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In this paper, we consider augmented Lagrangian (AL) algorithms for solving large-scale nonlinear
optimization problems that execute adaptive strategies for updating the penalty parameter. Our work is
motivated by the recently proposed adaptive AL trust region method by Curtis et al. [An adaptive aug-
mented Lagrangian method for large-scale constrained optimization, Math. Program. 152 (2015), pp.
201–245.]. The first focal point of this paper is a new variant of the approach that employs a line search
rather than a trust region strategy, where a critical algorithmic feature for the line search strategy is the
use of convexified piecewise quadratic models of the AL function for computing the search directions.
We prove global convergence guarantees for our line search algorithm that are on par with those for the
previously proposed trust region method. A second focal point of this paper is the practical performance
of the line search and trust region algorithm variants in Matlab software, as well as that of an adaptive
penalty parameter updating strategy incorporated into the Lancelot software. We test these methods on
problems from the CUTEst and COPS collections, as well as on challenging test problems related to opti-
mal power flow. Our numerical experience suggests that the adaptive algorithms outperform traditional
AL methods in terms of efficiency and reliability. As with traditional AL algorithms, the adaptive methods
are matrix-free and thus represent a viable option for solving large-scale problems.
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1. Introduction

Augmented Lagrangian (AL) methods [28,35] have recently regained popularity due to growing
interests in solving large-scale nonlinear optimization problems. These methods are attractive in
such settings as they can be implemented matrix-free [2,4,12,31] and have global and local con-
vergence guarantees under relatively weak assumptions [20,29]. Furthermore, certain variants
of AL methods [22,23] have proved to be very efficient for solving certain structured problems
[7,36,38].
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2 F.E. Curtis et al.

An important aspect of AL methods is the scheme for updating the penalty parameter that
defines the AL function. The original strategy was monotone and based on monitoring the
constraint violation (e.g. see [12,15,30]). Later, other strategies (e.g. see [4,24]) allowed for
non-monotonicity in the updating strategy, which often lead to better numerical results. We
also mention that for the related alternating direction method of multipliers, a penalty parameter
update has been designed to balance the primal and dual optimality measures [7].

A new AL trust region method was recently proposed and analysed in [16]. The novel feature
of that algorithm is an adaptive strategy for updating the penalty parameter inspired by tech-
niques for performing such updates in the context of exact penalty methods [8,9,32]. This feature
is designed to overcome a potentially serious drawback of traditional AL methods, which is that
they may be ineffective during some (early) iterations due to poor choices of the penalty param-
eter and/or Lagrange multiplier estimates. In such situations, the poor choices of these quantities
may lead to little or no improvement in the primal space and, in fact, the iterates may diverge
from even a well-chosen initial iterate. The key idea for avoiding this behaviour in the algorithm
proposed in [16] is to adaptively update the penalty parameter during the step computation in
order to ensure that the trial step yields a sufficiently large reduction in linearized constraint
violation, thus steering the optimization process steadily towards constraint satisfaction.

The contributions of this paper are two-fold. First, we present an AL line search method
based on the same framework employed for the trust region method in [16]. The main differ-
ence between our new approach and that in [16], besides the differences inherent in using line
searches instead of a trust region strategy, is that we utilize a convexified piecewise quadratic
model of the AL function to compute the search direction in each iteration. With this modifica-
tion, we prove that our line search method achieves global convergence guarantees on par with
those proved for the trust region method in [16]. The second contribution of this paper is that
we perform extensive numerical experiments with a Matlab implementation of the adaptive
algorithms (i.e. both line search and trust region variants) and an implementation of an adaptive
penalty parameter updating strategy in the Lancelot software [13]. We test these implementa-
tions on problems from the CUTEst [25] and COPS [6] collections, as well as on test problems
related to optimal power flow [39]. Our results indicate that our adaptive algorithms outperform
traditional AL methods in terms of efficiency and reliability.

The remainder of the paper is organized as follows. In Section 2, we present our adaptive
AL line search method and state convergence results. Details about these results, which draw
from those in [16], can be found in Appendices 1 and 2 with further details in [17]. We then
provide numerical results in Section 3 to illustrate the effectiveness of our implementations of
our adaptive AL algorithms. We give conclusions in Section 4.

Notation. We often drop function arguments once a function is defined. We also use a subscript
on a function name to denote its value corresponding to algorithmic quantities using the same
subscript. For example, for a function f : �n → �, if xk is the value for the variable x during
iteration k of an algorithm, then fk := f (xk). We also often use subscripts for constants to indi-
cate the algorithmic quantity to which they correspond. For example, γμ denotes a parameter
corresponding to the algorithmic quantity μ.

2. An adaptive AL line search algorithm

2.1 Preliminaries

We assume that all problems under our consideration are formulated as

minimize
x∈�n

f (x) subject to c(x) = 0, l ≤ x ≤ u. (1)
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Optimization Methods & Software 3

Here, we assume that the objective function f : �n → � and constraint function c : �n → �m

are twice continuously differentiable, and that the variable lower bound vector l ∈ �̄n and
upper bound vector u ∈ �̄n satisfy l ≤ u. (Here, �̄ denotes the extended set of real numbers
that includes negative and positive infinite values.) Ideally, we would like to compute a global
minimizer of (1). However, since guaranteeing convergence to even a local minimizer is compu-
tationally intractable, our aim is to design an algorithm that will compute a first-order primal-dual
stationary point for problem (1). In addition, in order for the algorithm to be suitable as a general-
purpose approach, it should have mechanisms for terminating and providing useful information
when an instance of (1) is (locally) infeasible. For cases, we have designed our algorithm so that
it transitions to finding a point that is infeasible with respect to (1), but is a first-order stationary
point for the nonlinear feasibility problem

minimize
x∈�n

v(x) subject to l ≤ x ≤ u, (2)

where v : �n → � is defined as v(x) = 1
2‖c(x)‖2

2.
As implied by the previous paragraph, our algorithm requires first-order stationarity condi-

tions for problems (1) and (2), which can be stated in the following manner. First, introducing
a Lagrange multiplier vector y ∈ �m, we define the Lagrangian for problem (1), call it � :
�n ×�m → �, by

�(x, y) = f (x)− c(x)Ty.

Defining the gradient of the objective function g : �n → �n by g(x) = ∇f (x), the transposed
Jacobian of the constraint function J : �n → �m×n by J(x) = ∇c(x), and the projection operator
P : �n → �n, component-wise for i ∈ {1, . . . , n}, by

[P(x)]i =

⎧⎪⎪⎨⎪⎪⎩
li if xi ≤ li

ui if xi ≥ ui

xi otherwise

we may introduce the primal-dual stationarity measure FL : �n ×�m → �n given by

FL(x, y) = P(x− ∇x�(x, y))− x = P(x− (g(x)− J(x)Ty))− x.

First-order primal-dual stationary points for (1) can then be characterized as zeros of the primal-
dual stationarity measure FOPT : �n ×�m → �n+m defined by stacking the stationarity measure
FL and the constraint function −c, that is, a first-order primal-dual stationary point for (1) is any
pair (x, y) with l ≤ x ≤ u satisfying

0 = FOPT(x, y) =
(

FL(x, y)

−c(x)

)
=
(

P(x−∇x�(x, y))− x
∇y�(x, y)

)
. (3)

Similarly, a first-order primal stationary point for (2) is any x with l ≤ x ≤ u satisfying

0 = FFEAS(x), (4)

where FFEAS : �n → �n is defined by

FFEAS(x) = P(x− ∇xv(x))− x = P(x− J(x)Tc(x))− x.

In particular, if l ≤ x ≤ u, v(x) > 0, and (4) holds, then x is an infeasible stationary point for
problem (1).
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4 F.E. Curtis et al.

Over the past decades, a variety of effective numerical methods have been proposed for solving
large-scale bound-constrained optimization problems. Hence, the critical issue in solving prob-
lem (1) is how to handle the presence of the equality constraints. As in the wide variety of penalty
methods that have been proposed, the strategy adopted by AL methods is to remove these con-
straints, but influence the algorithm to satisfy them through the addition of terms in the objective
function. In this manner, problem (1) (or at least (2)) can be solved via a sequence of bound-
constrained subproblems—thus allowing AL methods to exploit the methods that are available
for subproblems of this type. Specifically, AL methods consider a sequence of subproblems in
which the objective is a weighted sum of the Lagrangian � and the constraint violation measure
v. By scaling � by a penalty parameter μ ≥ 0, each subproblem involves the minimization of a
function L : �n ×�m ×�→ �, called the augmented Lagrangian (AL), defined by

L(x, y, μ) = μ�(x, y)+ v(x) = μ(f (x)− c(x)Ty)+ 1
2‖c(x)‖2

2.

Observe that the gradient of the AL with respect to x, evaluated at (x, y, μ), is given by

∇xL(x, y, μ) = μ(g(x)− J(x)Tπ(x, y, μ)),

where we define the function π : �n ×�m ×�→ �m by

π(x, y, μ) = y− 1
μ

c(x).

