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Abstract We present an interior-point trust-funnel algorithm for solving large-scale
nonlinear optimization problems. The method is based on an approach proposed by
Gould and Toint (Math Prog 122(1):155-196, 2010) that focused on solving equality
constrained problems. Our method is similar in that it achieves global convergence
guarantees by combining a trust-region methodology with a funnel mechanism, but
has the additional capability of being able to solve problems with both equality and
inequality constraints. The prominent features of our algorithm are that (i) the sub-
problems that define each search direction may be solved with matrix-free methods so
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that derivative matrices need not be formed or factorized so long as matrix-vector prod-
ucts with them can be performed; (ii) the subproblems may be solved approximately
in all iterations; (iii) in certain situations, the computed search directions represent
inexact sequential quadratic optimization steps, which may be desirable for fast local
convergence; (iv) criticality measures for feasibility and optimality aid in determining
whether only a subset of computations need to be performed during a given iteration;
and (v) no merit function or filter is needed to ensure global convergence.

Keywords Nonlinear optimization - Constrained optimization - Large-scale
optimization - Barrier-SQP methods - Trust-region methods - Funnel mechanism

Mathematics Subject Classification 49J52 - 49M37 - 65F22 - 65K05 - 90C26 -
90C30 - 90C55

1 Introduction
We introduce a method for solving optimization problems of the form

minimize f(x) subjectto c(x) <0, (NP)
xeRN

where f : R¥ — Rand ¢ : RY — R are twice continuously differentiable.
(Our method can also be applied when equality constraints are present, but, for sim-
plicity in our discussion, these are suppressed in our algorithm development and
analysis; see Sect. 6 for further discussion.) Our algorithm is designed to solve large-
scale instances of (NP). In particular, it is designed to be matrix-free in the sense
that an implementation of it only requires matrix-vector products with the constraint
Jacobian, its transpose, symmetric approximations of the Hessian of the Lagrangian,
and corresponding preconditioners. Consequently, iterative methods may be used to
approximately solve each subproblem arising in the algorithm.

The method we propose utilizes components of both interior-point (IP) and sequen-
tial quadratic optimization (commonly known as SQP) methods. Algorithms of this
type are often referred to as barrier-SQP methods. The interior-point aspects of our
algorithm allow us to avoid the combinatorial explosion that may occur within, say,
an active-set approach. The efficiency of interior-point methods for solving linear and
convex quadratic optimization problems has been well-established [1,7,12,13,17,24,
28,30,31]. Extending these methods for solving nonlinear problems has been the sub-
jectof research for decades [3,4,6, 14,32—-36] and numerical evidence illustrates strong
performance. We follow an approach similar to Byrd et al. [3,4] and solve a sequence
of barrier subproblems for decreasing values of the barrier parameter. This means that
we must solve a sequence of equality constrained subproblems, and these may be
solved efficiently with an SQP-based method. It is well known that traditional SQP
methods are very efficient for solving small- to medium-sized optimization prob-
lems [8,9,15,16], while more recently proposed SQP methods utilize exact second
derivatives and are, in theory, capable of solving large problems [19-21,29]. Prelim-
inary results when solving small- to medium-sized problems are promising, but their
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effectiveness on large problems has not yet been confirmed. There have, however, been
several SQP strategies that have proved capable of solving large equality constrained
problems [2,23,27].

In this paper, we use the trust-funnel approach originally described in [23], and
then corrected in [22], as the basis for solving a sequence of equality constrained
barrier subproblems that arise in an interior-point framework. We note, however, that
a naive implementation of the SQP method described in [22,23] within an interior-
point paradigm may result in a method for which the establishment of convergence
guarantees is elusive. This is a consequence of the fact that interior-point methods—
as their name suggests—require the algorithm iterates to remain in the strict interior
of the feasible region associated with the inequality constraints, while the method in
[22,23] does not innately possess the mechanisms necessary to avoid the boundary of
the feasible region in this context. In this paper, we describe modifications of this trust-
funnel method that are appropriate for our interior-point setting. These modifications
include imposing explicit constraints in the trust-region subproblems to ensure that
the iterates remain in the strict interior of the feasible region, and the incorporation of
scaled trust-region constraints and optimality measures. Scalings of these types have
been used previously [3,6].

The paper is organized as follows. In Sect. 2, to motivate our main ideas, we out-
line a preliminary trust-funnel algorithm for solving the barrier subproblem in an
interior-point approach. This method, which requires the exact solution of subprob-
lems in each iteration, forms the basis for our main trust-funnel algorithm, presented
in Sect.3, which involves various enhancements vis-a-vis the method in Sect.2. In
Sect.4, we prove that our main trust-funnel algorithm will terminate finitely with
arbitrarily small positive tolerances on appropriate criticality measures. In Sect. 5, we
consider convergence of the barrier subproblem solutions for a decreasing sequence
of the barrier parameter. Finally, conclusions are provided in Sect. 6.

1.1 Notation

The gradient and Hessian of f at x are written as g(x) and V., f(x) respectively. The
M x N matrix J(x) represents the Jacobian of the constraint function ¢ evaluated at
x, withits jthrow being Vc; (x)T. The matrix V,xCj(x) is the Hessian of ¢ evaluated
at x. We let e denote the vector of all ones and I denote the identity matrix, both
of whose dimensions are determined by the context in which they are used. Given
avector s € RM, [s]; is the jth element of s and S := diag([s]1, [s]2, ..., [sIm).
A forcing function w : [0, 0c0) — [0, 00) is defined as any continuous and strictly
increasing function that satisfies w(0) = 0. For a real symmetric matrix P, we write
P > 0 toindicate that P is positive definite. Finally, given two scalar sequences {a}
and {b;}, we write a; = O(b;) to indicate that there exists a constant ¢ > 0 such that
aj <cbjforall j.

1.2 NLP and barrier-SQP preliminaries

We make the following assumption throughout the paper.
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Assumption 1.1 The functions f and c are twice continuously differentiable.

In fact, the global convergence guarantees that we establish for our algorithm hold
even if f and c are only once continuously differentiable and (uniformly bounded)
Hessian approximations are employed. However, for simplicity in our discussion and
in order to provide commentary on algorithmic choices that should be made to achieve
fast local convergence, we make Assumption 1.1.

Problem (NP) is not solved directly by our algorithm. Rather, we introduce a vector
of slack variables s € R and solve the equivalent optimization problem

minimize f(x) subjectto c(x,s):=c(x)+s=0, s>0. (NPs)
xeRN secRM

The following definition gives first-order stationarity conditions for (NPs) [25,26].

Definition 1.1 (First-order KKT point for (NPs)) The vector triple (x, s, y) is a first-
order KKT point for problem (NPs) if it satisfies

g +Jx) Ty =0, c(x,s) =0, Sy =0, and (s, y) > 0.
To solve (NPs), we (approximately) solve the barrier subproblem

minimize f(x,s) subjectto c(x,s) =0, s>0 (BSP)
xeRN seRM

for decreasing values of the barrier parameter ;1 > 0, where we define

M
fx,9) = f@) —p D In(ls]). (1.1)

i=1

Given a Lagrange multiplier vector y for the constraint c¢(x, s) = 0, the Lagrangian
associated with (BSP) and its gradient with respect to (x, s) are

L:(-xv S, Y) = f(-xv S) + C(.X, S)Ty and V()C,S)E(-xa s, y) = Vf(xa S) + J(-xv S)Ty7
where J(x,s) = Ve(x,s)T = (J(x) I) is the Jacobian of c(x, s) with respect to
(x, 5). A primal-dual point (x, s, y) is a first-order KKT point of the barrier subproblem
if it satisfies Vi, ) L(x,s,y) =0, c(x,s) = 0 and (s, y) > 0. Multiplying the second
block of the first equation by S leads to the following equivalent definition.

Definition 1.2 (First-order KKT point for (BSP)) The vector triple (x, s, y) is a first-
order KKT-point for the barrier subproblem (BSP) if it satisfies

gX)+Jx) Ty =0, c(x,5) =0, Sy = pe, and (s, y) > 0.

A comparison of Definitions 1.1 and 1.2 suggests that, as u — 0, KKT points of the
barrier subproblem become increasingly accurate KKT points of problem (NPs).
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An interior-point trust-funnel algorithm 77

Our trust-funnel strategy generates a sequence {(xx, sk, yx)} of primal, slack, and
dual variables. As is typical of interior-point methods, we require so > 0 and ensure
sk > 0 for all k£ via explicit constraints imposed on all search direction calculations,
and ensure that c¢(xx, sx) > 0 holds at the beginning of iteration k by incorporating

the slack reset procedure (foralli € {1, ..., M})
, [skli it [c(xk, sK)]i =0,
Lsili < [—[c(xk)],- otherwise. (1.2)
Defining the measure of constraint violation
v(x, s) = flex, )2, (1.3)

it follows that if s,‘:‘"‘ is the value of s prior to the slack reset, then
vk = v(xk, s) < vk, s, syt < sk, and (o, sk) < f(asp); (1.4)

i.e., the barrier function and constraint violation decrease due to (1.2).

For reference, we now describe the step computation of a conventional SQP method
for solving the barrier subproblem (BSP). Given a kth iterate (xi, Sk, Vi), the trial step
in such a method is defined as the solution (when it exists) of

I;‘E(l‘i}niﬁf J @ s0) + Vs d + 5d7V o o£Gk sk yi)d

subject to ¢(xg, sk) + J (xk, sx)d = 0.

It may be verified that a solution d = (d*, d*) of this subproblem satisfies

Vo Lk, sk, yi) T )T 0 d* g(xx)
J (xg) 0 1 y | =—|clr sk | (1.5
0 S onsg) \& —pe

where y is an estimate of an optimal Lagrange multiplier vector for the constraint
c(xk, sk) + J (xx, sx)d = 0. The SQP step generated in this fashion is often called a
primal step since the dual vector yx does not appear in (1.5) other than in the Hessian
V..L. We can instead compute a primal-dual step by applying Newton’s Method to
the conditions in Definition 1.2, which leads to

VLG, se, ) Ja)T 0\ [fa* g(x)
J(xx) 0 1 y | =—|clx s |- (1.6)
0 Sk Yi d’ —ue

This system is identical to (1.5), except that the (3, 3)-block now contains dual infor-
mation. It is easily verified that a solution of (1.6) is a KKT point for
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minimize f (xi s¢) + V/ ok, s)'d + 1d"Gud

subject to c(xk, sx) + J (xk, sk)d =0,

where

A VL Sk Yi) 0
Gy ._( 0 vis!) (1.7)

In contrast to the conventional SQP trial step computation described in the previous
paragraph, our trust-funnel algorithm employs a step decomposition approach. In par-
ticular, given (xg, sx), a trial step dy := (df, d}) is computed as the sum of a “normal”
step ny := (ny, ny) and a “tangential” step # := (¢, 1), i.e.,

df ny tr
(%) — [ k) —
dy = (d,:) = (n,i) + ([]:) = ng + .

The normal step nj is computed to minimize a Gauss-Newton model of v at (x, si);
thus, it has the purpose of reducing linearized infeasibility. The tangential step # is
intended to reduce the barrier function (1.1) and is calculated as an minimizer of
a quadratic model of the barrier function within an appropriate subspace that does
not undo the improvement in reducing linearized infeasibility achieved by n;. Once
dr = ng + t; is computed, an attempt to decrease the constraint violation and/or
barrier function is made, where the decision of which to consider is based on quantities
that reflect the overall merit of the constituent steps. A detailed explanation of these
aspects is given for a preliminary algorithm in Sect. 2 and for our complete algorithm in
Sect. 3.

2 A preliminary trust-funnel algorithm for the barrier subproblem

In this section, we present a preliminary trust-funnel algorithm for solving the barrier
subproblem (BSP) for a fixed value of the barrier parameter & > 0. As u is fixed
for a particular instance of (BSP), the dependence on w of quantities in this section
is ignored. However, these dependencies—in particular, with respect to criticality
tolerances that are employed in the algorithm—will be a central focus in Sect.5 when
we address the “outer” algorithm for solving problem (NPs).

The algorithm in this section is presented merely to motivate the features of our
main algorithm in Sect.3. Indeed, there are various aspects of the algorithm in this
section that may result in computational inefficiencies; most notably, it involves the
(exact) solution of a sequence of subproblems during every iteration. By contrast, our
main algorithm involves features that aid in avoiding certain computations when they
are deemed unnecessary, and it allows for the inexact solution of subproblems. Still,
the presentation of the algorithm in this section should aid the reader in understanding
the overall strategy of our main algorithm.
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An interior-point trust-funnel algorithm 79

2.1 Funnel mechanism

The signifying feature of a funnel method is a sequence, which we call {v;™}, of
positive and monotonically decreasing scalars that guide the iterates toward constraint
satisfaction. In particular, in our approach, we ensure that

sp >0, clxg,s6) 20, v <™, and vy < v forall k. 2.1

The set of points permitted by the gradually narrowing region defined by v(x, s) < v
is the funnel [22,23], and the elements of {v;™} are the funnel radii.

2.2 Step computations

Each iteration of our preliminary algorithm involves the sequential solution of three
subproblems: the first to compute a normal step toward linearized constraint satis-
faction, the second to compute a new Lagrange multiplier estimate, and the third to
compute a tangential step toward optimality. The purpose of this section is to define
the quantities and subproblems involved in these computations.

