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1. Introduction

In this paper, we consider the nonlinear programming problem

minimize
x∈<n

f(x) (1)

subject to thegeneral constraints

ci(x) ≥ 0, i = 1, . . . ,m, (2)

and the specificsimple bounds

l ≤ x ≤ u. (3)

We assume that the regionB = {x ∈ <n | l ≤ x ≤ u} is non-empty and may be infinite.
We do not rule out the possibility that further simple bounds on the variables are included
amongst the general constraints (2) if that is deemed appropriate. Indeed, it is conceivable
that all simple bounds should be handled this way. Furthermore, we assume that

AS1. f(x) and theci(x) are twice continuously differentiable for allx in B.
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Our exposition will be conveniently simplified by taking the lower bounds as identically

equal to zero and the upper bound as infinity for a subset ofN def= {1, 2, . . . , n} in (3)
and by assuming that the remaining variables are either not subjected to simple bounds
or their simple bounds are treated as general constraints. Thus, in most of what follows,
B = {x ∈ Rn | xj ≥ 0 for all j ∈ Nb}, whereNb ⊆ N is the index set ofbounded
variables. The modification required to handle more general bounds is indicated at the end
of the paper.

The approach we intend to take is that of Connet al. [9] and is based upon incorpo-
rating the equality constraints via a Lagrangian barrier function whilst handling upper and
lower bounds directly. The sequential, approximate minimization of the Lagrangian barrier
function is performed in a trust region framework such as that proposed by Connet al. [5].

Our aim in this paper is to consider how these two different algorithms mesh together.
In particular, we aim to show that ultimately very little work is performed in the itera-
tive sequential minimization algorithm for every iteration of the outer Lagrangian barrier
algorithm. This is contrary to most analyses of sequential penalty and barrier function
methods in which the effort required to solve the inner iteration subproblems is effectively
disregarded, the analysis concentrating on the convergence of the outer iteration (see for
instance the books by Fiacco and McCormick[12] and Bertsekas [1]. Exceptions to this
are the sequential penalty function method analyzed by Gould [14], and the sequential
augmented Lagrangian algorithm considered by Connet al. [8]).

This work was primarily motivated by observations that the authors made when testing
a prototype of their large-scale nonlinear programming packageLANCELOT, release B
(see [7] for a description of release A), which includes an implementation of the algorithms
discussed in this paper. It was often apparent that only a single iteration of the inner itera-
tion subroutineSBMIN was ultimately required for every outer iteration of our sequential
Lagrangian barrier program. While the conditions required in this paper to turn this ob-
servation to a proven result are relatively strong (and we feel probably about as weak as is
possible), the package frequently exhibits the same behaviour on problems which violate
our assumptions.

We define the concepts and notation that we shall need in section 2. Our algorithm is
fully described in section 3 and analyzed in sections 4 and 5.

2. Notation

Let g(x) denotes the gradient∇xf(x) of f(x). Similarly, letA(x) denote the Jacobian of
c(x), where

c(x) = [c1(x), · · · , cm(x)]T . (4)

Thus

A(x)T = [∇c1(x), · · · ∇cm(x)]. (5)

We define the Lagrangian and Lagrangian barrier functions as
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`(x, λ) = f(x)−
m∑
i=1

λici(x), (6)

and

Ψ(x, λ, s) = f(x)−
m∑
i=1

λisi log(ci(x) + si), (7)

respectively, where the componentsλi of the vectorλare positive and are known as Lagrange
multiplier estimates and where the elementssi of the vectors are positive and are known as
shifts. We note that̀(x, λ) is the Lagrangian with respect to the general constraints only.

Let g`(x, λ) andH`(x, λ) respectively denote the gradient,∇x`(x, λ), and Hessian,
∇xx`(x, λ), of the Lagrangian. We define the vectorλ̄ by

λ̄i(x, λ, s) =
λisi

ci(x) + si
, (8)

for all 1 ≤ i ≤ m. We note that∇x`(x, λ̄) = ∇xΨ(x, λ, s).
We denote the non-negativity restrictions by

x ∈ B = {x ∈ Rn | xj ≥ 0 for all j ∈ Nb} (9)

whereNb ⊆ N . We will make much use of the projection operator defined componentwise
by

(P [x, l, u])j =

 lj if xj ≤ lj
uj if xj ≥ uj
xj otherwise.

(10)

This operator projects the pointx onto the region defined by the simple bounds (3). Let

P (x, v, l, u) = x− P [x− v, l, u]. (11)

Furthermore, defineP [x] = P [x, l̄,∞] andP (x, v) = P (x, v, l̄,∞), wherel̄j = 0 for
j ∈ Nb and−∞ otherwise.

Let x(k) ∈ B andλ(k) be given values ofx andλ. If h(x, λ, . . .) is any function ofx,
λ, . . ., we shall writeh(k) as a shorthand forh(x(k), λ(k), . . .).

For anyx(k) we have two possibilities for each componentx
(k)
j , j = 1, . . . , n, namely

(i) j ∈ Nb and0 ≤ x(k)
j ≤ (∇xΨ(k))j or

(ii) j ∈ Nf or (∇xΨ(k))j < x
(k)
j ,

whereNf
def= N \ Nb is the index set offreevariables. We shall call allx(k)

j that satisfy

(i) dominatedvariables while the remainingx(k)
j arefloatingvariables. It is important to

notice that, asx(k) ∈ B,
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(P (x(k),∇xΨ(k)))j = x
(k)
j wheneverx(k)

j is dominated, (12)

while

(P (x(k),∇xΨ(k)))j = (∇xΨ(k))j otherwise. (13)

If x∗ is the limit point of the (sub-)sequence{x(k)}k∈K, we partitionN into four index
sets related to the two possibilities(i) and(ii) above and the correspondingx∗. We define

D1
def= {j ∈ Nb |x(k)

j is dominated∀k ∈ K sufficiently large},
F1

def= Nf ∪ {j ∈ Nb |x(k)
j is floating∀k ∈ K sufficiently large,x∗j > 0},

F2
def= {j ∈ Nb |x(k)

j is floating∀k ∈ K sufficiently large,x∗j = 0},
F3

def= N \D1

⋃
F1

⋃
F2.

(14)

We also define

I(x) def= {i | ci(x) > 0},
A(x) def= {i | ci(x) ≤ 0},

(15)

the sets ofinactive(strictly satisfied) andactive(violated or just satisfied) constraints at the
point x. We develop our algorithm so that the setA∗ ≡ A(x∗) at any limit point of our
generated sequence is precisely the set of constraints for whichci(x∗) = 0. We also write
I∗ ≡ I(x∗).

We will use the notation that ifJ1 andJ2 are any subsets ofN andH is ann bynmatrix,
H[J1,J2] is the matrix formed by taking the rows and columns ofH indexed byJ1 andJ2

respectively. Likewise, ifA is anm by n matrix,A[J1] is the matrix formed by taking the
columns ofA indexed byJ1.

We denote the (appropriately dimensioned) identity matrix byI; its j-th column isej . A
vector of ones is denoted bye.

We will use a variety of vector and subordinate matrix norms. We shall only consider
norms‖ · ‖z which areconsistentwith the two-norm, that is, norms which satisfy the
inequalities

‖v‖z ≤ a
1
2
0 ‖v‖2 and ‖v‖2 ≤ a

1
2
0 ‖v‖z (16)

for all vectorsv and some constanta0 ≥ 1, independent ofz. It then follows that, for any
pair of two-norm-consistent norms‖ · ‖y and‖ · ‖z,

‖v‖z ≤ a0‖v‖y and ‖v‖y ≤ a0‖v‖z. (17)

If r is anym-vector whosei-th component isri, we use the shorthandr ≡ [ri]mi=1.
Furthermore, ifr is as above andJ is a subset of{1, 2, · · · ,m}, [ri]i∈J is just the vector
whose components are theri, i ∈ J . Consequently,‖[ri]mi=1‖ ≡ ‖r‖.

Following Connet al. [9], we now describe an algorithm for solving (1), (2) and (9).
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3. Statement of the algorithm

In order to solve the problem (1), (2) and (9), we consider the algorithmic model given in
Figure 1.

We shall call the vectorP (x(k),∇xΨ(k)) theprojected gradient of the Lagrangian barrier
functionor theprojected gradientfor short. The norms‖ · ‖g and‖ · ‖c are normally chosen
to be either two or infinity norms.

