Appendix
A. Simplified statement of the Algorithm

In order to simplify the proofs given in the appendix, we give them in the case of a particular
instance of Algorithm 3.1. This simplified algorithm corresponds to choosing parameters ny =
ws=0y=pfy=1,a,=250,=1%and a) = 1.

For proofs that correspond to the more general statements the interested reader is referred to
the technical report, Conn et al. [12]. However, the choice of parameters in practice appears to
be significantly more critical than for augmented Lagrangian approaches. Thus the choice given
here, which is just for convenience of exposition, should not be taken as an indication of suitable

values.

Algorithm A.1 [Outer Iteration Algorithm]

step 0 : [Initialization] Choose the strictly positive constants

5

(A.1) Ws, Msy fo < 1,7 < 1,, and define wy = wspg and 1y = Nspuf -

An initial estimate of the solution, x_; € B, and vector of positive Lagrange multiplier
estimates, Ao, for which ¢;(x_1) + po/ Ao, > 0 are specified. Set k = 0.
In addition set

(A.2) wy < 1 and n, < 1.

step 1 : [Inner iteration] Compute shifts

(A.3) Skyi = M/ Akjis

for i = 1,...,m. Find x; € B such that

(A.4) 1P (zk, V)| < wy
and
(A.5) ci(xy) +5,; >0 for i=1,..,m.

step 2 : [Test for convergence] If
(A.6) 1P (r, VORI < wi and | [ci(@r) Al i | < 12,

stop. If

i@ i |
ki

)

i=1

execute step 3. Otherwise, execute step 4.



step 3 : [Update Lagrange multiplier estimates| Set

Mol = Ak,
Hk+1 = Kk,
(A.8) *
Wk+1 = Hk+1WEk,
1
Mhet1 = Mgk

Increase k by one and go to step 1.

step 4 : [Reduce the penalty parameter]| Set

Akl = Mg,
k+1 = THE,
(A.9) M+ H
Wk+1 = Wslk+1,
Mk+1 = 775#]54_1-

Increase k by one and go to step 1.
end of Algorithm A.1

B. Details of proofs from §4

B.1. An auxiliary lemma. We require the following lemma in the proof of global convergence
of our algorithm. The lemma is the analog of Conn et al. [11, Lemma 4.1]. In essence, the result
shows that the Lagrange multiplier estimates generated by the algorithm cannot behave too
badly.

Lemma B.1 Suppose that p converges to zero as k increases when Algorithm A.1 is executed.

Then the product ,uk()\k,i)% converges to zero for each 1 <1i < m.

Proof. If ui converges to zero, step 4 of the algorithm must be executed infinitely often. Let
K = {ko, k1, k2, ...} be the set of the indices of the iterations in which step 4 of the algorithm is
executed and for which

(B.1) e < (3)°.

We consider how the ith Lagrange multiplier estimate changes between two successive iter-
ations indexed in the set K. First note that \g 11; = A, ;. At iteration k, + j, for ky +1 <
kyp + 7 < kpg1, we have

(SIS

Ckp+j—1,i/\kp+j,z‘) 1

(B.2) AMeptii = Abptj—1, — ;
P P /)\kp-l—j—lﬂ Hkp+j—1

from (2.5), (A.3) and (A.8) and

(B'3) IL’Lkp+1 = /”Lkp"‘] = /"Lkp"‘]- = T/‘Lk?p'



Hence summing (B.2) and using the fact that Akpt1i = Akp,ir We get

j—1
Chip+1,i Mby++1,i 1
(B4) Ak;ﬂ‘j,i = )\kpyi o Z e :
=1 A/ Akpiti Hkp+1

where the summation in (B.4) is null if j = 1.
Now suppose that j > 1. Then for the set of iterations k,+1,1 <1 < j, step 3 of the algorithm

must have been executed and hence, from (A.5), (B.3) and the recursive definition of 7, we must

also have
m
Chyp+1,i Ny Hi+1,i 2410-1)
(B.5) —_— < Nshg, 41 .
A/ Akptti .

Combining equations (B.1) to (B.5), we obtain the bound

m
Chyp41,i My 1+ 1,0
Akptl,i .

1

i—1
Nepsll - < Ak, + 2215 Bkt

(B.6)

1
< ||)‘ka + 2778/#12174_1-

2
Thus, multiplying (B.6) by uﬁpﬂ- and using (B.3), we obtain that

2 2
(B.7) i 3 My < (i, By |+ 2007,

Equation (B.7) is also satisfied when j = 1, as equations (A.8) and (B.3) give

2 2
(B.8) Pty Ak sl = (k)5 [ A, -

Hence from (B.7),
2 2
(B.9) 8 Il < (i 31 |+ 200 7

2
We now show that (B.9) implies that ;|| Ak, || converges to zero as k increases. For, if we define

def 2 def
(B.10) ap = i I, || and B, = 20\ /hir,

equations (B.3), (B.9) and (B.10) give that

2
(B.11) apr1 S T3ap + \/Fﬂp and fpi1 = \/Fﬂp
and hence that )
p—
(B.12) 0<ap,< 7-%1'@0 s Z Téﬁo.
1=0
It now follows that ,
(B.13) 0<ao, < T3Paqg + r =00
1—75%

But both ag and 3y are finite. Thus, as p increases, oy, converges to zero; the second part

of equation (B.11) implies that (3, converges to zero. Therefore, as the right-hand side of (B.7)



2
converges to zero, so does pj || A for all k. The truth of the lemma is finally established by

2
raising p;) | Ar,i|| to the power 2. O
We note that Lemma B.1 may be proved under much weaker conditions on the sequence {ny }

than those imposed in Algorithm A.1. All that is needed is that, in the proof just given,

j—1

D

=1

m
Ckp+l,i>\kp+l+17i]
1

\/ MkptLi

in (B.6) should be bounded by some multiple of a positive power of I
B.2. Proof of Theorem 4.2. In order to prove (i), (ii) and (iii), we consider each constraint

in turn and distinguish two cases:
1. constraints for which c,; # 0; and
2. constraints for which ¢, ; = 0.
For the first of these cases, we need to consider the possibility that
a. the penalty parameter uj is bounded away from zero; and

b. the penalty parameter u; converges to zero.

