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1. Introduction

In this paper, we consider the nonlinear programming problem

minimize f(x) 1)

zER™

subject to thegeneral constraints

ci(x) >0, i=1,...,m, 2
and the specifisimple bounds

[<z<u. (3)
We assume that the regigh= {z € R" | | < = < u} is non-empty and may be infinite.
We do not rule out the possibility that further simple bounds on the variables are included

amongst the general constraints (2) if that is deemed appropriate. Indeed, it is conceivable
that all simple bounds should be handled this way. Furthermore, we assume that

AS1. f(x) and thec;(z) are twice continuously differentiable for allin 5.
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Our exposition will be conveniently simplified by taking the lower bounds as identically

equal to zero and the upper bound as infinity for a subset o8 {1,2,...,n} in (3)

and by assuming that the remaining variables are either not subjected to simple bounds
or their simple bounds are treated as general constraints. Thus, in most of what follows,
B={xeR"|z; >0forall j € N,}, whereN;, C N is the index set obounded
variables. The modification required to handle more general bounds is indicated at the end
of the paper.

The approach we intend to take is that of Catral. [9] and is based upon incorpo-
rating the equality constraints via a Lagrangian barrier function whilst handling upper and
lower bounds directly. The sequential, approximate minimization of the Lagrangian barrier
function is performed in a trust region framework such as that proposed bye&tahrj5].

Our aim in this paper is to consider how these two different algorithms mesh together.
In particular, we aim to show that ultimately very little work is performed in the itera-
tive sequential minimization algorithm for every iteration of the outer Lagrangian barrier
algorithm. This is contrary to most analyses of sequential penalty and barrier function
methods in which the effort required to solve the inner iteration subproblems is effectively
disregarded, the analysis concentrating on the convergence of the outer iteration (see for
instance the books by Fiacco and McCormick[12] and Bertsekas [1]. Exceptions to this
are the sequential penalty function method analyzed by Gould [14], and the sequential
augmented Lagrangian algorithm considered by Gatrai. [8]).

This work was primarily motivated by observations that the authors made when testing
a prototype of their large-scale nonlinear programming pack#dg¢CELOT, release B
(see [7] for a description of release A), which includes an implementation of the algorithms
discussed in this paper. It was often apparent that only a single iteration of the inner itera-
tion subroutineSBMIN was ultimately required for every outer iteration of our sequential
Lagrangian barrier program. While the conditions required in this paper to turn this ob-
servation to a proven result are relatively strong (and we feel probably about as weak as is
possible), the package frequently exhibits the same behaviour on problems which violate
our assumptions.

We define the concepts and notation that we shall need in section 2. Our algorithm is
fully described in section 3 and analyzed in sections 4 and 5.

2. Notation

Let g(x) denotes the gradie®,, f(z) of f(x). Similarly, let A(z) denote the Jacobian of
c(z), where

o(z) = [er(2), -, om (@) 4)
Thus
A(a:)T = [Vei(x), - Ve (x)]. (5)

We define the Lagrangian and Lagrangian barrier functions as
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Uz, N) = flx) = D i), (6)
i=1
and
U, A s) = f() = 3 Aisslog(es(a) + 50), @
=1

respectively, where the componehi®fthe vector are positive and are known as Lagrange
multiplier estimates and where the elementsf the vectors are positive and are known as
shifts. We note that(x, \) is the Lagrangian with respect to the general constraints only.

Let g,(z,A) and H,(x, \) respectively denote the gradient,/(z, A), and Hessian,
V.l(x, ), of the Lagrangian. We define the vecfoby

< AiSi

)\i(m,)\,s) = m, (8)
forall 1 <i < m. We note thaW¥.4(z, \) = V,¥(z, )\, s).
We denote the non-negativity restrictions by
reB={xzeR"|z; >0 forall jeMN} 9)

whereN, C N. We will make much use of the projection operator defined componentwise
by
lj if Zj S lj
(Plz,lu]); = vy ifz; > uy (20)
x; otherwise.
This operator projects the poimtonto the region defined by the simple bounds (3). Let
P(z,v,l,u) =z — Plx —v,l,u]. (112)

Furthermore, defind’[z] = P[x,l,oc] and P(z,v) = P(z,v,l,00), wherel; = 0 for
j € N and—oo otherwise.

Let2®®) ¢ B and\(*) be given values of and\. If h(z, ), ...) is any function ofz,
A, ..., we shall writeh(®) as a shorthand fdr(z(®), \*) ).

For anyz*) we have two possibilities for each componeﬁi),j =1,...,n, namely
(i) j€N,ando<al® < (v, ) or
(i) jeN;s Or(Vm\I/(k))j < xﬁk)

whereN; def N\ N, is the index set ofree variables. We shall call alzl:ﬁ"” that satisfy

(7) dominatedvariables while the remaininggk) arefloatingvariables. It is important to
notice that, ag:(®) € B,
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(P, v, u®)); = 2" whenever:" is dominated (12)
while
(P(z®, v, o0y = (v, "), otherwise. (13)

If 2* is the limit point of the (sub-)sequenée*) }.cx, we partition\ into four index
sets related to the two possibilitiéy and(i:) above and the corresponding. We define

Dy def {j €Ny x‘gk) is dominated/k € K sufficiently large,
Fi YN UG eN x(gk) is floatingVk € K sufficiently largex? > 0},

def (k) ; : - (14)
F2 = {j € My|z;"” isfloatingVk € K sufficiently largex = 0},
Fs Y N\DIUFAUF.
We also define
def .
I(@) i | ela) >0}, s

A(z) € {i | e;(z) <0},

the sets ofnactive(strictly satisfied) andctive(violated or just satisfied) constraints at the
pointz. We develop our algorithm so that the sét = A(z*) at any limit point of our
generated sequence is precisely the set of constraints for witich = 0. We also write
I* =ZI(x*).

We will use the notation that if; and.7; are any subsets ¢f andH is ann by n matrix,
H\ 7, 7, is the matrix formed by taking the rows and columngbindexed by, and 7>
respectively. Likewise, ifA is anm by n matrix, A;7,; is the matrix formed by taking the
columns of4 indexed by7;.

We denote the (appropriately dimensioned) identity matriX s j-th columnise;. A
vector of ones is denoted lay

We will use a variety of vector and subordinate matrix norms. We shall only consider
norms|| - ||. which areconsistenwith the two-norm, that is, norms which satisfy the
inequalities

1 1
[0l < agllvlz and o]z < ag o] (16)
for all vectorsv and some constant, > 1, independent of. It then follows that, for any
pair of two-norm-consistent noris ||, and|| - ||,

lvll- < aollvlly, and jvfly < aolfv]].. (17)

If r is any m-vector whosei-th component is-;, we use the shorthand = [r;]7,.
Furthermore, ifr is as above and is a subset of 1,2, - - -, m}, [r;]:c 7 IS just the vector
whose components are thg ¢ € 7. Consequently[r;]7, || = |I7||.

Following Connet al. [9], we now describe an algorithm for solving (1), (2) and (9).
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3. Statement of the algorithm

In order to solve the problem (1), (2) and (9), we consider the algorithmic model given in
Figure 1.