The normal step is designed to predict a reduction in constraint violation. To achieve
this goal, consider the step ny := (ny, n3) as a solution of

minimize mj(n) subject to ||Pk_1n||2 <&, Sk+n’ > KnSk, 2.2)
n=(n*,n")

where we define the linearized constraint violation measure and scaling matrix

10
myp(n) == |lc(xx, sx) + J (xp, se)nll2 and Py = (0 Sk) (2.3)

along with the fraction-to-the-boundary (e.g., see [32, § 2.2]) constant k,, € (0, 1) and
trust region radius §; > 0. Our introduction of the scaling matrix P can be motivated
in multiple ways. On the one hand, in terms of defining the trust region constraint in
(2.2), it can be motivated as a means of keeping the iterates sufficiently within the
nonnegative orthant; e.g., it aids in restricting [n}]; to be relatively small when [s;];
is close to zero [3]. More importantly, however, its introduction can be motivated by
the constraint violation minimization problem

minimize %v()c,s)2 subjectto s >0, 2.4
xeRN seRM

for which we have the first-order KKT conditions
min{s, c(x,s)} =0 and J(x)Tc(x, s)=0. 2.5)
A point (x, s) with s > 0 and c(x, s) > 0 [recall (2.1)] satisfies (2.5) as long as

0= PeJ (x, s0) " e, si) = (J )T e (ks s), Ske(xi, si)).- (2.6)
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80 F. E. Curtis et al.

With the normal step n in hand, our preliminary algorithm next computes a new
Lagrange multiplier estimate. For this purpose, we let y; be the solution of

minimize m kL ),
yeRM

2.7)
A 2
where m,f(y) = % H Py (Vf(xk, sk) + Grng + J (xg, Sk)Ty) H2

where G has the same form as in (1.7), but with vk replaced by yx_1. This subproblem
can be motivated by observing that its objective function is a valid criticality measure
for minimizing the barrier function; recall the first-order KKT conditions for (BSP)
and see Sect. 3.2. The role of yi is two-fold: it is used in the formulation of the Hessian
in the tangential subproblem and in checking stationarity conditions for termination
of the algorithm.

After the new Lagrange multiplier estimate has been computed, we define—
now using the Hessian matrix Gy in (1.7) associated with the conventional SQP
subproblem—the tangential subproblem objective function

m{(d) = f (e, 50) + VI (x, 50"d + 3d"Grd. 2.8)
Our tangential step is then defined as a solution of the subproblem

minimize m,{ (ng +1)
t=(1%,1%)

subject to J (xg, sx)t =0, (2.9)

1P (i + )12 < min{x.,8F, 8[}, Sk+ny +1°0 > ke (sk +n3),

where «,, > 0 and «, € (0, 1) are constants and 8,{ > ( is a trust region radius.

2.3 Iteration types and step acceptance

With the normal and tangential steps computed, we must decide how to set the next
iterate (Xg+1, Sk-+1), pair of trust region radii §;, ; and & ,{ 41> and funnel radius v . In
our approach, these choices depend on first gauging whether progress in reducing the
barrier function, the constraint violation, or perhaps neither, is most likely to occur.
Specifically, we use the calculated steps to characterize the iteration as a y-iteration,
[-iteration or v-iteration in the spirit of [9-11]. The new iterate, trust region radii,
and funnel radius are then set based on whether the progress predicted within a given
iteration type is realized at the trial point

(7 s = (o, se) + die
A y-iteration is any iteration satisfying the following definition.

Definition 2.1 (y-iteration) The kth iteration is a y-iteration if dy = 0.
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An interior-point trust-funnel algorithm 81

Note that a y-iteration will occur when n; and #; are both equal to zero, so that the
only outcome of the iteration is a new Lagrange multiplier estimate. Therefore, in
such an iteration, we leave the values of the iterate, trust-region radii, and funnel
radius unchanged. For our preliminary algorithm, the kth iteration can be a y-iteration
only if (xg, sk, yr) is a first-order KKT point for the barrier subproblem; however, in
our main trust-funnel algorithm in Sect. 3, y-iterations may occur more frequently
when inexact subproblem solutions are allowed and encouraged.

The primary goal of an f-iteration is to reduce the barrier function. In this context,
we are interested in the predicted change in the barrier function by the normal step
and tangential step as given, respectively, by

Am]" = m] () —m] () and Am]" = m] (m) — m] (i + 10).

To judge the potential for the full step di to decrease the barrier function, we test
whether the following inequality holds:

m,{’d = Am,{’" + Am,{’t > K(;Am,{’t for some «; € (0, 1). (2.10)

Satisfaction of (2.10) indicates that the decrease in the barrier function predicted
by dy is at least a fraction of that predicted by the tangential step f;. Based on this
observation and the idea of using vy < vp™ for all k to guide the algorithm toward
constraint satisfaction, the following definition is natural.

Definition 2.2 (f-iteration) The kthiterationis an f-iterationif#; # 0, the inequality
(2.10) holds, and
v(xk ) Sk < vt (2.11)

As for conventional trust-region methods, the updates applied at the end of an f-
iteration are based on the quantity

p s — FO7s0)
= =
Amk

: (2.12)

which measures the ratio of actual-to- predlcted decrease in the barrier function. In
short, if the kth iteration is an f-iteration and ,ok > n1 for some prescribed constant
n1 € (0, 1), then the trial point is accepted as the new iterate, the funnel radius is left
unchanged, and the trust-region radii are potentially increased.

Finally, when the conditions defining a y- and/or f-iteration are not satisfied, the
iteration type defaults to that of a v-iteration.

Definition 2.3 (v-iteration) The kth iteration is a v-iteration if it is not a y- or an
f-iteration, i.e., if dy # 0 and either #; = 0, the inequality (2.10) does not hold, or
the inequality (2.11) does not hold.

Though perhaps not readily apparent from this definition, the main achievement of a
v-iteration is a predicted reduction in constraint violation. (This fact will be clear in
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the analysis of our main algorithm). Analogous to f-iterations, our updating strategy
for v-iterations depends on the quantity

+ o+
e —v(x,s
pp o= BT V5 (2.13)
Amy’
k

that measures the ratio of actual-to-predicted decrease in the constraint violation. It
also depends, however, on the predicted change in the constraint violation for the
normal and full trial steps, for which we define

Am}™ :=m}(0) — m}(n;) and AmZ’d = mj(0) — m}(dk). (2.14)
Specifically, if the kth iteration is a v-iteration, p; > 71,
ng #0, and Aml? > i, Aml" for some i, € (0,1), (2.15)

then the trial point is accepted as the new iterate, the normal step trust region radius may
be increased, and the funnel radius is reduced. (Briefly, the second condition in (2.15),
(2.13), and the fact that Am;"" is nonnegative due to the normal step computation
together imply that v(x,j, s,j) < v(xg, Sk).)

2.4 A preliminary trust-funnel algorithm

We are now prepared to state our preliminary algorithm, stated as Algorithm 1 on page
10. It should be noted that while Algorithm 1 outlines the main computational steps in
our main approach (see Sect. 3), we do not claim that it is well-defined and/or globally
convergent. Indeed, for simplicity, we have stated the algorithm without termination
conditions or algorithmic features that would be necessary to ensure that it is well-
posed. We have also not given concrete updates for various quantities (e.g., specific
trust-region radii updates), since this would distract the reader from understanding
the core ideas. Finally, we claim that Algorithm 1 possesses various inefficiencies.
For example, despite the fact that the algorithm calls for the computation of a normal
step in every iteration, this computation could be wasteful if a given iterate is (nearly)
stationary for the measure of infeasibility and significant progress could be made
simply by computing a new multiplier estimate and tangential step. These types of
situations motivate the various algorithmic features and opportunities for exploiting
inexact solutions that are introduced along with the description of our main algorithm
in the following section.

3 A trust-funnel algorithm for the barrier subproblem
In this section, we present our main trust-funnel algorithm, which is designed to

improve upon the preliminary algorithm of Sect. 2 in two key ways. First, we introduce
conditions under which one can exploit inexact solutions of the subproblems defining
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Algorithm 1 Preliminary trust-funnel algorithm for the barrier subproblem (BSP)

1: Input: (xg, so, ) with (sg, n) > 0.

2: Choose (83, 8 . #r} € (0. 00) and {11 K5, Kion. K1t kea} C (0 1).

3: Perform a slack reset to sq as given by (1.2).

4: Set vf™ > v(xg, 50)-

S5:fork=0,1,... do

6:  Compute a normal step ny that solves (2.2).

7:  Compute a multiplier vector y; that solves (2.7).

8:  Compute a tangential step #; that solves (2.9).

9:  Set the trial step dj < ny + 1 and trial iterate (x]:r, s;r) <« (xXg, sg) +dg.

10:  if dj = 0 then [y-iteration]
11: Set (g1, Sk41) < 0k 88, 874 < 87, SI{Jrl « ka, and vy < v

12: else if 7, # 0 and both (2.10) and (2.11) hold then [ f-iteration]
13: if p/ > n) then

14: Set (Xg41. Sk+1) < (x;r, slf), 6;:_'_] > 8,2, 8/{+| > 81{, and VP < v

15: else ; P

16: Set (1. Sk+1) < (X Sg)s (S}é+1 « 615, i1 € (0,8; ), and UIZTI < P

17:  else [v-iteration]
18: if py >y and (2.15) holds then

19: Set (v 1 k1) < G s 00,y = 88,80, < 8] and oy € 0, vP).

20: else ; f

21: Set (g1, Sk41) < (ks k), 84y € (0,8p), Sy < 8, and vy < v,

22:  Perform a slack reset to sg 4| as given by (1.2).

the normal step, Lagrange multiplier estimate, and tangential step. This is important
since, in large-scale settings, it is often preferable to employ iterative solvers, and
the opportunity of accepting inexact solutions allows for early termination of such
solvers. Second, to further reduce computational costs, we establish conditions under
which one can completely avoid computation of the normal step, Lagrange multiplier
estimate, and/or tangential step during certain iterations. The core strategy of the
algorithm in this section follows that of Algorithm 1 described in Sect. 2, but, in order
to ensure global convergence of our algorithm (which allows much computational
flexibility), intricate sets of conditions and safeguards are necessary. These are the
main topics of discussion in this section.

3.1 An inexact normal step

We begin our description of a technique for computing an inexact normal step by
introducing the “v-criticality” measures [recall (2.6)] given by

wp = ok, sk) 1= [ Ped Ok, 510 e Qo s ll2- and (3.1a)

) o | T >0,
Xk = X sK) =y otherwise.

(3.1b)

We use these measures to determine when a normal step must be computed. In par-
ticular, we only require a normal step to be computed when either the v-criticality

measure 7}’ is large relative to an “ f-criticality” measure 7[/{71 (defined in (3.14) and
associated with minimizing the barrier function), or when vy is large relative to vy™.

@ Springer



84 F. E. Curtis et al.

Specifically, for some «,, € (0, 1) and forcing function w,,, we require the computation
of a normal step if either

T > a)n(nkf_l) or vk > Kk, VP (3.2)

(If (3.2) does not hold, but 7} > 0, then one may still consider computing a normal
step since the fact that 7/ > 0 implies that the computation would be well-defined.
However, in such cases, a normal step is not necessary for our convergence analysis.)
When a normal step is not computed, we set n; < 0.

If a normal step ny := (ny, n3) is computed, then it is computed as an approximate
solution to (2.2), meaning that it should be feasible for (2.2) and yield a decrease
in mj no less than that achieved along a scaled steepest descent direction for m}.
The scaled steepest descent direction that we employ in this setting is derived in the
following manner. Performing the change of variables n" := k_ln so that the trust-
region constraint becomes ||n"||> < &, the transformed problem for minimizing m;
has the steepest descent direction — Py J (xy, si) e (e, si). Returning to the original
space gives the scaled steepest descent direction —PkZJ (ks si) Te(x, sg). For (2.2),
we define the Cauchy step ni = (n3*, ny*) as the minimizer of the objective of (2.2)
in this scaled steepest descent direction, i.e.,

ng* (@)

c._ .cyoc c .
ny = ng(ay), where ny(a) = (nis(a)

) = —aP2J (v, si) T e, s1) (3.3)

and o, is the solution to

mininaize my (ny () subject to ||Pk_1ni(a)||2 <8¢, sk+ng’ (o) > kpask. (3.4)
a>

We show in Lemma 3.5 that the decrease in m; obtained by nj is positive. Overall,
when (3.2) holds, we require a normal step satisfying the constraints of (2.2), i.e.,

1P el < 8¢, sk +n} = ks, (3.5)
along with [recall (2.14)]
Amz’" > mp(0) —my(ny) (3.6)
and
ny belonging to the range space of szJ (s s T (3.7)

It is worthwhile to note that many steps satisfy (3.5)—~(3.7) with the simplest being nj.
The condition (3.7) is automatically guaranteed by Krylov-type methods for minimiz-
ing m} (n). For future reference, we also define

oy = argmig mj (ni(«)) and nj :=nj(oy) (3.8)
az

@ Springer



An interior-point trust-funnel algorithm 85

as the minimizer of the feasibility model along the scaled steepest descent direction
(ignoring a trust-region constraint). Note that o}, is unique whenever 7y’ > 0.

3.2 Inexact Lagrange multipliers and tangential steps

In contrast to the preliminary algorithm in Sect. 2—which involved the sequential com-
putation of a Lagrange multiplier and tangential step—the conditions that we enforce
for an inexact Lagrange multiplier and a Cauchy step for the tangential subproblem
are intertwined in our main algorithm. Hence, in this subsection, we consider together
the computation of new Lagrange multipliers and the tangential step. (It is important
to note that the Lagrange multiplier computation can still be performed independently
before the tangential step computation; all that is needed in the multiplier computation
is, for each multiplier estimate, information about a corresponding Cauchy step for
the tangential subproblem, which can be computed at modest computational cost. To
clarify this issue, we provide in Sect. 3.2.3 a summary discussion of our multiplier and
tangential step computation.)