Case la. As puy is bounded away from zero, test (A.7) must be satisfied for all k sufficiently
large and hence |ck,i5\k,i/\/)\k| converges to zero. Thus, as {cj;} converges to c,; # 0, for
k € K, A.i/v/ A converges to zero. Hence, using (2.3) and (A.3), we have that

(B.14) hi - Pk, _EVARE L,

VN Chi Ak B )\k’ick,i + b/ Ak,
We aim to show that 5\“ converges to zero and that c,; > 0.
Suppose first that A;; does not converge to zero. It follows directly from (2.5) and (A.3)
that
(B.15) Ck,ij\k,i/\/m =tk (Mei — i)
Then, as the left-hand side of (B.15) converges to zero and py, and Ay ; are bounded away

from zero, we deduce that
(B.16) Akii = Aki(1 — €r),

for some {e;;}, k € K, converging to zero. But then, by definition (2.3),

e
(B.17) _ PV ARE
Chyi + HA/ ki
However, as Ay ; is bounded away from zero, (B.17) contradicts (B.14). Thus Ay ; converges
to zero, for k € K.

=1- €k.i-

It now follows that, as S\M /\/Ak,i converges to zero, so does S\kﬂ'. It also follows from (A.5)
that cg; + pg/Ak,i > 0. As py, is bounded and A ; converges to zero, we have that c,; > 0.
But as c.; # 0, we conclude that c,; > 0, 5\“ converges to A\.; = 0, for £ € K, and
0*77;)\*77; =0.



Case 1b. As uy converges to zero, Lemma B.1 shows that uk()\k,i)% and hence ppAi; and
/i converges to zero. It follows immediately that the numerator of (2.3) converges
to zero while the denominator converges to c.; and hence that 5\“ converges to zero for
k € K. Furthermore, it follows from (A.5) that cx; 4+ pr+/Aki > 0: as pr/Ax,; converges
to zero, we have that c,; > 0. But as c,; is, by assumption, nonzero, c,; > 0. Hence we

may conclude that ¢, ; > 0, S\k,i converges to A\, ; =0, for k € K, and ¢, ;A\« ; = 0.

We note from (2.15) that the set Z* = Z(x,) is precisely the set of constraints covered in Case
1. Having thus identified the constraints in A* = A(x,) as those in Case 2 above, we consider
Case 2 in detail.

Case 2. By construction, at every iteration of the algorithm, A, > 0. Moreover, from (2.6),
(2.12), (A.4) and Case 1 above,

(g% — A;}F,A*S\@A*)}H |
(B.18) < H(Af,z*{\k,z*)ﬂ” + [Pk, Vo Vi) 7 ||
< AL 2 2ez) 7 ||+ wi < @

for some @y, converging to zero. Thus, in view of AS2 and Lemma 4.1, the Lagrange mul-
tiplier estimates 5\k7 4+ are bounded and, as L(zk, Wk; T+, F1) is nonempty, these multipliers
have at least one limit point. If A4 is such a limit, AS1, (B.18) and the identity c, 4+ = 0
ensure that (g, — AzA*AA)fl =0, CZ:A*)‘A =0and A4q > 0.

Thus, from AS2, there is a subsequence K’ C K for which {z;} converges to x, and {\;}
converges to A, as k € K’ tends to infinity and hence, from (2.4), V, ¥}, converges to gt. We also
have that
(B.19) I\ =0

with both ¢, ; and A.; (i = 1,...,m) nonnegative and at least one of the pair equal to zero. We

may now invoke Lemma 2.1, and the convergence of V, U} to ¢ to see that
(B.20) gifl =0 and zl¢’=0.

The variables in the set F; NN} are, by definition, positive at x,. The components of ¢¢ indexed
by D; are nonnegative from (2.10), as their corresponding variables are dominated. This then
gives the conditions
Zs; >0 and gii =0 for i€ F NN,

gii:O for i€ FinNy,
z.; =0 and gf,i >0 for i€ D; and
Zs; =0 and gii =0 for i€ Fy.

(B.21)

Thus, we have shown that x, is a Kuhn-Tucker point and hence we have established results
(i), (ii) and (iii). It remains to prove (iv).
If py is bounded away from zero, we have established in Case la above that A;; converges

to zero. Hence, as py, is finite, s;; also converges to zero. On the other hand, if y;, converges to



zero, we have established in Case 1b that py+/Ar; and hence, once again, sy ; converge to zero.
But as ¢ € 7%, ¢; is bounded away from zero for all £ € K sufficiently large, and therefore oy, ;
converges to zero for all ¢ € 7* which establishes (iv).
B.3. Proof of Theorem 4.3. Assumption AS3 implies that there is at most one point in
L(xy,0; x4, F1) and thus AS2 holds. The conclusions of Theorem 4.2 then follow. The conclusion
(v) of the current theorem is a direct consequence of AS3.

We have already identified the set of constraints for which ¢;(z,) = 0 with A*. Let

def Sk

(B.22) Oki = m
Then (2.3) shows that S\k,i = 0}, \k,i- We now prove that oy ; converges to zero for all i € Z* as
k € K tends to infinity.