We shall call the vectaP (z(*)| v, ¥(¥)) theprojected gradient of the Lagrangian barrier
functionor theprojected gradientor short. The norm§- ||, and|| - ||. are normally chosen
to be either two or infinity norms.

Our decreasing sequence pf*)’s is given by u®) = po(7)*, but any monotonic
decreasing sequence of*)’s converging to zero if Step 4 is executed an infinite number
of times will suffice. It is also irrelevant, in theory, as to how we find a suitable point
+(®) satisfying (21). However, from a practical perspective, a suitable point is found by an
iterative procedure. In our algorithm, it is normal to try to start this inner iteration from, or
close to, the solution to the last one. Indeed, from the point of view of the results we are
about to establish, thisis crucial. Such a starting point is desirable as function and derivative
information from the conclusion of one inner iteration may be passed as input to the next.
However, we need to bear in mind that the requirement of the second part of (21) may
preclude us from picking such a starting point as it is possibledfiat®—1)) + sfk) <0
for somei. This issue is considered in depth in Coetnal. [9], where it is shown that
ci(@®) + s*) > o forall 1 < i < m when Step 3 of the Outer-iteration Algorithm
is executed, while techniques for finding a suitable alternative starting point when Step 4
occurs are given.

The main purpose of this paper is to show that asymptotically we take one inner iteration
per outer iteration. More specifically, under certain assumptions, we first show that (23) is
eventually satisfied at each outer iteration. We then show that, under additional assumptions,
it is possible to satisfy the convergence test (21) after a single iteration of the algorithm
given in Conret al. [5].

The specific inner iteration algorithm we shall consider is given in Figure 2.

There are a number of possible ways of choos{gﬁ“gj) andyé’“’j) in Step 4. The simplest

is merely to pickwék’j e Yo andyff"j ) = ~s3; other alternatives are discussed in Cetn
al. [7].

It remains to give a description of the starting point, initial trust region radius and approx-
imation to the Hessian of the Lagrangian, and of the calculation that is performed in Step
2 of the Inner-iteration Algorithm.

Let0 < 6 < 1. We let

Ly _ [0 if 0 <2l <g(v, ¥+ D), and je N, (32)
J xg.k_l) otherwise,
and choose
(k=1 if (201 + B 5
ko) _ [ & if c(z )+ st >
v {x(kl) otherwise. (33)

Thus variables which are significantly dominated at the end ofkthe 1)-st iteration are
set to their bounds while the remainder are left unaltered. This choice is made since, under
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[Outer-iteration Algorithm ]

Step O : [Initialization] ~ The strictly positive constantgy, wo, w, Bw, an, By, ox < 1,7 < 1,
p < 1,72 <1,ws € 1andn. < 1 for which
1—(1+ax)"!<a, <min(l,a,) and B, < min(1, By). (18)

are specified. A positive forcing parametgf?), is given. Set

p® = min(a®,53), @ =wo(u®)*  and 7® = no(u@)n.  (19)

Aninitial estimate of the solution;€Ste B, and vector of positive Lagrange multiplier estimates,
A for whichc; (&St + u(0>(/\§0))ak > 0 are specified. Sét = 0.

Step 1: [Inner iteration] Compute shifts

st = pB (A, (20)

fori =1,...,m. Findz(®) e B such that

1P®), v, 0@, <w® and c;(@®) 4+ >0, (1=1,...,m). (1)

Step 2 : [Test for convergence] If

[Pz, V20 M)||g < w. and]|[e; (z®)Xi (@B, AR sEN o < ey (22)

stop. If
[ 0300, 509 /3o ||| <h, (23)
i=1llc
execute Step 3. Otherwise, execute Step 4.
Step 3 : [Update Lagrange multiplier estimates] Set
AEHD = X(zR) AR (k)
prn =gk, pH = min(pHD ), (24)
Wkt = (B (k1)) n(k+1) = (k) (1, (k+1))By
Increasek by one and go to Step 1.
Step 4 : [Reduce the forcing parameter] Set
AR = \(R)
kD) = rpk), pFFD - = min(aE+D, ), (25)
Wkt = o (kD))o n(E+1) = g (ulkt1)yan,

Increasek by one and go to Step 1.
End of Algorithm
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[Inner-iteration Algorithm ]

Step 0 : [Initialization]  The positive constanis < n < 1 andyg < 2 < 1 < 3 are given. The
starting point,z(¥:0), a nonnegative convergence tolerancé?), an initial trust region radius,
Ak:9) 3 symmetric approximatio3(k-9) , to the Hessian of the Lagrangiall, (k-9 | A(K)),
and a two-norm-consistent norfpn- ||, are specified. Comput& (z(*:0) A(¥) s(k)) and its
gradient. Set the inner iteration counget= 0.

Step 1: [Test for convergence] If

| P(z*9), 7w Fa))||, < w®) (26)

setz(®) = z(¥:9) and stop.

Step 2 : [Significantly reduce a model of the Lagrangian barrier function] Construct a quadratic
model,

m®3) (259 1 p) B g (e AE) | 1 0)) 4 pTv 0 (F3) AR (R

+%pT(B(k,j> + A(z®INT D) (£ (Fo0)) A(2(*:9)))p,

@7

of U(z+ p, A" u(*)), where
(k) (k)
A \
D<k)(:(;) = diag (%) . (28)
(ci@) +5)2

Compute a step(¥+7) which significantly reduces the valuewf(*:7) (2(¥:7)  p),

Step 3 : [Compute a measure of the effectiveness of the stegfompute
U (zk:d) 4 pkod) A(K) 5(k)) and the ratio

W) AB) | g(0)) g (z(kad) 4 plhad) | A(K) | g(k))

(kyj) —
r M3 (2kd)) — mED) (z k) 4 p(kd)) (29)
Step 4 : [Accept or reject the step] For'yék’j) € [v0,1) and'yék’j) € [1,~3], set
. (k,7) (k3) i p(ksd)
(hjt1) = ) T +p Tt > p
z { 2(k:3) otherwise, (30)

and

,Y(()k,j)A(k,j) if p(k:d) < g
AlI) = & A if < pd) < (31)
,yéka)AUw') otherwise.

Step 5: [Updating] If necessary, compute the gradientwfz(%3+1) A(*) (k) and a further
approximation to the Hessian of the Lagrangfaff>d+1) . Increment the inner iteration counter
7 by one and go to Step 1.

End of Algorithm
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a suitable non-degeneracy assumption (AS7 in section 4), the set of dominated variables is

asymptotically the same as the set of variables which lie on their bounds (see [9], Theorem

5.4). Furthermore, under a second non-degeneracy assumption (AS5 in section 4), the

assignment(*-0) = z(*~1) js guaranteed fak sufficiently large. Our choice af*-*) then

encourages subsequent iterates to encounter their asymptotic state as soon as possible.
We also pickA*:9) so that

AR = g P, v, w0 g (34)

for some positive constantsand¢ < 1 (typical values might be = 1 and¢ = 0.9). This
value is chosen so that the trust region does not interfere with the asymptotic convergence
of the algorithm, while providing a reasonable starting value in the earlier stages of the
method.