Our decreasing sequence ofµ(k)’s is given byµ(k) = µ0(τ)kj , but any monotonic
decreasing sequence ofµ(k)’s converging to zero if Step 4 is executed an infinite number
of times will suffice. It is also irrelevant, in theory, as to how we find a suitable point
x(k) satisfying (21). However, from a practical perspective, a suitable point is found by an
iterative procedure. In our algorithm, it is normal to try to start this inner iteration from, or
close to, the solution to the last one. Indeed, from the point of view of the results we are
about to establish, this is crucial. Such a starting point is desirable as function and derivative
information from the conclusion of one inner iteration may be passed as input to the next.
However, we need to bear in mind that the requirement of the second part of (21) may
preclude us from picking such a starting point as it is possible thatci(x(k−1)) + s

(k)
i ≤ 0

for somei. This issue is considered in depth in Connet al. [9], where it is shown that
ci(x(k)) + s

(k+1)
i > 0 for all 1 ≤ i ≤ m when Step 3 of the Outer-iteration Algorithm

is executed, while techniques for finding a suitable alternative starting point when Step 4
occurs are given.

The main purpose of this paper is to show that asymptotically we take one inner iteration
per outer iteration. More specifically, under certain assumptions, we first show that (23) is
eventually satisfied at each outer iteration. We then show that, under additional assumptions,
it is possible to satisfy the convergence test (21) after a single iteration of the algorithm
given in Connet al. [5].

The specific inner iteration algorithm we shall consider is given in Figure 2.
There are a number of possible ways of choosingγ

(k,j)
0 andγ(k,j)

3 in Step 4. The simplest

is merely to pickγ(k,j)
0 = γ0 andγ(k,j)

3 = γ3; other alternatives are discussed in Connet
al. [7].

It remains to give a description of the starting point, initial trust region radius and approx-
imation to the Hessian of the Lagrangian, and of the calculation that is performed in Step
2 of the Inner-iteration Algorithm.

Let 0 < θ < 1. We let

x̂
(k−1)
j =

{
0 if 0 ≤ x(k−1)

j ≤ θ(∇xΨ(k−1))j and j ∈ Nb
x

(k−1)
j otherwise,

(32)

and choose

x(k,0) =
{
x̂(k−1) if c(x̂(k−1)) + s(k) > 0
x(k−1) otherwise.

(33)

Thus variables which are significantly dominated at the end of the(k − 1)-st iteration are
set to their bounds while the remainder are left unaltered. This choice is made since, under
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[Outer-iteration Algorithm ]

Step 0 : [Initialization] The strictly positive constantsη0, ω0, αω , βω , αη , βη , αλ ≤ 1, τ < 1,

ρ < 1, γ2 < 1, ω∗ ¿ 1 andη∗ ¿ 1 for which

1− (1 + αλ)−1 < αη < min(1, αω) and βη < min(1, βω). (18)

are specified. A positive forcing parameter,µ̄(0), is given. Set

µ(0) = min(µ̄(0), γ2), ω(0) = ω0(µ(0))αω and η(0) = η0(µ(0))αη . (19)

An initial estimate of the solution,xest∈ B, and vector of positive Lagrange multiplier estimates,

λ(0), for whichci(xest) + µ(0)(λ
(0)
i )αλ > 0 are specified. Setk = 0.

Step 1 : [Inner iteration] Compute shifts

s
(k)
i = µ(k)(λ

(k)
i )αλ , (20)

for i = 1, . . . ,m. Findx(k) ∈ B such that

‖P (x(k),∇xΨ(k))‖g ≤ ω(k) and ci(x
(k)) + s

(k)
i > 0, (i = 1, . . . ,m). (21)

Step 2 : [Test for convergence] If

‖P (x(k),∇xΨ(k))‖g ≤ ω∗ and‖[ci(x(k))λ̄i(x
(k), λ(k), s(k))]mi=1‖c ≤ η∗, (22)

stop. If

∣∣∣∣∣∣[ci(x(k))λ̄i(x
(k), λ(k), s(k))/(λ

(k)
i )αλ

]m
i=1

∣∣∣∣∣∣
c

≤ η(k), (23)

execute Step 3. Otherwise, execute Step 4.

Step 3 : [Update Lagrange multiplier estimates] Set

λ(k+1) = λ̄(x(k), λ(k), s(k)),

µ̄(k+1) = µ̄(k), µ(k+1) = min(µ̄(k+1), γ2),

ω(k+1) = ω(k)(µ(k+1))βω , η(k+1) = η(k)(µ(k+1))βη .

(24)

Increasek by one and go to Step 1.

Step 4 : [Reduce the forcing parameter] Set

λ(k+1) = λ(k),

µ̄(k+1) = τµ̄(k), µ(k+1) = min(µ̄(k+1), γ2),

ω(k+1) = ω0(µ(k+1))αω , η(k+1) = η0(µ(k+1))αη .

(25)

Increasek by one and go to Step 1.

End of Algorithm

Figure 1. Outer-iteration algorithm
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[Inner-iteration Algorithm ]

Step 0 : [Initialization] The positive constantsµ < η < 1 andγ0 ≤ γ2 < 1 ≤ γ3 are given. The

starting point,x(k,0), a nonnegative convergence tolerance,ω(k), an initial trust region radius,

∆(k,0), a symmetric approximation,B(k,0), to the Hessian of the Lagrangian,H`(x(k,0), λ(k)),

and a two-norm-consistent norm‖ · ‖g are specified. ComputeΨ(x(k,0), λ(k), s(k)) and its

gradient. Set the inner iteration counterj = 0.

Step 1 : [Test for convergence] If

‖P (x(k,j),∇xΨ(k,j))‖g ≤ ω(k) (26)

setx(k) = x(k,j) and stop.

Step 2 : [Significantly reduce a model of the Lagrangian barrier function] Construct a quadratic

model,

m(k,j)(x(k,j) + p)
def
= Ψ(x(k,j), λ(k), µ(k)) + pT∇xΨ(x(k,j), λ(k), µ(k))

+ 1
2p
T (B(k,j) +A(x(k,j))TD(k)(x(k,j))A(x(k,j)))p,

(27)

of Ψ(x+ p, λ(k), µ(k)), where

D(k)(x) = diag

(
λ

(k)
i s

(k)
i

(ci(x) + s
(k)
i )2

)
. (28)

Compute a stepp(k,j) which significantly reduces the value ofm(k,j)(x(k,j) + p).

Step 3 : [Compute a measure of the effectiveness of the step]Compute

Ψ(x(k,j) + p(k,j), λ(k), s(k)) and the ratio

ρ(k,j) =
Ψ(x(k,j), λ(k), s(k))−Ψ(x(k,j) + p(k,j), λ(k), s(k))

m(k,j)(x(k,j))−m(k,j)(x(k,j) + p(k,j))
. (29)

Step 4 : [Accept or reject the step] Forγ(k,j)
0 ∈ [γ0, 1) andγ(k,j)

3 ∈ [1, γ3], set

x(k,j+1) =

{
x(k,j) + p(k,j) if ρ(k,j) > µ

x(k,j) otherwise,
(30)

and

∆(k,j+1) =

 γ
(k,j)
0 ∆(k,j) if ρ(k,j) ≤ µ

∆(k) if µ < ρ(k,j) < η

γ
(k,j)
3 ∆(k,j) otherwise.

(31)

Step 5 : [Updating] If necessary, compute the gradient ofΨ(x(k,j+1), λ(k), µ(k)) and a further

approximation to the Hessian of the LagrangianB(k,j+1). Increment the inner iteration counter

j by one and go to Step 1.

End of Algorithm

Figure 2. Inner-iteration algorithm
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a suitable non-degeneracy assumption (AS7 in section 4), the set of dominated variables is
asymptotically the same as the set of variables which lie on their bounds (see [9], Theorem
5.4). Furthermore, under a second non-degeneracy assumption (AS5 in section 4), the
assignmentx(k,0) = x̂(k−1) is guaranteed fork sufficiently large. Our choice ofx(k,0) then
encourages subsequent iterates to encounter their asymptotic state as soon as possible.

We also pick∆(k,0) so that

∆(k,0) ≥ κ‖P (x(k,0),∇xΨ(k,0))‖ζg (34)

for some positive constantsκ andζ < 1 (typical values might beκ = 1 andζ = 0.9). This
value is chosen so that the trust region does not interfere with the asymptotic convergence
of the algorithm, while providing a reasonable starting value in the earlier stages of the
method.

FinallyB(k,0) is taken to be any sufficiently good symmetric approximation to the Hessian
of the Lagrangian function atx(k). We qualify what we mean by “sufficiently good” in the
next section but suffice it to say that exact second derivatives satisfy this property and are
often to be recommended.

The calculation in Step 2 is performed in two stages.

