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A GLOBALLY CONVERGENT LAGRANGIAN BARRIER

ALGORITHM FOR OPTIMIZATION WITH GENERAL

INEQUALITY CONSTRAINTS AND SIMPLE BOUNDS

A. R. CONN, NICK GOULD, AND PH. L. TOINT

Abstract. We consider the global and local convergence properties of a class
of Lagrangian barrier methods for solving nonlinear programming problems.
In such methods, simple bound constraints may be treated separately from
more general constraints. The objective and general constraint functions are
combined in a Lagrangian barrier function. A sequence of such functions are
approximately minimized within the domain defined by the simple bounds.
Global convergence of the sequence of generated iterates to a first-order sta-
tionary point for the original problem is established. Furthermore, possible
numerical difficulties associated with barrier function methods are avoided as
it is shown that a potentially troublesome penalty parameter is bounded away
from zero. This paper is a companion to previous work of ours on augmented
Lagrangian methods.

1. Introduction

In this paper, we consider the problem of finding a local minimizer of the function

f(x),(1.1)

where x is required to satisfy the general inequality constraints

ci(x) ≥ 0, 1 ≤ i ≤ m,(1.2)

and specific simple bounds

l ≤ x ≤ u.(1.3)

Here, f and ci map <n into < and the inequalities (1.3) are considered compo-
nentwise. We shall assume that the region B = {x | l ≤ x ≤ u} is nonempty and
may be infinite. We do not rule out the possibility that further simple bounds on
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the variables are included amongst the general constraints (1.2) if that is deemed
appropriate. We further assume that

AS1: the functions f(x) and ci(x) are twice continuously differentiable for all
x ∈ B.

We shall attempt to solve our problem by sequential minimization of the La-
grangian barrier function

Ψ(x, λ, s) = f(x)−
m∑
i=1

λisi log(ci(x) + si),(1.4)

where the components λi of the vector λ are positive and are known as Lagrange
multiplier estimates and where the elements si of the vector s are positive and are
known as shifts. Notice that we do not include the simple bounds (1.3) in the
Lagrangian barrier function. The intention is that the sequential minimization will
automatically ensure that the simple bound constraints are always satisfied.

1.1. Background. The logarithmic-barrier function method for finding a local
minimizer of (1.1) subject to a set of inequality constraints (1.2) was first introduced
by Frisch [22]. The method was put on a sound theoretical framework by Fiacco
and McCormick [19], who also provide an interesting history of such techniques up
until then. The basic idea is quite simple.

A composite function, the barrier function, is constructed by combining the
objective and constraint functions in such a way as to introduce a “barrier” — an
infinite penalty — along the constraint boundary. A typical barrier function is the
logarithmic barrier function

f(x)− µ
m∑
i=1

log(ci(x)),(1.5)

where µ is a positive penalty parameter. Fiacco and McCormick [19] show that,
under extremely modest conditions, the sequence of minimizers of (1.5) converges
to the solution of the original problem whenever the sequence of penalty parameters
converge to zero. In particular, under a strict complementary slackness assumption,
the error in solving (1.5), that is, the difference between the minimizer of (1.5) and
the solution to the original problem, is of order µ as µ tends to zero. (Mifflin [39]
shows an order

√
µ error in the absence of the complementary slackness assump-

tion and a weakening of the assumption that (1.5) be solved exactly.) For further
discussion, see the recent survey by Wright [56].

It was originally envisaged that each of the sequence of barrier functions be min-
imized using standard methods for unconstrained minimization. However Lootsma
[36] and Murray [40] painted a less optimistic picture by showing that, under most
circumstances, the spectral condition number of the Hessian matrix of the barrier
function increases without bound as µ shrinks. This has important repercussions
as it indicates that a simple-minded sequential minimization is likely to encounter
numerical difficulties. Consequently, the initial enthusiasm for barrier function
methods declined. Methods which alleviate these difficulties have been proposed
(see, e.g., Murray [40], Wright [55], Murray and Wright [42], Gould [25], and Mc-
Cormick [38]) that are immediately applicable to smaller dense problems. Nash
and Sofer [44] have recently discussed an approach that is applicable to large-scale,
nonlinear problems, although their experience is only with simple bounds.
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Interest in the use of barrier functions was rekindled by the seminal paper of
Karmarkar [34] on polynomial-time interior-point algorithms for linear program-
ming and by the intimate connection between these methods and barrier function
methods observed by Gill et al. [23]. The ill-conditioning problems described above
do not occur for primal and dual nondegenerate linear programs as the solutions to
such problems occur at vertices of the constraint boundary. Furthermore, even in
the presence of degeneracy, stable numerical methods may be used to solve the prob-
lems (Murray [41]). Moreover, and most significantly, these methods have turned
out to be most effective in practice (see the excellent bibliography of Kranich [35]).

However, it is quite surprising how the lessons of the early 1970s seem to have
been forgotten in the rush to extend interior-point methods to solving general con-
strained optimization problems. The most significant advance seems to us to be
the observation that, although the ill-conditioning difficulties are present in most
nonlinear programs, the effects may be benign provided sufficient care is taken. In
particular, Ponceleón [49] has shown that if the only constraints that are handled
by logarithmic terms are simple bounds, the ill-conditioning manifests itself solely
on the diagonal of the Hessian matrix of the barrier function. She then shows by
a sensitivity analysis that such terms are ultimately irrelevant in assessing the sen-
sitivity of the Newton equations for the problem to numerical perturbations in the
data. Methods of this sort have been successfully applied to the minimization of
nonlinear functions whose only constraints are simple bounds (1.3) on the variables
(see, for instance, Nash and Sofer [44]).

It is interesting to recall the parallel development of a second class of methods
for constrained minimization, penalty function methods. These methods were de-
signed for the case where one wishes to minimize (1.1) subject to a set of equality
constraints

ci(x) = 0, 1 ≤ i ≤ m.(1.6)

A composite function, the penalty function, is constructed by a suitable combination
of the objective and constraint functions. A typical example is the quadratic penalty
function

f(x) +
1

2µ

m∑
i=1

(ci(x))2,(1.7)

where as before µ is a positive penalty parameter. One then minimizes a sequence
of penalty functions for a given set of penalty parameter values. Fiacco and Mc-
Cormick [19] again showed that, under extremely modest conditions, the sequence
of minimizers of (1.7) converges to the solution of the original problem whenever
the sequence of penalty parameters converges to zero. However, the analysis of
Lootsma [36] and Murray [40] again had serious ramifications for a simple-minded
sequential minimization of (1.7). This time, though, there was almost immedi-
ately a way around the ill-conditioning difficulty, the development of augmented
Lagrangian methods.

These methods were introduced by Arrow and Solow [1], Hestenes [29], Powell
[50] and Rockafellar [54]. The augmented Lagrangian function (corresponding to
the quadratic penalty function (1.7)) for the above problem is

f(x) +
1

2µ

m∑
i=1

(ci(x) + si)
2,(1.8)
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where the shifts si = µλi and the λi are known as Lagrange multiplier estimates. As
before, one could fix λ and solve the required problem by sequential minimization of
(1.8) as µ converges to zero. However, by adjusting λ so that the Lagrange multiplier
estimates converge to the Lagrange multipliers at the solution, it is possible to
avoid the need for µ to tend to zero and thus circumvent the conditioning problems
inherent in the simple penalty function approach. See Bertsekas [3] and Conn et
al. [11] for further details.

It seems rather strange that such devices were not immediately applied to cir-
cumvent the conditioning difficulties associated with traditional barrier function
methods, but this appears to be the case. To our knowledge, the first move in
this direction was the work by Jittorntrum and Osborne [33] in which the authors
consider a sequential minimization of the modified barrier function

f(x)− µ
m∑
i=1

λi log(ci(x))(1.9)

for appropriate Lagrange multiplier estimates λi. They show that it is possible to
get better than linear error estimates of the solution as µ converges to zero merely
by choosing the Lagrange multiplier estimates carefully.