Finally B(*-%) is taken to be any sufficiently good symmetric approximation to the Hessian
of the Lagrangian function at*). We qualify what we mean by “sufficiently good” in the
next section but suffice it to say that exact second derivatives satisfy this property and are
often to be recommended.

The calculation in Step 2 is performed in two stages.

1. Firstly, the so-callegieneralized Cauchy poing© %) = g(k:9) 4 pCkJ) s deter-
mined. This is merely an approximation to the first local minimizer of the quadratic
model,m%7) (2(*7) 4 p), along the Cauchy arc. Ti@auchy ards the path:(%:7) + p,
where

E P®D) — 17,0 (z®D A R 1] — 209, (35)

p=p*(t)
as the parameterincreases from 0, which finishes when the path first intersects the
boundary of the trust region,

Iplle < A%D), (36)

for some two-norm-consistent norfin- ||;. Thus the Cauchy arc is simply the path
which starts in the steepest descent direction for the model but which is subsequently
“bent” to follow the boundary of the “box” region defined by the feasible region (9) (or,

in general, (3)) and which stops on the boundary of the trust region (36). The two or
infinity norm is normally chosen, the latter having some advantages as the trust region is
then aligned with the feasible region (9). (Indeed, itis possible to extend the Cauchy arc
along the boundary of the trust region when the infinity norm is used. Further reduction
of the quadratic model along this extended Cauchy arc may prove beneficial.)

The method proposed by Coehal. [5] calculates the exact generalized Cauchy point
by marching along the Cauchy arc until either the trust region boundary is encountered or
the model starts to increase. An alternative method byeNIs] finds an approximation

pC ) = p(kd) (€ (k-1) ) which is required to lie within the trust-region and to satisfy
the Goldstein-type conditions
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mF9) (x(k7) 4 p(kad) (1€ (k1))

< mFD) (zB9)) 4 1y pFad) (1CFIN T B (2(RI) | \(R) | (k) (37)
and
tCI) >y or CRI) > pppkkd) (38)
wheret™(*:)) > 0 is any value for which
(B9 (B:3) g pkd) (1L k.9
. , : _ , (39)
> mFD) (2B9)) 4 pgp®ad) (tEEINTG W (F:0) AF) | 5(R))
or
[p*) (tE*)||, > v AR, (40)

and the positive constants, s, v1, 2 andvs satisfy the restrictiong; < e < 1,

v, < 1l andrs < 1. Condition (37) ensures that a sufficient reduction in the model
takes place at each iteration while condition (38) is needed to guarantee that every step
taken is non-negligible. Mershows that it is always possible to pick such a value of
t¢(k.7) using a backtracking linesearch, starting on or near to the trust region boundary.
Similar methods have been proposed by Calamai anceN#jr'Burke and Moe'[2],

Toint [16] and Burkeet al. [3].

2. Secondly, we pick*7) so thatz(*)) 4 p(#9) lies within (9), [|[p*7)||, < Bo A
and

m(ED (200 ) — kad) (zk:5) 4 plkad)

41
> Ba[mFd) (x*:3)) — m(R9) ((k:3) 4 pC kI > 0 (41)
for some positives, > 1 andgs < 1. In fact, we typically choosg, = 83 = 1, in
which case we are merely requiring that the computed step gives a value of the model
which is no larger than the value at the generalized Cauchy point.

In order to accelerate the convergence of the method, it is normal to try to bias the
computed step towards the Newton direction.

The convergence analysis given by Cagtnal. [5] for the Outer-iteration Algorithm
indicates that it is desirable to construct improvements beyond the Cauchy point only in the
subspace of variables which are free from their bounds at the Cauchy point. In particular,
with such a restriction and with a suitable non-degeneracy assumption, it is then shown that
the set of variables which are free from their bounds at the solution is determined after a
finite number of iterations. This has the advantage of allowing one to analyze the asymptotic
convergence rate of the method purely as if it were an unconstrained calculation, merely by
focusing on the set of free variables.
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Let F be a subset ol and letD = N\ F. Furthermore, let
HED L pkd) 4 g(z0NT D) (5(k9)) A(z k1)) (42)

denote the composite approximation to the Hessian of the Lagrangian barrier function.

The specific Model-reduction Algorithm we shall consider is summarized in Figure 3.

In Step 2 of this method, the value gf-; would normally be computed as the aggregate
step after a number of Conjugate Gradient (CG) iterations, where CG is applied to minimize
the model in the subspace defined by the free variables. The CG process will end when
either a new bound is encountered or the convergence test (45) is satisfied. The Model-
reduction Algorithm is itself finite as the number of free variables at each pass of Step 2 is
strictly monotonically decreasing. See the paper by Gatral. [6] for further details.

4. Convergence analysis

We wish to analyze the asymptotic behaviour of the Outer-iteration Algorithm, that is in
the case where, = 7. = 0. We require the following additional assumptions.

AS2. The matrixA(z*) 4 #,) is of full rank at any limit pointz* of the sequencéz*)}
generated by the Outer-iteration Algorithm with the Betdefined by (14).

Under these assumptions we have the following result.



ASYMPTOTIC COMPLEXITY IN INEQUALITY CONSTRAINED OPTIMIZATION 51

[Model-reduction Algorithm ]

Step 0 : [Initialization] ~Select positive constanis< 1,¢£ < 1, 32 > 1 andgs < 1.

Step 1 : [Calculate the generalized Cauchy point]Calculate an approximation to the
generalized Cauchy point®*9) = z(*.3) 4 ,¢(k3) ysing one of the previously
mentioned techniques. Compute the set of varialss{®¥), which are free from

their bounds at®%9), Sety; = £¢*) | s = pC*9) and F = FO K9,

Step 2 : [Further improve the model] LetC(32) = S[)7 (32), where

S={pr 2" +peB and pp) =pp"} (43)

and

T(%) = {piA | lplle < 82207 and ppp = pif' 1. (44)

If pp lies on the boundary of (52), setp*?) = p and stop. (If| - . is the infinity

norm, itis possible to transfer componentsfowhich lie on the trust-region boundary

to D and to continue.) Otherwise, recomputg so that (41) is satisfied and either
7 lies strictly interior toC(32) with

k, K, k,
12 pi + (Va5 + H D piy)llg

. . (45)
< min(y, | P@®, Vo uED)5) || P, v u )|

or px lies on the boundary @ (532). Resetr(#) t0 z7) + pi#).

Step 3 : [Test for convergence] If p; 7 lies strictly interior taC (32 ) and (45) is satisfied or
if it is decided that sufficient passes have been made{sét = p and stop. Otherwise
remove all of the indices it for which p;z; lies on the boundary of and perform
another pass by returning to Step 2.