1. Firstly, the so-calledgeneralized Cauchy point, xC(k,j) ≡ x(k,j) + pC(k,j), is deter-
mined. This is merely an approximation to the first local minimizer of the quadratic
model,m(k,j)(x(k,j) +p), along the Cauchy arc. TheCauchy arcis the pathx(k,j) +p,
where

p = p(k,j)(t) def= P [x(k,j) − t∇xΨ(x(k,j), λ(k), µ(k)), l, u]− x(k,j), (35)

as the parametert increases from 0, which finishes when the path first intersects the
boundary of the trust region,

‖p‖t ≤ ∆(k,j), (36)

for some two-norm-consistent norm‖ · ‖t. Thus the Cauchy arc is simply the path
which starts in the steepest descent direction for the model but which is subsequently
“bent” to follow the boundary of the “box” region defined by the feasible region (9) (or,
in general, (3)) and which stops on the boundary of the trust region (36). The two or
infinity norm is normally chosen, the latter having some advantages as the trust region is
then aligned with the feasible region (9). (Indeed, it is possible to extend the Cauchy arc
along the boundary of the trust region when the infinity norm is used. Further reduction
of the quadratic model along this extended Cauchy arc may prove beneficial.)

The method proposed by Connet al. [5] calculates the exact generalized Cauchy point
by marching along the Cauchy arc until either the trust region boundary is encountered or
the model starts to increase. An alternative method by Mor´e [15] finds an approximation
pC(k,j) = p(k,j)(tC(k,j)) which is required to lie within the trust-region and to satisfy
the Goldstein-type conditions
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m(k,j)(x(k,j) + p(k,j)(tC(k,j)))

≤ m(k,j)(x(k,j)) + µ1p
(k,j)(tC(k,j))T∇xΨ(x(k,j), λ(k), s(k))

(37)

and

tC(k,j) ≥ ν1 or tC(k,j) ≥ ν2t
L(k,j), (38)

wheretL(k,j) > 0 is any value for which

m(k,j)(x(k,j) + p(k,j)(tL(k,j)))

≥ m(k,j)(x(k,j)) + µ2p
(k,j)(tL(k,j))T∇xΨ(x(k,j), λ(k), s(k))

(39)

or

‖p(k,j)(tL(k,j))‖t ≥ ν3∆(k,j), (40)

and the positive constantsµ1, µ2, ν1, ν2 andν3 satisfy the restrictionsµ1 < µ2 < 1,
ν2 < 1 andν3 < 1. Condition (37) ensures that a sufficient reduction in the model
takes place at each iteration while condition (38) is needed to guarantee that every step
taken is non-negligible. Mor´e shows that it is always possible to pick such a value of
tC(k,j) using a backtracking linesearch, starting on or near to the trust region boundary.
Similar methods have been proposed by Calamai and Mor´e [4], Burke and Mor´e [2],
Toint [16] and Burkeet al. [3].

2. Secondly, we pickp(k,j) so thatx(k,j) + p(k,j) lies within (9),‖p(k,j)‖t ≤ β2∆(k,j)

and

m(k,j)(x(k,j))−m(k,j)(x(k,j) + p(k,j))

≥ β3[m(k,j)(x(k,j))−m(k,j)(x(k,j) + pC(k,j))] ≥ 0
(41)

for some positiveβ2 ≥ 1 andβ3 ≤ 1. In fact, we typically chooseβ2 = β3 = 1, in
which case we are merely requiring that the computed step gives a value of the model
which is no larger than the value at the generalized Cauchy point.

In order to accelerate the convergence of the method, it is normal to try to bias the
computed step towards the Newton direction.

The convergence analysis given by Connet al. [5] for the Outer-iteration Algorithm
indicates that it is desirable to construct improvements beyond the Cauchy point only in the
subspace of variables which are free from their bounds at the Cauchy point. In particular,
with such a restriction and with a suitable non-degeneracy assumption, it is then shown that
the set of variables which are free from their bounds at the solution is determined after a
finite number of iterations. This has the advantage of allowing one to analyze the asymptotic
convergence rate of the method purely as if it were an unconstrained calculation, merely by
focusing on the set of free variables.
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LetF be a subset ofN and letD = N \ F . Furthermore, let

H(k,j) def= B(k,j) +A(x(k,j))TD(k)(x(k,j))A(x(k,j)) (42)

denote the composite approximation to the Hessian of the Lagrangian barrier function.
The specific Model-reduction Algorithm we shall consider is summarized in Figure 3.
In Step 2 of this method, the value ofp[F ] would normally be computed as the aggregate

step after a number of Conjugate Gradient (CG) iterations, where CG is applied to minimize
the model in the subspace defined by the free variables. The CG process will end when
either a new bound is encountered or the convergence test (45) is satisfied. The Model-
reduction Algorithm is itself finite as the number of free variables at each pass of Step 2 is
strictly monotonically decreasing. See the paper by Connet al. [6] for further details.

4. Convergence analysis

We wish to analyze the asymptotic behaviour of the Outer-iteration Algorithm, that is in
the case whereω∗ = η∗ = 0. We require the following additional assumptions.

AS2. The matrixA(x∗)[A∗,F1] is of full rank at any limit pointx∗ of the sequence{x(k)}
generated by the Outer-iteration Algorithm with the setF1 defined by (14).

Under these assumptions we have the following result.
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[Model-reduction Algorithm ]

Step 0 : [Initialization] Select positive constantsν < 1, ξ < 1, β2 ≥ 1 andβ3 ≤ 1.

Step 1 : [Calculate the generalized Cauchy point]Calculate an approximation to the
generalized Cauchy pointxC(k,j) = x(k,j) + pC(k,j) using one of the previously
mentioned techniques. Compute the set of variables,FC(k,j), which are free from
their bounds atxC(k,j). Setx = xC(k,j), s = pC(k,j) andF = FC(k,j).

Step 2 : [Further improve the model] Let C(β2) = S
⋂
T (β2), where

S = {p[F] | x(k,j) + p ∈ B and p[D] = p
C(k,j)

[D]
} (43)

and

T (β2) = {p[F] | ‖p‖t ≤ β2∆(k,j) and p[D] = p
C(k,j)

[D]
}. (44)

If p[F] lies on the boundary ofT (β2), setp(k,j) = p and stop. (If‖ · ‖t is the infinity
norm, it is possible to transfer components ofF which lie on the trust-region boundary
to D and to continue.) Otherwise, recomputep[F] so that (41) is satisfied and either
p[F] lies strictly interior toC(β2) with

‖H(k,j)

[F,F]
p[F] + (∇xΨ

(k,j)

[F]
+H

(k,j)

[F,D]
p[D])‖g

≤ min(ν, ‖P (x(k,j),∇xΨ(k,j))‖ξg) · ‖P (x(k,j),∇xΨ(k,j))‖g
(45)

or p[F] lies on the boundary ofC(β2). Resetx[F] to x[F] + p[F].

Step 3 : [Test for convergence] If p[F] lies strictly interior toC(β2) and (45) is satisfied or
if it is decided that sufficient passes have been made, setp(k,j) = p and stop. Otherwise
remove all of the indices inF for which p[F]i lies on the boundary ofS and perform
another pass by returning to Step 2.

End of Algorithm

Figure 3. Model-reduction Algorithm
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Theorem 1 ([9], Theorem 4.4)Assume that AS1 and AS2 hold, thatx∗ is a limit point
of the sequence{x(k)} generated by the Outer-iteration Algorithm and that

λ̄
(k)
i

def=
λ

(k)
i s

(k)
i

ci(x(k)) + s
(k)
i

, (46)

for i = 1, · · · ,m. Thenx∗ is a Kuhn-Tucker (first order stationary) point for (1), (2)
and (9) and the corresponding subsequences of{λ̄(k)} and{∇xΨ(k)} converge to a set of
Lagrange multipliers,λ∗, and the gradient of the Lagrangian,g`(x∗, λ∗), for the problem,
respectively.

Now consider the following further assumptions.

AS3. The second derivatives of the functionsf(x) and theci(x) are Lipschitz continuous
at all points within an open set containingB.

AS4. Suppose that(x∗, λ∗) is a Kuhn-Tucker point for the problem (1), (2) and (9), and

A∗1
def= {i | ci(x∗) = 0 and λ∗i > 0}

A∗2
def= {i | ci(x∗) = 0 and λ∗i = 0}

(47)

and

J1
def= Nf ∪ {j ∈ Nb | (g`(x∗, λ∗))j = 0 and x∗j > 0}

J2
def= {j ∈ Nb | (g`(x∗, λ∗))j = 0 and x∗j = 0}.

(48)

Then we assume that the matrix(
H`(x∗, λ∗)[J ,J ] (A(x∗)[A,J ])T

A(x∗)[A,J ] 0

)
(49)

is non-singular for all setsA andJ , whereA is any set made up from the union ofA∗1
and any subset ofA∗2 andJ is any set made up from the union ofJ1 and any subset of
J2.