The methods which are closest in spirit to the algorithm considered in this paper
are the shifted-barrier method analyzed for linear programs by Gill et al. [24] and
the class of modified barrier methods proposed by Polyak [48] and analyzed in
Polyak [47]. Gill et al. consider the shifted barrier function

f(x)−
m∑
i=1

wi log(ci(x) + si),(1.10)

where the wi are termed weights and the si called shifts. A sequence of shifted
barrier functions are minimized subject to the restriction that the ratios wi/si
converge to the Lagrange multipliers associated with the solution of the original
problem. The authors prove convergence of such a scheme under mild conditions for
linear programming problems. Polyak [48] considers the modified barrier function

f(x)− µ
m∑
i=1

λi log(1 + ci(x)/µ).(1.11)

He motivates such a function by noting the equivalence of the constraints (1.2) and

µ log(1 + ci(x)/µ) ≥ 0 for i = 1, . . . ,m.(1.12)

The function (1.11) is then merely the classical Lagrangian function for the problem
of minimizing (1.1) subject to the constraints (1.12). It is shown in Polyak [47] that,
provided µ is sufficiently small and other reasonable assumptions are satisfied, a
sequential minimization of (1.11) in which µ remains fixed but the Lagrange multi-
pliers are adjusted will converge to a solution of the original problem. This has the
desirable effect of limiting the size of the condition number of the Hessian matrix of
(1.11). Breitfeld and Shanno [4] point out that this additional flexibility allows the
incorporation of equality constraints via two (shifted) inequalities. Finally, Freund
[21], Jensen et al. [32] and Powell [51] have analyzed and implemented shifted and
modified barrier function methods for linear programming. Jensen et al. [31] extend
this work to convex problems.
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1.2. Motivation. In this paper, we consider the Lagrangian barrier function (1.4).
This function is of the form (1.10) when the weights satisfy wi = λisi. As above,
we can motivate its form by observing that the constraints (1.2) are equivalent to

si log(1 + ci(x)/si) ≥ 0 for i = 1, . . . ,m,(1.13)

provided that si > 0. The classical Lagrangian function for the problem of mini-
mizing (1.1) subject to (1.13) is then

f(x)−
m∑
i=1

λisi log(1 + ci(x)/si),(1.14)

which differs from (1.4) by the constant
∑m
i=1 λisi log(si). Notice, also, the sim-

ilarity between (1.4) and (1.8), particularly the shifting of the constraint values1.
We aim to show that using (1.4) is an appropriate analogue of (1.8) for inequality-
constrained optimization by obtaining complementary results to those contained in
our previous paper on augmented Lagrangian function methods (see, Conn et al.
[11]).

We are interested in considering Lagrangian barrier-function methods for a num-
ber of reasons.

1. Much of the work on interior-point methods for linear programming ap-
pears to indicate that barrier functions provide a way of determining which
constraints are active at the solution in a significantly more efficient fash-
ion than active set methods (see, for example, Lustig et al. [37]). More
recent experience with the same class of problems using shifted barrier
methods has been equally encouraging (see Jensen et al. [32]). The the-
ory presented below for the Lagrangian barrier function indicates that a
similar effect may be expected, as the asymptotically inactive constraints
are quickly identified (see Theorem 4.2(iv)).

2. The experiences with interior-point methods for linear programming also
suggests that these methods are less sensitive to degeneracy than methods
that attempt to identify activities explicitly (see, for instance, Güler et al.
[27], and Rendl et al. [53]). Based on this experience, there is hope that
a shifted barrier-function method will be less sensitive to degeneracy for
the general nonlinear problem than, for example, the implementation of a
gradient-projection augmented Lagrangian method given by Conn et al.
[13] in LANCELOT A.

3. There is numerical evidence that the method presented here is superior to
standard barrier-function methods when applied to problems with simple
bounds (see Conn et al. [17] and Nash et al. [43]), and preliminary evidence
suggests that the same is true for more general constraints (see Breitfeld
and Shanno [4], and Breitfeld and Shanno [5]).

4. Unlike many modern interior-point approaches that are based upon ex-
tensions of methods for linear and quadratic programming, our approach
makes no convexity or self-concordancy assumptions (see Jarre and Saun-
ders [30] and Nesterov and Nemirovsky [45]).

1It is also rather curious to note the strong similarity between (1.8) and the first two terms of
a Taylor’s expansion of (1.14) for small ci(x)/si. Thus, one might assume that for small ci(x)/si,
which is the case asymptotically, the two functions may behave similarly.
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5. A positive shift enables us to avoid the inherent ill-conditioning present
in the classical barrier-function methods, thus preventing significant nu-
merical difficulties that may occur for nonlinear problems. An advantage
usually ascribed to barrier-function methods is that iterates stay feasible.
While this is not true for shifted barrier methods, the shifts offer some
control over infeasibility. In particular, the shifts allow the algorithm to
start at an infeasible point.

6. The coherency between the theory developed here and that developed in
Conn et al. [11] allows an obvious combination of the two approaches,
in the common case where both equality and inequality constraints are
present (see § 8.2).

7. Our current interest is in solving large-scale problems. We have recently
developed an algorithm for large-scale nonlinear programming based on se-
quential minimization of the augmented Lagrangian function (1.8) within
a region defined by the simple bounds (1.3) (see Conn et al. [13]). One
disadvantage to such an approach, when inequality constraints of the form
(1.2) are present, is the need to introduce slack variables (see, e.g., Fletcher
[20, p. 146]) to convert the inequalities to the form (1.6). Although any
slack variables might be treated specially (see, Conn et al. [16]), there is
still likely to be an overhead incurred from the increase in the number of
unknowns. Thus, it would seem to be preferable to avoid slack variables
if at all possible.

The combination of reasons outlined above gives ample justification, both from a
practical and theoretical point of view, for considering Lagrangian barrier functions.

1.3. Outline. Our exposition will be considerably simplified if we consider the

special case where li = 0 and ui =∞ for a subset of N def
= {1, 2, ..., n} in (1.3) and

where the remaining variables are either not subjected to simple bounds or their
simple bounds are treated as general constraints (that is, are incorporated into the
barrier function). Indeed, it might sometimes pay to handle all simple bounds as
general constraints. For example, this is what is usually done for interior-point
methods for linear programming. However, there are also circumstances where it
is necessary to ensure that certain bounds are always satisfied. For instance, a
bound on a variable may have been imposed to ensure that a problem function
is well defined — such a constraint is commonly called a hard bound. Although
straightforward, the modification required to handle more general bound constraints
will be indicated at the end of the paper. Thus, we consider the problem:

minimize
x∈Rn

f(x)(1.15)

subject to the constraints

ci(x) ≥ 0, 1 ≤ i ≤ m,(1.16)

and the nonnegativity restrictions

x ∈ B = {x ∈ Rn | xi ≥ 0 for all i ∈ Nb},(1.17)

where Nb ⊆ N is the index set of bounded variables.
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The paper is organized as follows. In § 2 we introduce concepts and definitions
and then state a generic algorithm for solving (1.15)–(1.17) in § 3. Global conver-
gence is established in § 4, while issues of asymptotic convergence follow in § 5. In
§ 6 the consequences of satisfying second-order conditions are given. The calcula-
tion of good starting points for the inner iteration is considered in § 7. We conclude
in § 8 by indicating how this theory applies to the original problem (1.1)–(1.3). In
order to keep the development of the theory as coherent as possible, we place many
of the proofs of the results given in §§ 4 and 5 in appendices (to be found in the
Supplement Section at the end of this issue). Furthermore, in order to simplify
these proofs, we give them for a particular, but generic, instance of the algorithm
of § 3.

We have intentionally kept our development as close as possible to that of Conn
et al. [11] in order to emphasize the unity between our approaches to shifting an
exterior and interior penalty function (in this case the quadratic penalty function
and the logarithmic barrier function, respectively). Moreover this coherency is a
strength of the approach, allowing us to combine both methods in a straightforward
way to handle mixtures of inequality and equality constraints; see, for example,
§ 8.2. However, if the overall framework for our development is close to that of
Conn et al. [11], substantial differences appear in the proofs of the results.

2. Notation

In this section we introduce the notation that will be used throughout the paper.

2.1. Derivatives. Let g(x) denote the gradient, ∇xf(x), of f(x), and let H(x)
denote its Hessian matrix, ∇xxf(x). Let A(x) denote the m by n Jacobian of c(x),
where

c(x)T
def
= (c1(x), ..., cm(x)),(2.1)

and let Hi(x) denote the Hessian matrix, ∇xxci(x), of ci(x). Finally, let g`(x, λ)
and H`(x, λ) denote the gradient and Hessian matrix (taken with respect to x) of
the Lagrangian function

`(x, λ)
def
= f(x)−

m∑
i=1

λici(x).(2.2)

We note that `(x, λ) is the Lagrangian function with respect to the general inequal-
ity constraints only.