Hence, each subproblem to be solved in an AL method has the form

minimize
x∈�n

L(x, y, μ) subject to l ≤ x ≤ u. (5)

Given a pair (y, μ), a first-order stationary point for problem (5) is any zero of the primal-dual
stationarity measure FAL : �n ×�m ×�→ �n, defined similarly to FL but with the Lagrangian
replaced by the AL; that is, given (y, μ), a first-order stationary point for (5) is any x satisfying

0 = FAL(x, y, μ) = P(x−∇xL(x, y, μ))− x. (6)

Given a pair (y, μ) with μ > 0, a traditional AL method proceeds by (approximately) solving
(5), which is to say that it finds a point, call it x(y, μ), that (approximately) satisfies (6). If the
resulting pair (x(y, μ), y) is not a first-order primal-dual stationary point for (1), then the method
would modify the Lagrange multiplier y or penalty parameter μ so that, hopefully, the solution of
the subsequent subproblem (of the form (5)) yields a better primal-dual solution estimate for (1).
The function π plays a critical role in this procedure. In particular, observe that if c(x(y, μ)) = 0,
then π(x(y, μ), y, μ) = y and (6) would imply FOPT(x(y, μ), y) = 0, that is, that (x(y, μ), y) is
a first-order primal-dual stationary point for (1). Hence, if the constraint violation at x(y, μ) is
sufficiently small, then a traditional AL method would set the new value of y as π(x, y, μ). Other-
wise, if the constraint violation is not sufficiently small, then the penalty parameter is decreased
to place a higher priority on reducing the constraint violation during subsequent iterations.

2.2 Algorithm description

Our AL line search algorithm is similar to the AL trust region method proposed in [16], except
for two key differences: it executes line searches rather than using a trust region framework, and
it employs a convexified piecewise quadratic model of the AL function for computing the search
direction in each iteration. The main motivation for utilizing a convexified model is to ensure
that each computed search direction is a direction of strict descent for the AL function from the
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Optimization Methods & Software 5

current iterate, which is necessary to ensure the well-posedness of the line search. However, it
should be noted that, practically speaking, the convexification of the model does not necessarily
add any computational difficulties when computing each direction; see Section 3.1.1. Similar to
the trust region method proposed in [16], a critical component of our algorithm is the adaptive
strategy for updating the penalty parameter μ during the search direction computation. This is
used to ensure steady progress—that is, steer the algorithm—towards solving (1) (or at least (2))
by monitoring predicted improvements in linearized feasibility.

The central component of each iteration of our algorithm is the search direction computation.
In our approach, this computation is performed based on local models of the constraint violation
measure v and the AL function L at the current iterate, which at iteration k is given by (xk , yk , μk).
The local models that we employ for these functions are, respectively, qv : �n → � and q̃ :
�n → �, defined as follows:

qv(s; x) = 1
2‖c(x)+ J(x)s‖2

2

and q̃(s; x, y, μ) = L(x, y)+∇xL(x, y)Ts+max
{

1
2 sT(μ∇2

xx�(x, y)+ J(x)TJ(x))s, 0
}

.

We note that qv is a typical Gauss–Newton model of the constraint violation measure v, and q̃
is a convexification of a second-order approximation of the AL. (We use the notation q̃ rather
than simply q to distinguish between the model above and the second-order model—without the
max—that appears extensively in [16].)

Our algorithm computes two types of steps during each iteration. The purpose of the first step,
which we refer to as the steering step, is to gauge the progress towards linearized feasibility that
may be achieved (locally) from the current iterate. This is done by (approximately) minimiz-
ing our model qv of the constraint violation measure v within the bound constraints and a trust
region. Then, a step of the second type is computed by (approximately) minimizing our model
q̃ of the AL function L within the bound constraints and a trust region. If the reduction in the
model qv yielded by the latter step is sufficiently large—say, compared to that yielded by the
steering step—then the algorithm proceeds using this step as the search direction. Otherwise, the
penalty parameter may be reduced, in which case a step of the latter type is recomputed. This
process repeats iteratively until a search direction is computed that yields a sufficiently large
(or at least not too negative) reduction in qv. As such, the iterate sequence is intended to make
steady progress towards (or at least approximately maintain) constraint satisfaction throughout
the optimization process, regardless of the initial penalty parameter value.

We now describe this process in more detail. During iteration k, the steering step rk is
computed via the optimization subproblem given by

minimize
r∈�n

qv(r; xk) subject to l ≤ xk + r ≤ u, ‖r‖2 ≤ θk , (7)

where, for some constant δ > 0, the trust region radius is defined to be

θk := δ‖FFEAS(xk)‖2 ≥ 0. (8)

A consequence of this choice of trust region radius is that it forces the steering step to be smaller
in norm as the iterates of the algorithm approach any stationary point of the constraint violation
measure [37]. This prevents the steering step from being too large relative to the progress that
can be made towards minimizing v. While (7) is a convex optimization problem for which there
are efficient methods, in order to reduce computational expense our algorithm only requires rk to
be an approximate solution of (7). In particular, we merely require that rk yields a reduction in
qv that is proportional to that yielded by the associated Cauchy step (see (13a) later on), which is
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6 F.E. Curtis et al.

defined to be

rk := r(xk , θk) := P(xk − βkJk
T
ck)− xk

for βk := β(xk , θk) such that, for some εr ∈ (0, 1), the step rk satisfies

Δqv(rk; xk) := qv(0; xk)− qv(rk; xk) ≥ −εrrk
T
J

T

kck and ‖rk‖2 ≤ θk . (9)

Appropriate values for βk and rk—along with auxiliary non-negative scalar quantities εk and

k to be used in subsequent calculations in our method—are computed by Algorithm 1. The
quantity Δqv(rk; xk) representing the predicted reduction in constraint violation yielded by rk is
guaranteed to be positive at any xk that is not a first-order stationary point for v subject to the
bound constraints; see part (i) of Lemma A.4. We define a similar reduction Δqv(rk; xk) for the
steering step rk .

Algorithm 1 Cauchy step computation for the feasibility subproblem (7).
1: procedure Cauchy_feasibility(xk , θk)
2: restrictions : θk ≥ 0.
3: available constants : {εr, γ } ⊂ (0, 1).
4: Compute the smallest integer lk ≥ 0 satisfying ‖P(xk − γ lk J

T

kck)− xk‖2 ≤ θk .
5: if lk > 0 then
6: Set 
k ← min{2, 1

2 (1+ ‖P(xk − γ lk−1J
T

kck)− xk‖2/θk)} .
7: else
8: Set 
k ← 2.
9: end if

10: Set βk ← γ lk , rk ← P(xk − βkJ
T

kck)− xk , and εk ← 0.
11: while rk does not satisfy (9) do
12: Set εk ← max(εk ,−Δqv(rk; xk)/r

T

kJ
T

kck) .
13: Set βk ← γ βk and rk ← P(xk − βkJ

T

kck)− xk .
14: end while
15: return : (βk , rk , εk , 
k)

16: end procedure

After computing a steering step rk , we proceed to compute a trial step sk via

minimize
s∈�n

q̃(s; xk , yk , μk) subject to l ≤ xk + s ≤ u, ‖s‖2 ≤ �k , (10)

where, given 
k > 1 from the output of Algorithm 1, we define the trust region radius

�k := �(xk , yk , μk , 
k) = 
kδ‖FAL(xk , yk , μk)‖2 ≥ 0. (11)

As for the steering step, we allow inexactness in the solution of (10) by only requiring the
step sk to satisfy a Cauchy decrease condition (see (13b) later on), where the Cauchy step for
problem (10) is

sk := s(xk , yk , μk , �k , εk) := P(xk − αk∇xL(xk , yk , μk))− xk

for αk = α(xk , yk , μk , �k , εk) such that, for εk ≥ 0 returned from Algorithm 1, sk yields

Δq̃(sk; xk , yk , μk) := q̃(0; xk , yk , μk)− q̃(sk; xk , yk , μk)

≥ − (εk + εr)

2
sT

k∇xL(xk , yk , μk) and ‖sk‖2 ≤ �k .
(12)
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Optimization Methods & Software 7

Algorithm 2 describes our procedure for computing αk and sk . (The importance of incorporat-
ing 
k in (11) and εk in (12) is revealed in the proofs of Lemmas A.2 and A.3; see [17].) The
quantity Δq̃(sk; xk , yk , μk) representing the predicted reduction in L(·, yk , μk) yielded by sk is
guaranteed to be positive at any xk that is not a first-order stationary point for L(·, yk , μk) subject
to the bound constraints; see part (ii) of Lemma A.4. A similar quantity Δq̃(sk; xk , yk , μk) is also
used for the search direction sk .