We remark that for technical reasons in our global convergence analysis, we require
a small change to our definition of the matrix Gy [recall (1.7)] appearing in the barrier
function model (2.8). Specifically, we now define

VL, sk, v 0
Gy ._( G Dk) (3.9)

with y,‘j being a (bounded) multiplier vector satisfying, foralli € {1,2,..., M},
[yili > 0 and [|y;ll2 <k, for some scalar «, > 0 (3.10)
and D, being a positive definite (p.d.) diagonal matrix satisfying
IDill2 < kp for some scalar &, > 0. (3.1

The key aspect of this definition is to ensure boundedness of the components of Gy,
which means that, in fact, one may use an approximate Hessian of the Lagrangian as
long as the sequence {Gy} is uniformly bounded.

Overall, as is typical in a step decomposition approach, our goal is to compute
a tangential step #; lying (approximately) in the null space of the constraint Jaco-
bian J (xg, s) that satisfies m,{ (np + 1) < m,{ (ny) while not undoing the predicted
gain in linearized feasibility provided by the normal step nx. On one hand, this lat-
ter requirement suggests that improvement in the barrier function should be sought
within the trust-region {d : || Pk_1d||2 < &}, since it is only within this region that
the linearized constraint model is believed to be trustworthy. On the other hand, as

a separate consideration we assume that the barrier function model m ,{ may only be

trusted within {d : || P,:ld 2 < 8,{ }. Overall, to allow flexibility in our algorithm, we
simply use as a necessary condition for computing a new Lagrange multiplier estimate
and (potentially) a tangential step the inequality
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1P el < ko minfk,67. 87} with k, € 0. 1) and K, > 0. (3.12)

If (3.12) does not hold, then we set y; < yr—1 and #; < 0.

Overall, the main idea of the strategy in the preceding paragraph is that, if (3.12)
does not hold, then (i) improvement toward feasibility may be expected from the nor-
mal step alone and (ii) the computation of a tangential step—and hence new Lagrange
multipliers for computing a productive tangential step—is unnecessary to ensure con-
vergence. Observe that if one chooses kzk,, € (0, 1), then (3.12) states that new
multipliers and a tangential step need not be computed if the normal step lies on its trust
region boundary. We claim that one may still consider computing new multipliers and a
tangential step in such a case. However, in order to analyze an algorithm that minimizes
per-iteration costs as much as possible, we employ (3.12) as described. Also note that
if ke > 1, then, by (3.5), the inequality (3.12) reduces to ||Pk71nk||2 < KB(S]{, which
suggests that new multipliers and a tangential step need not be computed when the
normal step lies outside the region in which the barrier function model is trustworthy.

When (3.12) is satisfied, we first compute a new Lagrange multiplier estimate as an
approximate solution of (2.7). For determining whether such a solution is acceptable,
we consider first the properties of the vector

i = (i) = PE(Vm (mio) + J (e, 507 o). (3.13)

with which we define the related * f-criticality” measures

wl = ) = I1Pe(Vm] (n) + T (er, s0) Ty)ll2 - and (3.14a)
Vi
ka = X (y ) = M (3.14b)

7Tk 673)

associated with minimizing f. (As in the discussion leading to (3.3) for the normal
subproblem, the vector ry can be motivated as a means of defining a Cauchy point for
the tangential subproblem; see (3.17) and (3.21) later.) We determine that subprob-

lem (2.7) has been solved accurately enough as long as yy, 7, rrkf , and Xk at least
satisfy one (if not more) of the following three sets of conditions:

n{ <e€; and v; < €y; (3.15a)

n,‘cf < w;(y); or (3.15b)

x| =] (3.15¢)

Here, {€x,€,} > 0 and k, € (0, 1) are constants and w; is a forcing function. We
require that the functions w,, and w; [see (3.2) and (3.15b)] satisfy

ws (W, (1)) < k,t forall t > 0 and for some «,, € (0, 1). (3.16)
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With respect to the conditions in (3.15), a few remarks are in order. First, we remark
that one can show (see Lemma 3.8) that one can always satisfy one of the three sets of
conditions in (3.15), and thus this requirement for y; (and the related quantities ry, nkf R

and ka ) is well-posed. One can also see that if (3.15a) is satisfied, then (xi, Sk, Yk)
is an approximate first-order KKT point for the barrier subproblem for the tolerances
{€x,€,} > 0. (If this condition holds, then, as seen in the formal statement of it
at the end of this section, our main algorithm will terminate.) However, if (3.15a)
is not satisfied, but (3.15b) holds, then the f-criticality measure n,{ is insubstantial
compared to the v-criticality measure 77}’ In this case, the computation of a tangential
step is skipped, i.e., we simply set #; <— 0. Otherwise, when (3.15a) and (3.15b) do
not hold (and necessarily (3.15¢) holds), we decide that we must compute a tangential
step. In this case, it follows from the Definition (3.14), the condition (3.15c) and the

fact that ”kf > 0 (since otherwise (3.15b) would have held) that r is a direction of

strict ascent for m,{ (+) at ng. This property allows us to compute a tangential step #
satisfying one of two sets of conditions as outlined in the following two subsections.
Our choice of which set of conditions to satisfy depends on whether a normal step is
computed. Specifically, if ny 7# 0, then we require the computation of what we call a
relaxed SQP tangential step. Otherwise, if n; = 0, then we are still free to attempt to
compute a relaxed SQP tangential step, but we may instead compute what we call a
very relaxed SQP tangential step. In such a case, this latter option may be preferable
as it involves a weaker restriction on linearized infeasibility of the step.

3.2.1 A relaxed SQP tangential step

Given a constant k,, small enough such that «,, € (0, 1 — «,,] C (0, 1) [recall that «,,
was defined in (2.15)], a relaxed SQP tangential step is defined as follows.

Definition 3.1 (Relaxed SQP tangential step) Define the Cauchy point

ty =t (es), where f;(x):= (t,fx(a)) = —« ("g) = —arg (3.17)

1% (o) r
and of is the minimizer of

. 7 c
minimize m; (ny +t; (@
=0 k( k1 ( ))

subject to | P! (ng + ££(@)) |2 < minfk,87, 5}, (3.18)
sk g+ 10 (@) = K (sk +ny).
Then, #; is a relaxed SQP tangential step if
am!" = ml ) —m! (g + 1), (3.19a)
Sk +ni + 1 > kn(sx +n3), (3.19b)
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1P (o + 1)l < min{x, 87, 87}, and (3.19)

mp(ng + t) < k,mi(0) + (1 — k )my (ng). (3.194d)

Condition (3.19a) ensures that the model of the barrier function is decreased at least
as much as by the Cauchy point , (3.19b) is a fraction-to-the-boundary constraint,
(3.19c¢) is a trust-region constraint, and (3.19d) is a relaxation of the traditional SQP
constraint that ¢ (xg, sx) + J (xk, sx) (nr + 1) = 0 that ensures that linearized constraint
infeasibility is sufficiently reduced.

If arelaxed SQP tangential step satisfying (3.19) is computed, then we must evaluate
its usefulness in the sense that we must ensure that a relatively large tangential step
results in a sufficient decrease in the model m ,J: of the barrier function. With this in
mind, we check whether the conditions

1P el > Kull P nell2 for some &, > 1 (3.20)

and (2.10) are satisfied. The inequality (2.10) indicates that the predicted decrease
in the barrier function obtained from the tangential step is substantial compared to
any potential increase resulting from the normal step. If the step # satisfies (3.20) but
violates (2.10), it does not serve its role and we reset it to zero.

3.2.2 A very relaxed SQP tangential step

Condition (3.19) may be too restrictive in certain cases. Specifically, if vy = 0, then
the algorithm will set ny <« 0, from which it follows that (3.19d) requires #; to be
in the null space of J(xg, sx). This is an unreasonable requirement in matrix-free
settings; indeed (3.19d) may be unreasonable in any situation when the normal step
computation is skipped and ny <— 0. Thus, to avoid such a requirement, we allow
for the computation of an alternative tangential step. Given the constant «,, € (0, 1)
employed in (3.19b), a constant x, € (1, 00), and a constant x, € (k,, 1) (with
k,, € (0, 1) defined for (3.2)), the salient feature of our alternative is that it involves
a relaxed condition on the linearized infeasibility of the step. We emphasize that we
are only allowed to compute a tangential step of this type when n; = 0, though we
incorporate n; into the conditions in the following definition so that one may more
easily compare them to the conditions in Definition 3.1.

Definition 3.2 (Very relaxed SQP tangential step) Define the Cauchy point
C __ ,CrC c . tl(cjx(a) — rl)cc — _
t, = ti(a;), where #;(x) = (tlfs ) =" )= arg (3.21)
and oy is the minimizer of
minimize m,{ (nk + t,‘f(oc))

a>0

subject to || P! (n + £ (@) ll2 < min{k,8}, 5]{, K, (3.22)

sp +ng + 175 (@) = k(s +n3).

@ Springer



An interior-point trust-funnel algorithm 89

Then, #; is a very relaxed SQP tangential step if

Am,{’t > m,{(nk) - m,{(nk + 1), (3.23a)

Sk +ng + 1 > kn(sx +n3), (3.23b)

IP7 (g + 1) ll2 < minfie, ), 8, c,vp™), and (3.23¢)
m? (g + 1) < KV (3.23d)

Conditions (3.23a)—(3.23c¢) play the same role as conditions (3.19a)—(3.19¢). How-
ever, since the Cauchy point defined by (3.21)—(3.22) involves a potentially smaller
trust-region radius than that defined in (3.18), the bound imposed in (3.23a) may be
different from that imposed in (3.19a), and this difference in the trust-region radii is
matched in (3.23c) [see (3.19c)]. The name “very relaxed SQP tangential step” has
been chosen because of condition (3.23d), which merely requires that the predicted
constraint violation be sufficiently less than a fraction of the upper bound vy rather
than a fraction of the current violation [see (3.19d)]. In fact, the potentially smaller
trust-region radii in (3.22) and (3.23c) (as compared to those in (3.18) and (3.19¢))
have been chosen to compensate for this relaxation.

3.2.3 Summary of inexact Lagrange multiplier and tangential step computation

Overall, the Lagrange multiplier and tangential step computation may proceed as

follows. First, an iterative solver may be applied to the least-squares subproblem (2.7)

until an approximate solution y; and the corresponding ry, nkf , and X;{ satisfy at

least one of (3.15a), (3.15b), or (3.15¢). If (3.15a) or (3.15b) is satisfied, then the
algorithm may proceed with y; as the new multiplier estimate. Otherwise, if only
(3.15¢) holds, then one should check whether the Cauchy step defined by (3.17)-
(3.18) satisfies (3.19) or (if nxy = 0) the Cauchy step defined by (3.21)—(3.22) satisfies
(3.23). (In fact, by construction of the Cauchy steps, one need only check (3.19d)
in the former case and (3.23d) in the latter case since all other conditions in (3.19)
and (3.23) are guaranteed to hold by definition of the corresponding Cauchy steps.) If
either Cauchy step satisfies its corresponding set of conditions (with n; = 0 required
in the latter case), then the algorithm may proceed with y; as the new multiplier
estimate. Otherwise, the iterative solver for (2.7) should be continued until the above
strategy yields an acceptable new multiplier y;. Once a new multiplier estimate is
obtained in this manner, the algorithm may proceed to compute a tangential step
satisfying (3.19) or (if ny = 0) (3.23). This latter computation is well-defined as
the strategy for computing y has at least guaranteed that a corresponding Cauchy
point satisfies the required conditions. (Indeed, under reasonable assumptions on the
iterative solver for (2.7), this entire strategy for computing yx and #; is well-posed; see
Lemma 3.8.
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3.3 Iteration types, step acceptance, and updating strategies

Our inexact method uses the same iteration types as our preliminary algorithm in
Sect.2. In this section, we give the precise updates that we use for the iterates, the
trust-region radii, and the funnel radius for the three types of iterations.

First, consider y-iterations as in Definition 2.1, which occur when n; and #; are
both zero, but could also (presumably) occur if ny = —#; and some components are
nonzero. (In fact, this latter case is ruled out by Lemma 3.3(vi).) During a y-iteration,
we perform—as in Algorithm 1—the updates

(Xk+1» Skr1) < (Xk, k), 8,{+1 <~ 8[, 8pp1 < 8¢, and v < vt (3.24)

As previously mentioned, since a y-iteration is defined by a zero primal step, the
only computation of interest is that of a new vector of Lagrange multiplier estimates.
Therefore, the updates in (3.24) leave the trust-region radii and bound on the maximum
allowed infeasibility unchanged for the subsequent iteration.

Second, consider f-iterations as in Definition 2.2, which have the primary pur-
pose of reducing the barrier function [recall (2.10)] while ensuring that the constraint
violation remains within the funnel radius [recall (2.11)]. If the kth iteration is an
f-iteration and p,‘f > 1 [recall (2.12)], then we set

(1, Sk41) < (g, s7) (3.25)
[sk+1]i it [c(r+1, sk+1)]i =0,
[skarli <1 ol S (3.26)
—[c(xk+1)];  otherwise,
f : f
[8j » 00) if pp >,
51{+1 el - f oof k- (3.27)
[¥28;.8;]1 otherwise,
50,1 €187, 00). (3.28)
Otherwise (i.e., if pkf < n1), we set
(k1 Ske) < (50, 8 € sl 8], and 8%y, < 8Y.  (329)
In both cases, we set
Vpr < Vg (3.30)

In (3.25)—(3.30), the constants should be chosen to satisfy 0 < 1 < 12 < 1 and
0 < y1 <y < 1. Overall, we accept the trial point (x,;F , s,j' ) if the achieved decrease
in the barrier function is comparable to the predicted decrease (and reject it otherwise),
update § kf 41 using a typical trust-region updating strategy, possibly increase the normal
step trust-region radius, and leave the funnel radius unchanged.