2.2. Lagrange multiplier estimates. If we define first-order Lagrange multiplier
(dual variable) estimates λ̄(x, λ, s) for which

λ̄i(x, λ, s)
def
=

λisi
ci(x) + si

,(2.3)

we shall make much use of the identities

∇xΨ(x, λ, s) = ∇xf(x)−
∑m
i=1

λisi
ci(x) + si

∇xci(x)

= ∇xf(x)−A(x)T λ̄(x, λ, s)
= g`(x, λ̄(x, λ, s))

(2.4)

and

λi − λ̄i =
ci(x)λ̄i
si

=
ci(x)λi
ci(x) + si

.(2.5)
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2.3. Shorthand. Now suppose that {xk ∈ B}, {λk > 0} and {sk > 0} are infinite
sequences of n-vectors, m-vectors and m-vectors, respectively. For any function F ,
we shall use the notation that Fk denotes F evaluated with arguments xk, λk or sk
as appropriate. So, for instance, using the identity (2.4), we have

∇xΨk = ∇xΨ(xk, λk, sk) = g`(xk, λ̄k),(2.6)

where we have written

λ̄k = λ̄(xk, λk, sk).(2.7)

If x∗ is a limit point of {xk ∈ B}, we shall write F∗ as a shorthand for the quantity
F evaluated with argument x∗. We will also sometimes (as we have already done)
write F as shorthand for F (x). If we wish to consider the ith component of, for
example, sk we will write sk,i.

If r is any m-vector whose ith component is ri, we sometimes write r ≡ [ri]
m
i=1.

Furthermore, if r is as above and J is a subset of {1, 2, . . . ,m}, [ri]i∈J is just the
vector whose components are the ri, i ∈ J . We denote any vector norm (or its
subordinate matrix norm) by ‖ · ‖. Consequently, ‖[ri]mi=1‖ ≡ ‖r‖.

We will use the notation that if J1 and J2 are any subsets of integer indices and
H is an n by n matrix, HJ1,J2 is the matrix formed by taking the rows and columns
of H indexed by J1 and J2, respectively. Likewise, if A is an m by n matrix, AJ1

is the matrix formed by taking the rows of A indexed by J1.

2.4. A projection operator. We will use the projection operator defined com-
ponentwise by

(P [x])i
def
=

{
0 if xi ≤ 0 and i ∈ Nb,
xi otherwise.

(2.8)

This operator projects the point x onto the region B. Furthermore, we will make
use of the ‘projection’ (which is essentially a translation by v of P [x])

P (x, v)
def
= x− P [x− v].(2.9)

2.5. Dominated and floating variables. For any xk ∈ B, there are two possi-
bilities for each component xk,i, namely

(i) i ∈ Nb and 0 ≤ xk,i ≤ ∇xΨk,i, or
(ii) i ∈ Nf or ∇xΨk,i < xk,i,

(2.10)

where Nf def
= N\Nb is the index set of free variables. In case (i) we have

P (xk,∇xΨk)i = xk,i,(2.11)

whereas in case (ii) we have

P (xk,∇xΨk)i = ∇xΨk,i.(2.12)

We shall refer to an xk,i which satisfies (i) as a dominated variable; a variable
which satisfies (ii) is known as a floating variable. The algorithm which we are
about to develop constructs iterates which force P (xk,∇xΨk) to zero as k increases.
The dominated variables are thus pushed to zero, while the floating variables are
allowed to find their own levels.
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If, in addition, there is a convergent subsequence {xk}, k ∈ K, with limit point
x∗, we shall partition the set N into the following four subsets, relating to the two
possibilities (i) and (ii) above and to the corresponding x∗:

D1
def
= {i ∈ Nb |xk,i is dominated for all k ∈ K sufficiently large},

F1
def
= {i ∈ Nb |xk,i is floating for all k ∈ K sufficiently large and x∗,i>0}∪Nf ,

F2
def
= {i ∈ Nb |xk,i is floating for all k ∈ K sufficiently large but x∗,i = 0} and

F3
def
= N \ (D1 ∪ F1 ∪ F2) .

(2.13)

From time to time we will slightly abuse notation by saying that a variable xi
belongs to (for instance) F1, when strictly we should say that the index of the
variable belongs to F1. We will also mention the components of a (given) vector in
the set F1 when strictly we mean the components of the vector whose indices lie in
F1.

If the iterates are chosen so that P (xk,∇xΨk) approaches zero as k increases,
we have the following analog of Conn et al. [11, Lemma 2.1].

Lemma 2.1. Suppose that {xk}, k ∈ K, is a convergent subsequence with limit
point x∗, that λk, sk, D1, F1, F2 and F3 are as above and that P (xk,∇xΨk)
approaches zero as k ∈ K increases. Then

(i) the variables in the sets D1, F2 and F3 all converge to their bounds;
(ii) the components of ∇xΨk,i in the sets F1 and F2 converge to zero; and
(iii) if a component of ∇xΨk,i in the set F3 converges to a finite limit, the limit

is zero.

Proof.

(i) The result is true for variables in D1 from (2.11), for those in F2 by
definition, and for those in F3 as, again from (2.11), there must be a
subsequence of the k ∈ K for which xk,i converges to zero.

(ii) The result follows for i in F1 and F2, from (2.12).
(iii) This is true for i in F3 as there must be a subsequence of the k ∈ K for

which, from (2.12), ∇xΨk,i converges to zero.

It will sometimes be convenient to group the variables in sets F2 and F3 together
and call the resulting set

F4
def
= F2 ∪ F3.(2.14)

As we see from Lemma 2.1, F4 gives variables which lie on their bounds at
the solution and which may correspond to zero components of the gradient of the
Lagrangian barrier function. These variables are potentially (dual) degenerate at
the solution of the nonlinear programming problem.

2.6. Inactive and active constraints. As well as being concerned with which
variables are fixed to, and which free from, their bounds at a limit point of a
generated sequence {xk}, we are also interested in knowing which of the nonlinear
constraints (1.16) are inactive (strictly satisfied), and which are active (violated or
just satisfied), at such a point. We define

I(x)
def
= {i | ci(x) > 0},

A(x)
def
= {i | ci(x) ≤ 0}.

(2.15)
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We intend to develop our algorithm so that the set A∗ ≡ A(x∗) at any limit point
of our generated sequence is precisely the index set of the set of constraints for
which c∗,i = 0.

2.7. Kuhn-Tucker points. A point x∗ is said to be a Kuhn-Tucker (first-order
stationary) point for the problem (1.1)–(1.3) if there is an associated vector of
Lagrange multipliers λ∗ for which the Kuhn-Tucker conditions,

x∗,Nb ≥ 0, g`∗,Nb ≥ 0, c∗ ≥ 0, λ∗ ≥ 0,

g`∗,Nf = 0, xT∗ g
`
∗ = 0 and cT∗ λ∗ = 0,

(2.16)

hold. Under a suitable constraint qualification, these conditions are necessary if x∗
is to solve (1.1)–(1.3) (see, for example, Fletcher [20, Theorem 9.1.1]).

At any point x and for any scalar ω, we define the set

L(x, ω;x∗,F)
def
= {λA∗ |λA∗ ≥ 0 and ‖(g(x)−A(x)TA∗λA∗)F‖ ≤ ω}

(2.17)

relative to the point x∗ and set F ⊆ N . Our intention is to construct a sequence
{xk} so that for a specific F (the index set for floating variables xi), L(xk, ω̄k;x∗,F)
is nonempty for some ω̄k converging to zero. Under a suitable boundedness assump-
tion, this will then ensure that the Kuhn-Tucker conditions are satisfied at all limit
points of {xk}.

We are now in a position to describe the algorithm we propose to use in more
detail.

3. The algorithm

3.1. Statement of the algorithm. In order to solve problem (1.15)–(1.17), we
consider the following general algorithmic framework.