To prove (vi), we let Q be any closed, bounded set containing the iterates x, k € K. We note
that, as a consequence of AS1 and AS3, for k € K sufficiently large, A,J; A, €xists, is bounded

and converges to A:’ A Thus, we may write
(B.23) 145 40 7, |l < an

for some constant a; > 0. As the variables in the set F; are floating, equations (2.6), (2.7), (2.12)

and the inner iteration termination criterion (A.4) give that

T 3\ T 3\
(B24) ||gk,~7:1 + Ak:7.A*7.7:1>\k‘,.A* + Ak,l*,}-l)\kl—* S Wk-

By assumption, A(x)4+ is bounded for all z in a neighborhood of x,. Thus, we may deduce from
(4.2), (B.23) and (B.24) that

T —
= AL 4+ 7 907 T A
_ ||A+ T( AT by
= s (907 + Ay a7 kiA*)H
<A o7 Wwr + 1AL 2o £ AR z- |

< aqwy, + a3 || Az ||,

Ak, ar — Agax

(B.25)

where a3 % g max,cq || A(z)L. 7 |- Moreover, from the integral mean-value theorem and the
(local) differentiability of the least-squares Lagrange multiplier estimates (see, for example, Conn
et al. [11, Lemma 2.2]) we have that

(B.26) Mo — Aose = ( /0 VA 4 dt) (o — ),

where V A(z) 4+ is given by Conn et al. [11, equation 2.17], and where x(t) = xf + t(x. — xg).
Now the terms within the integral sign are bounded for all x sufficiently close to x, and hence
(B.26) gives

(B.27) [Aas k= Aar il < azlzr — 2]

for all k € K sufficiently large, for some constant as > 0, which is just the inequality (4.5). We
then have that A4+ converges to A= 4. Combining (4.1), (B.25) and (B.27), we obtain

Akar = Aeas ] < kar = A | + [ Aear = Aas
(B.28) < awy + az|vg — 2| + as|| Mg z-
< awg + agllrr — 24| + azorl| Ak,




the required inequality (4.4). It remains to establish (4.6) and (4.7).
The relationships (2.5) and (A.3) imply that

(B.29) i = e (\/ Mei/ Aki) Mei — Aksi)
and
(B.30) ChiMei/ A Mesi = B (Mei — Aki)
for 1 <4 < m. Bounding (B.29) and using the triangle inequality and the inclusion A C A*, we
obtain ~ ~
lewall < e || [V i/ Meilical | T2 — Ae) Al
(B.31) 1 (| [/ 2/ Ml e || LHOE = ) all + 1Ak = Ae) all]

IA A

1 || [V i/ Akl e al| TIHOW = X)L+ 1w = X all] -

But then, combining (B.28) and (B.31), we see that (4.7) holds for all k£ € K sufficiently large.
Furthermore, the triangle inequality, the relationships (4.1), (4.4) and

(B.32) Az =0
yield the bound

X = Akl < 1A% = Xl + [ A = Al
(B.33) < Ok = Ao ax |l + 1Ok = ) as |l + 1 Meze Il + 1Ak 2+
< awwpt  asllr — x| + (14 (T4 a3)op) | Aez || + [[(Ae — As).ax]-

Hence, taking norms of (B.30) and using (B.33), we see that (4.6) holds for all k € K sufficiently
large.

C. Details of proofs from §5

C.1. Proof of Lemma 5.1. We first need to make some observations concerning the status
of the variables as the limit point is approached. We pick k sufficiently large that the sets Fi
and Dy, defined in (2.13), have been determined. Then, for k € K, the remaining variables either
float (variables in F3) or oscillate between floating and being dominated (variables in F3). Now
recall the definition (2.14) of F4 and pick an infinite subsequence, K, of K such that:

(i) Fi = F5 UDy with F5 N Dy = 0;

(ii) variables in F5 are floating for all k € K; and

(iii) variables in Dy are dominated for all k € K.
Notice that the set Fy of (2.13) is contained within F5. Note, also, that there are only a finite
number (< 21741) of such subsequences K and that for k sufficiently large, each k € K is in one
such subsequence. It is thus sufficient to prove the lemma for k € K.

Now, for k € K, define

(C.1) FYFRUF and DY D UD,.

So, the variables in F are floating while those in D are dominated.



We also need to consider the status of the constraints in A5. We choose a x satisfying (5.5)
and pick an infinite subsequence, K, of K such that

(a) A5 = A% U A; with AF N A} = (), where A} and A} are defined below;

(b) the Lagrange multiplier estimates satisfy

(C.2) Mg <ty A

for all constraints i € A% and all k € K; and

(c) the Lagrange multiplier estimates satisfy

(C.3) Mg >ty A

)

for all constraints i € A; and all k € K.
We note that there are only a finite number (< 2143l) of such subsequences K and that for k
sufficiently large, each k € K is in one such subsequence. It is thus sufficient to prove the lemma
for k € K.

We define
(C4) A=ATUA;

and note that this set is consistent with the set A described by AS5. It then follows from (5.1)
and (C.4) that
(C.5) A*=AUA: with AN A% =0.

We note that, if i € A7, (C.3) gives

(C.6) i/ i < !

for all k € K. Moreover, inequalities (5.4) and (5.5) imply

(.7) H [Vawile] ' <ot < ag!
It then follows directly from (C.6) and (C.7) that
(C.8) H [\/)\k,i/j\k,i: e ‘ < app”!

for some positive constants y, satisfying (5.5), and a4 and for all k € K. Furthermore
(C.9) Aear =0,

as A% C A5. Finally, the same inclusion and (C.2) imply that

(C.10) [Rywe

1— 1—
S,UJkX S/'ka

[m i€ A3

b
{ Rl ica

for all k € K.
We may now invoke Theorem 4.3, part (vi), the bound (C.8) and the inclusion A C A* to

obtain the inequalities

(C.ll) H(X(azk, Ak, Sk) — )‘*)AH < aiwg + a2||xk — CL'*H + agokH)\kJ*




and

c12) T O e

a30k | Aeze [l + [|(Ak — As).a]
for all sufficiently large k& € K. Moreover, A, converges to A, and hence (2.4) implies that V, ¥}

converges to g¢. Therefore, from Lemma 2.1,
(C.13) z4,;=0 forall ¢€D and gf,i =0 forall ieF.
Using Taylor’s theorem and the identities (B.32), (C.5) and (C.9), we have
Vol = gk + AL
= 0x+t H*(xk - x*) + AIS\k‘l‘
(C.14) Zznzl thH*,j(wk — ) +T1((L‘k,w*,5\k)
= gl + Hi(wp —x) + AT JOk = M) a+ AL g A s+
Azz*xk,p + 11 (Th, Ty M) + T2(Ths T, Ay As),s

where .
(C.15) Py (T, ey M) = / (H (25 + t(e — 1), M) — HE (0, M) (2 — 22 )dt
0
and .
(016) T2($k7 Ly S‘kv >‘*) = Z(S‘k,j - )\]7*)H]($*)($k - 33*)
j=1