For technical reasons, after a f-iteration in which the trial point is accepted, we
reset the size of the normal step trust region radius during the next iteration in which
a normal step is computed. Specifically, if a normal step is computed during iteration
k and the last successful iteration was an f-iteration, we enforce
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8Y = k| P il for some «, > 0, (3.31)

where nz is given by (3.8). Besides being needed for our convergence analysis, this
safeguard is practical in that a (sequence of) f-iteration(s) with p,{ > 11 may make
inaccurate the information on the adequacy of the model 7 (-) and trust region radius
8, gathered during previous iterations.

Third, consider v-iterations as in Definition 2.3, which have as their main goal an

improvement toward feasibility. If o > 1 and (2.15) holds, then we set

(kg1 k1) < e s0) (3.32)
[Sk+11i if [c(xkt1, Sk+D)]i =0,
[skp1li <1 b Sk (3.33)
—[c(xk+1)];  otherwise,
87, if of > no,
5., € (8¢, 00) i o = m (3.34)
5 otherwise,
vps ) < max{i R, vk 1s Sig1) + Ko (Vk — v, sk+1)) ) (3.35)
Otherwise (i.e., if ,o,g < np or (2.15) does not hold), we set
(k415 Sk1) < (ks 5%), 811 € [118), 28,1, and vy < vp™. (3.36)
In both cases, we set . ‘
sl <8l (3.37)

In (3.32)—(3.37), the constants should be chosen to satisfy {«,, k,} C (0, 1). In this
manner, the trial point is accepted if the normal step is nonzero and the improvement
in linearized feasibility is comparable to its predicted value, which is itself comparable
to the improvement yielded by the normal step.

3.4 A trust-funnel algorithm

We are now prepared to state our trust-funnel method for solving (BSP). For con-
venience, we define sets that classify each iteration, as well as the computations
performed in them. The first group of sets distinguishes between iteration types:

Y:={keN:dy=0}; F:={keN:t #0and (2.10)-(2.11) hold};
V:=N\(YUF).
(Lemma 3.3 below shows that these sets are mutually exclusive and exhaustive.) The

second group distinguishes iterations for which the normal and/or tangential steps
satisfy various conditions, and whether the tangential step was reset to zero:

N := {k € N : n; was computed to satisfy (3.5)-(3.7)};
T := {k € N : 1, was computed to satisfy either (3.19) or (3.23)};
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Tp = {k € T : the computed 7;, satisfied (3.19)};
Ty := {k € Tp : the computed #satisfied (3.19) and (3.20), but not (2.10)};

(Note that f;, is reset to zero for k € 7p.) Furthermore, the set of iterations for which
dy satisfies the linearized constraint contraction condition (3.19d) plays an important
role in our analysis; thus, along with the sets above, we define

D := {k € N : the stepdy = ny + 1 satisfies (3.19d)}.

Our last group of sets distinguishes iterations that produce a change in the primal
space. In particular, if ,okf > 11 holds during an f-iteration, or if (2.15) holds and
p¢ = m1 during a v-iteration, then iteration k is called successful. The following sets

capture the types of successful iterations:
Spi=tkeF: ,o,{ >m); Syi={keV:(2.15 holdsand py >nm}; S:=SUS,.

Finally, for convenience when referring to the trust-region radius for the tangential
subproblem (see (3.19¢) and (3.23c)), we define 5’_1 := 1 and, for k > 0,

5 if ke¢T,
8% := {min{k,8?, 8/ if keTNTp, (3.38)
minfie, Y, 8/, kom) if k€ T\Tp.

We formally state our trust-funnel method as Algorithm 2 on page 19, and provide
an informal flow diagram in the “Appendix” on page 56.

As a guide for the reader with respect to the salient properties of the various types of
iterations we have defined, we provide the following lemma regarding basic facts that
may be deduced from the design of our algorithm. Unless stated otherwise, reference
to the tangential step #; corresponds to the value used in Step 37 of Algorithm 2,
i.e., the value after the possible reset in Step 31. For the purposes of this lemma, we
assume that if the algorithm does not terminate during iteration k, then all steps of the
algorithm during the iteration are well-defined. We prove this fact formally in the next
subsection.

Lemma 3.3 [fAlgorithm 2 does not terminate during the kth iteration, then:

(1) Ifk € N, then xp > 0,7 > 0,m(0) —m}(ng) > 0, AmZ’" > 0, and ny # 0.

(i) Ifni #0, thenk e N.

(i) Ifk € T, then x| = ik, > 0 and m{ () — m{ (i, +15) > 0.

@iv) If k € T\Ty, then ty # 0 and Am,{’[ > 0. If k € 7y, then t; = 0 and (3.12)

holds.

™) Iftx # 0, then k € T\Tp.

(vi) k € Yifandonlyifn; =t = 0.

(vii) Ifk € Y, thenk € D and 7| < ic,7w]_| with ,, € (0, 1) defined as in (3.16).
(viii) Ifk ¢ D, then k € T\Tp and (3.23) holds.
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Algorithm 2 Trust-funnel algorithm for the barrier subproblem (BSP)

1: Input: (xq, 50, y—1. i, €, €p) With (sg, y—1, i, €7, €y) > 0.

2: Choose {Bg,sg,va,Kca,Ky,KD,Kn] C (0,00), {kerskmrky) C (1,00),0 <y <m < 1,0 <y <y < 1,
{kete, ks Kigs Koy Ky s KB Kyys Kfbns Ktbts Kt K2} C (0, 1), and keq € (0, 1 — gl

3: Perform a slack reset to sq as given by (1.2).

4: Set Ui < max{kea, kerv(x0, 50)} and 7111 0.

5: Set Sp-flag « false.

6:fork=0,1,... do

7 Compute vy from (2.1) and nk' and x; from (3.1).

8: if yp > 0and x! = O then

9 Return the infeasible stationary point (xi, si).
Normal Step Computation

10:  if (3.2) holds, or at least 7y > 0 then [k e N1
11: if k > 1and Sy-flag = true then

12: Compute n}; satisfying (3.8).

13: Set 5} < max{s}, K“HPI:]n,’zllz} and Sy-flag « false.

14: Compute ny, satisfying (3.5)-(3.7).

15:  else

16: Set ny < 0.

Lagrange Multiplier and Tangential Step Computation
17:  Choose y}? and p.d. diagonal Dy, satisfying (3.10)—(3.11), then set G by (3.9).
18:  if (3.12) holds then

19: Compute yg, rg. 7 , and x;/ from (2.7) and (3.13)~(3.14) by the strategy in §3.2.3.
20: if (3.15a) holds then
21: Return the (approximate) first-order KKT point (xg, Sk, Yi)-
22: else if (3.15b) holds then
23: Setf; < 0.
24: else [keT]
25: if k € N then
26: Compute #; so that (3.19) is satisfied.
27: else
28: Compute #;, so that either (3.19) or (3.23) is satisfied.
29: if (3.19) holds then [k € Tp]
30: if (3.20) is satisfied but (2.10) fails then [k € Tp]
31: Setty < 0.
32:  else
33: Set y < yg_1 and i < 0, then set r, 7/ , and x| by (3.13)-(3.14).
34: if (3.15a) holds then
35: Return the (approximate) first-order KKT point (xg, sk, Yi)-
Iteration Type and Step Acceptance Determination
36:  (if (3.19d) holds then add k to the set D.) [k € D]
37:  Set the trial step dj < ny + t and trial iterate (x]j, s;r) <~ (Xg, Sg) + dx.
38: if dj = 0 then Tk e V]
39: Perform the y-iteration updates given by (3.24).
40:  elseif 7 # 0 and both (2.10) and (2.11) hold then [k € F]
41: if p/ > n) then [k e Syl
42: Perform the successful f-iteration updates given by (3.25)—(3.28) and (3.30).
43: Set Sy-flag « true.
44: else
45: Perform the unsuccessful f-iteration updates given by (3.29) and (3.30).
46:  else [keV]
47: if py >y and (2.15) holds then [k € Syl
48: Perform the successful v-iteration updates given by (3.32)—(3.35) and (3.37).
49: else
50: Perform the unsuccessful v-iteration updates given by (3.36) and (3.37).

(ix) Ifk € D, then the inequality in (2.15) holds.
(x) I7p € D.
(xi) Ifk € T\Tp, thenny = 0and k ¢ N.
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Proof To prove part (i), let k € AV, in which case we have that the conditions in Step 10
held true. This could occur only if ;' > 0, or if in (3.2) we had 7}’ > wy, (nkf_l) >0
or vg > «k,, vp™. Thus, to prove that k € N implies n,g > 0, all that remains is to
investigate the case when v; > «,,vp™. Since v > 0 by construction, this inequality
implies vy > 0. If 7! = 0 (which, since vy > 0, implies x; = 0), then the algorithm
would have terminated in Step 9. Thus, we may again conclude that 7}’ > 0, which
establishes this strict inequality for all k € A/. In turn, by (3.1) and the fact that vy > 0
when 7' > 0, we must have x;/ > O forall k € N . Now, since my > 0, it follows that
—szl(xk, si)T e (xk, sx) is a direction of strict decrease for my atn = 0, from which
it follows by (3.3) that m}(0) — m} (n}) > 0. In turn, (3.6) implies the remainder of
part (i).

Part (ii) follows since if n; 7# 0, then the conditions in Step 10 must have held (or
else the algorithm would have set n; < 0), in which case k € N.

Next, we prove part (iii). If k € 7, then it follows from Steps 19-28 of the algorithm
that after the computation of y; (and all dependent quantities) both (3.15a) and (3.15b)
did not hold (implying that nkf > (), but (3.15c) did. Combining (3.15¢) and the fact
that JTk > (0 yields Vin! i () Tre > iy (T, )2 > ( (as desired), which implies that 7y is
a direction of strict ascent for m,{ at nx. Combining this fact with (3.17)—(3.18) and
(3.21)—(3.22) yields m;, (nk) mj, (nk +1) > 0.

Building on the proof of part (iii), we next prove part (iv). If we have k € 7\7y,
we may combine m,{ (ng) — mk (ng + t,f) > 0 with (3.19a)/(3.23a) to conclude that

t # 0 and Am % fit o 0, as desired. (Since k ¢ 7y, this tangential step was not reset
to zero, so we have maintained 7 7# 0 in Step 37.) If k € 7y, it follows from Steps
18-31 that (3.12) holds, but that the algorithm reset #; < O.

To prove part (v), we first note that if #; # 0, then a tangential step was computed
and thus k € 7. Moreover, since t; # 0, we know thatk ¢ 7y, which means k € 7\ 7y,
as desired.

We now prove part (vi). If ny = # = 0, then dy = 0 and we have k € ) by the
definition of ); this proves one direction. For the other direction, in order to derive a
contradiction, suppose that k € ) (so that dy = ny + t; = 0), but that n; # 0 and/or
tr # 0. Indeed, since ny + tx = 0, we must have n; # 0 and #; # 0. It then follows
from parts (ii) and (v) that k € Y NN N (7\ 7). Consequently, from part (i) we have
that m} (0) > mj (n). This fact and the equation ny + #; = 0 imply that (3.19d) must
not be satisfied. However, according to Steps 25-26 of the algorithm, since k € N we
compute # to satisfy (3.19), a contradiction.

To prove part (vii), suppose k € ). It follows from part (vi) that ny = # = 0 so
that (3.19d) holds (which means k € D, as desired), and then from part (i) thatk ¢ A/
Hence, from Step 10 of the algorithm, it follows that (3.2) must be violated. Moreover,
since ny = 0, we also know that (3.12) holds and thus an oblique projected gradient
rr was computed (as stipulated in Step 19) to satisfy at least one of (3.15a), (3.15b)
and (3.15¢). In fact, under the conditions of this lemma, it follows that (3.15a) must not
have held, so we know that either (3.15b) or (3.15c¢) is satisfied as a result of this calcula-
tion. Suppose that (3.15¢) holds so that the algorithm would have proceeded to compute
a tangential step and k € 7. If k ¢ 7o, then it would follow from part (iv) that #; # O,
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which by part (vi) contradicts the fact that k € ). Thus, we must have k& € 7, i.e.,
we reset #; <— 0 because the computed tangential step satisfied (3.20), but not (2.10).
This is a contradiction because (2.10) would have been satisfied trivially since ny = 0.
Thus (3.15¢) must not hold, which implies that (3.15b) must hold. Since we have
shown that (3.15b) holds and (3.2) does not hold, we conclude that n,‘(f <o () <

wy (wy, (n,f_ D)= /cwn,'cf_ |» Where we have used the monotonicity of w; and (3.16).

To establish part (viii), letk ¢ D. It follows from part (vii) thatk ¢ ). Now, suppose
that ¢z = 0. Combining this with the fact that k ¢ ) implies from part (vi) thatn; # 0,
which may then be combined with part (ii) to deduce that k € A/. This fact along with
part (i) and the fact that #; = 0 implies that m} (nx +tx) < k,;m}(0) + (1 — ke )my (ng)
(see (3.19d)), and hence k € D, which is a contradiction. Therefore, we must have
tr # 0, which from part (v) implies that k € 7\ 7 and that the computed tangential
step was not reset to zero. Thus, #; satisfies either (3.19) or (3.23). In fact, since k ¢ D
so that (3.19d) is not satisfied, we conclude that k ¢ 7p and (3.23) must be satisfied.