Algorithm 3.1 [General Outer Iteration Algorithm]

step 0 : [Initialization] The strictly positive constants

ηs, ωs, αω, βω, αη, βη, αλ ≤ 1, τ < 1, ρ < 1, ω∗ � 1 and η∗ � 1(3.1)

for which

αη + (1 + αλ)−1 > 1(3.2)

are specified. A positive penalty parameter, µ0 < 1, is given. Set

ω0 = ωsµ
αω
0 and η0 = ηsµ

αη
0 .(3.3)

An initial estimate of the solution, x−1 ∈ B, and a vector of positive
Lagrange multiplier estimates, λ0, for which ci(x−1) + µ0λ

αλ
0,i > 0 are

specified. Set k = 0.
step 1 : [Inner iteration] Compute shifts

sk,i = µkλ
αλ
k,i ,(3.4)

for i = 1, ...,m. Find xk ∈ B such that

‖P (xk,∇xΨk)‖ ≤ ωk(3.5)

and

ci(xk) + sk,i > 0 for i = 1, . . . ,m.(3.6)
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step 2 : [Test for convergence] If

‖P (xk,∇xΨk)‖ ≤ ω∗ and ‖[ci(xk)λ̄i(xk, λk, sk)]mi=1‖ ≤ η∗,(3.7)

stop. If ∣∣∣∣∣
∣∣∣∣∣
[
ci(xk)λ̄i(xk, λk, sk)

λαλk,i

]m
i=1

∣∣∣∣∣
∣∣∣∣∣ ≤ ηk,(3.8)

execute step 3. Otherwise, execute step 4.
step 3 : [Update Lagrange multiplier estimates] Set

λk+1 = λ̄(xk, λk, sk),

µk+1 = µk,

ωk+1 = ωkµ
βω
k+1,

ηk+1 = ηkµ
βη
k+1.

(3.9)

Increase k by one and go to step 1.
step 4 : [Reduce the penalty parameter] Set

λk+1 = λk,

µk+1 = τµk,

ωk+1 = ωsµ
αω
k+1,

ηk+1 = ηsµ
αη
k+1.

(3.10)

Increase k by one and go to step 1.

end of Algorithm 3.1

Although it might appear quite complicated, the idea behind Algorithm 3.1
is rather simple. We wish the algorithm to converge to a point for which the
Kuhn-Tucker conditions (2.16) are satisfied. The whole algorithm is driven by the
value of the penalty parameter, µk. The inner-iteration convergence test (3.5) is
intended to ensure that these conditions hold at any limit point. The algorithm is
designed to be locally convergent if the penalty parameter is fixed at a sufficiently
small value and the Lagrange multipliers estimates are updated using the first-
order formula (2.3). As a last resort, we can guarantee that the penalty parameter
is sufficiently small by driving it to zero while at the same time ensuring that
the Lagrange multiplier estimates are well behaved. The test (3.8) is merely to
detect when the penalty parameter is small enough for us to move from a globally
convergent to a locally convergent regime. The remaining details of the algorithm
are concerned with picking two sequences of tolerances, {ωk} to limit the accuracy
required of the inner-iteration algorithm and {ηk} to measure whether we have
entered the asymptotic phase of the calculation. The exact relationship between
the two sequences is designed to allow a complete analysis of the algorithm.

3.2. Starting points. Before we analyze Algorithm 3.1, we need to comment on
the crucial step 1 in the algorithm. One might reasonably expect to try to satisfy the
convergence test (3.5) by (approximately) minimizing (1.4) within (1.17). However,
this relies on ensuring that c(x) + sk > 0 for all iterates generated during the inner
iteration. In particular, it is essential from a practical point of view that this
condition is satisfied at the starting point for the inner iteration. In one important
case, this is trivially so. For we have,
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Lemma 3.1. The iterates generated by Algorithm 3.1 satisfy the condition

ci(xk) + sk+1,i > 0 for i = 1, . . . ,m, xk ∈ B,(3.11)

for k = −1 and all iterations k ≥ 0 for which (3.8) is satisfied.

Proof. The result is true for k = −1 by choice of the initial Lagrange multiplier
estimates and shifts in steps 0 and 1 of the algorithm.

The kth inner iteration (step 1) of the algorithm ensures that (3.6) is satisfied.
If (3.8) is satisfied, the updates (3.4) and (3.9) apply. For each constraint, there
are two possibilities. If ci(xk) > 0, (3.11) follows immediately, as the algorithm
ensures that the shifts are always positive. If, on the other hand, ci(xk) ≤ 0, then

sk,i
ci(xk) + sk,i

≥ 1.(3.12)

In this case, the definition (2.3) of the multiplier update ensures that

λk+1,i = λ̄i(xk, λk, sk) ≥ λk,i.(3.13)

Hence, sk+1,i ≥ sk,i follows from (3.4) and (3.9), and thus (3.6) gives (3.11).

Thus, so long as we are able to update the multiplier estimates rather than
reducing the penalty parameter, the terminating iterate from one inner iteration
gives a suitable starting point for the next. We shall consider what to do in other
cases in due course.

In any case, it is useful to try to start a new inner iteration from, or close to, the
solution of the last one, as function and derivative information from the conclusion
of one inner iteration may be passed as input to the next. This is not specific to
the algorithm discussed in this paper, but also applies, for instance, to augmented
Lagrangian methods, as discussed by Conn et al. [11] and Conn et al. [14]. We
also note that a result similar to that of the latter reference can also be shown,
under certain additional assumptions, for the algorithm considered here, namely
that (3.8) is eventually satisfied at each outer iteration, and that a single Newton-
like inner iteration is guaranteed to yield a point satisfying both (3.5) and (3.6) for
large enough k. The details of this analysis are presented by Conn et al. [15].

3.3. The inner iteration. In order to satisfy the inner-iteration termination test
(3.5), one may in theory apply any algorithm for solving simple-bound constrained
minimization problems — problems in which the minimizer of an objective function
within a region defined by simple bounds on the variables is sought — to the
problem of minimizing (1.4) within (1.17). Indeed, as the condition

P (x,∇xΨ(x, λk, sk)) = 0(3.14)

is required at optimality for such a problem, (3.5) can be viewed as an inexact stop-
ping rule for such iterative algorithms. We merely mention here that the projected
gradient methods of Calamai and Moré [8], Burke and Moré [6], Conn et al. [9],
Conn et al. [10] and Burke et al. [7] and the interior-point method of Nash and
Sofer [44] are all appropriate, but that methods which take special account of the
nature of (1.4) may yet be preferred.
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3.4. Further discussion. We should also comment on the rather peculiar test
(3.8) in Algorithm 3.1. In our previous work on solving problems with general
equality constraints ci(x) = 0, i = 1, ...,m (see, Conn et al. [11]), we measure the
success or failure of an outer iterate xk by the size of the norm of the constraint
violation

||ck|| ≡ ||[ci(xk)]
m
i=1|| .(3.15)

Specifically, we ask whether

||ck|| ≤ ηk,(3.16)

for some convergence tolerance ηk (see Conn et al. [11, test (3.6)]). In the current
algorithm, we employ a similar test. As one would not expect all of the general
inequality constraint functions to converge to zero for the problem under consid-
eration in this paper, the test (3.16) is inappropriate. However, one would expect
the complementary slacknesses ci(x)λi, i = 1, ...,m, to converge to zero for suitable
Lagrange multiplier estimates λi. The test (3.8) is designed with this in mind.

In fact, there is a stronger similarity between Conn et al. [11, test (3.6)] and
(3.8) than is directly apparent. For the former test may be rewritten as∣∣∣∣λ̄k − λk∣∣∣∣ ≤ ηk/µk,(3.17)

using the first-order multiplier update proposed in Conn et al. [11]. The test (3.8)
may likewise be written as (3.17) because of the definition of the multiplier estimates
(2.3) and shifts (3.4).

Our primary aim is now to analyze the convergence behavior of Algorithm 3.1.

4. Global convergence analysis

In this section, we shall consider the convergence of Algorithm 3.1 from arbitrary
starting points. We aim to show that all finite limit points of the iterates generated
by the algorithm are Kuhn-Tucker points. We shall analyze the convergence of
Algorithm 3.1 in the case where the convergence tolerances ω∗ and η∗ are both
zero.

We shall make use of the the following assumption.

AS2: Suppose that the subsequence {xk}, k ∈ K, generated by Algorithm 3.1,
converges to x∗, and that F1 is defined by (2.13). Then we assume that
the set L(x∗, 0;x∗,F1) is bounded.