End of Algorithm

Figure 3. Model-reduction Algorithm
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THEOREM 1 ([9], Theorem 4.4Assume that AS1 and AS2 hold, thétis a limit point
of the sequencgz(*)} generated by the Outer-iteration Algorithm and that

<y aer MY
PR, S (46)
ci(z®) + s,

fori = 1,---,m. Thenz* is a Kuhn-Tucker (first order stationary) point for (1), (2)
and (9) and the corresponding subsequences\6f' } and {V,, ¥ (*)} converge to a set of
Lagrange multipliers)\*, and the gradient of the Lagrangiags(z*, A*), for the problem,
respectively.

Now consider the following further assumptions.

AS3. The second derivatives of the functiofigc) and thec; () are Lipschitz continuous
at all points within an open set containifsg

AS4. Suppose thatz*, \*) is a Kuhn-Tucker point for the problem (1), (2) and (9), and

A Y i e(2*) =0 and AF >0}

A5 i e(x*) =0 and AF =0} (47)
and
T ENUEN, | (ge(2®,A%); =0 and af >0} 48)
Jo E{jeNy | (ge(a*,3*); =0 and 5 = 0}.
Then we assume that the matrix
- * T
("t )

is non-singular for all setsl and.7, whereA is any set made up from the union.df
and any subset ofl; and 7 is any set made up from the union@f and any subset of

Jo.

ASS5. (Strict complementary slackness condition 1) Supposéttiah*) is a Kuhn-Tucker
point for problem (1), (2) and (9). Then

Ay =1{i| ci(z)=0 and A\ =0} =0. (50)

AS6. The Outer-iteration Algorithm has a single limit point;.

Under these additional assumptions, we are able to derive the following result.
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THEOREM 2 ([9], Theorems 5.3 and 5.5ssume that AS1-AS6 hold. Then there is a
constantu,;, > 0 such that the penalty parametef®) generated by the Outer-iteration
Algorithm satisfieg,(*) = i, for all k sufficiently large. Furthermore;(*) and 5\&1]
satisfy the bounds

||I(k) — QZ‘*Hg < aw(unlirl)an+ka>\ﬂn and ( )
- 51
I = A)arlly < @ (ptmin) e,
for the two-norm-consistent norfh||, and some positive constants anda,, while each
A®)| i e 7%, converges to zero at a Q-superlinear rate.
i g p

We shall now investigate the behaviour of the Outer-iteration Algorithm once the penalty
parameter has converged to its asymptotic valiyg,. There is no loss of generality in
assuming that we restart the algorithm from the point which is reached when the penalty
parameter is reduced for the last time. We shall call this iterdtien0 and will start with
19 = ... By construction, (23) is satisfied for dlland the updates (24) are always
performed. Moreover,

W = wo(pmin) P and 9™ = o (jumin) . (52)
We require the following extra assumptions.

AS7. (Strict complementary slackness condition 2) Supposéttiai*) is a Kuhn-Tucker
point for problem (1), (2) and (9). Then

Jo=1{j €Ny | (ge(a*,2\*); =0 and % =0}=0. (53)

AS8. If 7, is defined by (48), the approximatiof*-?) satisfy

* * k.0 k,0
I(BED — Vb, X)) 7, ipi) Ny < vllpi Y157, (54)

for some positive constantsands and allk sufficiently large.

AS9. Suppose thatz*, A*) is a Kuhn-Tucker point for the problem (1), (2) and (9), and
that.7; is defined by (48). Then we assume that the second derivative approximations
B9 have a single limitB* and that the perturbed Kuhn-Tucker matrix

* *\T
oy Ay, 5)
A(T™) 4 7] _(D[A*,A*])

is non-singular and has precisely negative eigenvalues, wherfg* is the limiting
diagonal matrix with entries

AT i if i € A

TN (S YR M
Di; = lim D™(t);; {0 if i e 1" (56)
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Assumptions AS5 and AS7 are often known as strict complementary slackness conditions.
We observe that AS8 is closely related to the necessary and sufficient conditions for super-
linear convergence of the inner iterates given by Dennis anceidi)]. We also observe

that AS9 is entirely equivalent to requiring that the matrix

By, gy + A@) e 7 Dias A s, ) (57)

is positive definite (see, for instance, Gould [13]). The uniqueness of the limit point in AS9
can also be relaxed by requiring that (57) has its smallest eigenvalue uniformly bounded from
below by some positive quantity for all limit poinfs* of the sequenc&*:0), Moreover it

is easy to show that that AS4, AS5 and AS7 guarantee AS9 provided thas sufficiently

small and sufficient second-order optimality conditions (see Fiacco and McCormick [12],
Theorem 4) hold at* (see Wright [17], Theorem 8, for the essence of a proof of this in
our case). Although we shall merely assume that AS9 holds in this paper, it is of course
possible to try to encourage this eventuality. We might, for instance, insist that Step 4 of
the Outer-iteration Algorithm is executed rather than Step 3 so long as the HafrX is

not positive definite. This is particularly relevant if exact second derivatives are used.

We now show that if we perform the step calculation for the Inner-iteration Algorithm
using the Model-reduction Algorithm, a single iteration of the Inner-iteration Algorithm
suffices to complete an iteration of the Outer-iteration Algorithm whes sufficiently
large. Moreover, the solution of one inner-iteration subprobletfi; ) and the shifted
starting point for the next inner iteration (33) are asymptotically identical. We do this by
showing that, after a finite number of iterations,

(i) moving to the new starting point does not significantly alter the norms of the projected
gradient or constraints. Furthermore, the status of each variable (floating or dominated)
is unchanged by the move;

(i) the generalized Cauchy poinf' -9 occurs before the first “breakpoint” along the
Cauchy arc — the breakpoints are the values »f0 at which the Cauchy arc changes
direction as problem or trust region bounds are encountered. Thus the set of variables
which are free at the start of the Cauchy afé:?) and those which are free at the
generalized Cauchy point are identical;

(iii) any step which satisfies (45) also satisfigs lies strictly interior toC(3-). Thus a
single pass of Step 2 of the Model-reduction Algorithm is required;

(iv) the step®? is accepted in Step 4 of the Inner-iteration Algorithm;
(v) the new point:(*:1) satisfies the convergence test (26); and

(vi) z+10) — g (k)

We have the following theorem.

THEOREM 3 Assume thatassumptions AS1-AS9 hold and that the convergence tolerances
B. and 3, satisfy the extra condition
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B < (1 4+min(&,s))axs,. (58)

Then for allk sufficiently large, a single inner iteration of the Inner-iteration Algorithm, with
the step computed from the Model-reduction Algorithm, suffices to complete an iteration
of the Outer-iteration Algorithm. Moreover, the solution to one inner iteration subproblem
provides the starting point for the next without further adjustment, forkalfficiently
large.

Proof. In order to make the proof as readable as possible, we will make frequent use of
the following shorthand: the iterates will be abbreviated as

z=z® 33 i=z® (339 2@ = g(F+1.0) 29 gt = gD, (59)
the shifts as
s=s0) o st = 50D (60)

and the Lagrange multiplier estimates as

A=A S X = AF) = (2, ), 5) - AT = AkHD) (61)
and

AT = X(z%, AT, sT). (62)

Other quantities which occur at inner iteratiofis+ 1,0) and (k + 1, 1) will be given
suffices® and+ respectively. Thugf® = H*+1.0) and A+ = Fk+1L1D),
Recall, we have used Theorem 2 to relabel the sequence of iterates so that

HP(I(k)avm\I'(k))”g < WO(Umin)aqukﬁw (63)

and

m
< 170 (Hmin ) 7 P (64)

C

[[e@®)A® /(2= ]

i=1

forall k > 0. LetQ be any closed, bounded set containing the iteratsandz(%+1:9).

