )  is slightly worse than that produced by LANCELOT 

( - 35 991 766.35) but its solution is closer to feasibility (constraint violation of the oraor 

of 10 -23 for MINOS and of the order of 10 -7 for LANCELOT). 
( 2 )  L A N C E L O T  f a i l s  because  the s tep b e c o m e s  t o o  shor t .  T h i s  e x i t  c o r r e s p o n d s  to  

the " s ta l l "  situation described in Section 7.1.1. However, the optimal solution appears 

to be found. 

We do not report here on the four problems, HS99EXP, NGONE and the two cases 

of LUBRIF, that we have not managed so far to solve using LANCELOT. 

These results of Table 4 show that in most cases (AGG, CHEMRCTA, ERRINBAR, 

HS84, HS93, HS99, HS103, H S l l 6  LEWISPOL, MARATOSB, NONMSQRT (n = 

829), OPTMASS (n = 606 and 1206) and TENBARS4) a satisfactory solution could be 
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c o m p u t e d  in r e a s o n a b l e  t ime .  O n l y  the  six r e m a i n i n g  p r o b l e m s  r e q u i r e d  s u b s t a n t i a l l y  

m o r e  c o m p u t a t i o n a l  e f f o r t  fo r  the i r  so lu t ion .  
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