To prove part (ix), suppose k € D so that (3.19d) holds. It follows that

Amp® = mp(0) — m{(dy) = mp(0) — k,mP(0) — (1 — k,)my (ng)

= (1 — k) (M 0) — m}(nx)) = (1 — k) Am™", (3.39)

which, since «,, € (0, 1 — «,,], means that the inequality in (2.15) holds, as desired.

To prove (x), let k € Tp. It follows that a relaxed SQP tangential step #; was com-
puted to satisfy (3.19). Thus, if # is not reset to zero, we know that (3.19d) holds.
However, if 7 was reset to zero, then (3.19d) holds trivially when n; = 0 and from
parts (i) and (ii) when n; # 0. We have shown in all cases that (3.19d) holds, and
therefore k € D.

Finally, to prove part (xi), let k € 7\7p. By Steps 25-31, it follows that (3.23)
holds and k ¢ N for all k € 7\ 7p. It then follows from part (ii) that n; = 0. O

3.5 Well-posedness

The purpose of this section is to prove that Algorithm 2 is well-posed in the sense
that if iteration k is reached, then, in a reasonable implementation of the algorithm,
all computations within iteration k will terminate finitely.

Our first result shows important consequences of the slack reset procedure.

Lemma 3.4 The slack reset (3.26) and (3.33) in Steps 42 and 48 yields sy such that
(xk, Sk) satisfies s > 0 and c(xy, sx) > 0.

Proof The fact that s > 0 follows from the choice sy > 0, the fact that the slack
reset (3.26) and (3.33) only possibly increases the slack variables (as shown in (1.4)),
and the fact that the fraction-to-the-boundary rules in (3.5) and (3.19b)/(3.23b) hold
when normal and tangential steps are computed.

We now prove that c(xg, sx) > 0 holds. Prior to the slack reset performed in
Steps 42 and 48, if [c(xk, sx)]i = 0, then (3.26) and (3.33) leave [sx]; unchanged so
that [c(xg, sx)]i > O still holds. Otherwise, if [c(xg, sx)]i < O, then after the slack

reset (3.26)/(3.33) we have that [c(xx) + sx]; = 0, which completes the proof. O
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We now show that the Cauchy step for the normal step problem is well-posed.

Lemma 3.5 Ifk € N, then nj, defined by (3.3)~(3.4) is computed and satisfies
mp(0) —mj (ng) > &} x4 min {JT]g, 5,1 — Kﬂm} > 0, (3.40)

where 1

K= € (0, 1]. (3.41)
T 1 Gk ) P

Proof Since k € N, we may observe from Lemma 3.3(i) that 7/ > 0 and x; > 0,
and hence vx > 0. We now show that nj () [recall (3.3)] is feasible for (3.4) when

1.
keN and 0<a <—min{8;, (1 —kp)} = a;. (3.42)
T
k

Consider any « € [0, o;]. It follows from the definitions of nf () and 5}’ that
1P nf@)ll2 = Nl Ped (e s0) e so) 2 = amy < 8.
It also follows from the definition of n}* (o) and Lemma 3.4 that

[—n$* (@)]i = alSk% e, sl < alseli | Ped (s s1) Te o, 50 12
oy [skli < (1 —kw)lskli for i=1,2,... M,

80 sk + ni¥ (o) > kpSg. Overall, ni (@) is feasible for (2.2) for all a € [0, o).
Now, observe that oy, [recall (3.4)] yields m} (ny) = m} (ny (ay)) < m}(ni(e)) for
all o« € [0, o]. It then follows from [3, Lemma 1] with the quantities

=y, A =201 (ks PRI (ks i) Tea, s13, b7 =202 > 0,
the fact that

“a” < 201J (ks 51) Pell3 | Ped G 1) Te Qe si) 15 = 2110 (e, 1) Pell3 ()2
and the definition of n,f that

(my(©)* — (my(nf))”

. I“b” ]
2 “b,’ mln n’ “t,,
a
1 8 1 — Ky,
> 2(7{,(”)2min —_—, —kv ll,(ﬂ)
IJ ks s Pl 7T 7
7.[1)
> 27 min k 80, 1 — K
L+ 1 ek, si) Pell;
2
= 2ugx; min , 80, 1 — Ky > 0. (3.43)
L+ 1 o 50 Pel3 "
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Hence, m} (n}) < m}(0), and therefore

(m}(0)* = (m} (n))*

m}(0) + m} (nf)
- (m}(0)% — (m} (n$))? _ (m}(0)% — (m} (n$))?
B 2my(0) 2ux :

my(0) —my(ny) =

(3.44)

Inequality (3.40) follows from (3.44), (3.43), and 1 + ||J (xk, sk) Pell3 > 1. O

Since we impose the bound (3.31) on the trust-region radius for the normal step
problem on certain iterations, we derive a lower bound on its right-hand side.

Lemma 3.6 Ifk € N, then, with n} defined in (3.8) and k}" defined in (3.41),
1B il = wi .

Proof Let wy := PrJ (x, s elxg, se). By (3.8) and since my is convex with uncon-
strained minimizer corresponding to a nonnegative «, it follows that n;; = nj (o)) is
the unconstrained minimizer of [m} (n,f (@))]?, from which it follows that

I 15
1 (e, si) Pewe |13

P 'nf = Ped (e 50T e 1)

This, along with ||J (xg, s) Prwgll2 < || (xk, s) Pell2llwk |2 and (3.1), yields

_ llwi 113 Ty
|27 gl = L = k.
1 ek, si) Prwg |5 1 Ceke, 1) Prcll5
The desired bound then follows from (3.41). O

Next, we establish the remaining claims made in (2.1). (We remark that certain
bounds established in the proof of Lemma 3.7 are refined in Lemma 4.12.)

Lemma 3.7 The slack reset (3.26) and (3.33) in Steps 42 and 48 yields sj.+1 such that

(Xk+1, Sk+1) satisfies vy < vy and, at the end of iteration k + 1, v, < vpy.

Proof Our proof is by induction. We have vy < vg™ by the initialization of vg™. Now
suppose that v; < v fori € {0,..., k} for some k > 1. The slack reset in Steps
42 and 48 cannot increase the constraint violation [recall (1.4)], which implies, for
k € YUF,theinequality v+ < v;("j;].Hence, itremains to consider k € V. If p,f <
or (2.15) does not hold, then the step is rejected, so vgy1 < U, as a consequence of
(3.36). Otherwise, (2.15) states that n; # 0, from which Lemma 3.3 implies k € N,
and thus Lemma 3.5 and (3.6) imply that AmZ‘" > (. It then follows from the fact that
P = M1, (2.13), and (3.32) that vi41 < vg. Since k,, € (0, 1) in (3.35), this implies

max

kg1 < Vil + Ko (Vk — vkg1) < vp < 0", (3.45)
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s0 (3.35) implies vy, < vp™. Combining (3.35) and (3.45), we have that v}, >

k+1
Vk+1 + K(z(vk — Vk41) > Vk41. Thus, in all cases, we have vg4| < Uy
Tq estgbhsh tha.t Uity = Uy, notej that if k ¢ V), then v,‘;j;z <« vy, S0 all thzftt
remains is to consider k € V. Observing (3.35), we see again that vy, <« vy if

either (2.15) is violated or p;, ; < n1. By contrast, if (2.15) holds and p;__; > 11, then
we must have 741 # 0 and from Lemma 3.3(ii) that k + 1 € N. Moreover, it follows
from (3.32), (2.13), (2.15), (3.6) and Lemma 3.5 as above that vyy7 < vik41. Thus, if
the maximum value in (3.35) is the second term, it follows that Uty < Ukl S UPY .
Otherwise, if the maximum value in (3.35) is the first term, then Ut < Upt trivially
follows since «,, € (0, 1). O

We now show that the computations of the least-squares multipliers, y;,—along

with the accompanying quantities ry, Jka , and ka —are well-defined. For this, we
make the following reasonable assumption.

Assumption 3.1 If the iterative solver employed to solve (2.7) runs for an infinite
number of iterations, then it produces a bounded sequence { y(l)};?io with

lim VimE(y®) = 0. (3.46)
1—> 00

We now confirm that our strategy for computing Lagrange multiplier estimates and
tangential steps is well-defined. In particular, it shows that the strategy in Sect.3.2.3
produces a Lagrange multiplier estimate and Cauchy point for a tangential subproblem,
and that the Cauchy point is a valid option for the tangential step.

Lemma 3.8 If {y(i)}?io is produced by an iterative solver employed to solve (2.7)

that satisfies Assumption 3.1, then for some (finite) index i the vector yi < y) yields

Tk, n{, and X/{ satisfying (3.15a), (3.15b), or (3.15c), where, in case only (3.15¢) is
satisfied, we also have that either

(i) the Cauchy point t; defined by (3.17)—~(3.18) satisfies (3.19), or
(ii) the Cauchy point t; defined by (3.21)-(3.22) satisfies (3.23).

Proof 1If, for any i, either (3.15a) or (3.15b) is satisfied, then the result follows. Thus,
without loss of generality, let us assume for the remainder of the proof that both (3.15a)
and (3.15b) do not hold for all i.

In order to derive a contradiction, suppose that for all i either (3.15c) does not hold
or it does while neither statement (i) nor (ii) holds. This means that the iterative solver
employed to solve (2.7) (that satisfies Assumption 3.1) does not terminate finitely,
which, in turn, implies the existence of a limit point y*° and an infinite index set Z
such that {y};c7 — y°°. Moreover, (3.46) implies that

0= VimF (y®) = J (o, sk (v°). (3.47)

Suppose that nkf (»*>) = 0. If v < €y, then this implies that, for all sufficiently
largei € Z, the vector y; < y(i) yields (3.15a), a contradiction. Otherwise, if vx > €,
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then we must have x;’ > 0 or else Algorithm 2 would have terminated in Step 9. Since
this fact, the fact that vz > €,, and (3.1) imply that 7/ > 0, it follows along with
nkf (y*°) = 0 that, for all sufficiently large i € Z, the vector y; < y@ yields (3.15b),
another contradiction. Since we have reached a contradiction in both of these cases,
we must conclude that nl‘f (y*°) > 0. Combining this strict inequality with (3.47) and
the fact that

Vin! () = P72 (5%°) — J (g, 51) Ty
shows that

ooNT P—2 ) J(xx, T,,00 I 002
ka(yoo) _ r(y™)" (P rk(]}: ) — J (ks s6) " y™) _ (Jka(y ) anf(yoo).
7, (y*°) T (y*°)

Since «, € (0, 1), the outer equations in this sequence show that, for all sufficiently
large i € Z, the vector y; < y) yields (3.15c¢).

Now, to complete the proof, we must show that either statement (i) or (ii) must be
satisfied for some sufficiently large i € Z. To this end, first observe from (3.47) that
{re(yN}ier = r(y>®) € Null(J (xx, s)). We introduce the notation (i) := #f
when { is defined by (3.17)~(3.18) with rx = r¢(y®")) associated with the relaxed
SQP tangential subproblem, and #"(i) := #; when f; is defined by (3.21)—(3.22)
with 7, = ri(y®) associated with the very relaxed SQP tangential subproblem.
We observe from (3.17) and (3.21), the constraints of (3.18) and (3.22), and the
fact that rx(y*°) € Null(J(xx, sx)) that there exist 7 (c0) and f;*(c0) such that
{1 (D}iex — 1(00) € Null(J (. 5¢)) and {1 (i) }iex — 15 (00) € Null(J (xt., 5t).
By definition, the Cauchy point #;7 (i) satisfies (3.19a)—(3.19¢c) for all i. Similarly, the
Cauchy point #;*(i) satisfies (3.23a)—~(3.23c) for all i. Thus, we need only show that
for some sufficiently large i € 7 either 7" (i) satisfies (3.19d) or #;* (i) satisfies (3.23d).
Suppose that n; # 0, in which case Lemma 3.3(ii) implies that k € N It then follows
from Lemma 3.3(i) that m} (ny) < mj(0), and thus the right-hand side of (3.19d) is
strictly greater than m} (ny ). Therefore, since #;"(c0) € Null(J (xg, sx)), it follows that
ti'(i) satisfies (3.19d) for all sufficiently large i € Z, which is to say that statement (i)
holds. Now suppose that n; = 0, in which case Lemma 3.3(i) implies that k ¢ N. By
virtue of (3.2), this must mean that v < «,,vp™. It follows from the facts that n; = 0,
Vp < K U, K € (K, 1), and {17 ()}iez — £'(00) € Null(J (xg, sg)) that 77 (i)
satisfies (3.23d) for all sufficiently large i € Z. We have reached the conclusion that
statement (ii) holds. This completes the proof. O

Finally, we give a bound on the decrease in our barrier model provided by the
Cauchy step for the tangential subproblem.