We shall follow the outline given above.

(i) Status of the starting point. The strict complementary slackness assumption AS7
ensures that for alt sufficiently large, each variable belongs exclusively to one of the sets
F; andD; (see [9], Theorem 5.4); moreover,

ge(x™,\"); =0 forall jeF and z;>0 foral jeF NN, (65)
and

;=0 and gi(z*,\*); >0 forall icD. (66)
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As one ofz ) ande\ll§.k) (= V.L(z, \);) converges to zero while its partner converges
to a strictly positive limit for eacly € N, (assumption AS7), we may define nontrivial
regions which separate the two sequences far allfficiently large. Let

def 0

€x = mjnel}\% max[x;vgﬁ(x*v)‘*)j] > Oa (67)

wheref is as in (32). Then there is an iteratig such that for variables i1,

@™ — a2t <e, and |V,UW| <e, (68)
while for those inD;,

@7 <ep and Vo0 —gi(a®, 2] < e (69)
for all £ > k¢. Hence, for those variables 1, (67) and (69) give that

e < e, = O[min;en;, max(z}, ge(z*, \*);] — €]

T (70)
< H[gg(x*, /\*)j - 61} < H(Vm\:[j(k))]

Thus, by definition (32),72§k) = 0 for eachj € D, whenk > ko. Similarly, when
j € FinN, andk > ko, xﬁk) > 0(V,¥™*)); and hence, using (325;5“ = z; for all
j € F1. Thusi(®) converges ta:*.

The other strict complementary slackness assumption, AS5, ensures that each constraint
belongs exclusively to one of the s@tsand.A*, for all k£ sufficiently large. Moreover,

ci(z*)=0 and A} >0 forall ie A" (71)
and
ci(z*)>0 and A\ =0 forall ieZ", (72)

and thus one af; (z(*)) and/\EkH) converges to zero while its partner converges to a strictly
positive limit for eachi.

Using the shorthand introduced in (59)—(60), we have t¢hat) + s;” > c¢;(x) > 0 for
eachi € Z* and allk sufficiently large. Thus, ag converges ta* ands;” converges to
zero,2c;(z*) > ¢;(#) + s > ici(x*) > 0 forall i € Z* andk sufficiently large. On
the other hand, if € A*, c;(x) + s > 0 for all k (see [9], Lemma 3.1). In this case, as
sj converges ta; = pmin(A)** > 0 andc;(x) converges to zero, the convergence:of
to z* and\;" to \* implies that2s} > ¢;(%) + s > 1sf > 0 for all k sufficiently large.
Hence, from (33)z® = £ and thus there is an integkr > ko for which

(73)

@_{xj forallj € 7
J

P70 forall j € Dy,

forall k > k.
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We next letr be any real number and consider points on the line
def ®
xz(r) = z+r(x® —x). (74)

We firstly show that the diagonal matriX(z(r)) is bounded for al) < r < 1, whereD is
given by (28). Asr andz® both converge ta:*, the definition (28) implies thab(x(r))
converges to the matri; ., satisfying (56), ag increases. Thus, we have the bound

iy

1D (x(r)ll2 < a1/ pimin (75)
wherea; & 2||[(Ar)t=ox]m, ||2, for all k sufficiently large. It also follows from the
convergence of andz® to z* and that ofs; to s} that there is an integés, > k; for which

0 < ici(z") < ci(z(r)) + sV < 2¢i(z*) forall :eZ* (76)

7
and
0 < 2ptmin(AH)™ < ¢5(x(r) + P < 2 (A forall i€ A", (77)

for all k sufficiently large and > k.
We now consider the starting poirt® for the next inner iteration in detail. Firstly,
combining (12), (16) and (73), we have that

era - IHZ < aOHP(xavw\I/(xv/\vs))Hg < anO(Umin)aw+k5w (78)

for any two-norm-consistent norfp|| ..

We may bound the change iffx), due to the shifted starting point, using the integral
mean value theorem (see, eg, [11], page 74), the boundedndgs pfassumption AS1
and the definition of2) and inequalities (17) and (78) to obtain

i\ T ! T\r r ry —x
() = (w)| < |y Alatr)drly |2 = o], 79)

< apaswo (fmin ) *«TFP

wherez(r) is given by (74) and is an upper bound ofpA(z)||, within .

We next bound the differences in gradients of the Lagrangian barrier functiomrad
z®. Using the integral mean value theorem, the convergente=of* to \* (Theorem 1),
the boundedness of the Hessian of the Lagrangian (with bounded multiplier estimates) and
the constraint Jacobian withfa (assumption AS1) and the inequalities (17), (75) and (78),
we obtain

(VoW (2P, X, 8); — Vo U(z, A, 5),]
< |[|2® — alla - leT [y [He(x(r), A) + A (r)T D(w(r) Az (r)ldr|»
< a3(az + @103/ fimin )wo (fimin ) TF5

S a%(GS + ala%)wO(ﬂmin)QU71+kﬁwa

(80)
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whereas is an upper bound on the two-norm of the Hessian of the Lagrangian function
(with bounded multiplier estimates) within. We now use the identity

AiSi

ci(x) + s; (81)

A=

to derive the relationship

VU (2P AT 1) =V, 0 (29, )\, s)
A+ +

= Zz 1 (c a)}\@s‘:’_& TG (m®)+s )ai(ﬂj@)

_ AiSi o Aisg (®
= Zi:l <C¢($®)+s,; CL'(JC)-‘rSi) az(fE )
Afst

+Zz 1 (cl(a;‘:l»sl - Cl(mi@);sj) ai(xeB) (82)

)\+ (ci(x)—ci(z )\'f'ci z®
=, (Al ¢ el ) 60

_ M (ei(m)—ci(=®)) Aei(=®) @
=Dicar ( a@®rs T ci(mea)ﬂj) a;(z?)
M (ei(z)—ci(z®)) A ei(z®)
+ ZiEI* ( ci(z®)+s; + ci(m@)Jrsj') az(fl}@)
But, considering € A*, picking k sufficiently large so that\| < 2|A\¥| and using the

integral mean value theorem, the relationship*); 4-; = 0, the bounds (77), (78), (79)
and the inequalities (18) and (51), we obtain the bounds

A (ci() = ci(2®)) 1- 1
T 7 < 4 AF a min a,—14+kB, 83
et 020l i) (®3)
and
)\fci z® P *
2l | < A0 (i) S s 7 — )] 2 — 2
< AN (pmin) Traa (2% — g + [z — 2*[|,)
< 4ag (A7) (aowo (fmin)* ™ 4 @y (pmin )@ RO
(84)
and hence
A (ci(x)—ci(z®)) A ei(z®)
I ZieA*( c@®ts T ci<x@>+s+)“i<x®)”z
At ci(z)—ci(z® AFe; (2
S magpasg (maxieA* %‘ + maxX;e A* W ) (85)
—1+ka>\ﬂn,