Algorithm 2 Cauchy step computation for the AL subproblem (10).
1: procedure Cauchy_AL(xk , yk , μk , �k , εk)
2: restrictions : μk > 0, �k > 0, and εk ≥ 0.
3: available constant : γ ∈ (0, 1).
4: Set αk ← 1 and sk ← P(xk − αk∇xL(xk , yk , μk))− xk .
5: while (12) is not satisfied do
6: Set αk ← γαk and sk ← P(xk − αk∇xL(xk , yk , μk))− xk .
7: end while
8: return : (αk , sk)

9: end procedure

Our complete algorithm is given as Algorithm 3 on page 9. In particular, the kth iteration
proceeds as follows. Given the kth iterate tuple (xk , yk , μk), the algorithm first determines whether
the first-order primal-dual stationarity conditions for (1) or the first-order stationarity condition
for (2) are satisfied. If either is the case, then the algorithm terminates, but otherwise the method
enters the while loop in line 13 to check for stationarity with respect to the AL function. This
loop is guaranteed to terminate finitely; see Lemma A.1. Next, after computing appropriate trust
region radii and Cauchy steps, the method enters a block for computing the steering step rk and
trial step sk . Through the while loop on line 21, the overall goal of this block is to compute
(approximate) solutions of subproblems (7) and (10) satisfying

Δq̃(sk; xk , yk , μk) ≥ κ1Δq̃(sk; xk , yk , μk) > 0, l ≤ xk + sk ≤ u, ‖sk‖2 ≤ �k , (13a)

Δqv(rk; xk) ≥ κ2Δqv(rk; xk) ≥ 0, l ≤ xk + rk ≤ u, ‖rk‖2 ≤ θk , (13b)

and Δqv(sk; xk) ≥ min{κ3Δqv(rk; xk), vk − 1
2 (κttj)

2}. (13c)

In these conditions, the method employs user-provided constants {κ1, κ2, κ3, κt} ⊂ (0, 1) and the
algorithmic quantity tj > 0 representing the jth constraint violation target. It should be noted
that, for sufficiently small μ > 0, many approximate solutions to (7) and (10) satisfy (13), but
for our purposes (see Theorem 2.2) it is sufficient that, for sufficiently small μ > 0, they are
at least satisfied by rk = rk and sk = sk . A complete description of the motivations underlying
conditions (13) can be found in [16, Section 3]. In short, (13a) and (13b) are Cauchy decrease
conditions while (13c) ensures that the trial step predicts progress towards constraint satisfaction,
or at least predicts that any increase in constraint violation is limited (when the right-hand side
is negative).

With the search direction sk in hand, the method proceeds to perform a backtracking line search
along the strict descent direction sk for L(·, yk , μk) at xk . Specifically, for a given γα ∈ (0, 1), the
method computes the smallest integer l ≥ 0 such that

L(xk + γ l
αsk , yk , μk) ≤ L(xk , yk , μk)− ηsγ

l
αΔ̃q(sk; xk , yk , μk), (14)

and then sets αk ← γ l
α and xk+1 ← xk + αksk . The remainder of the iteration is then composed

of potential modifications of the Lagrange multiplier vector and target values for the accuracies
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8 F.E. Curtis et al.

Algorithm 3 Adaptive AL line search algorithm.
1: Choose {γ , γμ, γα , γt, γT , κ1, κ2, κ3, εr, κt, ηs, ηvs} ⊂ (0, 1) such that ηvs ≥ ηs.
2: Choose {δ, ε, Y } ⊂ (0,∞).
3: Choose an initial primal-dual pair (x0, y0).
4: Choose {μ0, t0, t1, T1, Y1} ⊂ (0,∞) such that Y1 ≥ max{Y , ‖y0‖2}.
5: Set k← 0, k0 ← 0, and j← 1.
6: loop
7: if FOPT(xk , yk) = 0, then
8: return the first-order stationary solution (xk , yk).
9: end if

10: if ‖ck‖2 > 0 and FFEAS(xk) = 0, then
11: return the infeasible stationary point xk .
12: end if
13: while FAL(xk , yk , μk) = 0, do
14: Set μk ← γμμk .
15: end while
16: Set θk by (8).
17: Use Algorithm 1 to compute (βk , rk , εk , 
k)← Cauchy_feasibility(xk , θk).
18: Set �k by (11).
19: Use Algorithm 2 to compute (αk , sk)← Cauchy_AL(xk , yk , μk , �k , εk).
20: Compute approximate solutions rk to (7) and sk to (10) that satisfy (13a)–(13b).
21: while (13c) is not satisfied or FAL(xk , yk , μk) = 0, do
22: Set μk ← γμμk and �k by (11).
23: Use Algorithm 2 to compute (αk , sk)← Cauchy_AL(xk , yk , μk , �k , εk).
24: Compute an approximate solution sk to (10) satisfying (13a).
25: end while
26: Set αk ← γ l

α where l ≥ 0 is the smallest integer satisfying (14).
27: Set xk+1 ← xk + αksk .
28: if ‖ck+1‖2 ≤ tj, then
29: Compute any ŷk+1 satisfying (15).
30: if min{‖FL(xk+1, ŷk+1)‖2, ‖FAL(xk+1, yk , μk)‖2} ≤ Tj, then
31: Set kj ← k + 1 and Yj+1 ← max{Y , t−ε

j−1}.
32: Set tj+1 ← min{γttj, t1+ε

j } and Tj+1 ← γT Tj.
33: Set yk+1 from (16) where αy satisfies (17).
34: Set j← j+ 1.
35: else
36: Set yk+1 ← yk .
37: end if
38: else
39: Set yk+1 ← yk .
40: end if
41: Set μk+1 ← μk .
42: Set k← k + 1.
43: end loop

in minimizing the constraint violation measure and AL function subject to the bound constraints.
First, the method checks whether the constraint violation at the next primal iterate xk+1 is suf-
ficiently small compared to the target tj > 0. If this requirement is met, then a multiplier vector
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Optimization Methods & Software 9

ŷk+1 that satisfies

‖FL(xk+1, ŷk+1)‖2 ≤ min {‖FL(xk+1, yk)‖2, ‖FL(xk+1, π(xk+1, yk , μk))‖2} (15)

is computed. Two obvious potential choices for ŷk+1 are yk and π(xk+1, yk , μk), but another
viable candidate would be an approximate least-squares multiplier estimate (which may be com-
puted via a linearly constrained optimization subproblem). The method then checks if either
‖FL(xk+1, ŷk+1)‖2 or ‖FAL(xk+1, yk , μk)‖2 is sufficiently small with respect to the target value
Tj > 0. If so, then new target values tj+1 < tj and Tj+1 < Tj are set, Yj+1 ≥ Yj is chosen, and a
new Lagrange multiplier vector is set as

yk+1 ← (1− αy)yk + αyŷk+1, (16)

where αy is the largest value in [0, 1] such that

‖(1− αy)yk + αyŷk+1‖2 ≤ Yj+1. (17)

This updating procedure is well defined since the choice αy ← 0 results in yk+1 ← yk , for which
(17) is satisfied since ‖yk‖2 ≤ Yj ≤ Yj+1. If either line 28 or line 30 in Algorithm 3 tests false,
then the method simply sets yk+1 ← yk . We note that unlike more traditional AL approaches
[2,12], the penalty parameter is not adjusted on the basis of a test like that on line 28, but instead
relies on our steering procedure. Moreover, in our approach we decrease the target values at a
linear rate for simplicity, but more sophisticated approaches may be used [12].

2.3 Well-posedness and global convergence

In this section, we state two vital results, namely that Algorithm 3 is well posed, and that limit
points of the iterate sequence have desirable properties. Vital components of these results are
given in Appendices 1 and 2. (The proofs of these results are similar to the corresponding results
in [16]; for reference, complete details can be found in [17].) In order to show well-posedness of
the algorithm, we make the following formal assumption.

Assumption 2.1 At each given xk , the objective function f and constraint function c are both
twice-continuously differentiable.

Under this assumption, we have the following theorem.

Theorem 2.2 Suppose that Assumption 2.1 holds. Then the kth iteration of Algorithm 3 is
well posed. That is, either the algorithm will terminate in line 8 or 11, or it will compute μk > 0
such that FAL(xk , yk , μk) 
= 0 and for the steps sk = sk and rk = rk the conditions in (13) will be
satisfied, in which case (xk+1, yk+1, μk+1) will be computed.

According to Theorem 2.2, we have that Algorithm 3 will either terminate finitely or produce
an infinite sequence of iterates. If it terminates finitely—which can only occur if line 8 or 11
is executed—then the algorithm has computed a first-order stationary solution or an infeasible
stationary point and there is nothing else to prove about the algorithm’s performance in such
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10 F.E. Curtis et al.

cases. Therefore, it remains to focus on the global convergence properties of Algorithm 3 under
the assumption that the sequence {(xk , yk , μk)} is infinite. For such cases, we make the following
additional assumption.

Assumption 2.3 The primal sequences {xk} and {xk + sk} are contained in a convex compact
set over which the objective function f and constraint function c are both twice-continuously
differentiable.

Our main global convergence result for Algorithm 3 is as follows.