Lemma 3.9 Ifk € T, then t defined by (3.17)—(3.18) or (3.21)—(3.22) is computed
and satisfies

m! () — mi (g + 1) > g min {n,{ (1 = k)8l (1 — Km,)xnm} -0,
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where

K2

Kt = X € (0,1/2).
K721 4 |1 PeGi Pell2)

Proof We first consider k € 7p, i.e., when the Cauchy step #; is computed from
(3.17)—(3.18) with the trust region radius 8,[( = min{x,5;, 5{} (see (3.38)). It follows
from Lemma 3.3(iii) that x,‘(f > Kxﬂ]'cf > 0so, by (3.14), Vm'kf(nk)Trk > K, (71{)2 > 0.
We now show that #;/ () [recall (3.17)] is feasible for (3.18) when

keTp and 0<a < () min{(1 —k)8L, (1 — Kn)kn ) =: .
Indeed, consider any « € [0, o). The definitions of t,f(a), rk, and oy imply
1P @l = 1P el = e PO il = e < (1= k)8 (3.48)

Using the triangle inequality, (3.12) (which must hold since k € 7p C 7)), (3.38), and
(3.48), we then have

1P (e + 15@)) 2 < 1P Mgl + 1P 26 (@) 12

< Kyl + (1 — ky)8} < 8 = min{k, 8} 5]},

which shows that 7{ () satisfies the first constraint in problem (3.18). To show that
tr% () also satisfies the second constraint in problem (3.18), first observe that if
(1% (@)); = [—arili = 0, then [sg +ny + ()i > [sk +nyli > kplsk +n3li =0
since kg, € (0, 1). Thus, it suffices to consider i such that [r,‘i],- > 0. It follows from
the definitions of «; and rrkf, (3.13), [r,i]l- > 0, Lemma 3.4, and (3.5) that

(1 — Kp)Kin (1 — Kp)Kin

a <o < = —
7l 1S el
(4 — ke (U= kendiemlsili _ (1= Kndlsk +myli
i Skl [r{1i - [} )i .

Using the definition of 7;* (a) and the previous inequality leads to
[ (@)]; = alrili < (1 — ko) Isk + 13 li

from which we may conclude that [s; + nj + 7% (a)]; > kwlsk +npl; foralli
{1,..., M}. This proves that 7% (a) satisfies the constraints of problem (3.18), and
completes the proof that #;/ () is feasible for problem (3.18) for all & € [0, o).

We now observe that the minimizer o of (3.18) yields m/{ (ng + 1) = m,{ (ng +

tr(ar)) < m,{ (ng +tg (o)) forall @ € [0, oz]. We also have from the Cauchy-Schwarz
and standard norm inequalities that
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T T
i Garel = | (V] (00) + 7Gxk, 50Tve) PRG PR (Vi (1) + J (x50 ve) |

< @)1 PGPl
It then follows from [3, Lemma 1] with the quantities
=y, "=l e, b7 = Vil ()T > 0,
(the strict inequality was shown earlier in this proof) that
mi (ne) — mi (i + 1)

6‘b” . “b” s
> —miny——, t
2

9
a

vin! ()i il )T (= k)8 (1 = Kok
> —————— min 7 ) 7 7
2 @2 PG Pella 7w 7
f T f T
Vi Vi
> mj, (n;i) Ik min - my () "ry (1 _KB)SII@ (1 = KKy
2 wp (14 | Pk G Pell2)
k k
f f
Xk . Xk '
= — min ) 1 —« 81 l_KlKn
2 [(1 FIPGRdy (T () }
2_f
Kxnk

. f t
> mln{n ,(l—K)B,(l—K[)K“},
2(1 + || PG Pell) k Pk o

where we have used 1 + || PGy Pxll2 > 1 and Xjf > KXJT]‘(f with k, € (0, 1).

The proof for k € 7\7p is similar, but uses 8,’c = min{«,, &/, 8,{, kup, (3.21)
instead of (3.17), (3.22) instead of (3.18), and (by Lemma 3.3(xi)) the fact that ny = 0
for k € T\7Tp. O

4 Convergence of the trust-funnel algorithm for the barrier subproblem

The following assumption is assumed to hold for the remainder of the paper.
Assumption 4.1 The sequence of iterates {x} is contained in a compact set.
The following is an immediate consequence of Assumptions 1.1 and 4.1.

Lemma 4.1 There exists an upper bound ky > 1 for ||g(xi) |2, llcx)ll2, | (xx)ll2,
IV fxi) 2, and ||V ci (xp)ll2 forall k and i € {1, ..., M}.

We now prove that important sequences related to our method are bounded.

7 1Pd o 510" N2, X | PeGi Pella, and || PN f (xk, s) |2 for all k.

Lemma 4.2 There exists a upper bound k,, > iy for vy, ||skll2, |J (xk, sk)Tc(xk, si)l2,
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Proof The result is clearly true if the algorithm terminates finitely. Otherwise, it fol-
lows from Lemma 3.7 that vx < vp™ < vg™ for all k, which proves that {v;} can be
bounded as claimed. Combining this with the triangle inequality yields

skl = lleGxllz < lleG) + sell2 = e, sll2 < vg™ forall k.

We may deduce from this bound and Lemma 4.1 that {||s¢||>} can be bounded as
claimed. It then follows from the triangle inequality that
" 0
c(Xk, k)

T,
1 Cok, 50 e 5ol < H (J (oo s"))
which may then be combined with the Cauchy-Schwarz inequality, Lemma 4.1, and
the boundedness of {vi} (already proved ) to conclude that {||J (xx, s e, s}
can be bounded as claimed. The boundedness of {r;} follows from that of {||si (|2}
and {||J (x, si)Te(xk, sk) [I2}. It then follows from the boundedness of {||sx |2} and, by
Lemma 4.1, that of {||J(xx)|l2} that {|| PcJ (xx, s)” ||} can be bounded as claimed.
This, along with the Cauchy-Schwarz inequality, implies that { x;'} can be bounded as
claimed. The boundedness of || P, Gy Py |2 follows from the boundedness of {||sk|2},
(3.9), (3.10), Assumptions 1.1 and 4.1, and (3.11). Finally, it follows from Lemma 4.1
and the factthat P, Vf (xi, sx) = (g(xx), —pe) that{|| Px Vf (xk, sk) ||} canbe bounded
as claimed. O

2 2

Using Lemma 4.2, we may now improve the Cauchy decrease bounds provided
in Lemmas 3.5 and 3.9, as well as the result of Lemma 3.6 by making the leading
constants independent of the iteration number.

Lemma 4.3 For all k, the following hold:
(i) Ifk € N, then ny defined by (3.3)~(3.4) is computed and

my(0) —my(ny) > ko xg min{ry, 87, 1 — K.} > 0

for some constant k., € (0, 1] independent of k.
(i) Ifk € T, then ty defined by (3.17)—~(3.18) or (3.21)~(3.22) is computed and

m () —m] (g + 1) > e minfr], (1= 16,)8%, (1 = kepicnn} > 0

for some constant k. € (0, 1/2] independent of k.
(iii) Ifk € N, then, with ”Z defined in (3.8) and k., € (0, 1] from part (i),

-1
1P ngll2 > Ky

Proof The results follow from Lemmas 3.5, 3.9 and 3.6 along with Lemma 4.2. O

The next lemma bounds the size of the trial step in different scenarios.
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Lemma 4.4 [f Algorithm 2 does not terminate during iteration k, then

= 1P nill2 < 8} ifk ¢ T,
1P dill2 = 1P " nglla < minfee,dy, 87, 8]} ifk € To,
<6 ifk € T\T.

In particular, for all k, we have ||Pk_ldk||2 < max{k,8y, 8;}.

Proof Let k ¢ T, from which Lemma 3.3(v) implies #x = 0 and dx = ng. If ny = 0,
then the result holds trivially. Conversely, if n; # 0, then Lemma 3.3(ii) implies that
k € N and the result follows from (3.5). Now let k € 7, for which we have three
cases. First, if k € 7, then it follows from Lemma 3.3(iv) that #z = 0 and (3.12)
holds. Combining this with #; = 0, (3.5), and the fact that «; € (0, 1) shows that

1P dillz = | P7 ' nglla < min{ic, minfi, 87, 87}, 8¢} < min{x,87, 87, 87 }.

Second, if k € 7p\7p, then the result follows from (3.19¢) and (3.38). Third, if
k € T\7p, then the result follows from (3.23c) and (3.38). O

We now bound the differences between the problem functions and their models.
Lemma 4.5 The following hold:
(i) There exists a constant kg > 0 independent of k such that
|f @k +df s+ dY) —mi (Ol < kel PTG forall k. (41)
(ii) There exists a constant k. > 0 independent of k such that
(i + i, s+ df) —mi(di)| < kll P d N3 forall k. 4.2)
Proof We first prove part (i). By the triangle inequality, we have

1Ok + Y sk + dY) —m] (dy)]

< | fGx+dY) — f) = V) df — 3diTV L0k, yp)d] |
M M
+ = D Indse + di1) + i Y In(lsli) + pe” S} — 3diT Didy |
i=1 i=1
4.3)
Under Assumptions 1.1 and 4.1, and by (3.10), there exists xg, > O such that

|f G +df) — o) = VI df — 1diT Vv, Lo, ydT| < kalldi 13, (44)

Moreover, note that for each i € {1, ..., M}, we have by (3.5) and (3.19b)/(3.23b)
that [sg]; + [d,‘z] i > Knkn[Sx]i > O for all k regardless of whether a tangential step
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was computed. The Mean Value Theorem yields In([sx]; +[d}1;) —In[sg]; = [d}1i /&,
where &; lies between [s¢]; and [s¢]; + [d}];. Hence

[d}1i
[seli

In([sx); + [d1;) — In[se); —

< sup
gellsel Il +dS 1]

_ sl ([d,i]l-)2< ! ([d,i],»)z
Lseli + 1400 \[seli )~ Kk \Iskli )

where in the middle equation we have used the fact that the sup occurs at & = [si]; +
[d,f]l-. Hence, by (3.11) and Lemma 4.2, we have that

[dgli Ld}li
§ [skli

M M
‘—u D sk +dil) +p D sl + e’ 5¢'d} — 5di" Dy

i=1 i=1 4.5)

diT (uSHay + Y1diT Ddy| < kel S 113,

oK ton

where kg, = U/Kpkpn + %be/c.) > (. The result now follows from (4.3)- (4.5) and
Lemma 4.4 with «g := kg, + Kgo.
We now prove part (ii). By Lemma 4.1, Taylor’s expansion theorem yields

cQuptdy, sk+dy) =cC, s0) + J (s si)di+wy where [wil; = 3d7T Vi ci (G dy

for some scalars & € [xg, xp + d,f ]. As a consequence, we obtain with the triangle
inequality that there exists a constant k. > 0 so that

lo e +dy s sk+dp) —my (diol = llle e +die s se+di) 2 — lle G s1) + J Gk, si)dil]
< lwellz < kelldf 13 < well P dil3,
where we have used Lemma 4.1 and the Cauchy-Schwarz inequality. O

We now prove an important fact about v-iterations; namely, if k € V and one of the
trust region radii or funnel radius is sufficiently small, then k € D.

Lemma 4.6 Ifk € V and

(1 - Ku)

Kck,

min{ie, 87, 8/, i, vp"} < = Ky, (4.6)

then k € D.

Proof For a proof by contradiction, suppose that (4.6) holds while k € V\D. We
show that all of the conditions of an f-iteration are satisfied, implying that k € F,
contradicting the supposition that k € V.

Since k ¢ D, we have from Lemma 3.3(viii) that k € 7\7p and (3.23) holds.
Then, since 7y C 7p, it follows that k € 7\ 7, so by Lemma 3.3(iv) we have #; #~ 0.
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Moreover, k € 7\7j implies by Lemma 4.4 that ||P,:1dk 2 < 8;, which along with
the fact that k € 7\7p and (3.38) implies

1P dill> < minfi, 8y, 87k, 0p™) < evp™. (4.7)
Thus, with (4.2), the triangle inequality, (3.23d), (4.7), and (4.6), we have

V(o +dYse+ df) < kop 4 kel P di3

max

< kU + Kok, Up min{k, 8y, 8kf L KUEY < up,

so (2.11) holds. We also have from Lemma 3.3(xi) that n; = 0, so (2.10) holds. Thus,
all of the conditions of an f-iteration are satisfied, so the result follows. O

The preceding lemmas have the following useful consequence.

Lemma 4.7 There exists a constant k.5, € (0, 1] such that ifk € ¥V and
min{k, 8}, 8 } < min{1, kv, k.07 ), 4.8)

thenk € N'ND.

Proof We first note that, by Lemma 4.2, we have ka < Kk, for all k. Then, with

Kup, S= min Il, il ] c (0, 1], (4.9

Kb

we have with Lemma 3.7 that
KapaTTf = Koo X Vk < KopoKupUk < KUk < K,Up™. (4.10)

Let £k € V and (4.8) hold. Then, along with (4.10) we have that

max

minfie, 8y, 8/ , e, vy} = min{k, 87, 8/} < ey

Then, by Lemma 4.6, we have k € D (as desired), so k € ¥V N D. Now, in order
to derive a contradiction to the claim that k € A/, suppose that k € (V N D)\N.
Since k ¢ N, we have from Lemma 3.3(ii) that n; = 0, so (2.10) holds. Then, since
k €V, we must have #; # 0 (since otherwise Lemma 3.3(vi) would imply that k € )/,
which is a contradiction). Thus, we have that k € 7\7j. At the same time, k ¢ A
implies that (3.2) does not hold, so vy < «,vp™ < «.vp". This bound, (4.2), the
triangle inequality, (3.19d), the fact that ny = 0, Lemma 3.7, the fact that k € 7\ 7y,
Lemma 4.4, (3.38), (4.10) and (4.8) imply
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v(x +df sg 4 df) < ImP(do)] + kel P 13
< ImP(O) + kel P d 113
< K" + ke(min{k, oY, 5] })?

max

< KU + Kok, vp min{k, 8y, 8,{},

which, when combined with (4.8) and (4.6), yields
v+ df s+ df) < kP + (1= kIUp = o
so that (2.11) holds. Combining this with the facts that #; % 0 and (2.10) hold shows

that k € F, which is a contradiction. Thus, we conclude that k € N. 0O

We now prove that, in certain situations, a sufficiently small trust region radius is
guaranteed to lead to a successful iteration.