The boundedness and Lipschitz continuity of the Hessian matrices of f and the ¢; in a neighbor-
hood of x, along with the convergence of A\, to A, for which the relationships (4.8) and (B.32)
hold then give that

(C.17) 71 (zk, 2, M) || < 15|k — 412
and B _
(C.18) Ir2(zh, Tay Ay M) || < argllzr — ||| Ak — A

< agller — x| ([[(A — Ae)as |+ oncl M.z )
for some positive constants a5 and ajg, using (4.1). In addition, again using Taylor’s theorem

and that c, 4 = 0, we have

(C.19) ckA = A alxy — Zy) + r3(Tk, Ti) A,

where ) .

(C20)  (ry(wpzs))s = /0 s /0 (wn — 20) " Hi (e + tito(2 — 22)) (5 — 2)db1dls

for i € A (see Gruver and Sachs [26, p. 11]). The boundedness of the Hessian matrices of the ¢;
in a neighborhood of z, then gives that

(C.21) 73 (2, @) all < arr ey — .

for some constant a;7 > 0. Combining (C.14) and (C.19), we obtain

() o)

A 0 (S\k —A)A

B < Vo0 — gt — Azz*j‘k,z* — A:{,A;j‘k,A; ) ( r1+ 7o )
(7"3)A ’

(C.22)

Ck, A



where we have suppressed the arguments of 71, o and r3 for brevity. We may then use (C.13) to
rewrite (C.22) as

Hirr Hizp Alar (zr — )
Hf;D,f Hf,D;D AZ:AfD Lk, D
(C.23) AsAF A*_,A,D o /) Ak = A)a
Vm\Ika: - AzA; 7}-)\].3,/1: — A:{,I*,j—‘)‘k,l* (7"1 + 7”2)]_—
=| VoVkr—0ip — AL pophar — ALz pheze | — | (m+72)p
CrL,A (r3) 4

Then, rearranging (C.23) and removing the middle horizontal block, we obtain

( Hff,f Az:AJ-' ) ( () — 24) £ ) _

A AF 0 e —X)a )

( VoW r — Hf,]—‘,kafD - AZ:A;,fj‘k,Ag - AiI*,]:j‘k,I* ) _ ( (ri+72)5 )
Cr, A — Ax ADTED (r3) 4 '

(C.24)

Roughly, the rest of the proof proceeds by showing that the right-hand side of (C.24) is O(wy)+
O(o||Aez+ )+ O(pkl|(Ax — Ax).ax]]). This will then ensure that the vector on the left-hand side

is of the same size, which is the result we require. First observe that

(C.25) llzk Dl < wk,

from (2.11) and (A.4), and
(C.26) IVa¥p 7|l < wy,

from (2.12). Consequently, using (C.13) and (C.25), we have
(C.27) e — | < (2 — 20) 7| + Wi
Let Az, = ||(zx — z«)#||. Combining (4.8), (B.32), (C.11) and (C.27), we obtain

(C.28) Ak — M) all < ar1swi + a2 Az + azor|| A2+,

where a1s < a1 + as. Furthermore, from (C.17), (C.18), (C.21), (C.27) and (C.28),

(C.29) H < r+ T2 )H a19(Arg)? + ago Arpwy + agiwi+

(wr + Axy),

a0k || Ak 7+

where a9 o a5 + a7 + aieaz, ap o 2(a15 + ar7) + ar6(a1s + a2), az o ais + a7 + ajgaig and
g & a16(1 4 ag). Moreover, from (C.10), (C.12), (C.25), (C.26) and (C.27),

< VaViF — Hf,f,DfEk,D - A:{,Az,fAhA; - AI,I*,}'A’%I* ) <
Ck, A — Aw ADTED N
(C.30) N 1—x X
ag3wy + a2a0k|| A 7+ || + aospiy, [V Ak,i i Ay

+
P

a1 [arswi + agAxy + azop|| Mg+ | + | (A — As) 4

10



def

(031) a3 = 1+ def

def
, an S Al Fll and azs = (AT 4 £

( Hf7F7D )
A AD

By assumption AS5, the coefficient matrix on the left-hand side of (C.24) is nonsingular. Let

its inverse have norm M. Multiplying both sides of the equation by this inverse and taking norms,

we obtain
H ( (%k B x*)}— ) H < M[alg(A:Ek)2 + CLQOAII»’kW}g + aglw,%—l—
(A — Ao)a
a0k || M2+ [(wi + Az) + agswy + agaok || A7+ ||+
asspuy ¢ H [\/WZEA; + a14p) (a1swy + a2 Azg+
(C.32) Ak — M) ax || + azo || Ak 2 )]

= (MaAxy, + Magowy, + Mazayap) ) Azg+
(Magiwy, + Maysaisp) + Mags)wi+
Mayapf||(v — M)as]| + Mags H [V kil ieas
(Magy + Mags(wy, + Axy) + Mazaiap))og|| M,z

_l’_

The mechanisms of Algorithm A.1 ensure that w; converges to zero. Moreover, Theorem 4.2

guarantees that Axy, also converges to zero for k € IC. Thus, there is a kg for which