Theorem 2.4 If Assumptions 2.2 and 2.3 hold, then one of the following must hold:

(i) every limit point x∗ of {xk} is an infeasible stationary point;
(ii) μk � 0 and there exists an infinite ordered set K ⊆ N such that every limit point of
{(xk , ŷk)}k∈K is first-order stationary for (1); or

(iii) μk → 0, every limit point of {xk} is feasible, and if there exists a positive integer p such
that μkj−1 ≥ γ

p
μμkj−1−1 for all sufficiently large j, then there exists an infinite ordered set

J ⊆ N such that any limit point of either {(xkj , ŷkj)}j∈J or {(xkj , ykj−1)}j∈J is first-order
stationary for (1).

The following remark concerning this convergence result is warranted.

Remark 1 The conclusions in Theorem 2.4 are the same as in [16, Theorem 3.14] and allow, in
case (iii), for the possibility of convergence to feasible points satisfying the constraint qualifica-
tion that are not first-order solutions. We direct the readers attention to the comments following
[16, Theorem 3.14], which discusses these aspects in detail. In particular, they suggest how
Algorithm 3 may be modified to guarantee convergence to first-order stationary points, even in
case (iii) of Theorem 2.4. However, as mentioned in [16], we do not consider these modifications
to the algorithm to have practical benefits. This perspective is supported by the numerical tests
presented in the following section.

3. Numerical experiments

In this section, we provide evidence that steering can have a positive effect on the performance
of AL algorithms. To best illustrate the influence of steering, we implemented and tested algo-
rithms in two pieces of software. First, in Matlab, we implemented our adaptive AL line
search algorithm, that is, Algorithm 3, and the adaptive AL trust region method given as [16,
Algorithm 4]. Since these methods were implemented from scratch, we had control over every
aspect of the code, which allowed us to implement all features described in this paper and in [16].
Second, we implemented a simple modification of the AL trust region algorithm in the Lancelot
software package [13]. Our only modification to Lancelot was to incorporate a basic form
of steering; that is, we did not change other aspects of Lancelot, such as the mechanisms
for triggering a multiplier update. In this manner, we were also able to isolate the effect that
steering had on numerical performance, though it should be noted that there were differences
between Algorithm 3 and our implemented algorithm in Lancelot in terms of, for example, the
multiplier updates.

While we provide an extensive amount of information about the results of our experiments in
this section, further information can be found in [17, Appendix 3].
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Optimization Methods & Software 11

3.1 Matlab implementation

3.1.1 Implementation details

Our Matlab software was comprised of six algorithm variants. The algorithms were imple-
mented as part of the same package so that most of the algorithmic components were exactly the
same; the primary differences related to the step acceptance mechanisms and the manner in which
the Lagrange multiplier estimates and penalty parameter were updated. First, for comparison
against algorithms that utilized our steering mechanism, we implemented line search and trust
region variants of a basic AL method, given as [16, Algorithm 1]. We refer to these algorithms as
BAL-LS (basic augmented Lagrangian, line search) and BAL-TR (trust region), respectively.
These algorithms clearly differed in that one used a line search and the other used a trust region
strategy for step acceptance, but the other difference was that, like Algorithm 3 in this paper,
BAL-LS employed a convexified model of the AL function. (We discuss more details about
the use of this convexified model below.) The other algorithms implemented in our software
included two variants of Algorithm 3 and two variants of [16, Algorithm 4]. The first variants of
each, which we refer to as AAL-LS and AAL-TR (adaptive, as opposed to basic), were straight-
forward implementations of these algorithms, whereas the latter variants, which we refer to as
AAL-LS-safe and AAL-TR-safe, included an implementation of a safeguarding procedure
for the steering mechanism. The safeguarding procedure will be described in detail shortly.

The main per-iteration computational expense for each algorithm variant can be attributed to
the search direction computations. For computing a search direction via an approximate solve
of (10) or [16, Prob. (3.8)], all algorithms essentially used the same procedure. For simplicity,
all algorithms considered variants of these subproblems in which the �2-norm trust region was
replaced by an �∞-norm trust region so that the subproblems were bound-constrained. (The same
modification was used in the Cauchy step calculations.) Then, starting with the Cauchy step as
the initial solution estimate and defining the initial working set by the bounds identified as active
by the Cauchy step, a conjugate gradient (CG) method was used to compute an improved solution
on the reduced space defined by the working set. During the CG routine, if a trial solution vio-
lated a bound constraint that was not already part of the working set, then this bound was added
to the working set and the CG routine was reinitialized. By contrast, if the reduced subproblem
corresponding to the current working set was solved sufficiently accurately, then a check for ter-
mination was performed. In particular, multiplier estimates were computed for the working set
elements, and if these multiplier estimates were all non-negative (or at least larger than a small
negative number), then the subproblem was deemed to be solved and the routine terminated;
otherwise, an element corresponding to the most negative multiplier estimate was removed from
the working set and the CG routine was reinitialized. We also terminated the algorithm if, for
any working set, 2n iterations were performed, or if the CG routine was reinitialized n times.
We do not claim that the precise manner in which we implemented this approach guaranteed
convergence to an exact solution of the subproblem. However, the approach just described was
based on well-established methods for solving bound-constrained quadratic optimization prob-
lems (QPs), yielded an approximate solution that reduced the subproblem objective by at least
as much as it was reduced by the Cauchy point, and, overall, we found that it worked very well
in our experiments. It should be noted that if, at any time, negative curvature was encountered
in the CG routine, then the solver terminated with the current CG iterate. In this manner, the
solutions were generally less accurate when negative curvature was encountered, but we claim
that this did not have too adverse an effect on the performance of any of the algorithms.

A few additional comments are necessary to describe our search direction computation
procedures. First, it should be noted that for the line search algorithms, the Cauchy step cal-
culation in Algorithm 2 was performed with (12) as stated (i.e. with q̃), but the above PCG
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12 F.E. Curtis et al.

routine to compute the search direction was applied to (10) without the convexification for the
quadratic term. However, we claim that this choice remains consistent with the stated algorithms
since, for all algorithm variants, we performed a sanity check after the computation of the search
direction. In particular, the reduction in the model of the AL function yielded by the search
direction was compared against that yielded by the corresponding Cauchy step. If the Cauchy
step actually provided a better reduction in the model, then the computed search direction was
replaced by the Cauchy step. In this sanity check for the line search algorithms, we computed the
model reductions with the convexification of the quadratic term (i.e. with q̃), which implies that,
overall, our implemented algorithm guaranteed Cauchy decrease in the appropriate model for all
algorithms. Second, we remark that for the algorithms that employed a steering mechanism, we
did not employ the same procedure to approximately solve (7) or [16, Prob. (3.4)]. Instead, we
simply used the Cauchy steps as approximate solutions of these subproblems. Finally, we note
that in the steering mechanism, we checked condition (13c) with the Cauchy steps for each sub-
problem, despite the fact that the search direction was computed as a more accurate solution of
(10) or [16, Prob. (3.8)]. This had the effect that the algorithms were able to modify the penalty
parameter via the steering mechanism prior to computing the search direction; only Cauchy steps
for the subproblems were needed for steering.

Most of the other algorithmic components were implemented similarly to the algorithm
in [16]. As an example, for the computation of the estimates {̂yk+1} (which are required to sat-
isfy (15)), we checked whether ‖FL(xk+1, π(xk+1, yk , μk))‖2 ≤ ‖FL(xk+1, yk)‖2; if so, then we set
ŷk+1 ← π(xk+1, yk , μk), and otherwise we set ŷk+1 ← yk . Furthermore, for prescribed tolerances
{κopt, κfeas, μmin} ⊂ (0,∞), we terminated an algorithm with a declaration that a stationary point
was found if

‖FL(xk , yk)‖∞ ≤ κopt and ‖ck‖∞ ≤ κfeas, (18)

and terminated with a declaration that an infeasible stationary point was found if

‖FFEAS(xk)‖∞ ≤ κopt, ‖ck‖∞ > κfeas, and μk ≤ μmin. (19)

As in [16], this latter set of conditions shows that we did not declare that an infeasible station-
ary point was found unless the penalty parameter had already been reduced below a prescribed
tolerance. This helps in avoiding premature termination when the algorithm could otherwise con-
tinue and potentially find a point satisfying (18), which was always the preferred outcome. Each
algorithm terminated with a message of failure if neither (18) nor (19) was satisfied within kmax

iterations. It should also be noted that the problems were pre-scaled so that the �∞-norms of the
gradients of the problem functions at the initial point would be less than or equal to a prescribed
constant G > 0. The values for all of these parameters, as well as other input parameter required
in the code, are summarized in Table 1. (Values for parameters related to updating the trust region
radii required by [16, Algorithm 4] were set as in [16].)

We close this subsection with a discussion of some additional differences between the algo-
rithms as stated in this paper and in [16] and those implemented in our software. We claim that

Table 1. Input parameter values used in our Matlab software.