Lemma 4.8 The following hold:
() Ifk € F and

(A — kw7 Kokea(1 — i) (1 = )]

9 9
1 — 1 —ky Kg

51t< < min [ ] =: min{kag, KAfz”]{}

then p,{ >, k €Sy, and(S,{+1 > 8,{.
(i) Ifk € V and

1
8; < min [—,

Ky Kao T Kk X (1 —12)
Ky Ky ' max{k,, 1} ’

— Kgpy ——————————————>
™ ke(max{k,, 1})?

R v v
=: min{kac, KaaTly s Kacs Xk |

thenk e NNDNS,, pf = n, and 8| > &8

Proof For part (i), the proof that p,{ > 1, which implies that k € Sy, is the

same as for [5, Theorem 6.4.2] and uses (2.12), (2.10) (which holds since k € F),
(3.19a)/(3.23a), Lemma 4.3(ii), the assumed upper bound on 8¢, (4.1), tx # 0, and

Lemma 4.4. The fact that 8,{ = 8;: then follows from (3.27) and (3.29).

To prove part (ii), we first observe from the assumed upper bound on 8} that r;’ > 0
and x; > 0 since §; > 0 by construction in the algorithm. Moreover, the assumed
upper bound on §; and Lemma 4.7 imply that k € A/ N D. We now conclude from
Lemma 3.3(ix) that (2.15) holds. Thus, using (4.2), Lemma 4.4, (2.15), (3.6), and

Lemma 4.3(i), we have

v(xg +di, sk +di) — mp(dr)
d
Am}é

oy — 1l =

ke(maxx,, 1}8¢)° ke(maxfr., 1)5})*

chAmZ’n - chKch]g min{nlgs 5]?1 1 - Kﬂm} .

@ Springer



An interior-point trust-funnel algorithm 107

In fact, we have from the assumed upper bound on §; and «,5, € (0, 1] that §; =
min{w}, 8/, | — K.}, so that

c(max{k., 1})*8f

1%
KCchnXk

log — 1] < <1-mn.

Thus, p; > n2 > 11, which means that k € S, and, by (3.34), that 8}{’“ > 8. O

We now give a lower bound on the trust-region radii when the criticality measures
Jka and min{uvg, x;'} are bounded away from zero on f- or v-iterations.

Lemma 4.9 If there exists a constant € y > 0 such that

7l >ep forall keF, (4.11)

then, for some constant € = > 0, we have

8] > ex forall k. (4.12)
Prpof Thelstatement follows from Lemma 4.8(i), (3.38), 7 C 7\ 7y, and the fact that
5., < & fork ¢ F. O

Lemma 4.10 [f there exists a constant €9 > 0 such that
min{vg, x;} > €g forallk €V, (4.13)

then
8¢ > y1 min {8(‘)’, K Acts szeg, KAC369} =:¢€c forall k. (4.14)

Proof With y; € (0, 1) defined for (3.29), we prove by induction that, for all k,

8¢ > y1min {80, Kacis Kac min 7|, kae min VIt 4.15
k= [0 ad A2|:je{0,..4,k}m/ fi| M|:je{0 ,,,,, k}m/XJ:” (“4.15)

This inequality holds trivially for k = 0, so supposing that it holds for iteration k, we
prove that it holds for iteration k + 1. Observe that §; cannot be decreased if Step 13
is reached; hence, we may ignore this safeguard throughout this proof.

First, suppose that k € Y U (F\Sy). Since 8}{’“ < 87 and (xgy1, Sk+1) <
(xk, sx) for such iterations, we conclude that (4.15) holds at iteration k + 1. Second,
if k € S US,, then the fact that 8}(’ = 8}(’ ensures that (4.15) holds at iteration
k + 1. Finally, suppose that k € V\S,. In this case, Lemma 4.8(ii) implies that
8¢ > min{Ka., KpaTy , Kacs Xj - This may then be combined with (3.36) to deduce
that 8}{’“ > Y1 min{Kae, KTy, Kacs Xy } SO that (4.15) holds at iteration k + 1. The
bound (4.14) then follows from (4.15), (4.13), (3.1), Lemma 4.2, and the observation

that 5,'{’ is not decreased fork € Y U F. |
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We now give our first main result, which states that if there are finitely many
successful iterations, then Algorithm 2 terminates finitely.

Theorem 4.11 If |S| < oo, then Algorithm 2 terminates finitely.

Proof To derive a contradiction, suppose that Algorithm 2 does not terminate finitely.
It then follows from the fact that |S| < oo, (3.24), (3.29), (3.30), and (3.36) that for
some x, € RV, 5, € RM, and {v,, v1™, w2, xU} C R there exists an integer k; such

that, for all k > kg, Step 13 is not reached,

max

(Xky Sk Vi, VP, 700, X1 ) = (e, S, Vs, U35, 71y, x2), and k ¢ S. (4.16)

Also, vy™ > 0 while the fact that |S| < co and Lemma 3.4 ensure that s, > 0.

First, we prove that |}| < oo. In order to derive a contradiction, suppose that
|V| = oo. Then, by (4.16) (in particular, the fact that k ¢ S for k > k), it follows that
(3.36) sets S}C’H < y26; forall k € V with k > k;. Combining this with the fact that
(3.24) and (3.29) setd; | < §) forallk € YUF withk > kg, itfollows that {5} — 0.
We also have from Lemma 4.8(ii) and the facts that || = oo and |S| < oo that we
must have 0 = limcy min{zr)’, x;/} = limgey min{xve, x;'} = min{xJvs, x}. If
v, > 0, then this implies that x) = 0. However, this implies that for k = k; the
algorithm would terminate finitely in Step 9, which contradicts the supposition of the
proof. Thus, we must have that v, = 0. Since v, = 0, it follows from the conditions
of Step 10 that n; = O for all k > k. This implies that (3.12) will be satisfied for
all k > kg, which in turn implies by Step 18 of the algorithm that yy, r, rrkf , and

X;{ will be computed to satisfy (3.15a), (3.15b), or (3.15¢). If (3.15a) were to hold,
then the algorithm would terminate finitely, which is a contradiction. Thus, we know
that (3.15a) does not hold for all k& > kg, which combined with the fact that v, = 0
implies that 7'rkf > e, > Oforallk > k. It follows from this fact, Lemma4.8(i), (3.38),
and {6} — O that if | F| = oo (recall 7 C 7), then we would have {81’(};(6]: -0
and an infinite number of successful f-iterations. However, since this violates the fact
that |S| < oo, it follows at this point that we must have |F| < oco. Next, it follows
from the facts that v, = 0 and {;} — 0, the last conclusion in Lemma 4.4, and (4.16)
(specifically, that vy > 0) that (2.11) will be satisfied for all sufficiently large k. We
may also deduce from the fact that ny = Oforall k > k; that (2.10) holds forall k > k.
Since we have shown that |F| < oo and thatboth (2.10) and (2.11) hold for sufficiently
large k, we may conclude that #; = O for all sufficiently large k. Therefore, since we
have shown that n; = t; = 0 for all sufficiently large k, we have from Lemma 3.3(vi)
that k € Y for all sufficiently large k, which combined with Lemma 3.3(vii) implies
that {rrkf } — 0. However, this contradicts our earlier conclusion that n,{ >€r >0
for all k > ky. Overall, we have contradicted the supposition that |V| = oo.

Next, suppose that |F| < co. Combining this with the fact that || < oo ensures
that k € Y for all sufficiently large . It follows from this fact and Lemma 3.3(vii) that
{n{} — 0, and that yg, 7, y'rkf, and ka will be computed to satisfy (3.15a), (3.15b), or
(3.15c¢) for all sufficiently large k. During the computation of these quantities, (3.15a)
can never be satisfied, since in that case the algorithm would terminate finitely, which
contradicts the supposition of the proof. Hence, since (3.15a) is never satisfied and
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{nlg} — 0, we may deduce that v, > €, > 0. It then follows that x! > 0 (and
from (3.1) that 7} > 0), or else for k = k, the algorithm would terminate in Step
9, which is a contradiction. Thus, min{y/, 7}, v} > 0, which with (4.16), the fact
that {nkf } — 0, and (3.2) implies that k € N for all sufficiently large k. Thus, by
Lemma 3.3(i), we have n; # 0, which by Lemma 3.3(vi) contradicts our earlier
conclusion that k € ). Overall, we have proven that we cannot have | F| < 0o, so we
must have |F| = oo.

Since |F| = o0, |V| < o0, and |S| < oo, we know from (3.24) and (3.29)
that {Skf } — 0, which when combined with (3.38), the fact that 7 < 7\7p, and

Lemma 4.8(i) implies that {ﬂ]{}ke}‘ — 0. Since (3.15a), (3.15b), or (3.15¢) holds
for k € F < T\7y, and since the algorithm does not terminate finitely, we know
that (3.15a) must not hold for all k € F. Combining this with the fact that {n,{ beer —
Oimplies that vy > €, forall sufficiently large k € F. Hence, since |F| = oo, itfollows
from (4.16) that v, > €, > 0. We then must conclude that min{v,, x/} > 0, or else
for k = ks the algorithm would terminate finitely in Step 9, which is a contradiction.
Also, from x! > 0 and (3.1), it follows that ¥ > 0. Since {7ka}k€]-‘ — 0, it follows
that (3.15b) will be satisfied for all sufficiently large k € JF, which implies that ¢z = 0
and thus k& ¢ F, which once again is a contradiction.

Overall, in all cases, we have reached contradictions of our supposition that Algo-
rithm 2 does not terminate finitely, so the result is proved. O

We now bound the constraint violation following a successful v-iteration.

Lemma 4.12 There are constants {k,,1, Kyz2, Kor3} C (0, 00) so that if k € S, then

Vi1 < vk — xg min{k,_,, k70 Kk, 58, ), and (4.17a)

max

vty < max{r, vp™, v — (1 — ko) xg min{k,_ . &, L7, K, 2801 (4.17b)

while (3.20) does not hold.

Proof Letk € S,, which by the definition of S;, means that (2.15) holds. In particular,
we have n; # 0. Combining this fact with Lemma 3.3(ii) means that k € S, N N It
follows from this fact, (3.32), (2.13), (2.15), (3.6), and Lemma 4.3(i) that

Vet < vk — mAm < v — ik AmP" < vg = 1Kk xy min{y, 88, 1 — Ky );

i.e., there exist {k,;1, Kur2, Kur3} C (0, 00) such that (4.17a) holds. Combining this
with (3.35) yields (4.17b). Note that (4.17a) and Lemma 3.7 imply (2.11) holds.

We now prove that (3.20) does not hold. To reach a contradiction, suppose that (3.20)
holds, which immediately implies that 7, 7 0. Lemma 3.3(iv) then implies that k €
T\7y, which combined with the fact that (3.20) is assumed to hold shows that (2.10)
holds. Thus all the conditions of an f-iteration are satisfied so that k € F, which,
since V N F = @, contradicts the fact thatk € S, C V. |

We now show that, if there are infinitely many iterations, then the v-criticality
measure min{vg, x;'} converges to zero, at least along a subsequence of iterates.
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Lemma 4.13 [f Algorithm 2 does not terminate finitely, then

hménfmln{vk Xet i 1Syl =00

ke

0= v 4.18
liminf min{vg, x;}  if |1Sy] < o0. (4.18)
kES/'

Proof We proceed by considering the two cases distinguished in (4.18).

Case 1: Suppose that |S,| = co. We first recall that, with Lemma 3.7, we have that
{vy™} is monotonically decreasing and bounded below by zero. We now proceed by
considering the consequences of the update (3.35), which is applied for all £ € S,.
Since |S,| = o0, if (3.35) sets vrt < ko up™ infinitely often, then {vy™} — 0, which
implies by Lemma 3.7 that {v;} — 0, yielding the desired limit in (4.18). Otherwise,
if the update (3.35) sets v > ,vp™ for all sufficiently large k € Sy, then by
Lemmas 4.12 and 3.7 we have for sufficiently large k € S, that

vpty S vt — (1 — ko) xg min{k, L &, L7, K, 580 ) 4.19)

If there is a subsequence of S, along which {;’} converges to zero, then the first limit
of (4.18) follows. Let us suppose, therefore, that {x;}xcs, is bounded away from zero.
Then, the fact that {v;™} is monotonically decreasing and bounded below implies that
{vp™ — v,"(‘i]} — 0, and hence (4.19) gives that

{min{z., 8! Hres, — 0. (4.20)

We now consider two subcases with the goal of showing that there exists a subse-
quence of {1 }ies, that vanishes. First, suppose that |Sy| < oo and let k¢ be the last
index in the (ordered) set Sy. Thus, for k > ko, the inclusion k € S implies k € S,,.
As a consequence, for k > ko, we have by (3.24) and (3.29) that the normal step trust
region radius is only increased when k € S, and only decreased when k € V\S,.
(Here, since |S¢| < oo and by the procedure for updating S - f1ag, we may assume
without loss of generality that Step 13 is not reached k > ko). If [V\S,| < oo, then
8}; is bounded away from zero due to (3.24), (3.29), and (3.34), from which (4.20)
implies {7}’ }res, — 0. On the other hand, if [V\S,| = oo, then, since |S,| = oo, we
may define the infinite set Ko whose elements are the indices of the first successful
v-iterations following a set of iterations that includes elements of V but not S,. Con-
sider an arbitrary k € Ky € S, with k > ko and define k, (k) € V\S, to be the index
of the last unsuccessful v-iteration before iteration k. (By convention, let k, (k) = ko
if WV\Sy) N{k | k > ko} = ¥.) Note that, by construction, §; is not modified between
iterations k, (k) 4+ 1 and k (as these must correspond to y-iterations or unsuccessful f-
iterations), which implies that Sk "+ = = §;. Moreover, the primal and slack variables
are not modified between iterations k,, (k) and k and thus nk w0 = =} and x; ko) = =X
These observations, (3.36) and Lemma 4.8(ii) imply that, fork e Ko C S, sufﬁc1ently
large,
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v _ SV v
& = 8ku(k)'+l = Y18k, ) 4.21)
>y min{kac, Kmﬂ,ﬁl(k), KAc_‘sX]gu(k)} = y1 min{Ka, KAL»zJT/g, KACBX[{U}'

Now, to reach a contradiction to (4.20), suppose that there exists a subsequence K €
KCo such that {7}, is bounded away from zero. Combining this with (4.21) and the
factthat { x;' }xcs, is assumed to be bounded away from zero (which led to (4.20)) shows
that {8} }xex, is bounded away from zero. This contradicts (4.20) since K1 € Ko € S,.
Thus, we conclude that {7}’ };cic, — 0. As a consequence, we deduce that, in this first
subcase where |S¢| < oo, there always exists an infinite subsequence (S, or Ko) of
Sy along which {7} converges to zero.