Note that AS2 excludes the possibility that F1 is empty unless there are no general
constraints active at x∗. In view of Lemma 2.1, this seems reasonable, as otherwise
we are allowing the possibility that there are more than n active constraints at x∗.

As a consequence of AS2 we have the following result that essentially says that
a perturbation of a bounded set of optimal dual variables for the problem remains
bounded.

Lemma 4.1. Suppose that AS2 holds. Then L(x, ω;x∗,F1) is bounded for all
(x, ω) sufficiently close to (x∗, 0).

Proof. The result follows directly from the analysis given by Fiacco [18, Theorem
2.2.9].

We now give our most general global convergence result. This is in the spirit of
Conn et al. [11, Theorem 4.4].
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Theorem 4.2. Suppose that AS1 holds. Let {xk} ∈ B, k ∈ K, be any sequence
generated by Algorithm 3.1 which converges to the point x∗ and for which AS2
holds. Then

(i) x∗ is a Kuhn-Tucker (first-order stationary) point for the problem (1.15)–
(1.17);

(ii) the sequence {λ̄k} remains bounded for k ∈ K, and any limit point of this
sequence is a set of Lagrange multipliers λ∗ corresponding to the Kuhn-
Tucker point at x∗;

(iii) the gradients ∇xΨk converge to g`∗ for k ∈ K; and
(iv) the Lagrange multiplier estimates λ̄(xk, λk, sk)i satisfy

λ̄(xk, λk, sk)i = σk,iλk,i,(4.1)

where σk,i converges to zero for all i ∈ I∗ as k ∈ K tends to infinity.

Proof. See Appendix B, § B.2.

We remark that the proof of Theorem 4.2 remains true regardless of the actual
choice of {ωk} provided the sequence converges to zero. We also note that the
method of proof given here requires that αλ > 0 and, unfortunately, therefore
excludes the modified barrier function method of Polyak [47].

Significantly, the superlinear convergence of the Lagrange multiplier estimates
λ̄k for inactive constraints in Theorem 4.2, (iv), is a consequence of our shift strat-
egy. Only a linear convergence rate is proved by Polyak [47] for his modified barrier
method and Powell [52] indicates that this can be a disadvantage when inactive
constraints are relatively small at a limit point. We note that the modified barrier
method of Jittorntrum and Osborne [33] also exhibits the same superlinear con-
vergence property without benefiting from the advantages associated with shifts,
given in the next section.

Now suppose we replace AS2 by the following stronger assumption:

AS3: For any convergent subsequence of the sequence {xk} with limit point x∗,
say, the matrix A∗,A∗,F1 is of full rank for the corresponding set F1 defined
by (2.13).

Furthermore, we define the least-squares Lagrange multiplier estimates (correspond-
ing to the sets F1 and A∗)

λ(x)A∗
def
= −(A(x)+

A∗,F1
)T g(x)F1

(4.2)

at all points where the right generalized inverse

A(x)+
A∗,F1

def
= A(x)TA∗,F1

(A(x)A∗ ,F1
A(x)TA∗ ,F1

)−1(4.3)

of A(x)A∗,F1 is well defined. We note that these estimates are differentiable func-
tions of x whenever A(x)A∗,F1 is of full rank (see, for example, Conn et al. [11,
Lemma 2.2]).

With this stronger assumption and definition, we are able to obtain error bounds
on dual variables for active constraints and deviations on complementary slackness
which depend upon the errors in the primal variables and Lagrange multipliers for
inactive constraints. This result has the same flavor as Conn et al. [11, Lemma 4.3].

Theorem 4.3. Suppose that the assumptions of Theorem 4.2 hold excepting that
AS2 is replaced by AS3. Then the conclusions of Theorem 4.2 remain true and, in
addition, we have that



A GLOBALLY CONVERGENT LAGRANGIAN BARRIER ALGORITHM 275

(v) the vector of Lagrange multipliers λ∗ corresponding to the Kuhn-Tucker
point at x∗ are unique; and

(vi) there are positive constants a1, a2, a3 and an integer k0 such that

‖(λ̄(xk, λk, sk)− λ∗)A∗‖ ≤ a1ωk + a2‖xk − x∗‖+ a3σk‖λk,I∗‖,(4.4)

‖(λ(xk)− λ∗)A∗‖ ≤ a2‖xk − x∗‖,(4.5)

∣∣∣∣∣∣[ci(xk)λ̄k,i/λ
αλ
k,i

]m
i=1

∣∣∣∣∣∣ ≤ µk [a1ωk + a2‖xk − x∗‖

+(1 + σk(1 + a3))‖λk,I∗‖+ ‖(λk − λ∗)A∗‖]

(4.6)

and

‖ck,A‖ ≤ µk
∣∣∣∣∣∣∣∣[λαλk,i/λ̄k,i]i∈A

∣∣∣∣∣∣∣∣ [a1ωk + a2‖xk − x∗‖

+a3σk‖λk,I∗‖+ ‖(λk − λ∗)A‖]
(4.7)

for all k ≥ k0 (k ∈ K) and any subset A ⊆ A∗, and where

σk
def
= max

i∈I∗
σk,i(4.8)

converges to zero as k ∈ K tends to infinity.

Proof. See Appendix B, § B.3.

5. Asymptotic convergence analysis

We now give our first rate-of-convergence result, which is in the spirit of Conn
et al. [11, Lemma 5.1]. As a preliminary, we need to make two additional (second-
order) assumptions.

AS4: The second derivatives of the functions f(x) and the ci are Lipschitz con-
tinuous at all points within an open set containing B.

AS5: Suppose that (x∗, λ∗) is a Kuhn-Tucker point for problem (1.15)–(1.17)
and that

A∗1
def
= {i | c∗,i = 0 and λ∗,i > 0},

A∗2
def
= {i | c∗,i = 0 and λ∗,i = 0}

(5.1)

and

J1
def
= {i ∈ Nb | g`∗,i = 0 and x∗,i > 0} ∪ Nf ,

J2
def
= {i ∈ Nb | g`∗,i = 0 and x∗,i = 0}.

(5.2)

Then we assume that the matrix(
H`
∗,J ,J AT∗,A,J

A∗,A,J 0

)
(5.3)

is nonsingular for all sets A and J , where A is any set made up from the
union of A∗1 and any subset of A∗2, and J is any set made up from the
union of J1 and any subset of J2.
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We note that assumption AS5 implies AS3.
It is inconvenient that the estimates (4.4)–(4.6) depend upon the error in the

primal variables, xk − x∗, as this term, unlike the other terms in the estimates,
depends on a posteriori information. The next lemma removes this dependence and
gives a result similar to the previous theory in which the errors in x are bounded by
the errors in the dual variables λk−λ∗ (see Polyak [47, Theorem 1]). However, as an
inexact minimization of the Lagrangian barrier function is made, a term reflecting
this is also present in the bound. Once again, the result allows for our handling of
simple bound constraints.

Lemma 5.1. Suppose that AS1 holds. Let {xk} ∈ B, k ∈ K, be any sequence
generated by Algorithm 3.1 which converges to the point x∗ for which AS5 holds.
Let λ∗ be the corresponding vector of Lagrange multipliers. Furthermore, suppose
that AS4 holds and that the condition∣∣∣∣∣∣∣∣[λαλk,i/λ̄k,i]i∈A∗1

∣∣∣∣∣∣∣∣ ≤ a4µ
ζ−1
k(5.4)

is satisfied for some strictly positive constants a4 and ζ and all k ∈ K. Let χ be
any constant satisfying

0 < χ ≤ ζ.(5.5)

Then there are positive constants µmax, a5, . . . , a13, and an integer value k0 so that,
if µk0 ≤ µmax,

‖xk − x∗‖ ≤ a5ωk + a6µ
χ
k‖(λk − λ∗)A∗‖

+ a7µ
1−χ
k

∣∣∣∣∣∣∣∣[λαλk,i]i∈A∗2
∣∣∣∣∣∣∣∣+ a8σk‖λk,I∗‖,

(5.6)

‖(λ̄(xk, λk, sk)− λ∗)A∗‖ ≤ a9ωk + a10µ
χ
k‖(λk − λ∗)A∗‖

+ a11µ
1−χ
k

∣∣∣∣∣∣∣∣[λαλk,i]i∈A∗2
∣∣∣∣∣∣∣∣+ a12σk‖λk,I∗‖,

(5.7)

and

∣∣∣∣∣∣[ci(xk)λ̄k,i/λ
αλ
k,i

]m
i=1

∣∣∣∣∣∣ ≤ µk [a9ωk + a13‖(λk − λ∗)A∗‖

+ a11µ
1−χ
k

∣∣∣∣∣∣∣∣[λαλk,i]i∈A∗2
∣∣∣∣∣∣∣∣+ (1 + (1 + a12)σk)‖λk,I∗‖

]
,

(5.8)

for all k ≥ k0 (k ∈ K), and where the scalar σk, as defined by (4.8), converges to
zero as k ∈ K tends to infinity.