Parameter Value Parameter Value Parameter Value Parameter Value

γ 0.5 κ1 1 ηs 10−4 κfeas 10−5

γμ 0.1 κ2 1 ηvs 0.9 μmin 10−8

γα 0.5 κ3 10−4 ε 0.5 kmax 104

γt 0.1 εr 10−4 μ0 1 G 102

γT 0.1 κt 0.9 κopt 10−5
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Optimization Methods & Software 13

none of these differences represents a significant departure from the stated algorithms; we merely
made some adjustments to simplify the implementation and to incorporate features that we found
to work well in our experiments. First, while all algorithms use the input parameter γμ given in
Table 1 for decreasing the penalty parameter, we decrease the penalty parameter less significantly
in the steering mechanism. In particular, in line 22 of Algorithm 3 and line 20 of [16, Algorithm
4], we replace γμ with 0.7. Second, in the line search algorithms, rather than set the trust region
radii as in (8) and (11) where δ appears as a constant value, we defined a dynamic sequence,
call it {δk}, that depended on the step-size sequence {αk}. In this manner, δk replaced δ in (8) and
(11) for all k. We initialized δ0 ← 1. Then, for all k, if αk = 1, then we set δk+1 ← 5

3δk , and if
αk < 1, then we set δk+1 ← 1

2δk . Third, to simplify our implementation, we effectively ignored
the imposed bounds on the multiplier estimates by setting Y ←∞ and Y1 ←∞. This choice
implies that we always chose αy ← 1 in (16). Fourth, we initialized the target values as

t0 ← t1 ← max{102, min{104, ‖ck‖∞}} (20)

and T1 ← max{100, min{102, ‖FL(xk , yk)‖∞}}. (21)

Finally, in AAL-LS-safe and AAL-TR-safe, we safeguard the steering procedure by shut-
ting it off whenever the penalty parameter was smaller than a prescribed tolerance. Specifically,
we considered the while condition in line 21 of Algorithm 3 and line 19 of [16, Algorithm 4] to
be satisfied whenever μk ≤ 10−4.

3.1.2 Results on CUTEst test problems

We tested our Matlab algorithms on the subset of problems from the CUTEst [27] collection
that have at least one general constraint and at most 1000 variables and 1000 constraints.1 This set
contains 383 test problems. However, the results that we present in this section are only for those
problems for which at least one of our six solvers obtained a successful result, that is, where (18)
or (19) was satisfied, as opposed to reaching the maximum number of allowed iterations, which
was set to 104. This led to a set of 323 problems that are represented in the numerical results in
this section.

To illustrate the performance of our Matlab software, we use performance profiles as
introduced by Dolan and Moré [19] to provide a visual comparison of different measures of
performance. Consider a performance profile that measures performance in terms of required
iterations until termination. For such a profile, if the graph associated with an algorithm passes
through the point (α, 0.β), then, on β% of the problems, the number of iterations required by the
algorithm was less than 2α times the number of iterations required by the algorithm that required
the fewest number of iterations. At the extremes of the graph, an algorithm with a higher value
on the vertical axis may be considered a more efficient algorithm, whereas an algorithm on top at
the far right of the graph may be considered more reliable. Since, for most problems, comparing
values in the performance profiles for large values of α is not enlightening, we truncated the
horizontal axis at 16 and simply remark on the numbers of failures for each algorithm.

Figures 1 and 2 show the results for the three line search variants, namely BAL-LS, AAL-LS,
and AAL-LS-safe. The numbers of failures for these algorithms were 25, 3, and 16, respec-
tively. The same conclusion may be drawn from both profiles: the steering variants (with and
without safeguarding) were both more efficient and more reliable than the basic algorithm, where
efficiency is measured by either the number of iterations (Figure 1) or the number of function
evaluations (Figure 2) required. We display the profile for the number of function evaluations
required since, for a line search algorithm, this value is always at least as large as the number of
iterations, and will be strictly greater whenever backtracking is required to satisfy (14) (yielding
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14 F.E. Curtis et al.

Figure 1. Performance profile for iterations: line search algorithms on the CUTEst set.

Figure 2. Performance profile for function evaluations: line search algorithms on the CUTEst set.

αk < 1). From these profiles, one may observe that unrestricted steering (in AAL-LS) yielded
superior performance to restricted steering (in AAL-LS-safe) in terms of both efficiency and
reliability; this suggests that safeguarding the steering mechanism may diminish its potential
benefits.

Figures 3 and 4 show the results for the three trust region variants, namely BAL-TR, AAL-TR,
and AAL-TR-safe, the numbers of failures for which were 30, 12, and 20, respectively. Again,

Figure 3. Performance profile for iterations: trust region algorithms on the CUTEst set.
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Optimization Methods & Software 15

Figure 4. Performance profile for gradient evaluations: trust region algorithms on the CUTEst set.

as for the line search algorithms, the same conclusion may be drawn from both profiles: the steer-
ing variants (with and without safeguarding) are both more efficient and more reliable than the
basic algorithm, where now we measure efficiency by either the number of iterations (Figure 3)
or the number of gradient evaluations (Figure 4) required before termination. We observe the
number of gradient evaluations here (as opposed to the number of function evaluations) since,
for a trust region algorithm, this value is never larger than the number of iterations, and will be
strictly smaller whenever a step is rejected and the trust-region radius is decreased because of
insufficient decrease in the AL function. These profiles also support the other observation that
was made by the results for our line search algorithms, that is, that unrestricted steering may be
superior to restricted steering in terms of efficiency and reliability.

The performance profiles in Figures 1–4 suggest that steering has practical benefits, and that
safeguarding the procedure may limit its potential benefits. However, to be more confident in
these claims, one should observe the final penalty parameter values typically produced by the
algorithms. These observations are important since one may be concerned whether the algorithms
that employ steering yield final penalty parameter values that are often significantly smaller than
those yielded by basic AL algorithms. To investigate this possibility in our experiments, we
collected the final penalty parameter values produced by all six algorithms; the results are in
Table 2. The column titled μfinal gives a range for the final value of the penalty parameter. (For
example, the value 27 in the BAL-LS column indicates that the final penalty parameter value
computed by our basic line search AL algorithm fell in the range [10−2, 10−1) for 27 of the
problems.)

We remark on two observations about the data in Table 2. First, as may be expected, the
algorithms that employ steering typically reduce the penalty parameter below its initial value

Table 2. Numbers of CUTEst problems for which the final penalty parameter values were in the given
ranges.

μfinal BAL-LS AAL-LS AAL-LS-safe BAL-TR AAL-TR AAL-TR-safe

1 139 87 87 156 90 90
[10−1, 1) 43 33 33 35 46 46
[10−2, 10−1) 27 37 37 28 29 29
[10−3, 10−2) 17 42 42 19 49 49
[10−4, 10−3) 22 36 36 18 29 29
[10−5, 10−4) 19 28 42 19 25 39
[10−6, 10−5) 15 19 11 9 11 9
(0, 10−6) 46 46 40 44 49 37
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16 F.E. Curtis et al.

on some problems on which the other algorithms do not reduce it at all. This, in itself, is not a
major concern, since a reasonable reduction in the penalty parameter may cause an algorithm
to locate a stationary point more quickly. Second, we remark that the number of problems
for which the final penalty parameter was very small (say, less than 10−4) was similar for all
algorithms, even those that employed steering. This suggests that while steering was able to
aid in guiding the algorithms towards constraint satisfaction, the algorithms did not reduce the
value to such a small value that feasibility became the only priority. Overall, our conclusion
from Table 2 is that steering typically decreases the penalty parameter more than does a tra-
ditonal updating scheme, but one should not expect that the final penalty parameter value will
be reduced unnecessarily small due to steering; rather, steering can have the intended benefit of
improving efficiency and reliability by guiding a method towards constraint satisfaction more
quickly.

3.1.3 Results on COPS test problems

We also tested our Matlab software on the large-scale constrained problems available in the
COPS [6] collection. This test set was designed to provide difficult test cases for nonlinear opti-
mization software; the problems include examples from fluid dynamics, population dynamics,
optimal design, mesh smoothing, and optimal control. For our purposes, we solved the smallest
versions of the AMPL models [1,21] provided in the collection. We removed problem robot1
since algorithms BAL-TR and AAL-TR both encountered function evaluation errors. Addition-
ally, the maximum time limit of 3600 seconds was reached by every solver on problems chain,
dirichlet, henon, and lane_emden, so these problems were also excluded. The remaining set con-
sisted of the following 17 problems: bearing, camshape, catmix, channel, elec, gasoil, glider,
marine, methanol, minsurf , pinene, polygon, rocket, steering, tetra, torsion, and triangle. Since
the size of this test set is relatively small, we have decided to display pair-wise comparisons
of algorithms in the manner suggested in [33]. That is, for a performance measure of interest
(e.g. number of iterations required until termination), we compare solvers, call them A and B, on
problem j with the logarithmic outperforming factor

rj
AB := − log2(m

j
A/mj

B), where

{
mj

A is the measure for A on problem j

mj
B is the measure for B on problem j.

(22)

Therefore, if the measure of interest is iterations required, then rj
AB = p would indicate that solver

A required 2−p the iterations required by solver B. For all plots, we focus our attention on the
range p ∈ [−2, 2].