< aA(/J/min)an

wherea 4 = 4maga3(2aowo + a,) maxe 4+ (AF)1~*, for any two-norm-consistent norm
|I-ll-. Furthermore, the superlinear convergence;ab zero,i € Z*, (76) and the bound-
edness of the remaining terms implies a bound
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76 x _-FC' T
H Z ( 1( EB)) + )\1 z( EB) >ai(17@)||z SaI(‘umin)an71Jrlco¢,\,8n7

= )+ si ci(x®) + s
(86)

for some constantz (In fact, this term can be made arbitrarily smaller than (85) by picking
k sufficiently large). Thus, combining (82), (85) and (86), we obtain the componentwise
bound

Vo U8 — Vo0 (2%, X, )] < (a4 + az) (pmin) 7~ (87)

for all j € V" where we have abbreviat&d, ¥ (z®, A\*,sT) asV,¥®.
Now consider the variables whose indigdge in F; for k > ko. Firstly, (65), (67), (68)
and (73) show that

x"f
O _
Ty
if 5 € N,. Secondly, combining (80) and (87), and using (13), (17), (18) and (63), we
derive the inequality

>0 (88)

VU7
<V = Vo W(2®, A, )] + Vo U(2, X, 5); — Vo U(x, A, )5
+|VT\I/(I7 )\7 5) ‘
’ (89)
< (CLA + ClZ) (Mmin)an_l—Fkakﬁ" + a%(a?, + ala%)WO(Hmin)aw_l—,—kﬂw
+aowo (Hmin ) * TP
S a4(,ulmin)an_l+ka)\6n7
wherea, % aa + ar + aowo(1 + ag(az + ara?)). Ask increases, the right-hand-side of

the inequality (89) converges to zero. Thus, from (68) and:feufficiently Iarge,yg?B is
floating for eachj € 7, and (13) and (89) imply that

|P(2%, Vo UP)| = [V U2 < ay(pmin) TN, (90)

Conversely, consider the variables which lie€ipfor &k > k. Then, combining (80) and
(87), and using (17) and (18) we obtain the inequality

VU — V,U(z, A, 5);]
<V UF — Vo 0(2®, X, 8),] + VoW (29, A, 8); — Vo U (2, N, 5),|
< (aa + az) (pmin) RN+ a(as + a1a3)wo (pmin) @~

—1+k
S a5(ﬂmin)a" + a)\ﬂna

(91)
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whereas %' aa+az+adwo(as+aia3). Thus, for sufficiently largé the right-hand-side
of (91) can be made arbitrarily small. Combining this result with (69) and the identity
z = 0, we see that? is dominated for each € D;, and (12) and (91) imply that

P2®,V,07) =2 =0. (92)

Therefore, using (13), (17), (90) and (92), we have
1P@®, Vo0®) g = Ve Py < ag(pmin) T, (93)
for all & sufficiently large, whereg def aoas|lepz,||2-

We also need to be able to bound the Lagrange multiplier estimvates \ (€, A, s1).
We have, from (8), that

N+ D
Ag

) +
¢’ +s;

AT =M = : (94)

But then, recalling (84), wheine .A*, and the superlinear convergence\pfto zero, when
i € I*, together with (18), we obtain a bound

H)‘+ - ;\+||9 S ax+ (Mmin)an_l+ka>\ﬁ1]a (95)

for some constant,+. Thus, combining (51) and (95), we see thdt converges to\*,
i € A*, and, becausg;" converges superlinearly to zero whea Z*,

IAF = Ay < axe (juamin) ™30, (96)

for some constant,e .

(i) The generalized Cauchy point.We consider the Cauchy arc emanating frefth We
have shown that the variables» are on their bounds; the relationships (66), (68), (69)
and (91) imply thalVgC\I/§B > 0 for all sufficiently largek and hence thai®(¢); = 0 for
allt > 0 andj € D;. Thus the variables i®; remain fixed on the bounds throughout the
first inner iteration and

p[@pl] =0 97)

for all k sufficiently large.

The remaining variables, those indexedBy, are free from their bounds. Because of
Assumption 7 the seff; in assumption AS9 is identical t¢; and thus the matrix (57)
is positive definite with extreme eigenvalués< m,i, < 7Tmax, Say. Using (73) and
inequalities (12), (13) and the first part of (21), we deduce tRatonverges ta:*. Thus
the matrix

H€B

[F1,F1] — BF?:I»FI] + A(xGB)[j-;:l]D—F(x@)A(x@)[Fl] (98)

is also positive definite with extreme eigenvalues satisfying
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0< impn <72 <7f

min — m

ax < 2Tmax, (99)

say, for all sufficiently largé:. Hence the model (27) is a strictly convex function in the
subspace of free variables during the first inner iteration.
We now show that the set

def
L= {pr) | m®(@® +p) <m®@@®) and pp,) =0} (100)

lies strictly interior to the sef(1) (defined in the Model-reduction Algorithm) for ail
sufficiently large. The diametet of £, the maximum distance between two members of
the set (measured in the two norm), can be no larger than twice the distance from the center
of the ellipsoid defined by, to the point onC (the boundary of) furthest from the center.

The center of_ is the Newton point,

pf}:l] = —(H[GE_-] ,7‘-1]) v \I/[e;:] (101)

Letp 7 € L andp? D] = = 0 and definey & p — p*. Then, combining (27), (98), (100)
and 3101) we have that

(&)
Solr  Hiz, 0 m)

= it Hiz, yPiry + (m®(@® +p* +0) = m®(29))

(102)
D * =)
~(0* + )l (S, 2 Plry + Va¥E)
_ *T (&) T ® 1 @
— %p[}‘]]H[]_—l fl]p[]_—]] V \I/[ ](H[]__l -7:1]) \V4 \IJ[}_]

Hence, using the extremal properties of the Rayleigh quotient and (102), we have

def *
= 4vfz, 3 < wiF }H[f1 £V /78 < 8U[;]H[}-1 £V Tin (103)
= SV \I,GBT (H[GJB:1 F1 ]) 1v \IIEB /Trmm S 16”V \IJ[]-‘ ]” /ﬂ-min

whereHv{E]HQ =Max, iy ef ||U[]_— |l2. Thus, using (17), (93) and (103), any step
within £ satisfies the bound

Hp fl]HQ <d < 4HV \I/ ]||2/7Tm1n < 4a006(ﬂmln)a"71+ka/\ﬁ" /'/Tnnn; (104)

for sufficiently largek.

The inequality (88) shows thaztéB j € F1 NNy, is separated from its bound for all
k sufficiently large while (104) shows that all steps withinbecome arbitrarily small.
Thus the problem bounds are excluded frémMoreover (16), (34), (93), (97) and (104)
combine to give

dao|| Vo W7 [l

1
Iplle = oy lle < adllpzyllz < A® p— . (105)
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for all steps within, or on the boundary a, Inequality (93) then combines with (105) to
show that any such step is shorter than the distance to the trust region boundary:for all
sufficiently large.