(C.33) wr, < min(1,1/(4Masg))
and
(C.34) Az, <min(1,1/(4Mayy))

for all k > ko (k € K). Furthermore, let
(035) Hmax = min(17 1/(4MCL26L14)1/X).
Then, if p < pimax, (C.32), (C.33), (C.35) and (C.34) give

Az < 3Azy + M(ag + a1aa18 + ag3)wi+
(C.36) Marap} |\ = A | + Masspy,™ || [Vl s
M (ag4 + 2a22 + azais)op|| Aez+ |-

_l’_

Cancelling the Azy, terms in (C.36), multiplying the resulting inequality by four and substituting
into (C.27), we obtain the desired inequality (5.6), where as def 4 AM (az1 + aiga1s + aszs),
ag def 4Mayy, a7 def 4Maos and ag def 4AM (ag4 + 2a22 + asaryg). The remaining inequalities (5.7)
and (5.8) follow directly by substituting (5.6) into (4.4) and (4.6), the required constants being
ag def a1 + agas5, aig def asa6, a11 def asar, a12 det as + asag and ai3 def 1+ asag.
C.2. Proof of Lemma 5.2. We have, from Theorem 4.3 and AS6, that the complete sequence
of Lagrange multiplier estimates {\;} generated by Algorithm A.l converges to \.. We now
consider the sequence {\y}.

There are three possibilities. First, ux may be bounded away from zero. In this case, step 3 of
Algorithm A.1 must be executed for all k sufficiently large, which ensures that {\;} and {\;_1}

are identical for all large k. As the latter sequence converges to A, so does the former.

11



Secondly, pr may converge to zero but nonetheless there may be an infinite number of iterates
for which (A.7) is satisfied. In this case, the only time adjacent members of the sequence {\x}
differ, A\ = M\r_1, and we have already observed that the latter sequence {\;_1} converges to .

Finally, if the test (A.7) were to fail for all k& > kq, [|[Agz+|| and [[(Ax — As) .4+

fixed for all k > k1, as step 4 would then be executed for all subsequent iterations. But then

(4.6) implies that
[T

(C.37) ‘
for some constant asg for all k > ko > k1. As up converges to zero as k increases, we have

will remain

< agg ik

5

(C.38) agepik < Mshf = Nk

for all k sufficiently large. But then inequality (A.7) must be satisfied for some k > kj, con-
tradicting the supposition. Hence, this latter possibility proves to be impossible. Thus, {\;}
converges to A,.

Inequality (5.9) then follows immediately for ¢ € 7* by considering the definitions (A.3), (4.8)
and (B.22) and using the convergence of A\ 7+ to A, 7+ = 0; a suitable representation of §; would
be

(C.39) 0 = max < Vi ) .

€1 \ ek + /M
Now S\M converges to A.; > 0 and is thus bounded away from zero for all k, for each
i € A}. But this and the convergence of {\;} to A, implies that /A ;/Ax,; is bounded and hence
inequality (5.4), with ¢ = 1, holds for all k. The remaining results follow directly from Lemma 5.1
on substituting ¢ = 1 into (5.5).
C.3. Proof of Theorem 5.3. The appropriate version of Theorem 5.3 for the simplified
Algorithm 2 is now stated:

Theorem C.1 Suppose that the iterates {x} generated by Algorithm 3.1 satisfy AS6 and that
AS4 and AS5 hold. Furthermore, suppose that AST holds. Then there is a constant pmin > 0
such that g > fmin for all k.

Proof.  Suppose, otherwise, that p; tends to zero. Then, step 4 of the algorithm must be
executed infinitely often. We aim to obtain a contradiction to this statement by showing that
step 3 is always executed for k sufficiently large. We note that our assumptions are sufficient for
the conclusions of Theorem 4.3 to hold.

Lemma 5.2, part (i), ensures that {\;} converges to A.. We note that, by definition,

(C.40) pre < 1.
Consider the convergence tolerance wy as generated by the algorithm. By construction
(C.41) wr < Wl

for all k. (This follows by definition if step 4 of the algorithm occurs and because the penalty

parameter is unchanged while wy, is reduced when step 3 occurs.) As Lemma 5.2, part (iii),
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ensures that (5.4) is satisfied for all k, we may apply Lemma 5.1 to the iterates generated by the
algorithm. We identify the set I with the complete set of integers. As we are currently assuming
that pp converges to zero, we can ensure that py is sufficiently small so that Lemma 5.1 applies
to Algorithm A.1 and thus that there is an integer k; and constants ag, ..., a3 so that (5.7) and
(5.8) hold for all k£ > k;. In particular, if we choose

(C.42) Y = yo &1,
we obtain the bounds

(C.43) 1Ak = A).as

< agwi, + (a10 + a11) x| (Ae — As) x| + a120%|| Ak, z+ ||

and

(C.44) [ ek,iMei/ /Al iy || < e [aswr + (a11 + a13) [[(Ae — Ax) a-

(1 + (1 + alg)O'k)H)\kJ* ]

for all k > k1, from (C.40) and the inclusion A5 C A*. Moreover, as Lemma 5.2, part (ii), ensures

_l’_

that 05 converges to zero, there is an integer ks for which
(C.45) ok < Lk
for all k > ko. Thus, combining (C.40), (C.43), (C.44) and (C.45), we have that

(C.46) [ = ) || < agwi + azrpug]| (A — As) -

+ a2 || A,z ||

and

(C.47) 1 {ekiMesi/ v/ i) iy || < bk lagwi + ass||(Ae — A)ax ||+

]

def def def
for all k > max(ky, k), where agy = a19 + a11, ass = a11 + a3 and agy = 2 + aqa.

a9 | Ak, 7+

Now, let k3 be the smallest integer such that

1
g Ms
4 5 <
(C 8) :U’k; = w5a307
5 1
(C.49) pp < min (1, —) ,
asy
s
C.50 <
(C.50) e < o
and
(C.51) 1y, < fls

~ 2wg(agg + aggasi)

for all k& > k3, where agg def ag + asg + asg and ag; def ag + a2 + as7. Furthermore, let k4 be such
that
(C.52) (A = A)asl| Sws and  [[Agz+|| < ws

for all k > k4.
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Finally, define k5 = max(ky, ko, k3, k4), let T be the set {k| step 4 is executed at iteration k —1
and k > ks}, and let kg be the smallest element of I'. By assumption, I" has an infinite number
of elements.