The results of our experiments are given in Figures 5–8. For the same reasons as discussed in
Section 3.1.2, we display results for iterations and function evaluations for the line search algo-
rithms, and display results for iterations and gradient evaluations for the trust region algorithms.
In addition, here we ignore the results for AAL-LS-safe and AAL-TR-safe since, as in the
results in Section 3.1.2, we did not see benefits in safeguarding the steering mechanism. In each
figure, a positive (negative) bar indicates that the algorithm whose name appears above (below)
the horizontal axis yielded a better value for the measure on a particular problem. The results are
displayed according to the order of the problems listed in the previous paragraph. In Figures 5
and 6 for the line search algorithms, the light gray bars for problems catmix and polygon indi-
cate that AAL-LS failed on the former and BAL-LS failed on the latter; similarly, in Figures 7
and 8 for the trust region algorithms, the light gray bar for catmix indicates that AAL-TR failed
on it.
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Optimization Methods & Software 17

Figure 5. Outperforming factors for iterations: line search algorithms on the COPS set.

Figure 6. Outperforming factors for function evaluations: line search algorithms on the COPS set.

The results in Figures 5 and 6 indicate that AAL-LS more often outperforms BAL-LS in
terms of iterations and functions evaluations, though the advantage is not overwhelming. On the
other hand, it is clear from Figures 7 and 8 that, despite the one failure, AAL-TR is generally
superior to BAL-TR. We conclude from these results that steering was beneficial on this test set,
especially in terms of the trust region methods.

3.1.4 Results on optimal power flow (OPF) test problems

As a third and final set of experiments for our Matlab software, we tested our algorithms on a
collection of optimal power flow (OPF) problems modelled in AMPL using data sets obtained
from MATPOWER [39]. OPF problems represent a challenging set of non-convex problems.
The active and reactive power flow and the network balance equations give rise to equality
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18 F.E. Curtis et al.

Figure 7. Outperforming factors for iterations: trust region algorithms on the COPS set.

Figure 8. Outperforming factors for gradient evaluations: trust region algorithms on the COPS set.

constraints involving non-convex functions while the inequality constraints are linear and result
from placing operating limits on quantities such as flows, voltages, and various control variables.
The control variables include the voltages at generator buses and the active-power output of the
generating units. The state variables consist of the voltage magnitudes and angles at each node
as well as reactive and active flows in each link. Our test set was comprised of 28 problems
modelled on systems having 14 to 662 nodes from the IEEE test set. In particular, there are
seven IEEE systems, each modelled in four different ways: (i) in Cartesian coordinates; (ii) in
polar coordinates; (iii) with basic approximations to the sin and cos functions in the problem
functions; and (iv) with linearized constraints based on DC power flow equations (in place of
AC power flow). It should be noted that while linearizing the constraints in formulation (iv) led
to a set of linear optimization problems, we still find it interesting to investigate the possible
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Optimization Methods & Software 19

Figure 9. Outperforming factors for iterations: line search algorithms on OPF tests.

Figure 10. Outperforming factors for function evaluations: line search algorithms on OPF tests.

effect that steering may have in this context. All of the test problems were solved by all of our
algorithm variants.

We provide outperforming factors in the same manner as in Section 3.1.3. Figures 9 and 10
reveal that AAL-LS typically outperforms BAL-LS in terms of both iterations and function
evaluations, and Figures 11 and 12 reveal that AAL-TR more often than not outperforms
BAL-TR in terms of iterations and gradient evaluations. Interestingly, these results suggest more
benefits for steering in the line search algorithm than in the trust region algorithm, which is the
opposite of that suggested by the results in Section 3.1.3. However, in any case, we believe that
we have presented convincing numerical evidence that steering often has an overall beneficial
effect on the performance of our Matlab solvers.
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20 F.E. Curtis et al.

Figure 11. Outperforming factors for iterations: trust region algorithms on OPF tests.

Figure 12. Outperforming factors for gradient evaluations: trust region algorithms on OPF tests.

3.2 An implementation of Lancelot that uses steering

3.2.1 Implementation details

The results for our Matlab software in the previous section illustrate that our adaptive line
search AL algorithm and the adaptive trust region AL algorithm from [16] are often more
efficient and reliable than basic AL algorithms that employ traditional penalty parameter and
Lagrange multiplier updates. Recall, however, that our adaptive methods are different from their
basic counterparts in two key ways. First, the steering conditions (13) are used to dynamically
decrease the penalty parameter during the optimization process for the AL function. Second, our
mechanisms for updating the Lagrange multiplier estimate are different than the basic algorithm
outlined in [16, Algorithm 1] since they use optimality measures for both the Lagrangian and
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the AL functions (see line 30 of Algorithm 3) rather than only that for the AL function. We
believe this strategy is more adaptive since it allows for updates to the Lagrange multipliers when
the primal estimate is still far from a first-order stationary point for the AL function subject to
the bounds.

In this section, we isolate the effect of the first of these differences by incorporating a steering
strategy in the Lancelot [13,14] package that is available in the Galahad library [26]. Specif-
ically, we made three principle enhancements in Lancelot. First, along the lines of the model q
in [16] and the convexified model q̃ defined in this paper, we defined the model q̂ : �n → � of
the AL function given by

q̂(s; x, y, μ) = sT∇x�
(
x, y+ c(x)/μ

)+ 1
2 sT(∇xx�(x, y)+ J(x)TJ(x)/μ)s

as an alternative to the Newton model qN : �n → �, originally used in Lancelot,

qN(s; x, y, μ) = sT∇x�(x, y+ c(x)/μ)+ 1
2 sT(∇xx�(x, y+ c(x)/μ)+ J(x)TJ(x)/μ)s.

As in our adaptive algorithms, the purpose of employing such a model was to ensure that q̂→ qv

(pointwise) as μ→ 0, which was required to ensure that our steering procedure was well defined;
see (A1a). Second, we added routines to compute generalized Cauchy points [10] for both the
constraint violation measure model qv and q̂ during the loop in which μ was decreased until the
steering test (13c) was satisfied; recall the while loop starting on line 21 of Algorithm 3. Third,
we used the value for μ determined in the steering procedure to compute a generalized Cauchy
point for the Newton model qN, which was the model employed to compute the search direction.
For each of the models just discussed, the generalized Cauchy point was computed using either
an efficient sequential search along the piece-wise Cauchy arc [11] or via a backtracking Armijo
search along the same arc [34]. We remark that this third enhancement would not have been
needed if the model q̂ were used to compute the search directions. However, in our experiments,
it was revealed that using the Newton model typically led to better performance, so the results
in this section were obtained using this third enhancement. In our implementation, the user was
allowed to control which model was used via control parameters. We also added control param-
eters that allowed the user to restrict the number of times that the penalty parameter may be
reduced in the steering procedure in a given iteration, and that disabled steering once the penalty
parameter was reduced below a given tolerance (as in the safeguarding procedure implemented
in our Matlab software).

The new package was tested with three different control parameter settings. We refer
to algorithm with the first setting, which did not allow any steering to occur, simply as
lancelot. The second setting allowed steering to be used initially, but turned it off when-
ever μ ≤ 10−4 (as in our safeguarded Matlab algorithms). We refer to this variant as
lancelot-steering-safe. The third setting allowed for steering to be used without any
safeguards or restrictions; we refer to this variant as lancelot-steering. As in our Matlab
software, the penalty parameter was decreased by a factor of 0.7 until the steering test (13c)
was satisfied. All other control parameters were set to their default lancelot values as given
in its documentation. A problem was considered to be solved if lancelot returned the flag
status = 0, which indicated that final constraint violation and norm of the projected gradient
were less than 10−6. We also considered a problem to be solved if lancelot returned the flag
status = 3 (indicating that the trial step was too small to make any progress), the constraint
violation was below 10−5, and the norm of the projected gradient was less than 10−2. Impor-
tantly, these criteria for deeming a problem to have been solved, were used by all three variants
described above. The new package will be re-branded as Lancelot in the next official release,
Galahad 2.6.
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22 F.E. Curtis et al.

Galahad was compiled with gfortran-4.7 with optimization -O and using Intel MKL BLAS.
The code was executed on a single core of an Intel Xeon E5620 (2.4GHz) CPU with 23.5 GiB
of RAM.

3.2.2 Results on CUTEst test problems

We tested lancelot, lancelot-steering, and lancelot-steering-safe on the
subset of CUTEst problems that have at least one general constraint and at most 10,000 vari-
ables and 10,000 constraints. This amounted to 457 test problems. The results are displayed
as performance profiles in Figures 13 and 14, which were created from the 364 of these prob-
lems that were solved by at least one of the algorithms. As in the previous sections, since the
algorithms are trust region methods, we use the number of iterations and gradient evaluations
required as the performance measures of interest.