AS5. (Strict complementary slackness condition 1) Suppose that(x∗, λ∗) is a Kuhn-Tucker
point for problem (1), (2) and (9). Then

A∗2 = {i | ci(x∗) = 0 and λ∗i = 0} = ∅. (50)

AS6. The Outer-iteration Algorithm has a single limit point,x∗.

Under these additional assumptions, we are able to derive the following result.
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Theorem 2 ([9], Theorems 5.3 and 5.5)Assume that AS1–AS6 hold. Then there is a
constantµmin > 0 such that the penalty parameterµ(k) generated by the Outer-iteration
Algorithm satisfiesµ(k) = µmin for all k sufficiently large. Furthermore,x(k) and λ̄(k)

[A∗]
satisfy the bounds

‖x(k) − x∗‖g ≤ ax(µmin)αη+kαλβη and

‖(λ̄(k) − λ∗)[A∗]‖g ≤ aλ(µmin)αη+kαλβη ,
(51)

for the two-norm-consistent norm||.||g and some positive constantsax andaλ, while each

|λ̄(k)
i |, i ∈ I∗, converges to zero at a Q-superlinear rate.

We shall now investigate the behaviour of the Outer-iteration Algorithm once the penalty
parameter has converged to its asymptotic value,µmin. There is no loss of generality in
assuming that we restart the algorithm from the point which is reached when the penalty
parameter is reduced for the last time. We shall call this iterationk = 0 and will start with
µ(0) = µmin. By construction, (23) is satisfied for allk and the updates (24) are always
performed. Moreover,

ω(k) = ω0(µmin)αω+kβω and η(k) = η0(µmin)αη+kβη . (52)

We require the following extra assumptions.

AS7. (Strict complementary slackness condition 2) Suppose that(x∗, λ∗) is a Kuhn-Tucker
point for problem (1), (2) and (9). Then

J2 = {j ∈ Nb | (g`(x∗, λ∗))j = 0 and x∗j = 0} = ∅. (53)

AS8. If J1 is defined by (48), the approximationsB(k,0) satisfy

‖(B(k,0) −∇xx`(x∗, λ∗))[J1,J1]p
(k,0)
[J1] ‖g ≤ υ‖p

(k,0)
[J1] ‖

1+ς
g , (54)

for some positive constantsυ andς and allk sufficiently large.

AS9. Suppose that(x∗, λ∗) is a Kuhn-Tucker point for the problem (1), (2) and (9), and
thatJ1 is defined by (48). Then we assume that the second derivative approximations
B(k,0) have a single limit,B∗ and that the perturbed Kuhn-Tucker matrix(

B∗[J1,J1] A(x∗)T[A∗,J1]

A(x∗)[A∗,J1] −(D∗[A∗,A∗])
−1

)
(55)

is non-singular and has preciselym negative eigenvalues, whereD∗ is the limiting
diagonal matrix with entries

D∗i,i ≡ lim
k→∞

D(k)(x(k))i,i =
{

(λ∗i )
1−αλ/µmin if i ∈ A∗

0 if i ∈ I∗ (56)
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Assumptions AS5 and AS7 are often known as strict complementary slackness conditions.
We observe that AS8 is closely related to the necessary and sufficient conditions for super-
linear convergence of the inner iterates given by Dennis and Mor´e [10]. We also observe
that AS9 is entirely equivalent to requiring that the matrix

B∗[J1,J1] +A(x∗)T[A∗,J1]D
∗
[A∗,A∗]A(x∗)[A∗,J1] (57)

is positive definite (see, for instance, Gould [13]). The uniqueness of the limit point in AS9
can also be relaxed by requiring that (57) has its smallest eigenvalue uniformly bounded from
below by some positive quantity for all limit pointsB∗ of the sequenceB(k,0). Moreover it
is easy to show that that AS4, AS5 and AS7 guarantee AS9 provided thatµmin is sufficiently
small and sufficient second-order optimality conditions (see Fiacco and McCormick [12],
Theorem 4) hold atx∗ (see Wright [17], Theorem 8, for the essence of a proof of this in
our case). Although we shall merely assume that AS9 holds in this paper, it is of course
possible to try to encourage this eventuality. We might, for instance, insist that Step 4 of
the Outer-iteration Algorithm is executed rather than Step 3 so long as the matrixH(k,0) is
not positive definite. This is particularly relevant if exact second derivatives are used.

We now show that if we perform the step calculation for the Inner-iteration Algorithm
using the Model-reduction Algorithm, a single iteration of the Inner-iteration Algorithm
suffices to complete an iteration of the Outer-iteration Algorithm whenk is sufficiently
large. Moreover, the solution of one inner-iteration subproblem,x(k−1) and the shifted
starting point for the next inner iteration (33) are asymptotically identical. We do this by
showing that, after a finite number of iterations,

(i) moving to the new starting point does not significantly alter the norms of the projected
gradient or constraints. Furthermore, the status of each variable (floating or dominated)
is unchanged by the move;

(ii) the generalized Cauchy pointxC(k,0) occurs before the first “breakpoint” along the
Cauchy arc — the breakpoints are the values oft > 0 at which the Cauchy arc changes
direction as problem or trust region bounds are encountered. Thus the set of variables
which are free at the start of the Cauchy arcx(k,0) and those which are free at the
generalized Cauchy point are identical;

(iii) any step which satisfies (45) also satisfiesp[F1] lies strictly interior toC(β2). Thus a
single pass of Step 2 of the Model-reduction Algorithm is required;

(iv) the stepp(k,0) is accepted in Step 4 of the Inner-iteration Algorithm;

(v) the new pointx(k,1) satisfies the convergence test (26); and

(vi) x(k+1,0) = x(k).

We have the following theorem.

Theorem 3 Assume that assumptions AS1–AS9 hold and that the convergence tolerances
βω andβη satisfy the extra condition
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βω < (1 + min(ξ, ς))αλβη. (58)

Then for allk sufficiently large, a single inner iteration of the Inner-iteration Algorithm, with
the step computed from the Model-reduction Algorithm, suffices to complete an iteration
of the Outer-iteration Algorithm. Moreover, the solution to one inner iteration subproblem
provides the starting point for the next without further adjustment, for allk sufficiently
large.

Proof. In order to make the proof as readable as possible, we will make frequent use of
the following shorthand: the iterates will be abbreviated as

x ≡ x(k) (32)→ x̂ ≡ x̂(k) (33)→ x⊕ ≡ x(k+1,0) (26)→ x+ ≡ x(k+1,1), (59)

the shifts as

s ≡ s(k) → s+ ≡ s(k+1), (60)

and the Lagrange multiplier estimates as

λ ≡ λ(k) → λ̄ ≡ λ̄(k) ≡ λ̄(x, λ, s)→ λ+ ≡ λ(k+1) (61)

and

λ̄+ ≡ λ̄(x⊕, λ+, s+). (62)

Other quantities which occur at inner iterations(k + 1, 0) and (k + 1, 1) will be given
suffices⊕ and+ respectively. ThusH⊕ ≡ H(k+1,0) andH+ ≡ H(k+1,1).

Recall, we have used Theorem 2 to relabel the sequence of iterates so that

‖P (x(k),∇xΨ(k))‖g ≤ ω0(µmin)αω+kβω (63)

and ∣∣∣∣∣∣[ci(x(k))λ̄(k)
i /(λ(k)

i )αλ
]m
i=1

∣∣∣∣∣∣
c
≤ η0(µmin)αη+kβη (64)

for all k ≥ 0. Let Ω̄ be any closed, bounded set containing the iteratesx(k) andx(k+1,0).
We shall follow the outline given above.
(i) Status of the starting point. The strict complementary slackness assumption AS7
ensures that for allk sufficiently large, each variable belongs exclusively to one of the sets
F1 andD1 (see [9], Theorem 5.4); moreover,

g`(x∗, λ∗)j = 0 for all j ∈ F1 and x∗j > 0 for all j ∈ F1 ∩ Nb (65)

and

x∗j = 0 and g`(x∗, λ∗)j > 0 for all i ∈ D1. (66)
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As one ofx(k)
j and∇xΨ(k)

j (≡ ∇x`(x, λ̄)j) converges to zero while its partner converges
to a strictly positive limit for eachj ∈ Nb (assumption AS7), we may define nontrivial
regions which separate the two sequences for allk sufficiently large. Let

εx
def=

θ

1 + θ
min
j∈Nb

max[x∗j , g`(x
∗, λ∗)j ] > 0, (67)

whereθ is as in (32). Then there is an iterationk0 such that for variables inF1,

|x(k)
j − x∗j | ≤ εx and |∇xΨ(k)

j | < εx, (68)

while for those inD1,

|x(k)
j | ≤ εx and |∇xΨ(k)

j − g`(x∗, λ∗)j |,≤ εx (69)

for all k ≥ k0. Hence, for those variables inD1, (67) and (69) give that

x
(k)
j ≤ εx = θ[minj∈Nb max[x∗j , g`(x

∗, λ∗)j ]− εx]