Proof. See Appendix C, § C.1.

In order for Lemma 5.1 to be useful, we need to ensure that the condition (5.4)
holds. There is at least one case where this is automatic. Thus, we consider the
following additional assumption.

AS6: The iterates {xk} generated by Algorithm 3.1 have a single limit point x∗.

We then have:
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Lemma 5.2. Suppose that AS1 holds and that the iterates {xk} generated by Al-
gorithm 3.1 satisfy AS6 and converge to the point x∗ for which AS3 holds. Let λ∗
be the corresponding vector of Lagrange multipliers. Now we know that (i) {λk}
converges to λ∗; (ii)

σk ≤ µkθk,(5.9)

where θk converges to zero as k increases; and (iii) inequality (5.4) is satisfied for
all k. Moreover, if AS4 and AS5 replace AS3, (iv) the conclusions of Lemma 5.1
hold for all k, and any 0 < χ ≤ 1.

Proof. See Appendix C, § C.2.

We now give our second major result of the paper. Namely, under suitable as-
sumptions, the penalty parameter will be bounded away from zero in Algorithm 3.1.
This is important as many methods for solving the inner iteration subproblem will
encounter difficulties if the current iterate is allowed to approach the boundary
of the shifted constraints c(x) + sk ≥ 0. These manifest themselves through the
increasing ill-conditioning of the Hessian of the Lagrangian barrier function and
the subsequent difficulty of performing the inner iteration. These problems will
certainly arise in the neighborhood of a first-order stationary point if µk converges
to zero. The result is analogous to Theorem 5.3 of Conn et al. [11].

We need to consider the following extra assumption.

AS7: (Strict complementary slackness condition 1) Suppose that (x∗, λ∗) is a
Kuhn-Tucker point for problem (1.15)–(1.17). Then

A∗2 = {i | c∗,i = 0 and λ∗,i = 0} = ∅.(5.10)

Theorem 5.3. Suppose that the iterates {xk} generated by Algorithm 3.1 satisfy
AS6 and that AS4 and AS5 hold. Furthermore, suppose that either

(i) αλ = 1 holds and we define

α
def
= min( 1

2 , αω) and β
def
= min( 1

2 , βω)(5.11)

or
(ii) AS7 holds and we define

α
def
= min(1, αω) and β

def
= min(1, βω).(5.12)

Then, whenever αη and βη satisfy the conditions

αη < min(1, αω),(5.13)

βη < β(5.14)

and

αη + βη < α+ 1,(5.15)

there is a constant µmin > 0 such that µk ≥ µmin for all k.

Proof. See Appendix C, § C.3.

It is unclear how Algorithm 3.1 behaves when αλ < 1, in the absence of AS7.
The inequalities from Lemma 5.1 appear not to be strong enough to guarantee at
least a linear improvement in the error of the Lagrange multiplier estimates λk
because of the presence of the term a11µ

1−χ
k ‖[λαλk,i]i∈A∗2‖ in the bound (5.7).
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We should also point out that it is indeed possible to find values αω, αη, βω and
βη which satisfy the requirements (3.2), (5.13), (5.14) and (5.15) for any 0 < αλ ≤ 1.
For instance, the values αω = 1, αη = 0.75, βω = 1 and βη = 0.25 suffice.

We caution the reader that, although the result of Theorem 5.3 is an important
ingredient in overcoming the numerical difficulties normally associated with barrier
function methods, ensuring that µk is bounded away from zero is not sufficient. The
numerical difficulties arise because of the singularity of the barrier function when
ci(x)+sk,i = 0 for any 1 ≤ i ≤ m. The algorithm is designed so that ci(x)+sk,i > 0
for all 1 ≤ i ≤ m. If, in addition, AS7 holds, Theorem 5.3 ensures that

lim
x→x∗,k→∞

ci(x) + sk,i = c∗,i + µminλ
αλ
∗,i > 0(5.16)

for all 1 ≤ i ≤ m, and thus numerical difficulties will not arise as the limit is
approached. In the absence of AS7, c∗,i + µminλ

αλ
∗,i = 0 for all i ∈ A∗2, and thus

numerical problems are possible in a small neighborhood of the limit.
We are also interested in the behavior of Algorithm 3.1 in the case when the

generated sequence of iterates has more than one limit point. We know that, under
the assumptions of Theorem 4.2, each limit point will be a Kuhn-Tucker point. We
show, by way of a concrete example that, in the absence of AS6, the conclusion of
Theorem 5.3 is false.

Theorem 5.4. There is a problem of the form (1.15)—(1.17), satisfying AS4,
AS5 and AS7, for which Algorithm 3.1 generates a sequence of iterates {xk} with
a pair of limit points, while the penalty parameter µk converges to zero as k tends
to infinity.

Proof. See Appendix C, § C.4.

If we make the following additional assumption, our definition of floating vari-
ables completely characterizes the set of inactive, and hence active, bounds at a
limit point.

AS8: (Strict complementary slackness condition 2) Suppose that (x∗, λ∗) is a
Kuhn-Tucker point for problem (1.15)–(1.17). Then

J2 = {i ∈ Nb|g`∗,i = 0 and x∗,i = 0} = ∅.(5.17)

We then have the following direct analog of Conn et al. [11, Theorem 5.4].

Theorem 5.5. Suppose that the iterates xk, k ∈ K, converge to the limit point
x∗ with corresponding Lagrange multipliers λ∗, that AS1, AS2 and AS8 hold.
Then for k sufficiently large, the set of floating variables are precisely those which
lie away from their bounds, if present, at x∗.

Proof. From Theorem 4.2,∇xΨk converges to g`∗ and from Lemma 2.1, the variables
in the set F4 then converge to zero and the corresponding components of g`∗ are
zero. Hence, under AS8, F4 is null. Therefore, each variable ultimately remains
tied to one of the sets F1 or D1 for all k sufficiently large; a variable in F1 is,
by definition, floating and, whenever the variable is bounded, converges to a value
away from its bound. Conversely, a variable in D1 is dominated and converges to
its bound.

We conclude this section by giving a rate-of-convergence result for our algorithm
in the spirit of Conn et al. [11, Theorem 5.5]. For a comprehensive discussion of
convergence, the reader is referred to Ortega and Rheinboldt [46].
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Theorem 5.6. Suppose that the iterates {xk} generated by Algorithm 3.1 satisfy
AS6, that AS1 and AS3 hold and that λ∗ is the corresponding vector of Lagrange
multipliers. Then, if (3.8) holds for all k ≥ k0,

(i) the Lagrange multiplier estimates for the inactive constraints, λk,I∗ , gen-
erated by Algorithm 3.1 converge Q-superlinearly to zero;

(ii) the Lagrange multiplier estimates for the active constraints, λk,A∗ , con-

verge at least R-linearly to λ∗. The R-factor is at most µ
βη
min, where µmin

is the smallest value of the penalty parameter generated by the algorithm;
and

(iii) AS4 and AS5 replace AS3, xk converges to x∗ at least R-linearly, with

R-factor at most µ
min(1,βω,αλβη)
min .

Proof. See Appendix C, § C.5.

As an immediate corollary we have

Corollary 5.7. Under the assumptions of Theorem 5.3, the results of Theorem 5.6

follow, with the R-factor governing the convergence of {xk} being at most µ
αλβη
min .

Proof. See Appendix C, § C.6.

Note that the rate of convergence is effectively as fast as one can reasonably
wish, because it is always possible to reduce the penalty parameter if the current
rate is not judged fast enough and the conditioning of the unconstrained problem
permits such a reduction.