We can make two important observations from these profiles. First, it is clear that
lancelot-steering and lancelot-steering-safe yielded similar performance
in terms of iterations and gradient evaluations, which suggests that safeguarding the
steering mechanism is not necessary in practice. Second, lancelot-steering and
lancelot-steering-safe were both more efficient and reliable than lancelot on these
tests, thus showing the positive influence that steering can have on performance.

Figure 13. Performance profile for iterations: Lancelot algorithms on the CUTEst set.

Figure 14. Performance profile for gradient evaluations: Lancelot algorithms on the CUTEst set.
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Table 3. Numbers of CUTEst problems for which the final penalty parameter values were in
the given ranges.

μfinal lancelot lancelot-steering lancelot-steering-safe

1 14 1 1
[10−1, 1) 77 1 1
[10−2, 10−1) 47 93 93
[10−3, 10−2) 27 45 45
[10−4, 10−3) 18 28 28
[10−5, 10−4) 15 22 22
[10−6, 10−5) 12 21 14
(0, 10−6) 19 18 25

As in Section 3.1.2, it is important to observe the final penalty parameter values yielded by
lancelot-steering and lancelot-steering-safe as opposed to those yielded by
lancelot. For these experiments, we collected this information; see Table 3.

We make a few remarks about the results in Table 3. First, as may have been expected,
the lancelot-steering and lancelot-steering-safe algorithms typically reduced
the penalty parameter below its initial value, even when lancelot did not reduce it at all
throughout an entire run. Second, the number of problems for which the final penalty parameter
was less than 10−4 was 171 for lancelot and 168 for lancelot-steering. Combin-
ing this fact with the previous observation leads us to conclude that steering tended to reduce
the penalty parameter from its initial value of 1, but, overall, it did not decrease it much more
aggressively than lancelot. Third, it is interesting to compare the final penalty parameter val-
ues for lancelot-steering and lancelot-steering-safe. Of course, these values
were equal in any run in which the final penalty parameter was greater than or equal to 10−4,
since this was the threshold value below which safeguarding was activated. Interestingly, how-
ever, lancelot-steering-safe actually produced smaller values of the penalty parameter
compared to lancelot-steering when the final penalty parameter was smaller than 10−4.
We initially found this observation to be somewhat counterintuitive, but we believe that it can
be explained by observing the penalty parameter updating strategy used by lancelot. (Recall
that once safeguarding was activated in lancelot-steering-safe, the updating strategy
became the same used in lancelot.) In particular, the decrease factor for the penalty parame-
ter used in lancelot is 0.1, whereas the decrease factor used in steering the penalty parameter
was 0.7. Thus, we believe that lancelot-steering reduced the penalty parameter more
gradually once it was reduced below 10−4 while lancelot-steering-safe could only
reduce it in the typical aggressive manner. (We remark that to (potentially) circumvent this inef-
ficiency in lancelot, one could implement a different strategy in which the penalty parameter
decrease factor is increased as the penalty parameter decreases, but in a manner that still ensures
that the penalty parameter converges to zero when infinitely many decreases occur.) Overall,
our conclusion from Table 3 is that steering typically decreases the penalty parameter more than
a traditional updating scheme, but the difference is relatively small and we have implemented
steering in a way that improves the overall efficiency and reliability of the method.

4. Conclusion

In this paper, we explored the numerical performance of adaptive updates to the Lagrange mul-
tiplier vector and penalty parameter in AL methods. Specific to the penalty parameter updating
scheme is the use of steering conditions that guide the iterates towards the feasible region and
towards dual feasibility in a balanced manner. Similar conditions were first introduced in [9] for
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exact penalty functions, but have been adapted in [16] and this paper to be appropriate for AL-
based methods. Specifically, since AL methods are not exact (in that, in general, the trial steps do
not satisfy linearized feasibility for any positive value of the penalty parameter), we allowed for
a relaxation of the linearized constraints. This relaxation was based on obtaining a target level
of infeasibility that is driven to zero at a modest, but acceptable, rate. This approach is in the
spirit of AL algorithms since feasibility and linearized feasibility are only obtained in the limit.
It should be noted that, like other AL algorithms, our adaptive methods can be implemented
matrix-free, that is, they only require matrix–vector products. This is of particular importance
when solving large problems that have sparse derivative matrices.

As with steering strategies designed for exact penalty functions, our steering conditions proved
to yield more efficient and reliable algorithms than a traditional updating strategy. This con-
clusion was made by performing a variety of numerical tests that involved our own Matlab
implementations and a simple modification of the well-known AL software Lancelot. To
test the potential for the penalty parameter to be reduced too quickly, we also implemented
safeguarded variants of our steering algorithms. Across the board, our results indicate that safe-
guarding was not necessary and would typically degrade performance when compared to the
unrestricted steering approach. We feel confident that these tests clearly show that although our
theoretical global convergence guarantee is weaker than some algorithms (i.e. we cannot prove
that the penalty parameter will remain bounded under a suitable constraint qualification), this
should not be a concern in practice. Finally, we suspect that the steering strategies described in
this paper would also likely improve the performance of other AL-based methods such as [5, 30].
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Appendix 1. Well-posedness

Our goal in this appendix is to prove that Algorithm 3 is well-posed under Assumption 2.1. Since this assumption is
assumed to hold throughout the remainder of this appendix, we do not refer to it explicitly in the statement of each
lemma and proof.

A.1 Preliminary results

Our proof of the well-posedness of Algorithm 3 relies on showing that it will either terminate finitely or will produce an
infinite sequence of iterates {(xk , yk , μk)}. In order to show this, we first require that the while loop that begins at line 13
of Algorithm 3 terminates finitely. Since the same loop appears in the AL trust region method in [16] and the proof of the
result in the case of that algorithm is the same as that for Algorithm 3, we need only refer to the result in [16] in order to
state the following lemma for Algorithm 3.

Lemma A.1 ([16, Lemma 3.2]) If line 13 is reached, then FAL(xk , yk , μ) 
= 0 for all sufficiently small μ > 0.

Next, since the Cauchy steps employed in Algorithm 3 are similar to those employed in the method in [16], we may
state the following lemma showing that Algorithms 1 and 2 are well defined when called in lines 17, 19, and 23 of
Algorithm 3. It should be noted that a slight difference between Algorithm 2 and the similar procedure in [16] is the use
of the convexified model q̃ in (12). However, we claim that this difference does not affect the veracity of the result.

Lemma A.2 ([16, Lemma 3.3]) The following hold true:

(i) The computation of (βk , rk , εk , 
k) in line 17 is well defined and yields 
k ∈ (1, 2] and εk ∈ [0, εr).
(ii) The computation of (αk , sk) in lines 19 and 23 is well defined.

The next result highlights critical relationships between qv and q̃ as μ→ 0.

Lemma A.3 ([17, Lemma A.3]) Let (βk , rk , εk , 
k)← Cauchy_feasibility(xk , θk) with θk defined by (8) and, as
quantities dependent on the penalty parameter μ > 0, let (αk(μ), sk(μ))← Cauchy_AL(xk , yk , μ, �k(μ), εk) with
�k(μ) := 
kδ‖FAL(xk , yk , μ)‖2 (see (11)). Then, the following hold true:

lim
μ→0

( max
‖s‖2≤2θk

|q̃(s; xk , yk , μ)− qv(s; xk)|) = 0, (A1a)

lim
μ→0
∇xL(xk , yk , μ) = Jk

Tck , (A1b)

lim
μ→0

sk(μ) = rk , (A1c)

and lim
μ→0

Δqv(sk(μ); xk) = Δqv(rk ; xk). (A1d)

We also need the following lemma related to Cauchy decreases in the models qv and q̃.

Lemma A.4 ([17, Lemma A.4]) Let � be any scalar value such that

� ≥ max{‖μk∇2
xx�(xk , yk)+ J

T

k Jk‖2,‖JT

k Jk‖2}. (A2)
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Then, the following hold true:

(i) For some κ4 ∈ (0, 1), the Cauchy step for subproblem (7) yields

Δqv(rk ; xk) ≥ κ4‖FFEAS(xk)‖22 min

{
δ,

1

1+�

}
. (A3)

(ii) For some κ5 ∈ (0, 1), the Cauchy step for subproblem (10) yields

Δq̃(sk ; xk , yk , μk) ≥ κ5‖FAL(xk , yk , μk)‖22 min

{
δ,

1

1+�

}
. (A4)

The next lemma shows that the while loop at line 21, which is responsible for ensuring that our adaptive steering
conditions in (13) are satisfied, terminates finitely.

Lemma A.5 ([17, Lemma A.5]) The while loop that begins at line 21 of Algorithm 3 terminates finitely.

The final lemma of this section shows that sk is a strict descent direction for the AL function. The conclusion of this
lemma is the primary motivation for our use of the convexified model q̃.