≤ θ[g`(x∗, λ∗)j − εx] ≤ θ(∇xΨ(k))j .
(70)

Thus, by definition (32),̂x(k)
j = 0 for eachj ∈ D1 when k ≥ k0. Similarly, when

j ∈ F1 ∩ Nb andk ≥ k0, x(k)
j > θ(∇xΨ(k))j and hence, using (32),̂x(k)

j = xj for all

j ∈ F1. Thusx̂(k) converges tox∗.
The other strict complementary slackness assumption, AS5, ensures that each constraint

belongs exclusively to one of the setsI∗ andA∗, for all k sufficiently large. Moreover,

ci(x∗) = 0 and λ∗i > 0 for all i ∈ A∗ (71)

and

ci(x∗) > 0 and λ∗i = 0 for all i ∈ I∗, (72)

and thus one ofci(x(k)) andλ(k+1)
i converges to zero while its partner converges to a strictly

positive limit for eachi.
Using the shorthand introduced in (59)–(60), we have thatci(x) + s+

i > ci(x) > 0 for
eachi ∈ I∗ and allk sufficiently large. Thus, aŝx converges tox∗ ands+

i converges to
zero,2ci(x∗) > ci(x̂) + s+

i > 1
2ci(x∗) > 0 for all i ∈ I∗ andk sufficiently large. On

the other hand, ifi ∈ A∗, ci(x) + s+
i > 0 for all k (see [9], Lemma 3.1). In this case, as

s+
i converges tos∗i ≡ µmin(λ∗i )

αλ > 0 andci(x) converges to zero, the convergence ofx̂
to x∗ andλ+

i to λ∗ implies that2s∗i > ci(x̂) + s+
i > 1

2s
∗
i > 0 for all k sufficiently large.

Hence, from (33),x⊕ = x̂ and thus there is an integerk1 ≥ k0 for which

x⊕j =
{
xj for all j ∈ F1

0 for all j ∈ D1,
(73)

for all k ≥ k1.
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We next letr be any real number and consider points on the line

x(r) def= x+ r(x⊕ − x). (74)

We firstly show that the diagonal matrixD(x(r)) is bounded for all0 ≤ r ≤ 1, whereD is
given by (28). Asx andx⊕ both converge tox∗, the definition (28) implies thatD(x(r))
converges to the matrixD∗i,i, satisfying (56), ask increases. Thus, we have the bound

‖D(x(r))‖2 ≤ a1/µmin (75)

wherea1
def= 2‖[(λ∗i )1−αλ ]mi=1‖2, for all k sufficiently large. It also follows from the

convergence ofx andx⊕ tox∗ and that ofsi to s∗i that there is an integerk2 ≥ k1 for which

0 < 1
2ci(x

∗) < ci(x(r)) + s
(l)
i < 2ci(x∗) for all i ∈ I∗ (76)

and

0 < 1
2µmin(λ∗i )

αλ < ci(x(r)) + s
(l)
i < 2µmin(λ∗i )

αλ for all i ∈ A∗, (77)

for all k sufficiently large andl ≥ k2.
We now consider the starting pointx⊕ for the next inner iteration in detail. Firstly,

combining (12), (16) and (73), we have that

‖x⊕ − x‖z ≤ a0‖P (x,∇xΨ(x, λ, s))‖g ≤ a0ω0(µmin)αω+kβω (78)

for any two-norm-consistent norm‖.‖z.
We may bound the change inc(x), due to the shifted starting point, using the integral

mean value theorem (see, eg, [11], page 74), the boundedness ofA(x) (assumption AS1
and the definition of̄Ω) and inequalities (17) and (78) to obtain

|ci(x⊕)− ci(x)| ≤ ‖
∫ 1

0
A(x(r))dr‖g‖x⊕ − x‖g

≤ a0a2ω0(µmin)αω+kβω
(79)

wherex(r) is given by (74) anda2 is an upper bound on‖A(x)‖g within Ω̄.
We next bound the differences in gradients of the Lagrangian barrier function atx and

x⊕. Using the integral mean value theorem, the convergence ofλ̄ ≡ λ+ toλ∗ (Theorem 1),
the boundedness of the Hessian of the Lagrangian (with bounded multiplier estimates) and
the constraint Jacobian within̄Ω (assumption AS1) and the inequalities (17), (75) and (78),
we obtain

|∇xΨ(x⊕, λ, s)j −∇xΨ(x, λ, s)j |

≤ ‖x⊕ − x‖2 · ‖eTj
∫ 1

0
[H`(x(r), λ) +A(x(r))TD(x(r))A(x(r))]dr‖2

≤ a2
0(a3 + a1a

2
2/µmin)ω0(µmin)αω+kβω

≤ a2
0(a3 + a1a

2
2)ω0(µmin)αω−1+kβω ,

(80)
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wherea3 is an upper bound on the two-norm of the Hessian of the Lagrangian function
(with bounded multiplier estimates) within̄Ω. We now use the identity

λ+
i =

λisi
ci(x) + si

(81)

to derive the relationship

∇xΨ(x⊕, λ+, s+)−∇xΨ(x⊕, λ, s)

=
∑m
i=1

(
λisi

ci(x⊕)+si
− λ+

i
s+
i

ci(x⊕)+s+
i

)
ai(x⊕)

=
∑m
i=1

(
λisi

ci(x⊕)+si
− λisi

ci(x)+si

)
ai(x⊕)

+
∑m
i=1

(
λisi

ci(x)+si
− λ+

i
s+
i

ci(x⊕)+s+
i

)
ai(x⊕)

=
∑m
i=1

(
λ+
i

(ci(x)−ci(x⊕))

ci(x⊕)+si
+ λ+

i
ci(x

⊕)

ci(x⊕)+s+
i

)
ai(x⊕)

=
∑
i∈A∗

(
λ+
i

(ci(x)−ci(x⊕))

ci(x⊕)+si
+ λ+

i
ci(x

⊕)

ci(x⊕)+s+
i

)
ai(x⊕)

+
∑
i∈I∗

(
λ+
i

(ci(x)−ci(x⊕))

ci(x⊕)+si
+ λ+

i
ci(x

⊕)

ci(x⊕)+s+
i

)
ai(x⊕).

(82)

But, consideringi ∈ A∗, picking k sufficiently large so that|λ+
i | ≤ 2|λ∗i | and using the

integral mean value theorem, the relationshipc(x∗)[A∗] = 0, the bounds (77), (78), (79)
and the inequalities (18) and (51), we obtain the bounds∣∣∣∣λ+

i (ci(x)− ci(x⊕))
ci(x⊕) + si

∣∣∣∣ ≤ 4a0a2ω0(λ∗i )
1−αλ(µmin)αω−1+kβω (83)

and ∣∣∣ λ+
i
ci(x

⊕)

ci(x⊕)+s+
i

∣∣∣ ≤ 4(λ∗i )
1−αλ(µmin)−1‖

∫ 1

0
ai(x⊕ + r(x∗ − x⊕))dr‖g‖x⊕ − x∗‖g

≤ 4(λ∗i )
1−αλ(µmin)−1a2(‖x⊕ − x‖g + ‖x− x∗‖g)

≤ 4a2(λ∗i )
1−αλ(a0ω0(µmin)αω−1+kβω + ax(µmin)αη−1+kαλβη )

(84)

and hence

‖
∑
i∈A∗

(
λ+
i

(ci(x)−ci(x⊕))

ci(x⊕)+si
+ λ+

i
ci(x

⊕)

ci(x⊕)+s+
i

)
ai(x⊕)‖z

≤ ma0a2

(
maxi∈A∗

∣∣∣λ+
i

(ci(x)−ci(x⊕))

ci(x⊕)+si

∣∣∣+ maxi∈A∗
∣∣∣ λ+

i
ci(x

⊕)

ci(x⊕)+s+
i

∣∣∣)
≤ aA(µmin)αη−1+kαλβη ,

(85)

whereaA = 4ma0a
2
2(2a0ω0 + ax) maxi∈A∗(λ∗i )

1−αλ , for any two-norm-consistent norm
‖.‖z. Furthermore, the superlinear convergence ofλi to zero,i ∈ I∗, (76) and the bound-
edness of the remaining terms implies a bound
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‖
∑
i∈I∗