Thus. lies strictly interior taC(1) C C(32) for all k sufficiently large. But, as all iterates
generated by the Model-reduction Algorithm satisfy (41) and thus li&, iih follows that
both the generalized Cauchy point and any subsequent improvements are not restricted by
the boundaries af or C(3s).

It remains to consider the Cauchy step in more detail. The Cauchy arc starts in the steepest
descentdirection for the variablesii. The minimizer of the model in this direction occurs
when

VoV VeV
t=1t" = L I (106)
Va ¥z ]H[fl FVe¥in)
and thus, from the above discussion, gives the generalized Cauchy point proposed by Conn
et al. [5]. We use the definition of*, (16), (99) and the extremal property of the Rayleigh

quotient to obtain

o coy _ p o Ve Uil
2®) = m®(@® +p®) = 17|V, U 13 2 m (107)
for this variant of the generalized Cauchy point. Alternatively, if B1er(1988) variant is
used, the requirement (37) and the definition of the Cauchy arc imply that

m®(2®) —m®(@® + p°®) > 1|V, |13 (108)
If the first alternative of (38) holds, (108) implies that
m® (@®) = m®(@® +p°%) > | VU, 3. (109)

Otherwise, we may use the same arguments as above to show that it is impossgibfe for
to satisfy (40) wherk is sufficiently large. Therefore® must satisfy (39). Combining
(27), (39), (98) and the definition of the Cauchy arc, we have that

%(tLGB)QV \II@T

L 2
P 7 VaVing = (1= p)t™® |V 513 (110)

Hence, combining (99) and (110) with the extremal properties of the Rayleigh quotient,
we have that’® > (1 — u2)/mmax. Thus, when the second alternative of (38) holds, this
result and (108) give that

m

@(m

®) = m®(@® + ) 2 [mre(l — p2)/Tmax] V2V, 13- (111)

Therefore, (17), (109) and (111) give the inequality

2®) = m®(z® +p®) > (1 /a0) min(vr, va(1 — p2) /Tnax ) IV U5 I5-
(112)
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We shall make use of these results in (iv) below.
(iii) Improvements beyond the generalized Cauchy pointWe have that: o] =0, and, as

a consequence of (93)P(z®, V,U®)||§ < v for all k sufficiently large. Hence, because

we have shown that anyin £ lies strictly interior taC, a single pass of Step 2 of the Model-

reduction Algorithm is required. We must pigkto satisfy (45) and (41) by determining
&

PlF, SO that

IHG, 7Py + Ve¥inlly < IV 15T (113)

and

m®(z®) — m®(@® + p®) > B3[m®(2®) — m®(2® + p©P))] (114)
for somepss; < 1. The set of values which satisfy (113) and (114) is non-empty as the
Newton step (101) satisfies both inequalities.

It remains to consider such a step in slightly more detail. Supposq;ﬁ@tsaﬂsﬂes

(113). Let
[-7:1] HFJE‘H J":l]p[e;‘-l] + Vz@%‘—ﬂ (115)

Then combining (16), (99), (113) and (115), we have

Iy ly < a0l HE e oy g + V2% ) 16
< 2a0| Vo U ll,(1+ VL0 1]||f>/wmm
Thus, combining (93) and (116), and pickihgufficiently large so that

IV \Il ]|| <1, a17)
we obtain the bound

||p[€‘.;:1] Hg S 4a0a6(ﬂmin)a”_1+kaxgﬂ]/7Tmin- (118)
(iv) Acceptance of the new point.We have seen that

pf%l] =0 (119)

andpf‘}l] satisfies (113). Ap® can be made arbitrarily small, it follows (as in (76) and

(77)) from the convergence af® to z* and that ofs;" to s} that there is an integés; for
which

0 < 1¢i(z*) < ¢;(2® +p®) + 57 < 2¢;(z*) forall ieI* (120)
and

0 < Lmin(A)* < ci(2® +p%) + 87 < 2umin(A))* forall ie A%, (121)
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for all & sufficiently large and > k3. Thus
ci(z® +p®) +s7 >0 (122)

forall 1 < i < m andk sufficiently large.
We now wish to show that the quantity

[W(z® +p®, AT, sT) —m®(@® 4 p®)|
(m®(2®) —m®(2® + p?)|

converges to zero, ensuring that the new point will prove acceptable in Step 4 of the Inner-
iteration Algorithm.

Consider first the denominator on the right-hand-side of (123). Combining (107), (112)
and (114), we have

0% —1] = (123)

m®(@®) = m®(@® +p®) > a7 |V U(@® AT, 57717, (124)

wherea; = F3min(1/(4agTmax), 1 min(v1, va(1 — p2)/Tmax)/ao). Turning to the
numerator on the right-hand-side of (123), we use the integral mean value theorem to
obtain

\I/(x@ +p®7>\+v5+)
= W(a® X, 57) + pi VLU
+4 fy P Ve (22 (1), AﬂS*)[ﬂfﬂp%ﬂdt
V(@@ N, sT) + i Ve U

1 @T b + ot ® @ (125)
+3 f [Via V(2 ())‘ sT) =V ¥ ][flvfl]p[]-'l]dt

+2p[]_- ][vu‘l’ - H@][]-'l Fi1) p[]—"ﬂ + %p%}l—‘]Hﬁi‘l,fﬂp%ﬁl]
= m®(x® +p ) + %p[]-' [szqj - H@][]__h]__l]p[}_l]
1 o P [Vaa W (@® (1), M, 57) = Voo U5, £ 1p, d,

wherez®(t) = % + tp® and we have abbreviatéd,, ¥ (z®, AT, s*) asV,, ¥®.
Considering the last two terms in (125) in turn, we have the bounds

‘ 217[}- [VM\I/Q} H@][}'l,fl]p?jﬂ:l] |

< 3a0(0llp s + IV asl@®, 5+) = Vaslla®, Az, 2,1 ) 195 12,
(126)

using (16), (42), the definition of the Hessian of the Lagrangian barrier function and ASS8,
and

1
|%/O P [Vaa® (@®(1), AT, 57) = Vau ¥l iz, 70, dt] < 3aoas|lpiz, I,
(127)
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using (16), the convergence (and hence boundedness) of the Lagrange multiplier estimates
and the Lipschitz continuity of the second derivatives of the problem functions (assumption
AS3) with some composite Lipschitz constant Thus, combining (116), (123), (124),
(125), (126) and (127), we obtain

p® = 1] < 2a5(1 + | Vo W [1)2-
sas||pilly + 0llple I + Vel (@® A1) = Vaul(@® M)z, 2lly (128)

2
A7 min

As the right-hand-side of (128) converges to zerd ascreasesy™ = 2 + p® for all &
sufficiently large.
(v) Convergence of the inner iteration at the new point.The relationship (122) ensures
thatz satisfies the feasibility test of the second part of (21). We now show thaatisfies
the inner-iteration convergence test (26).