6. Second-order conditions

It is useful to know how our algorithms behave if we impose further conditions
on the iterates generated by the inner iteration. In particular, suppose that the
sequence {xk} satisfies the following second-order sufficiency condition:

AS9: Suppose that the iterates xk and Lagrange multiplier estimates λ̄k, gen-
erated by Algorithm 3.1, converge to the Kuhn-Tucker point (x∗, λ∗) for
k ∈ K and that J1 and J2 are as defined by (5.2). Then ∇xxΨk,J ,J is
uniformly positive definite (that is, its smallest eigenvalue is uniformly
bounded away from zero) for all k ∈ K sufficiently large and all sets J ,
where J is any set made up from the union of J1 and any subset of J2.

With such a condition we have the following result.

Theorem 6.1. Under AS1, AS2, AS7 and AS9, the iterates xk, k ∈ K, gener-
ated by Algorithm 3.1 converge to an isolated local solution of (1.15)– (1.17).

Proof. Let J be any set as described in AS9. Then

∇xxΨk,J ,J = H`
k,J ,J +ATk,A∗,JDk,A∗,A∗Ak,A∗,J +ATk,I∗,JDk,I∗,I∗Ak,I∗,J ,

(6.1)

where Dk is a diagonal matrix with entries

Dk,i,i =
λk,isk,i

(ci(xk) + sk,i)2
=

λ̄k,i
ci(xk) + sk,i

(6.2)

for 1 ≤ i ≤ m. Let sJ be any nonzero vector satisfying

Ak,A∗,J sJ = 0.(6.3)
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Then for any such vector,

sTJ∇xxΨk,J ,J sJ ≥ 2εsTJ sJ(6.4)

for some ε > 0, under AS9. We note that the diagonal entries Dk,i,i, i ∈ I∗,
converge to zero. Hence, for k sufficiently large,

sTJA
T
k,I∗,JDk,I∗,I∗Ak,I∗,J sJ ≤ εsTJ sJ ,(6.5)

and thus, combining (6.1)–(6.5), we obtain

sTJH
`(xk, λ̄k)J ,J sJ ≥ εsTJ sJ .(6.6)

By continuity of H as xk and λ̄k approach their limits, this gives that

sTJH
`
∗,J ,J sJ ≥ εsTJ sJ(6.7)

for all nonzero sJ satisfying

A∗,A∗,J sJ = 0,(6.8)

which, given AS7, implies that x∗ is an isolated local solution to (1.15)–(1.17) (see,
for example, Avriel [2, Theorem 3.11]).

We would be able to relax the reliance on AS7 in Theorem 6.1 if it were clear
that the elements Dk,i,i, i ∈ A∗2, converged to zero for some subsequence of K.
However, it is not known if such a result holds in general.

We remark that AS9 may be ensured by tightening the inner iteration termi-
nation test (step 2 of the algorithm) so that, in addition to (3.5), ∇xxΨk,J ,J is
required to be uniformly positive definite, for all floating variables J and all k
sufficiently large. If the strict complementary slackness condition AS8 holds at x∗,
Theorem 5.5 ensures that the set J2 is empty and J1 identical to the set of floating
variables after a finite number of iterations and thus, under this tighter termination
test, AS9 and Theorem 6.1 holds.

There is a weaker version of this result, proved in the same way, that if the
assumption of uniform positive definiteness in AS9 is replaced by an assumption
of positive semidefiniteness, the limit point then satisfies second-order necessary
conditions (Avriel [2, Theorem 3.10]) for a minimizer. This weaker version of AS9
is easier to ensure in practice as certain methods for solving the inner iteration
subproblem, for instance that of Conn et al. [9], guarantee that the second-derivative
matrix at the limit point of a sequence of generated inner iterates will be positive
semidefinite.

7. Feasible starting points

We now return to the issue raised in § 3.2, namely, how to find a point for which

c(x) + sk+1 > 0 and x ∈ B(7.1)

from which to start the (k + 1)st inner iteration of Algorithm 3.1. We saw in
Lemma 3.1 that this is trivial whenever (3.8) holds, as the current estimate of the
solution, xk, satisfies (3.11). Furthermore, under the assumptions of Theorem 5.3,
we know that (3.8) will hold for all sufficiently large k. The main difficulty we
face is that, when (3.8) fails to hold, the updates (3.10) do not guarantee that
(3.11) holds, and thus we may need a different starting point for the (k+ 1)st inner
iteration.
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There is, of course, one case where satisfying (7.1) is trivial. In certain circum-
stances, we may know of a feasible point, that is a point xfeas which satisfies (1.16)
and (1.17). This may be because we have a priori knowledge of our problem, or
because we encounter such a point as the algorithm progresses. Any feasible point
automatically satisfies (7.1), as sk+1 > 0. One could start the (k + 1)st inner
iteration from xfeas whenever (3.11) is violated.

There is, however, a disadvantage to this approach in that a “poor” feasible point
may result in considerable expense when solving the inner-iteration subproblem.
Ideally, one would like a feasible point “close” to xk or x∗, as there is then some
likelihood that solving the inner iteration will be inexpensive. It may, of course, be
possible to find a “good” interpolatory point between xk and xfeas satisfying (7.1).
This could indeed be easy if the general constraints are linear. Finding a feasible
starting point is also easy to do when the (shifted) feasible domain is such that
projecting xk onto it can be achieved at little cost, as is the case for simple bounds
for example.

We consider the following alternative. Suppose that the kth iteration of Algo-
rithm 3.1 involves the execution of step 4. Consider the auxiliary problem

minimize
x∈Rn, ξ∈R

ξ(7.2)

subject to the constraints

c(x) + ξsk+1 ≥ 0, ξ ≥ 0, x ∈ B.(7.3)

Then it follows that if we can find suitable values x = x̂ and ξ = ξ̂ < 1 to satisfy
(7.3), the same values x = x̂ satisfy (7.1) and thus give an appropriate starting
point for the (k + 1)st inner iteration. Furthermore, the problem (7.2)–(7.3) has
a solution value zero if and only if the solution is a feasible point for the original
constraint set (1.16)–(1.17). Thus, we can guarantee that there are suitable values

x = x̂ and ξ = ξ̂ whenever the original problem (1.15)–(1.17) has a solution.
Turning to the auxiliary problem (7.2)–(7.3), we first observe from (3.6) and

(3.10) that the values x = xk and ξ = τ−1 give a feasible point for the constraint
set (7.3). We may then solve (7.2)–(7.3) using a traditional barrier-function or
interior-point method (see, for instance, Fiacco and McCormick [19], or Wright
[56]) or by a Lagrangian barrier-function method such as that proposed in this
paper.

If we attempt to solve (7.2)–(7.3) using a traditional barrier-function / interior-
point method, we need not be overly concerned with the conditioning dangers often
associated with these methods (see, for instance, Murray [40]). For we only need

an approximation to the solution for which ξ = ξ̂ < 1. Therefore, we can stop the
minimization at the first point for which ξ < 1 and the method need never enter
its potentially dangerous asymptotic phase.

If, on the other hand, we chose to solve the auxiliary problem using the algorithm
given in § 3, the presence of an initial feasible point for this problem means that
we avoid the need to solve a further auxiliary-point problem. The introduction of
additional shifts means that it is less apparent how early to stop the minimization
in order to satisfy (7.1) — the requirements (7.1) will have to be carefully monitored
— but nonetheless early termination will still be possible.
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The problem (7.2)–(7.3) involves one more variable, ξ, than the original problem
(1.15)–(1.17). Thus, the data structures for solving both problems may be effec-
tively shared. There are alternatives to (7.2)–(7.3). For instance, if w is a vector
of strictly positive weights, one might consider the auxiliary problem

minimize
x∈Rn, s∈Rm

wT s(7.4)

subject to the constraints

c(x) + s ≥ 0, s ≥ 0, x ∈ B(7.5)

and stop when s < sk+1. Again, an initial feasible point is available for this problem
but it now involves m additional variables, which is likely to add a significant
overhead to the computational burden. Alternatively, if we partition {1, 2, . . . ,m}
into disjoint sets C1 and C2 for which

ci(xk) + sk+1,i ≤ 0, i ∈ C1(7.6)

and

ci(xk) + sk+1,i > 0, i ∈ C2(7.7)

and let 0 < ŝk+1,i < sk+1,i for i ∈ C2, we might consider the third alternative
auxiliary problem

minimize
x∈Rn, si∈R

∑
i∈C1

wisi(7.8)

subject to the constraints

ci(x) + si ≥ 0, si ≥ 0, i ∈ C1,(7.9)

ci(x) + ŝk+1,i ≥ 0, i ∈ C2(7.10)

and (1.17), and stop when si < sk+1,i for all i ∈ C1. Once again, an initial feasible
point is available for this problem, and this time the problem involves |C1| additional
variables. If |C1| is small, solving (7.8)–(7.10) may be preferable to (7.2)–(7.3).