(
λ+
i (ci(x)− ci(x⊕))
ci(x⊕) + si

+
λ+
i ci(x

⊕)
ci(x⊕) + s+

i

)
ai(x⊕)‖z ≤ aI(µmin)αη−1+kαλβη ,

(86)

for some constantaI (In fact, this term can be made arbitrarily smaller than (85) by picking
k sufficiently large). Thus, combining (82), (85) and (86), we obtain the componentwise
bound

|∇xΨ⊕j −∇xΨ(x⊕, λ, s)j | ≤ (aA + aI)(µmin)αη−1+kαλβη (87)

for all j ∈ N where we have abbreviated∇xΨ(x⊕, λ+, s+) as∇xΨ⊕.
Now consider the variables whose indicesj lie in F1 for k ≥ k2. Firstly, (65), (67), (68)

and (73) show that

x⊕j = xj ≥
x∗j

1 + θ
> 0 (88)

if j ∈ Nb. Secondly, combining (80) and (87), and using (13), (17), (18) and (63), we
derive the inequality

|∇xΨ⊕j |

≤ |∇xΨ⊕j −∇xΨ(x⊕, λ, s)j |+ |∇xΨ(x⊕, λ, s)j −∇xΨ(x, λ, s)j |

+|∇xΨ(x, λ, s)j |

≤ (aA + aI)(µmin)αη−1+kαλβη + a2
0(a3 + a1a

2
2)ω0(µmin)αω−1+kβω

+a0ω0(µmin)αω+kβω

≤ a4(µmin)αη−1+kαλβη ,

(89)

wherea4
def= aA + aI + a0ω0(1 + a0(a3 + a1a

2
2)). As k increases, the right-hand-side of

the inequality (89) converges to zero. Thus, from (68) and fork sufficiently large,x⊕j is
floating for eachj ∈ F1, and (13) and (89) imply that

|P (x⊕,∇xΨ⊕j )| = |∇xΨ⊕j | ≤ a4(µmin)αη−1+kαλβη . (90)

Conversely, consider the variables which lie inD1 for k ≥ k2. Then, combining (80) and
(87), and using (17) and (18) we obtain the inequality

|∇xΨ⊕j −∇xΨ(x, λ, s)j |

≤ |∇xΨ⊕j −∇xΨ(x⊕, λ, s)j |+ |∇xΨ(x⊕, λ, s)j −∇xΨ(x, λ, s)j |

≤ (aA + aI)(µmin)αη−1+kαλβη + a2
0(a3 + a1a

2
2)ω0(µmin)αω−1+kβω

≤ a5(µmin)αη−1+kαλβη ,

(91)
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wherea5
def= aA+aI+a2

0ω0(a3 +a1a
2
2). Thus, for sufficiently largek the right-hand-side

of (91) can be made arbitrarily small. Combining this result with (69) and the identity
x⊕j = 0, we see thatx⊕j is dominated for eachj ∈ D1, and (12) and (91) imply that

P (x⊕,∇xΨ⊕j ) = x⊕j = 0. (92)

Therefore, using (13), (17), (90) and (92), we have

‖P (x⊕,∇xΨ⊕)‖g = ‖∇xΨ⊕[F1]‖g ≤ a6(µmin)αη−1+kαλβη , (93)

for all k sufficiently large, wherea6
def= a0a4‖e[F1]‖2.

We also need to be able to bound the Lagrange multiplier estimatesλ̄+ ≡ λ̄(x⊕, λ+, s+).
We have, from (8), that

|λ+
i − λ̄+

i | =
∣∣∣∣ λ̄+

i c
⊕
i

c⊕i + s+
i

∣∣∣∣ . (94)

But then, recalling (84), wheni ∈ A∗, and the superlinear convergence ofλ+
i to zero, when

i ∈ I∗, together with (18), we obtain a bound

‖λ+ − λ̄+‖g ≤ aλ+(µmin)αη−1+kαλβη , (95)

for some constantaλ+ . Thus, combining (51) and (95), we see thatλ̄+ converges toλ∗,
i ∈ A∗, and, becauseλ+

i converges superlinearly to zero wheni ∈ I∗,

‖λ̄+ − λ∗‖g ≤ aλ⊕(µmin)αη−1+kαλβη , (96)

for some constantaλ⊕ .
(ii) The generalized Cauchy point.We consider the Cauchy arc emanating fromx⊕. We
have shown that the variables inD1 are on their bounds; the relationships (66), (68), (69)
and (91) imply that∇xΨ⊕j > 0 for all sufficiently largek and hence thatp⊕(t)j = 0 for
all t > 0 andj ∈ D1. Thus the variables inD1 remain fixed on the bounds throughout the
first inner iteration and

p⊕[D1] = 0 (97)

for all k sufficiently large.
The remaining variables, those indexed byF1, are free from their bounds. Because of

Assumption 7 the setJ1 in assumption AS9 is identical toF1 and thus the matrix (57)
is positive definite with extreme eigenvalues0 < πmin ≤ πmax, say. Using (73) and
inequalities (12), (13) and the first part of (21), we deduce thatx⊕ converges tox∗. Thus
the matrix

H⊕[F1,F1] = B⊕[F1,F1] +A(x⊕)T[F1]D
+(x⊕)A(x⊕)[F1] (98)

is also positive definite with extreme eigenvalues satisfying
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0 < 1
2πmin ≤ π⊕min ≤ π⊕max ≤ 2πmax, (99)

say, for all sufficiently largek. Hence the model (27) is a strictly convex function in the
subspace of free variables during the first inner iteration.

We now show that the set

L def= {p[F1] | m⊕(x⊕ + p) ≤ m⊕(x⊕) and p[D1] = 0} (100)

lies strictly interior to the setC(1) (defined in the Model-reduction Algorithm) for allk
sufficiently large. The diameterd of L, the maximum distance between two members of
the set (measured in the two norm), can be no larger than twice the distance from the center
of the ellipsoid defined byL to the point onL̄ (the boundary ofL) furthest from the center.
The center ofL is the Newton point,

p∗[F1] = −(H⊕[F1,F1])
−1∇xΨ⊕[F1]. (101)

Let p[F1] ∈ L̄ andp∗[D1] = 0 and definev
def= p − p∗. Then, combining (27), (98), (100)

and (101), we have that

1
2v
T
[F1]H

⊕
[F1,F1]v[F1]

= 1
2p
∗T
[F1]H

⊕
[F1,F1]p

∗
[F1] + (m⊕(x⊕ + p∗ + v)−m⊕(x⊕))

−(p∗ + v)T[F1](H
⊕
[F1,F1]p

∗
[F1] +∇xΨ⊕[F1])

= 1
2p
∗T
[F1]H

⊕
[F1,F1]p

∗
[F1] = 1

2∇xΨ⊕T[F1](H
⊕
[F1,F1])

−1∇xΨ⊕[F1].

(102)

Hence, using the extremal properties of the Rayleigh quotient and (102), we have

d2 def= 4‖v∗[F1]‖22 ≤ 4v∗T[F1]H
⊕
[F1,F1]v

∗
[F1]/π

⊕
min ≤ 8v∗T[F1]H

⊕
[F1,F1]v

∗
[F1]/πmin

= 8∇xΨ⊕T[F1](H
⊕
[F1,F1])

−1∇xΨ⊕[F1]/πmin ≤ 16‖∇xΨ⊕[F1]‖22/π2
min

(103)

where‖v∗[F1]‖2 = maxp∗[F1]+v[F1]∈L̄
‖v[F1]‖2. Thus, using (17), (93) and (103), any step

within L satisfies the bound,

‖p[F1]‖2 ≤ d ≤ 4‖∇xΨ⊕[F1]‖2/πmin ≤ 4a0a6(µmin)αη−1+kαλβη/πmin, (104)

for sufficiently largek.
The inequality (88) shows thatx⊕j , j ∈ F1 ∩ Nb, is separated from its bound for all

k sufficiently large while (104) shows that all steps withinL become arbitrarily small.
Thus the problem bounds are excluded fromL. Moreover (16), (34), (93), (97) and (104)
combine to give

‖p‖t = ‖p[F1]‖t ≤ a
1
2
0 ‖p[F1]‖2 ≤ ∆⊕

4a0‖∇xΨ⊕[F1]‖1−ζg

πminκ
. (105)
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for all steps within, or on the boundary of,L. Inequality (93) then combines with (105) to
show that any such step is shorter than the distance to the trust region boundary for allk
sufficiently large.

ThusL lies strictly interior toC(1) ⊆ C(β2) for all k sufficiently large. But, as all iterates
generated by the Model-reduction Algorithm satisfy (41) and thus lie inL, it follows that
both the generalized Cauchy point and any subsequent improvements are not restricted by
the boundaries ofC or C(β2).