Lemma A.6 ([17, Lemma A.6]) At line 26 of Algorithm 3, the search direction sk is a strict descent direction for
L(·, yk , μk) from xk. In particular,

∇xL(xk , yk , μk)
Tsk ≤ −Δq̃(sk ; xk , yk , μk) ≤ −κ1Δq̃(sk ; xk , yk , μk) < 0. (A5)

A.2 Proof of well-posedness result

Proof of Theorem 2.2. If, during the kth iteration, Algorithm 3 terminates in line 8 or 11, then there is nothing to prove.
Thus, to proceed in the proof, we may assume that line 13 is reached. Lemma A.1 then ensures that

FAL(xk , yk , μ) 
= 0 for all sufficiently small μ > 0. (A6)

Consequently, the while loop in line 13 will terminate for a sufficiently small μk > 0. Next, by construction, conditions
(13a) and (13b) are satisfied for any μk > 0 by sk = sk and rk = rk . Lemma A.5 then shows that for a sufficiently small
μk > 0, (13c) is also satisfied by sk = sk and rk = rk . Therefore, line 26 will be reached. Finally, Lemma A.6 ensures
that αk in line 26 is well defined. This completes the proof as all remaining lines in the kth iteration are explicit. �

Appendix 2. Global convergence

We shall tacitly presume that Assumption 2.3 holds throughout this section, and not state it explicitly. This assumption
and the bound on the multipliers enforced in line 33 of Algorithm 3 imply that there exists a positive monotonically
increasing sequence {�j}j≥1 such that for all kj ≤ k < kj+1 we have

‖∇2
xxL(σ , yk , μk)‖2 ≤ �j for all σ on the segment [xk , xk + sk], (A7a)

‖μk∇2
xx�(xk , yk)+ J

T

k Jk‖2 ≤ �j, (A7b)

and ‖JT

k Jk‖2 ≤ �j. (A7c)

In the subsequent analysis, we make use of the subset of iterations for which line 31 of Algorithm 3 is reached. For this
purpose, we define the iteration index set

Y := {kj : ‖ckj‖2 ≤ tj, min{‖FL(xkj , ŷkj )‖2, ‖FAL(xkj , ykj−1, μkj−1)‖2} ≤ Tj}. (A8)

A.3 Preliminary results

The following result provides critical bounds on differences in (components of) the AL summed over sequences
of iterations. We remark that the proof in [16] essentially relies on Assumption 2.3 and Dirichlet’s Test [18,
Section 3.4.10].
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Lemma A.7 ([16, Lemma 3.7]) The following hold true.

(i) If μk = μ for some μ > 0 and all sufficiently large k, then there exist positive constants Mf , Mc, and ML such
that for all integers p ≥ 1 we have

p−1∑
k=0

μk(fk − fk+1) < Mf , (A9)

p−1∑
k=0

μkyk
T
(ck+1 − ck) < Mc, (A10)

and
p−1∑
k=0

(L(xk , yk , μk)− L(xk+1, yk , μk)) < ML. (A11)

(ii) If μk → 0, then the sums

∞∑
k=0

μk(fk − fk+1), (A12)

∞∑
k=0

μkyk
T
(ck+1 − ck), (A13)

and
∞∑

k=0

(L(xk , yk , μk)− L(xk+1, yk , μk)) (A14)

converge and are finite, and
lim

k→∞
‖ck‖2 = c̄ for some c̄ ≥ 0. (A15)

We also need the following lemma that bounds the step-size sequence {αk} below.

Lemma A.8 There exists a positive monotonically decreasing sequence {Cj}j≥1 such that, with the sequence {kj}
computed in Algorithm 3, the step-size sequence {αk} satisfies

αk ≥ Cj > 0 for all kj ≤ k < kj+1.

Proof By Taylor’s Theorem and Lemma A.6, it follows under Assumption 2.3 that there exists τ > 0 such that for all
sufficiently small α > 0 we have

L(xk + αsk , yk , μk)− L(xk , yk , μk) ≤ −αΔq̃(sk ; xk , yk , μk)+ τα2‖sk‖2. (A16)

On the other hand, during the line search implicit in line 26 of Algorithm 3, a step-size α is rejected if

L(xk + αsk , yk , μk)− L(xk , yk , μk) > −ηsαΔq̃(sk ; xk , yk , μk). (A17)

Combining (A16), (A17), and (13a) we have that a rejected step-size α satisfies

α >
(1− ηs)Δq̃(sk ; xk , yk , μk)

τ‖sk‖22
≥ (1− ηs)Δq̃(sk ; xk , yk , μk)

τ�2
k

.

From this bound, the fact that if the line search rejects a step-size it multiplies it by γα ∈ (0, 1), (13a), (A4), (A7b), (11),
and 
k ∈ (1, 2] (see Lemma A.2) it follows that, for all k ∈ [kj, kj+1),

αk ≥ γα(1− ηs)Δq̃(sk ; xk , yk , μk)

τ�2
k

≥ γα(1− ηs)κ1κ5‖FAL(xk , yk , μk)‖22
τ
2

k δ2‖FAL(xk , yk , μk)‖22
min

{
δ,

1

1+�j

}

≥ γα(1− ηs)κ1κ5

4τδ2
min

{
δ,

1

1+�j

}
=: Cj > 0,

as desired. �

We break the remainder of the analysis into two cases depending on whether there are a finite or an infinite number
of modifications of the Lagrange multiplier estimate.
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A.4 A finite number of multiplier updates

In this section, we suppose that the set Y in (A8) is finite in that the counter j in Algorithm 3 satisfies

j ∈ {1, 2, . . . j̄} for some finite j̄. (A18)

This allows us to define, and consequently use in our analysis, the quantities

t := tj̄ > 0 and T := Tj̄ > 0. (A19)

We provide two lemmas in this subsection. The first considers cases when the penalty parameter converges to zero,
and the second considers cases when the penalty parameter remains bounded away from zero. This first case—in which
the multiplier estimate is only modified a finite number of times and the penalty parameter vanishes—may be expected
to occur when (1) is infeasible. Indeed, in this case, we show that every limit point of the primal iterate sequence is an
infeasible stationary point.

Lemma A.9 ([17, Lemma A.9]) If |Y| <∞ and μk → 0, then there exist a vector y and integer k̄ ≥ 0 such that

yk = y for all k ≥ k̄, (A20)

and for some constant c̄ > 0, we have the limits

lim
k→∞
‖ck‖2 = c̄ > 0 and lim

k→∞
FFEAS(xk) = 0. (A21)

Therefore, every limit point of {xk}k≥0 is an infeasible stationary point.

The next lemma considers the case when μ stays bounded away from zero. This is possible, for example, if the
algorithm converges to an infeasible stationary point that is stationary for the AL function for the final Lagrange
multiplier estimate and penalty parameter computed in the algorithm.

Lemma A.10 ([17, Lemma A.10]) If |Y| <∞ and μk = μ for some μ > 0 for all sufficiently large k, then with t
defined in (A19) there exist a vector y and integer k̄ ≥ 0 such that

yk = y and ‖ck‖2 ≥ t for all k ≥ k̄, (A22)

and we have the limit
lim

k→∞
FFEAS(xk) = 0. (A23)

Therefore, every limit point of {xk}k≥0 is an infeasible stationary point.

This completes the analysis for the case that the set Y is finite.

A.5 An infinite number of multiplier updates

We now suppose that |Y| = ∞. In this case, it follows from the procedures for updating the Lagrange multiplier estimate
and target values in Algorithm 3 that

lim
j→∞

tj = lim
j→∞

Tj = 0. (A24)

As in the previous subsection, we split the analysis in this subsection into two results. This time, we begin by con-
sidering the case when the penalty parameter remains bounded below and away from zero. In this scenario, we state the
following result that a subsequence of the iterates converges to a first-order stationary point.

Lemma A.11 ([16, Lemma 3.10]) If |Y| = ∞ and μk = μ for some μ > 0 for all sufficiently large k, then

lim
j→∞

ckj = 0 (A25a)

and lim
j→∞

FL(xkj , ŷkj ) = 0. (A25b)

Thus, any limit point (x∗, y∗) of {(xkj , ŷkj )}j≥0 is first-order stationary for (1).

Finally, we consider the case when the penalty parameter converges to zero.

Lemma A.12 ([16, Lemma 3.13]) If |Y| = ∞ and μk → 0, then

lim
k→∞

ck = 0. (A26)
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30 F.E. Curtis et al.

If, in addition, there exists a positive integer p such that μkj−1 ≥ γ
p
μμkj−1−1 for all sufficiently large j, then there exists

an infinite ordered set J ⊆ N such that

lim
j∈J ,j→∞

‖FL(xkj , ŷkj )‖2 = 0 or lim
j∈J ,j→∞

‖FL(xkj , π(xkj , ykj−1, μkj−1))‖2 = 0. (A27)

In such cases, if the first (respectively, second) limit in (A27) holds, then along with (A26) it follows that any limit point
of {(xkj , ŷkj )}j∈J (respectively, {(xkj , ykj−1)}j∈J ) is a first-order stationary point for (1).

A.6 Proof of global convergence result

Proof of Theorem 2.4. Lemmas A.9–A.12 cover the only four possible outcomes of Algorithm 3; the result follows
from those described in these lemmas. �
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