For iteration ko, wg, = wsftk, and Nk, = Nspir,- Then (C.47) gives

|| [ko,i ko, / v/ Mo o ||
< kg [aowry + as||(Ary — M) A || + azol[ Arg 7]

C.53 -
( ) < ws(ag + ags + agg)pr, = wsasopk, [from (C.52)]
5

IA

nsuEO = Tk [from (C.48)].

Thus, from (C.53), step 3 of Algorithm A.1 will be executed with Agy11 = A(Zkg, Mkg» Sk )+ 1D
equality (C.46), in conjunction with (C.41) and (C.52) guarantees that

[(Akogr1 — M) as || < agwrg + aoriirg [|(Arg — As) ax || + @12k [ Ao,z |l
(C.54) < agwshigy + A27Wshiky + A12Ws [k,
< WsA31 k-

Furthermore, inequality (4.1), in conjunction with (4.8), (C.45), and (C.52), ensures that

(C.55) [Ako 1,7+ || < Tkl Ao,z || < Wity -

We shall now assume that step 3 is executed for iterations kg + ¢ (0 < i < j) and show that

1+4i

(C.56) g ier = M) | < waasn g,
and X
144i
(C.57) [Ako+it1,ze | < wattgg 2

Inequalities (C.54) and (C.55) show that this is true for j = 0. We aim to show that the same is
true for ¢ = j 4+ 1. Under our supposition, we have, for iteration ko + 7 + 1, that p 411 = pk,,
19 1+2(5+1 )
Whotj+1 = ws,ui: and k41 = Nshy, 50+ Then (C.47) gives
[ Tero 412045410/ V Abotsatil i |

2
< ik [aowsitly” + ass|| (kg1 — A || + a0l Ak g7+ ]
+2 1+45 1+3j
< ko agwslu,i: +a28a31w8uk0 6]+a29wsuk0 6]:|

(C.58)
[from (C.56)—(C.57)]

2435
ws(ag + (a9 + a28a31)ﬂk0 o/

141
< ns,uk:‘*j = Nko+j+1 [from (C.50)—(C.51)].

IA

Thus, from (C.58), step 3 of Algorithm A.1 will be executed with Agyyj12 =

M®Tko4j4+1> Meo+j+1s Sko+j+1)- Inequality (C.46) then guarantees that

[(Akotit2 — Ax).as
< AW j+1 @27kt j+1 [ (Mg i1 — Ax) 4%

+ @12 kg1 1| Akoj+1,27 ||
(C.59) 0TJ] 0TJ

j 3 142 (+1
< aguaply? + wilaaragif, + a0 [from (C.56)-(C.57)]
1/,
< wsa31M;1€:6(J+1) [from (C.49)],
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which establishes (C.56) for i = j + 1.
Furthermore, inequalities (4.1) and (C.45) ensure that

(C.60) [Akotjr2,zell < Jko+j+11|l/\ko+j+1,z*|| S INREEY PYSIPIEE [from (4.8) ]
' < wopy sVt [from (C.57)],

which establishes (C.57) for i = j+ 1. Hence, step 3 of the algorithm is executed for all iterations
k > ko. But this implies that I' is finite, which contradicts the assumption that step 4 is executed
infinitely often. Hence the theorem is proved. O

C.4. Proof of Theorem 5.4. We proceed by considering an example which has more than
one Kuhn-Tucker point and for which the optimal Lagrange multipliers are distinct. We consider
a sequence of iterates which is converging satisfactorily to a single Kuhn-Tucker point (z 1, Ay 1)
(and thus the penalty parameter has settled down to a single value). We now introduce an

“extra” iterate xj near to a different Kuhn-Tucker point (x4 2, A« 2). We make use of the identity

(C.61) ChiMei/ A Mesi = B (Mei — Aki),s

derived from (2.5) and (A.3), to show that if the Lagrange multiplier estimate Ay ; calculated at
xy, is a sufficiently “accurate” approximation of Ao (while Ay ; is an “accurate” representation
of A« 1), the acceptance test (A.7) will fail and the penalty parameter will be reduced. Moreover,
we show that this behavior can be repeated indefinitely.

To be specific, we consider the following problem:

(C.62) minimize e(x —1)? such that c(z) =2? —4 >0,

zeR

where € is a (yet to be specified) positive constant. It is straightforward to show that the problem

has two local solutions, which occur at the Kuhn-Tucker points

3
(C.63) (Ta1s A1) = <—2, 56) and (2.2, o) = <2§>

and that the constraint is active at both local solutions. Moreover, there are no specific bounds
on the variable in the problem, and hence P(x,V,¥(z,\,s)) = V,¥(z, A, s) for all z.

We intend to construct a cycle of iterates x4, ¢ = 0,...,7, for some integer j, which are
allowed by Algorithm A.1. The penalty parameter remains fixed throughout the cycle until it is
reduced at the end of the final iteration. We start with A\g = A, 1. We also pick € so that

. 2 Ws 21
C.64 € <min | =, , .
. - <3<6+Tﬁ5> %)

We define j to be the smallest integer for which
j—1

(C.65) 1ot < Le/ns.

We let 11 denote the value of the penalty parameter at the start of the cycle.