Firstly, in the same vein as (80) , fgre D; we have that

Vo Uzt AT, s1); — V, U7
<%l - lleF fy [He(@®(£), ) + A2 ()T D (@ (£) A(z® (1))t

< (Lo(a3 + ala%/umin)”pﬂan%
(129)

wherez®(t) = 2% + tp® and where we use the bound
DT (z®(1))]] < a1/pmin (130)

forall 0 < ¢ < 1. This latter follows from the definition (28) and the convergenceof
and, because of (119) and (118), the convergence®of p® to z*. Thus, as the right-
hand-side of (129) can be made arbitrarily small, by takérgufficiently large, (69) and
the identityz” = = = 0 for eachj € Dy, imply thatz is dominated for eacli € D,
while (12) and (92) imply that

P(zt, V¥ (zt, AT sT)),; = :17;" = 0. (131)

We now consider the components®fz ™, V, ¥ (zT, AT, sT)); for j € F;. Using the
integral mean value theorem, we have

Vo U(zt, AT, sT) iz
1
= Vo U + o Ve ®(@® (0, A7, 577, )95, dt
= [HE, 70y + VaU ] + Vo U8 — HE) 5

1
+ f() [Vl»blp(xea (t)a /\+7 S+) - vwx\p@][}'h]:l]p[e;:l]dt

(132)

wherez®(t) = 2% + tp®. We observe that each of the three terms on the right-hand-
side of (132) reflects a different aspect of the approximations made. The first corresponds
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to the approximation to the Newton direction used, the second to the approximation of a
nonlinear function by a quadratic and the third to the particular approximation to the second
derivatives used. We now bound each of these terms in turn.

The first term satisfies the bound (113). Hence, combining (93) and (113), we obtain

|HE, mypm + Vo linlly < ag™ (min) 07D OFO R 040, (133)

The same arguments as those used to establish (126) imply that the second term on the
right-hand-side of (132) satisfies the bound

||[V£EI\I]ea - H@][}—l,fl]p%-‘l] Hg
< (Ol 5 + [(Vaalle®, X%) = Vanlle', XYmoo s (134)

< (llplls + aolla® — 2], + a0 A+ = A[,)llp, .

for some composite Lipschitz constantsanda;o. We may then combine (17), (51), (63),
(78), (96), (118) and (134) to obtain the bound

Ve ¥ — H@][]:lv]:l]p?;ﬁ] Hg
S [/U[(4a0a6/7‘-min)(/-Lmin)&”_1—"_ko‘>\ﬂfl]g
+ag[az (tmin) "R 4 agwo(fmin ) TEO]

+a10ak® (Mmin)a" kB, } (4@()0,6 /ﬂ-min) (Mmin)a" —ltkaxBy

(135)

for all sufficiently largek. Lastly, the third term on the right-hand-side of (132) satisfies
the bound

1
| ) [Vaa W (x®(6), A, s%) = Vo U 2 pfr Jdtlly < Saoasllpfz 7. (136)

by the same arguments we used to establish inequality (127). We may then combine (118)
and (136) so that

1
|| fo [vmx\:[/(xea (t)a )‘+v S+) - vxa:\:[j@][fh]:ﬂp%-‘l]dt”

‘ (137)
< 8“8 agas (Hmin) > T2rk2aaby /7T12nin

for all k sufficiently large.
We now combine equation (132) with the inequalities (133), (137) and (135), the condition
¢ < 1 and the definitions of,,(< 1) andg, (> 0) to obtain the bound

‘|V$\Il(x+,)‘+vs+)[f1]” S all(,ulmin)&+k,87 (138)

where

a=(ay —1)(1+max(1l,5)), S =arB,(1+min(¢¢)) (139)
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and

ail = aé—i—& + 8aga%a8/7rr2nin + (4aoae /mmin) (v((4a0as/Tmin)*) (140)

+ag(az + apwo) + aipax).
Firstly, observe that the right-hand-side of (138) may be made arbitrarily small. Therefore,
(13), (131) and (138) imply that

= ||VT\II(I+? /\+7 5+)[]:1]||g S all(ﬂmin)&+kﬁ-
(141)

1P, Vol (@™, AT, 7)),

Secondly, definé = log,, (a11/wp). Now letk; be any integer for which

7% + ﬁw —a—06
ﬁ - ﬁw ’
Then (58), (141) and (142) imply that

ki > (142)

HP($+, VI\IJ($+7 )\+7 S+))||g S all(ﬂmin)&+k5 S wO(Nmin)aw+(k+l)Bw = w+
(143)

for all sufficiently largek > k;. Thus, the iterater™ satisfies the inner iteration first
convergence test of (21) for dllsufficiently large and we have* 1) = p(*k+1.1) = 5+,

(vi) Redundancy of the shifted starting point. Finally, we observe that all the variables
x;’“),j € D, lie on their bounds for sufficiently large Thereforegz(*+1.0) = z(*) and the
perturbed starting point is redundant. ]

5. The general case

We now turn briefly to the more general problem (1)—(3). The presence of the more
general bounds (3) does not significantly alter the conclusions that we are able to draw. The
algorithms of section 3 are basically unchanged. We now use the lBgiofiz € R™ | I <

x < u} —and henceV, = N — and replace”(z, v) by P(z, v,l,u) where appropriate.

The concept of floating and dominated variables stays essentially the same. For each iterate
in Bwe have three mutually exclusive possibilities, namgly) < xg-k) —1; < (VU0

(i1) (Vo ¥®); < 2l —u; < 0or (i) 2 —u; < (V,0®); < 2 — 1, for each

componentr;k). In case(i) we then have thaP(z*), vV, ¥ [ v); = xgk) — I; while

in case(ii) P(z®), vV, 0 | u); = xgk) — u; and in caséiii) P(z®), V,0®) [ u); =
(V. ¥*);. The variables that satisfy) and(ii) are said to be the dominated variables, the
ones satisfyingi) aredominated abovevhile those satisfyindii) aredominated below
Consequently, the sets corresponding to (14) are straightforward to dBfienow made
up as the union of two sef8;;, whose variables are dominated above fokaUfficiently

large, and,,,, whose variables are dominated below fokallfficiently large.F; contains
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variables which float for alt sufficiently large and which converge to values interioBto
Similarly F5 is the union of two setsF,; and F»,,, whose variables are floating for &il
sufficiently large but which converge to their lower and upper bounds respectively. We also
replace (32) by

l; if 0 < $§k—1) —1; <O(V, WD),
BTV = uy iRV <2 <0 (144)
2D otherwise.

J
With such definitions, we may reprove the results of section 4, extending AS4, AS7T—AS9
in the obvious way. The only important new ingredient is that Cetra. [9] indicate that

the non-degeneracy assumption AS7 ensures that the iterates are asymptotically isolated in
the three set$7, Dy; andDy,,.

6. Conclusions

We have shown that, under suitable assumptions, a single inner iteration is needed for each
outer iteration of the Lagrangian barrier algorithm. We anticipate that such an algorithm
may prove to be an important ingredient of release B oLIAMCELOT package.
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