It remains to consider the Cauchy step in more detail. The Cauchy arc starts in the steepest
descent direction for the variables inF1. The minimizer of the model in this direction occurs
when

t = t∗ =
∇xΨ⊕T[F1]∇xΨ⊕[F1]

∇xΨ⊕T[F1]H
⊕
[F1,F1]∇xΨ⊕[F1]

. (106)

and thus, from the above discussion, gives the generalized Cauchy point proposed by Conn
et al. [5]. We use the definition oft∗, (16), (99) and the extremal property of the Rayleigh
quotient to obtain

m⊕(x⊕)−m⊕(x⊕ + pC⊕) = 1
2 t
∗‖∇xΨ⊕[F1]‖

2
2 ≥
‖∇xΨ⊕[F1]‖

2
g

4a0πmax
(107)

for this variant of the generalized Cauchy point. Alternatively, if Mor´e’s (1988) variant is
used, the requirement (37) and the definition of the Cauchy arc imply that

m⊕(x⊕)−m⊕(x⊕ + pC⊕) ≥ µ1t
C⊕‖∇xΨ⊕[F1]‖

2
2. (108)

If the first alternative of (38) holds, (108) implies that

m⊕(x⊕)−m⊕(x⊕ + pC⊕) ≥ µ1ν1‖∇xΨ⊕[F1]‖
2
2. (109)

Otherwise, we may use the same arguments as above to show that it is impossible fortL⊕

to satisfy (40) whenk is sufficiently large. Therefore,tL⊕ must satisfy (39). Combining
(27), (39), (98) and the definition of the Cauchy arc, we have that

1
2 (tL⊕)2∇xΨ⊕T[F1]H

⊕
[F1,F1]∇xΨ⊕[F1] ≥ (1− µ2)tL⊕‖∇xΨ⊕[F1]‖

2
2. (110)

Hence, combining (99) and (110) with the extremal properties of the Rayleigh quotient,
we have thattL⊕ ≥ (1− µ2)/πmax. Thus, when the second alternative of (38) holds, this
result and (108) give that

m⊕(x⊕)−m⊕(x⊕ + pC⊕) ≥ [µ1ν2(1− µ2)/πmax]‖∇xΨ⊕[F1]‖
2
2. (111)

Therefore, (17), (109) and (111) give the inequality

m⊕(x⊕)−m⊕(x⊕ + pC⊕) ≥ (µ1/a0) min(ν1, ν2(1− µ2)/πmax)‖∇xΨ⊕[F1]‖
2
g.

(112)
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We shall make use of these results in (iv) below.
(iii) Improvements beyond the generalized Cauchy point.We have thatx⊕[D] = 0, and, as

a consequence of (93),‖P (x⊕,∇xΨ⊕)‖ξg ≤ ν for all k sufficiently large. Hence, because
we have shown that anyp inL lies strictly interior toC, a single pass of Step 2 of the Model-
reduction Algorithm is required. We must pickp to satisfy (45) and (41) by determining
p⊕[F1] so that

‖H⊕[F1,F1]p
⊕
[F1] +∇xΨ⊕[F1]‖g ≤ ‖∇xΨ⊕[F1]‖

1+ξ
g . (113)

and

m⊕(x⊕)−m⊕(x⊕ + p⊕) ≥ β3[m⊕(x⊕)−m⊕(x⊕ + pC⊕)] (114)

for someβ3 ≤ 1. The set of values which satisfy (113) and (114) is non-empty as the
Newton step (101) satisfies both inequalities.

It remains to consider such a step in slightly more detail. Suppose thatp⊕[F1] satisfies
(113). Let

r⊕[F1] = H⊕[F1,F1]p
⊕
[F1] +∇xΨ⊕[F1] (115)

Then combining (16), (99), (113) and (115), we have

‖p⊕[F1]‖g ≤ a0‖H⊕−1
[F1,F1]‖2(‖r⊕[F1]‖g + ‖∇xΨ⊕[F1]‖g)

≤ 2a0‖∇xΨ⊕[F1]‖g(1 + ‖∇xΨ⊕[F1]‖ξg)/πmin.
(116)

Thus, combining (93) and (116), and pickingk sufficiently large so that

‖∇xΨ⊕[F1]‖ ≤ 1, (117)

we obtain the bound

‖p⊕[F1]‖g ≤ 4a0a6(µmin)αη−1+kαλβη/πmin. (118)

(iv) Acceptance of the new point.We have seen that

p⊕[D1] = 0 (119)

andp⊕[F1] satisfies (113). Asp⊕ can be made arbitrarily small, it follows (as in (76) and

(77)) from the convergence ofx⊕ to x∗ and that ofs+
i to s∗i that there is an integerk3 for

which

0 < 1
2ci(x

∗) < ci(x⊕ + p⊕) + s+
i < 2ci(x∗) for all i ∈ I∗ (120)

and

0 < 1
2µmin(λ∗i )

αλ < ci(x⊕ + p⊕) + s+
i < 2µmin(λ∗i )

αλ for all i ∈ A∗, (121)
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for all k sufficiently large andl ≥ k3. Thus

ci(x⊕ + p⊕) + s+
i > 0 (122)

for all 1 ≤ i ≤ m andk sufficiently large.
We now wish to show that the quantity

|ρ⊕ − 1| = |Ψ(x⊕ + p⊕, λ+, s+)−m⊕(x⊕ + p⊕)|
|m⊕(x⊕)−m⊕(x⊕ + p⊕)| (123)

converges to zero, ensuring that the new point will prove acceptable in Step 4 of the Inner-
iteration Algorithm.

Consider first the denominator on the right-hand-side of (123). Combining (107), (112)
and (114), we have

m⊕(x⊕)−m⊕(x⊕ + p⊕) ≥ a7‖∇xΨ(x⊕, λ+, s+)[F1]‖2g, (124)

wherea7 = β3 min(1/(4a0πmax), µ1 min(ν1, ν2(1 − µ2)/πmax)/a0). Turning to the
numerator on the right-hand-side of (123), we use the integral mean value theorem to
obtain

Ψ(x⊕ + p⊕, λ+, s+)

= Ψ(x⊕, λ+, s+) + p⊕T[F1]∇xΨ⊕[F1]

+ 1
2

∫ 1

0
p⊕T[F1]∇xxΨ(x⊕(t), λ+, s+)[F1,F1]p

⊕
[F1]dt

= Ψ(x⊕, λ+, s+) + p⊕T[F1]∇xΨ⊕[F1]

+ 1
2

∫ 1

0
p⊕T[F1][∇xxΨ(x⊕(t), λ+, s+)−∇xxΨ⊕][F1,F1]p

⊕
[F1]dt

+ 1
2p
⊕T
[F1][∇xxΨ⊕ −H⊕][F1,F1]p

⊕
[F1] + 1

2p
⊕T
[F1]H

⊕
[F1,F1]p

⊕
[F1]

= m⊕(x⊕ + p⊕) + 1
2p
⊕T
[F1][∇xxΨ⊕ −H⊕][F1,F1]p

⊕
[F1]

+ 1
2

∫ 1

0
p⊕T[F1][∇xxΨ(x⊕(t), λ+, s+)−∇xxΨ⊕][F1,F1]p

⊕
[F1]dt,

(125)

wherex⊕(t) = x⊕ + tp⊕ and we have abbreviated∇xxΨ(x⊕, λ+, s+) as∇xxΨ⊕.
Considering the last two terms in (125) in turn, we have the bounds

| 12p⊕T[F1][∇xxΨ⊕ −H⊕][F1,F1]p
⊕
[F1]|

≤ 1
2a0(υ‖p⊕[F1]‖ςg + ‖[∇xx`(x⊕, λ̄+)−∇xx`(x∗, λ∗)][F1,F1]‖g)‖p⊕[F1]‖2g,

(126)

using (16), (42), the definition of the Hessian of the Lagrangian barrier function and AS8,
and

| 12
∫ 1

0

p⊕T[F1][∇xxΨ(x⊕(t), λ+, s+)−∇xxΨ⊕][F1,F1]p
⊕
[F1]dt| ≤ 1

4a0a8‖p⊕[F1]‖
3
g,

(127)
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using (16), the convergence (and hence boundedness) of the Lagrange multiplier estimates
and the Lipschitz continuity of the second derivatives of the problem functions (assumption
AS3) with some composite Lipschitz constanta8. Thus, combining (116), (123), (124),
(125), (126) and (127), we obtain

|ρ⊕ − 1| ≤ 2a3
0(1 + ‖∇xΨ⊕[F1]‖ξ)2

g·
1
2a8‖p⊕[F1]‖g + υ‖p⊕[F1]‖

ς
g + ‖[∇xx`(x⊕, λ̄+)−∇xx`(x∗, λ∗)][F1,F1]‖g

a7π
2
min

.
(128)

As the right-hand-side of (128) converges to zero ask increases,x+ = x⊕ + p⊕ for all k
sufficiently large.
(v) Convergence of the inner iteration at the new point.The relationship (122) ensures
thatx+ satisfies the feasibility test of the second part of (21). We now show thatx+ satisfies
the inner-iteration convergence test (26).