15



i=0: We have wy = wspu and 7 = nsu%. We are given A\, = A, 1. We pick x near x,1 so
that A\, = (1 — f)As,1. We show that such a choice guarantees that the convergence and
acceptance tests (A.5) and (A.7) are satisfied, and thus step 3 of the algorithm is executed.

i=1,..,j-2 We have wpp; = wepu't and npy; = nsu%. We have A\gyi = (1 — pi) A1
We pick x4 near x, 1 so that Xkﬂ- = (1 — pit1)As,1. We again show that such a choice
guarantees that the convergence and acceptance tests (A.5) and (A.7) are satisfied, and

thus step 3 of the algorithm is executed.

i =j-1: We have wy; = wepu't and np4 = nsu%. We have A4 = (1 — pi)A 1. We pick
Tj+i Near Ty 1 so that Nogi = A«1. Once again, we show that such a choice guarantees that
the convergence and acceptance tests (A.5) and (A.7) are satisfied, and thus step 3 of the
algorithm is executed.

5+

6 . We have A\p; = A\ 1. We pick zp1; as the

i=j: We have wy; = wsp!™ and ny4j = nsp
local minimizer of the Lagrangian barrier function which is larger than x, 2, which trivially
ensures that the convergence test (A.5) is satisfied. We also show that the acceptance test
(A.7) is violated at this point, so that step 4 of the algorithm will be executed and the

penalty parameter reduced.

It is clear that if an infinite sequence of such cycles occur, the penalty parameter u; will converge
to zero. We now show that this is possible.

If a is a real number, we will make extensive use of the trivial inequalities

(C.66) 1<+vV14+a<14a whenever a>0

and

(C.67) l-a<+v1—-a<1-—1a whenever 0<a<1.
We also remind the reader that

(C.68) w<po<l1.

1. Let

(C.69) zi = =2/1+ dpsi/ (1= p),

where the shift s, = uy/Ze. Then it is easy to verify that A, = (1 — )\ 1. Moreover,

VU (g, Ay sk) = 2€e(xp — 1) —3e(1 — p)rg = —€(2+ (1 — 3p)xg)
= =2¢ (1= (1= 3p)y/T+ sk /(A1 — 1)) -

Taking norms of (C.70) and using (C.66) yields

(C.70)

Gep it p<i,
C.71 P(xg, Vi ¥ (g, A, < -
( ) | P(z (ks Akes SE)) || % <3 + H) otherwise.
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Now (C.64) implies that s; < u < 1, and thus we obtain the overall bound

(C.72) 1P, Vol (g Ay s1)) | < € (6 +r fuo) "
from (C.68) and (C.71). But then (C.72) and (C.64) give

(C.73) |1P(z, V¥ (2, Ak, Sk)) || < wspt = wy,

as 1 <ws/(64+1/(1 — pp))e. Furthermore, from (C.61) and (C.64),

(C.74) le(ai) M/ vVl = il M — Mell = $u2e < ot =y,

1
as u% < p§ <1< 2n4/3e. Thus, xi, satisfies (A.5) and (A.7), and hence step 3 of the algorithm
will be executed. Therefore, in particular, wi11 = Wit M1 = Nspp and Agy1 = (1 — ) A 1.
2. Forvt=1,...57—2, let

(C.75) i = ~2/1 = 4l — w)sprs/ (1 — pith),

where the shift s;y; = puy/2(1 — p?)e. Note that (C.75) is well defined, as the second term within
the square root is less than 1 in magnitude because (C.64) and (C.68) imply that s, < p and
pi(1—p) /(1 — @ity < 1. It is then easy to verify that Ag; = (1 — 1)\, 1. Moreover,

V:c\I/(«Tk+z’7 Akt 3k+z‘) = 2€($k+i - 1) - 36(1 - Mi+1)$k+z’
(C.76) = —€(2+ (1 —3u)apy)
— 2 (1 — (1= 3ty 1 - %) .

Now suppose ptt < 1. Then (C.76), (C.67), (C.68) and s < p yield

i Y(—p)skri
1P (@rsis Vol (g Meis sii)l| € 26 (1= (1= 30 (1 - grstse))
= ( i+l £ A (- 3/‘Z+1)sk+i>
(C.77) i+1 a u)(81(1351:)
S e §3+ i)
1
§ 26# 3 + m

If, on the other hand, p*! > 1, the same relationships give

IP(@csss o (@i Mesir sl € 2€ (1= (1= 3611 - He=fige))

. itlyg

< 6€Mi+1.

Thus, combining (C.77) and (C.78), we certainly have that

1 .
(€9 Pt V¥ i M) | < € (64 7= )
But then (C.79) and (C.64) give

(C.80) 1P (@reris Vo U (@heris Mt Shpa) | < wspt' ™ = wieps,
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as 1 <ws/((641/(1 — po)) €). Furthermore, from (C.61) and (C.64),

le(@rsi)Meri/VAerill =l Merii = Akl = 371 (1 = p)e

i1 541
< g

(C.81) 5+i
€S M 6 = Mg

as ,ulzm < 2ps/e. Thus, xy; satisfies (A.5) and (A.7), and hence step 3 of the algorithm
will be executed. Therefore, in particular, wyyiy1 = wWspt' T2, Npgiv1 = 773#1+% and Agii41 =
(1 _ ,uH'l))\*,l.

3. Let

(C.82) Thyj—1 = —2\/1 — sy,

where the shift s;y;_1 = py/2(1 — p/=1)e. Once again, (C.64) and (C.68) imply that spy;—1 < p,
and thus (C.82) is well defined. Furthermore, it is easy to verify that 5\k+j—1 = As,1. Moreover

VoW (g j1, Metj1,5k4j-1) = 26(Tpgjo1 — 1) — 3eTpqj1
(083) = —6(2 + wk—l—j—l)

= —2c(1-\1— 1w lsig).