8. Further comments

8.1. The general problem. We now briefly turn to the more general problem
(1.1)–(1.3). As we indicated in our introduction, the presence of the more general
constraints (1.3) does not significantly alter the conclusions that we have drawn so
far. If we define the appropriate generalization of the projection (2.8) by

(P [x])i
def
=

 li if xi ≤ li,
ui if xi ≥ ui,
xi otherwise

(8.1)

and let B = {x| l ≤ x ≤ u}, we may then use the algorithm of § 3 without
further significant modification. Our concept of floating and dominated variables
stays essentially the same; for any iterate xk in B we have three mutually exclusive
possibilities for each component xk,i, namely

(i) 0 ≤ xk,i − li ≤ ∇xΨk,i,
(ii) ∇xΨk,i ≤ xk,i − ui ≤ 0,
(iii) xk,i − ui < ∇xΨk,i < xk,i − li.

(8.2)
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In case (i) we have

P (xk,∇xΨk)i = xk,i − li(8.3)

whereas in case (ii) we have

P (xk,∇xΨk)i = xk,i − ui(8.4)

and in case (iii)

P (xk,∇xΨk)i = ∇xΨk,i.(8.5)

The xk,i which satisfy (i) or (ii) are now the dominated variables (the ones satis-
fying (i) are said to be dominated above and those satisfying (ii) dominated below);
those which satisfy (iii) are the floating variables. As a consequence, the sets cor-
responding to those given in (2.13) are straightforward to define. Now F1 contains
variables which float for all k ∈ K sufficiently large and converge to the interior of
B. Furthermore, D1 is the union of the two sets — D1l, made up of variables which
are dominated above for all k ∈ K sufficiently large, and D1u, made up of variables
which are dominated below for all k ∈ K sufficiently large. Likewise, F2 is the union
of the two sets F2l, made up of variables which are floating for all sufficiently large
k ∈ K but converge to their lower bounds, and F2u, made up of variables which are
floating for all sufficiently large k ∈ K but converge to their upper bounds. With
such definitions, we may reprove all of the results of §§ 3 to 7, assumptions AS5
and AS8 being extended in the obvious way and Theorem 5.5 being strengthened
to say that, for all k ∈ K sufficiently large, F1l and F1u are precisely the variables
which lie at their lower and upper bounds (respectively) at x∗.

8.2. Equality constraints. It may happen that we wish to solve a problem in
which there are equality constraints

ci(x) = 0, m+ 1 ≤ i ≤ mt,(8.6)

in addition to the constraints (1.2) and (1.3). In this case, we may construct a
composite Lagrangian barrier/augmented Lagrangian function

Θ(x, λ, s, µ) = f(x)−
m∑
i=1

λisi log(ci(x) + si) +

mt∑
i=m+1

λici(x) +
1

2µ

mt∑
i=m+1

ci(x)2

(8.7)

and solve the general problem (1.1)–(1.3) and (8.6) by a sequential minimization
of (8.7) within the region defined by (1.3).

The only change we need to make to the Algorithm 3.1 is to replace the test
(3.8) by ∣∣∣∣∣∣[ci(xk)λ̄i(xk, λk, sk)/λαλk,i

]m
i=1

∣∣∣∣∣∣+
∣∣∣∣[ci(xk)]

mt
i=m+1

∣∣∣∣ ≤ ηk,(8.8)

and to use the definition λ̄i = λi + ci(x)/µ for m + 1 ≤ i ≤ mt. It is obvious
that replacing (3.8) by (8.8) in Algorithm 3.1 makes no difference if there are no
equality constraints. Moreover, if, instead, there are no inequality constraints, the
above modification to Algorithm 3.1 gives Algorithm 1 of Conn et al. [11].



284 A. R. CONN, NICK GOULD, AND PH. L. TOINT

A careful examination of the present paper and that by Conn et al. [11] reveals
that the exact form of the test (8.8) only plays a role in Lemmas B.1 and 5.2 and
Theorems 5.3 and 5.6 in this paper and Lemma 4.1 and Theorems 5.3 and 5.5 in
its predecessor. We now briefly consider what can be deduced about the composite
algorithm.

In the first relevant lemma in each paper, one merely needs to obtain an upper

bound on
∣∣∣∣∣∣[ci(xk)λ̄i(xk, λk, sk)/λαλk,i

]m
i=1

∣∣∣∣∣∣ or
∣∣∣∣[ci(xk)]

mt
i=m+1

∣∣∣∣ as appropriate, when

the Lagrange multipliers are updated. But satisfaction of (8.8) yields both that∣∣∣∣∣∣[ci(xk)λ̄i(xk, λk, sk)/λαλk,i

]m
i=1

∣∣∣∣∣∣ ≤ ηk(8.9)

and ∣∣∣∣[ci(xk)]
mt
i=m+1

∣∣∣∣ ≤ ηk.(8.10)

Thus, the conclusions of both lemmas are true when the composite algorithm is
used. Furthermore, if we replace the set A∗ in AS3 from this paper by the union of
A∗ and {m+ 1, . . . ,mt}, it is straightforward to deduce that Theorem 4.3 remains
true and the error estimates provided by the present Theorem 4.3 and Theorem 4.3
of Conn et al. [11] are valid.

These estimates are sufficient to ensure that if the test (8.8) were to fail for all
k ≥ k1, one would obtain, corresponding to (C.185) in the proof of Theorem 5.2,
Appendix C, ∣∣∣∣∣∣[ci(xk)λ̄k,i/

√
λk,i

]m
i=1

∣∣∣∣∣∣+
∣∣∣∣[ci(xk)]mti=m+1

∣∣∣∣ ≤ a26µk,(8.11)

for some constant a26 for all k ≥ k2 ≥ k1. This is sufficient to ensure that Lemma 5.2
remains true for the composite algorithm provided we replace the set A∗1 in AS5
from this paper by the union of A∗1 and {m + 1, · · · ,mt}. The direct analogue
of the error estimates provided by Lemma 5.1 suffice to enable one to establish
Theorems 5.3 and 5.6 for the composite algorithm.

Thus, the convergence properties of the composite algorithm are no worse that
those predicted for the specific algorithms analyzed in §§ 4 and 5 of Conn et al. [11]
and the same sections of the present paper.

8.3. Final comments. We note that the results given here are unaltered if the
convergence tolerance (3.5) is replaced by

‖DkP (xk,∇xΨk)‖ ≤ ωk(8.12)

for any sequence of positive diagonal matrices {Dk} with uniformly bounded con-
dition number. This is important as the method of Conn et al. [9], which we would
consider using to solve the inner iteration problem, allows for different scalings for
the components of the gradients to cope with variables of differing magnitudes.

Although the rules for how the convergence tolerances ηk and ωk are updated
have been made rather rigid in this paper, and although the results contained here
may be proved under more general updating rules, we have refrained from even
stating these, as the resulting conditions on the updates seemed rather complicated
and are unlikely to provide more practical updates.
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We have made no attempt in this paper to consider how algorithms for solving
the inner-iteration subproblem (see § 3.3) mesh with Algorithm 3.1. Nor have we
provided any detailed numerical evidence that the approach taken here is effective
on general problems. In particular, it may sometimes be inefficient to determine
a feasible starting point after a penalty parameter update using the techniques
proposed in § 7. We are currently considering the first issue and consequently
cannot yet report on the second, except in special cases (see Conn et al. [16]).
However, it is perhaps worthwhile adding that a rather rudimentary implementation
of a Lagrangian barrier method solved over ninety percent of a nontrivial set of
about one thousand problems — sometimes considerably more efficiently than the
more sophisticated implementation of an augmented Lagrangian algorithm in our
Fortran package, LANCELOT A. Moreover, considerable success was reported in
the Harwell Subroutine Library [28] code VE14, a Lagrangian Barrier algorithm for
bound-constrained quadratic programming problems.
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