Firstly, in the same vein as (80) , forj ∈ D1 we have that

|∇xΨ(x+, λ+, s+)j −∇xΨ⊕j |

≤ ‖p⊕‖2 · ‖eTj
∫ 1

0
[H`(x⊕(t), λ) +A(x⊕(t))TD+(x⊕(t))A(x⊕(t))]jdt‖2

≤ a0(a3 + a1a
2
2/µmin)‖p⊕‖2,

(129)

wherex⊕(t) = x⊕ + tp⊕ and where we use the bound

‖D+(x⊕(t))‖ ≤ a1/µmin (130)

for all 0 ≤ t ≤ 1. This latter follows from the definition (28) and the convergence ofx⊕

and, because of (119) and (118), the convergence ofx⊕ + p⊕ to x∗. Thus, as the right-
hand-side of (129) can be made arbitrarily small, by takingk sufficiently large, (69) and
the identityx+

j = x⊕j = 0 for eachj ∈ D1, imply thatx+
j is dominated for eachj ∈ D1

while (12) and (92) imply that

P (x+,∇xΨ(x+, λ+, s+))j = x+
j = 0. (131)

We now consider the components ofP (x+,∇xΨ(x+, λ+, s+))j for j ∈ F1. Using the
integral mean value theorem, we have

∇xΨ(x+, λ+, s+)[F1]

= ∇xΨ⊕[F1] +
∫ 1

0
∇xxΨ(x⊕(t), λ+, s+)[F1,F1]p

⊕
[F1]dt

= [H⊕[F1,F1]p
⊕
[F1] +∇xΨ⊕[F1]] + [∇xxΨ⊕ −H⊕][F1,F1]p

⊕
[F1]

+
∫ 1

0
[∇xxΨ(x⊕(t), λ+, s+)−∇xxΨ⊕][F1,F1]p

⊕
[F1]dt

(132)

wherex⊕(t) = x⊕ + tp⊕. We observe that each of the three terms on the right-hand-
side of (132) reflects a different aspect of the approximations made. The first corresponds
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to the approximation to the Newton direction used, the second to the approximation of a
nonlinear function by a quadratic and the third to the particular approximation to the second
derivatives used. We now bound each of these terms in turn.

The first term satisfies the bound (113). Hence, combining (93) and (113), we obtain

‖H⊕[F1,F1]p
⊕
[F1] +∇xΨ⊕[F1]‖g ≤ a

1+ξ
6 (µmin)(αη−1)(1+ξ)+kαλβη(1+ξ). (133)

The same arguments as those used to establish (126) imply that the second term on the
right-hand-side of (132) satisfies the bound

‖[∇xxΨ⊕ −H⊕][F1,F1]p
⊕
[F1]‖g

≤ (υ‖p⊕[F1]‖ςg + ‖(∇xx`(x⊕, λ̄+)−∇xx`(x∗, λ∗))[F1,F1]‖g)‖p⊕[F1]‖g
≤ (υ‖p⊕[F1]‖ςg + a9‖x⊕ − x∗‖g + a10‖λ̄+ − λ∗‖g)‖p⊕[F1]‖g,

(134)

for some composite Lipschitz constantsa9 anda10. We may then combine (17), (51), (63),
(78), (96), (118) and (134) to obtain the bound

‖[∇xxΨ⊕ −H⊕][F1,F1]p
⊕
[F1]‖g

≤ [υ[(4a0a6/πmin)(µmin)αη−1+kαλβη ]ς

+a9[ax(µmin)αη+kαλβη + a0ω0(µmin)αω+kβω ]

+a10aλ⊕(µmin)αη−1+kαλβη ](4a0a6/πmin)(µmin)αη−1+kαλβη

(135)

for all sufficiently largek. Lastly, the third term on the right-hand-side of (132) satisfies
the bound

‖
∫ 1

0

[∇xxΨ(x⊕(t), λ+, s+)−∇xxΨ⊕[F1,F1]p
⊕
[F1]]dt‖g ≤ 1

2a0a8‖p⊕[F1]‖
2
g. (136)

by the same arguments we used to establish inequality (127). We may then combine (118)
and (136) so that

‖
∫ 1

0
[∇xxΨ(x⊕(t), λ+, s+)−∇xxΨ⊕][F1,F1]p

⊕
[F1]dt‖

≤ 8a3
0a

2
6a8(µmin)2αη−2+k2αλβη/π2

min

(137)

for all k sufficiently large.
We now combine equation (132) with the inequalities (133), (137) and (135), the condition

ξ < 1 and the definitions ofαη(< 1) andβη(> 0) to obtain the bound

‖∇xΨ(x+, λ+, s+)[F1]‖ ≤ a11(µmin)ᾱ+kβ̄ , (138)

where

ᾱ = (αη − 1)(1 + max(1, ς)), β̄ = αλβη(1 + min(ξ, ς)) (139)
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and

a11 = a1+ξ
6 + 8a3

0a
2
6a8/π

2
min + (4a0a6/πmin)(υ((4a0a6/πmin)ς)

+a9(ax + a0ω0) + a10aλ).
(140)

Firstly, observe that the right-hand-side of (138) may be made arbitrarily small. Therefore,
(13), (131) and (138) imply that

‖P (x+,∇xΨ(x+, λ+, s+))‖g = ‖∇xΨ(x+, λ+, s+)[F1]‖g ≤ a11(µmin)ᾱ+kβ̄ .

(141)

Secondly, defineδ = logµmin
(a11/ω0). Now letk1 be any integer for which

k1 ≥
αω + βω − ᾱ− δ

β̄ − βω
. (142)

Then (58), (141) and (142) imply that

‖P (x+,∇xΨ(x+, λ+, s+))‖g ≤ a11(µmin)ᾱ+kβ̄ ≤ ω0(µmin)αω+(k+1)βω = ω+

(143)

for all sufficiently largek ≥ k1. Thus, the iteratex+ satisfies the inner iteration first
convergence test of (21) for allk sufficiently large and we havex(k+1) = x(k+1,1) ≡ x+.
(vi) Redundancy of the shifted starting point. Finally, we observe that all the variables
x

(k)
j , j ∈ D, lie on their bounds for sufficiently largek. Therefore,x(k+1,0) = x(k) and the

perturbed starting point is redundant.

5. The general case

We now turn briefly to the more general problem (1)—(3). The presence of the more
general bounds (3) does not significantly alter the conclusions that we are able to draw. The
algorithms of section 3 are basically unchanged. We now use the regionB = {x ∈ <n | l ≤
x ≤ u}— and henceNb = N — and replaceP (x, v) by P (x, v, l, u) where appropriate.
The concept of floating and dominated variables stays essentially the same. For each iterate
inBwe have three mutually exclusive possibilities, namely,(i) 0 ≤ x(k)

j −lj ≤ (∇xΨ(k))i,

(ii) (∇xΨ(k))i ≤ x
(k)
j − uj ≤ 0 or (iii) x(k)

j − uj < (∇xΨ(k))i < x
(k)
j − lj , for each

componentx(k)
j . In case(i) we then have thatP (x(k),∇xΨ(k), l, u)i = x

(k)
j − lj while

in case(ii) P (x(k),∇xΨ(k), l, u)i = x
(k)
j − uj and in case(iii) P (x(k),∇xΨ(k), l, u)i =

(∇xΨ(k))i. The variables that satisfy(i) and(ii) are said to be the dominated variables, the
ones satisfying(i) aredominated abovewhile those satisfying(ii) aredominated below.
Consequently, the sets corresponding to (14) are straightforward to define.D1 is now made
up as the union of two setsD1l, whose variables are dominated above for allk sufficiently
large, andD1u, whose variables are dominated below for allk sufficiently large.F1 contains
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variables which float for allk sufficiently large and which converge to values interior toB.
Similarly F2 is the union of two sets,F2l andF2u, whose variables are floating for allk
sufficiently large but which converge to their lower and upper bounds respectively. We also
replace (32) by

x̂
(k−1)
j =


lj if 0 ≤ x(k−1)

j − lj ≤ θ(∇xΨ(k−1))j
uj if θ(∇xΨ(k−1))j ≤ x(k−1)

j − uj ≤ 0
x

(k−1)
j otherwise.

(144)

With such definitions, we may reprove the results of section 4, extending AS4, AS7—AS9
in the obvious way. The only important new ingredient is that Connet al. [9] indicate that
the non-degeneracy assumption AS7 ensures that the iterates are asymptotically isolated in
the three setsF1,D1l andD1u.

6. Conclusions

We have shown that, under suitable assumptions, a single inner iteration is needed for each
outer iteration of the Lagrangian barrier algorithm. We anticipate that such an algorithm
may prove to be an important ingredient of release B of theLANCELOT package.
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