But then (C.67), (C.83) and the inequality si4;—1 < p yield

(C.84) [P(@hy—15 Va P (@1, Meago1s Sk —1)|| < ep? “Tsprja < e
Thus, (C.84) and (C.64) give
(C.85) [P(@hgj-1, Vo ¥ (Tha 15 Mg -1 kg 1) | S watt? = gy,

as 1 <ws/((64+1/(1 — o)) €) < 2ws/e. Furthermore, from (C.61) and (C.64),

le(@rajm1)Metj—1/ v/ Arri—1ll = Bl ko1 — Merjorall = Sule
(C.86) A
Nsth™S = Metj—1,

IN

5j—4

as i~ 6 < 2ns/e. Thus, xx ;-1 satisfies (A.5) and (A.7), and hence step 3 of the algorithm will
be executed. Therefore, in particular, wy4; = wep I, Mitj = ns,us—gl and Ay = A1,

4. We pick x4, as the largest root of the nonlinear equation

B 3T Skt

(C.87) d(x) =2(x—1) - m =0

where si1; = py/3e. Equation (C.87) defines the stationary points of the Lagrangian barrier
function for the problem (C.63). This choice ensures that (A.5) is trivially satisfied. As ¢(2) = —4
and ¢(z) increases without bound as = tends to infinity, the largest root of (C.87) is greater than
2. The function A given by (2.4) is a decreasing function of x as x grows beyond 2. Now
let & = \/4F Isgy;. It is easy to show that A(&,A.1,sk+;) = €. Moreover, we get ¢() =
2(2 — 1) — 2& = —2. Therefore, x; > 2, and thus A\gi; < e. But then, using (C.61), we have

that

C (@it ) Mot i/ Netill = Bkt — Merj) > p(Be —€) = Lep
(C.88) v b

> nsp 6 = Nk+-5
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from (C.65). Thus, the test (A.7) is violated and the penalty parameter subsequently reduced.
This ensures that wy4j11 = wWspt, My jr1 = Nspp and Ny jr1 = i 1.

Hence, a cycle as described at the start of this section is possible and we conclude that, in
the absence of AS6, the penalty parameter generated by Algorithm A.1 may indeed converge to
zero. O
C.5. Proof of Theorem 5.5. First, as (A.7) holds for all k& > ko, the penalty parameter puy

remains fixed at some value puy, say, the convergence tolerances satisfy

=

(C.89) Wrt1 = Wiptr and Myt = Mepp

and Ay = i for all k& > k.

The Q-superlinear convergence of the Lagrange multiplier estimates for inactive constraints
follows directly from Theorem 4.2, part (iv). Lemma 5.2, part (ii), the convergence of 6y, to zero
and the relationships (4.1) and (4.8) then give that

(C.90) | Akt1,7+

< el A,z

for all k£ sufficiently large.
The identities (2.5), (A.3) and the assumption that (A.7) holds for all k > kg gives

(Co1) Ak — Me)asll = it H [k,iMe,i/ Vi) seas
< i | emidni/ VAl || < wi e

for all such k. But then the triangle inequality and (C.91) imply that

(Mg — Ax) 4

< [k — M) s
< [k — As) s

(C.92) (Mktjt1 — Mg A

for all £ > kg. Thus, summing (C.92) from j = 0 t0 jmax — 1 and using the relationship (C.89)
yields '
1O = Al S Ok = A 4 i 2225 e

6]max

-1
< M ktgmar — A |4 g (L = p77) /(1 = ).
Hence, letting jmax tend to infinity and recalling that Ay converges to A., we see that (C.93) gives

(C.93)

Nk 77k

(C94) e = A < 2

for all £ > kg. As m converges to zero R-linearly, with R-factor ué, (C.94) gives the required
result (ii).

The remainder of the proof parallels that of Lemma 5.1. As (A.7) holds for all sufficiently
large k, the definition (C.4) of A and the bound (C.8) ensure that

|0/ Al sa | | [0/ Rt

arail | [eridei/ Vel g || < arapl .

ek, Al

(C.95)

IN A
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Thus, combining (C.25) and (C.26), (C.90) and replacing (C.12) by (C.95), we may replace
the bound on the right-hand side of (C.30) by azwi + a240y|| Ak 7+ ||+ a25u11€_x H [‘/Akvi]ieAg +
a14u;§_177k, and consequently (C.32) by

Az < Mlag(Axg)? + a0 Axpwi + agiwi+
a220k || Ak, z+ || (wi + Axg) + azswi, + a2aok || Ak 2+ ||+
agspty, H [VAkilicas|| + arap” il
= (MajgAxy + Magowy)Azy, + (Magwg + Mags)wi+
(Magg + Maga(wi, + Axy))ok|| Ak,z+ ||
Magspy, H[\/WZEA;

Hence, if k is sufficiently large that

(C.96)

+ Mayyl .

(C.97) Az <1/(AMayg), wr <min(1,1/(4Mag)) and o <1,
(C.96) and (C.97) can be rearranged to give

Azy < 2M[(CL21 + agg)wk + (a24 + 2&22)”)%71*
1— —1
agspy, H [V ki ies|| T arapy k).

But then (C.27) and (C.98) give

(C.98) *

ok — x| < asowy + ass|| Ak 7+

C.99 - - v/
( ) +a34;ﬁ§ 1nk+a35u,1€ XH[ Ak,i i€AS

)

where ags def 1+ 2M(a21 + a23), ass def 2M(a24 + 2&22), asy4 def 2M a4 and ass def 2Mass. Each

term on the right-hand-side of (C.99) converges at least R-linearly to zero; the R-factors (in
1 1

order) being no larger than juy, pg, pp and p}?, respectively, following (C.89), (C.90) and (C.94).

i
Hence, (C.99) shows that xj converges at least R-linearly with R-factor at most 11,°.

C.6. Proof of Corollary 5.6. This follows directly from Theorem C.1 (§ C.3), as this ensures
that (A.7) is satisfied for all k sufficiently large.
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