Consider next the subcase where |Sy| = oo, which means that successful f- and
v-iterations interlace infinitely often. In this subcase, letting KC; denote the infinite set
whose elements are the indices of the first successful v-iterations following a set of
iterations that includes elements of S but not S,,, we may define forany k € Ky € S,
the index k, (k) representing the last successful f-iteration prior to iteration k. With
this definition, it follows that any iteration between k, (k) € Sy and k € S, is either
a y-iteration or unsuccessful, from which it follows that

ok () +15 Sk (0)4+1) = -+ = (o, sx) and 7 gy =+ =7

On one hand, if for all sufficiently large k € Ky the indices in {k, (k) +1, ..., k—1}
do not belong to V, then the only possible modification of the normal step trust region
radius would be the safeguard (3.31). This and Lemma 4.3(iii) show that

8; = max{3;, Kn||Pk_1nz||} > k.k.mp for all sufficiently large & € Ky,  (4.22)

where we have used the fact that k € K| € S, and Lemma 3.3(ii) implies that
k € N. The inequalities in (4.22) may be followed by the same argument as that
following (4.21) to conclude that {7} }rcxc, — 0. On the other hand, if for infinitely
many k any element of {k, (k) +1, ..., k — 1} is an element of V\S,, then along this
subsequence we may define k, (k) € V\S, to be the index of the last unsuccessful
v-iteration before iteration k. Then, using the same reasoning as in the first subcase,
we may conclude that (4.21) holds. Employing (4.21) and (4.22) and applying similar
arguments, we conclude that a subsequence of {r;'} vanishes.

We have obtained from the two above subcases that there exists an infinite subse-
quence K C S, with {7}/ }rexc — 0, regardless of the cardinality of Sy. The fact that
{x} }xes, is bounded away from zero and (3.1) then imply that {vi }rexc — 0, ensuring
the desired limit in (4.18).

Case 2: Suppose that |S,| < oco. In this case, by the fact that v} | < v™ only when
k € Sy, there exists a constant vy > 0 such that v;™* = v for all sufficiently large
k. By Theorem 4.11, the assumption that Algorithm 2 does not terminate finitely, and
|Sy| < oo, it follows that |Sy| = oco. Now, to derive a contradiction, suppose that
there exists a constant ¢,;, > 0 such that

min{uvg, x5} > €. for all sufficiently large k. (4.23)
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Since |Sy| < oo, we know from (3.24) for k € ), from (2.12), (3.25), and (3.29)
for k € F, from (3.36) for k € V\S,, and the fact that the slack reset only possibly
decreases the barrier function that { f (xx, sx)} is monotonically decreasing. Moreover,
it follows from Assumptions 1.1 and 4.1 and Lemma 4.2 that { f (xx, sx)} is bounded
below, so overall we have that { f (x, )} — fi.. for some f,,, > —oo. It follows from
this fact, |S¢| = oo, (2.12), (3.25), (2.10) (which holds for k € F), (3.19a)/(3.23a),
and Lemma 4.3(ii) that {min{n{ , 5,’(}};(63 ; — 0. Suppose that for some infinite index

set 3 € Sy and scalar 71{ > 0 we have n,{ > nf for all k € IC3. It follows that

{82},{6,@3 — 0. However, from Lemma 4.10 and (4.23), it follows that {8} };cy is
bounded away from zero for all k. Combining this with the facts that {5£}ke iy — 0

and vp™ = v5y > 0 for all sufficiently large k implies from (3.38) that {§ ,{ Yker; — 0.
It then follows from Lemma 4.9 that there exists an infinite index set X4 € F such that
{7r,gc}kelc4 — 0. Since K4 € F C T\7p, we know that (3.15a), (3.15b), or (3.15¢)
is satisfied for all k € K4. However, we also know that (3.15a) cannot be satisfied
since Algorithm 2 is assumed not to terminate finitely. It does, however, follow from
{ﬁ{}kejc4 — 0and (4.23) that (3.15b) will be satisfied for all sufficiently large k € /C4
so that #x = O for all sufficiently large k € K4 € F C 7\ 7y, which is a contradiction.
Thus, we conclude that the set U3 cannot exist, so that {n{ Ykes, — 0.1t follows from
this fact, (4.23), the definition of x;’ given in (3.1), and since the algorithm does not
terminate finitely that (3.15b) will be satisfied (and hence 7 = 0) for all sufficiently
large k € Sy € F € T\, which again is a contradiction. Thus, our supposition
that (4.23) held must be incorrect and therefore there is a subsequence s such that
{min{vg, x;' Hrercs — 0. Moreover, since |Sy| < oo and |Sy| = oo, we conclude
that (4.18) holds. O

To proceed further, at s € RM  we define the active and inactive sets
A(s):={i e{l,2,...,M}:[s]; =0} and Z(s):={1,2,... M]\A(s) (4.24)
and denote these sets at a point s, € RM by
Ay = A(sy) and Z,, := Z(s4).

In addition, recalling that Py := diag(/, Sx), we define opin(xx, sx) as the smallest
singular value of (J(xx) Si)T = (J(xx, sp) Po)T .

Lemma 4.14 [f there exists an infinite index set KC with {min{vg, x; }}kex — O, then,
for an arbitrary limit point (x4, sx) of {(xk, Sk)}reic, it follows that either

(i) v(xy,85) =0, i.e., (xx, Sx) is feasible for problem (NPs), or
(ii) x"(x4,5x) = 0 and x, is an infeasible point at which the Jacobian of active
constraints J 5, (x4) has linearly dependent rows.

Proof We consider three cases. First, suppose that limycc vy = 0. Then, any limit
point (x,, sx) of the sequence {(xx, sk)}reic yields v(xy, sx) = 0 so that (x,, si) is
feasible for problem (NPs), as desired.
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Second, suppose that vy > v,,, for some v,;, > 0 and all sufficiently large k € K.
Let (x4, s«) be any limit point of the sequence {(xk, si)}reic. Combining these facts
with the slack reset procedure (c.f., (1.2)), it follows that (x, s4) is infeasible for
problem (NPs). Moreover, from vy > v, for all sufficiently large k € K and the
assumptions of this lemma, it follows that

Pod G s0)T e
0 = lim x{ = lim | PrJ (xie, sx)" cCxge, si)ll2

> lim opmin (Xk, Sk) = Omin (Xs, S4).
kelC kel lle(xx, si) 2 kekC o e o

Thus, (J (xx) Sx) = J (x4, s%) P, with P, := diag(/, Si) must have a subset of linearly
dependent rows. Due to the structure of this matrix, it follows that this subset does not
contain row i when [s.]; > 0; it only contains rows indexed by A, and thus J 4, (x.)
has linearly dependent rows, which proves the result.

Finally, if the first two cases do not occur, we can partition K into two infinite
disjoint index sets, call them C; and K5, such that for some ¢ > 0 we have

lim vy =0, lim x{ =0, and vy > ¢ for k € K. (4.25)
keky keky

Since any limit point associated with C must be a limit point for Xy and/or K5, it
suffices to prove the result for an arbitrarily chosen limit point of C; and K. Any
limit point (x4, s4) of the sequence {(xg, sx)}kekc, yields v(xy, s5) = 0 so that (x, sx)
is feasible for problem (NPs), as desired. Next, consider any limit point of the sequence
{(eks Sk) Ykekc,» call it (x4, s5). We may now use the same argument as for the second
case (with IC replaced by KC5), to conclude that (x*, s*) is infeasible for problem (NPs)
and that J 4, (x4) has linearly dependent rows. O

We now prove a useful fact about our employed infeasibility measures.

Lemma 4.15 For any infinite index set K, we have

lim min{v, x'} =0 ifand only if lim ¥ = 0. (4.26)
kekC kel

Proof First, if limgcxc v = 0, then (4.26) follows from Lemma 4.2. Second, if vy >
Ui fOr some v,;, > 0 and all sufficiently large k € IC, then it follows from (3.1) that
{x¢}kexc — 0'if and only if {7} };cxc — 0, which again establishes (4.26).

Finally, suppose that the two previous cases do not hold. To prove the “only if”
implication, suppose that {min{vg, x;' }}xex. — 0. Then, as in the third case of the proof
of Lemma 4.14, we can partition K into disjoint subsets /C; and /C; such that (4.25)
holds. By Lemma 4.2, it then follows that {7} }¢ec, — 0, and by (3.1) we must also
have {7 }rexc, — 0. Consequently, {7}’ };cic — 0, as desired. Now, to prove the “if”
implication, suppose that {77}’ };cxc — 0 and, to obtain a contradiction, suppose further
that there exists aconstante > Osuchthat K¢ := {k € K : min{v, x} > €}isinfinite.
It then follows from the definition of x;’ in (3.1) that the infinite sequence {r} };cc, is
bounded away from zero, which is a contradiction. Hence, {min{vg, x/}}xexc — 0.0

The relevance of having an infinite index set C such that (4.26) holds is elucidated
in the following lemma.
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Lemma 4.16 If there exists an infinite index set K such that {m}}xexc — 0, then any
limit point (x4, i) of {(xk, Sk)}rexc is a first-order KKT point for (2.4).

Proof For an arbitrary limit point (x, s) of {(xx, Sk)}rexc, it follows from Lemma 3.4
and the supposition {77} };exc — O that

52 >0, c(xe, 55) =0, Syc(xy,50) =0, and J(x) c(xy, 50) =0,  (4.27)

from which it follows that (2.5) holds at (x,, s4). O
We now make the following assumption throughout the rest of the paper.

Assumption 4.2 If there exists an infinite index set K such that {7}’ };cxc — 0, then,
for an arbitrary limit point (x, s,) of {(xx, sx)}kekc, it follows that A, = @ or J 4, (xy)
has full row rank (i.e., opmin (x4, 55) > 0).

An important consequence of this assumption is the following.

Lemma 4.17 If there exists an infinite index set KC such that {7t} }exc — 0, then for
an arbitrary limit point (X, Sx) of {(xk, Sk)}kexc, it follows that v(xy, s.) = 0, i.e.,
(x4, sx) is feasible for problem (NPs). Moreover, {vi}rexc — O.

Proof Under the conditions of the lemma, we have from Lemma 4.16 that (4.27)
holds. In particular, using the definitions in (4.24) and (4.27), we have

[S*]I* >0 and CT, (x5) < CT, (X, 85) = 05 (4.28a)
[sx]a, =0 and cy, (x4) = c 4, (X, 55) > 0. (4.28b)

If A, = 0, then (4.28a) implies v(xy, s5) = 0. Otherwise, by (4.27) and (4.28a),

0= J () e, 50) = Ja, 000 e n, (v 55 = T g, (00 Tea,(00).

Assumption 4.2 implies that J 4 (x4) has full row rank, so the above implies that
0 = c4,(x4) = ca (X4, S+). Combining this with (4.28a) yields v(xy, sx) = 0. This
fact and Lemmas 4.1 and 4.2 imply that {vi}rexc — O. O

We now prove a crucial bound on the size of the normal step relative to ;.

Lemma 4.18 Let k € N and define mZ’P(a) = |le(xg, sx) + J(xk, sk) Prallr. If
Omin(Xk, k) > 0 and ay is any (nonzero) vector satisfying

mZ’P(ak) < mZ‘P(O) with ay belonging to the range of PrJ (xi, sk)T, (4.29)

then

2
<— 7. 4.30
larl2 < L (4.30)

In particular,

2
p! L — 431
17 nidla =< Omin (g, 51)2 (*3D
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Proof Let k € N and define the quadratic model fﬁZ’P(.) = %(mZ’P(‘))z. Note that
Ve iy '(0) = PLT (o, 50" G 1) Py

By definition, oy (xk, sk ) is the smallest eigenvalue of this matrix on the range space
of PiJ (xi, s;)T. Therefore, the second part of (4.29) yields

al Vi il (O0)ag = omin (e, s1)2llagl|3 > 0. (4.32)
Let

t4 1= arg min n’iz’P(tak).
1>0

It then follows from [5, Lemma 6.5.1] (and its proof) and (4.29) that

T v, P
RN /O I (V1 L 7} w3
3Shk= — = — = NG
al Vi "Oay ~ al Ve iy P0ax ~ omin (k. 51 llak 2

where we have used the Cauchy—Schwarz inequality to deduce the second inequality
and (4.32) to deduce the third. Rewriting (4.33), we obtain (4.30). The inequality (4.31)
then follows by choosing a; = Pk_lnk, which is allowed by (3.7) and the observation

that m)" "(P " ng) = mY (ng) < m¥(0) = v = mpF(0). O

We next prove a result illustrating the importance of the sequence {n,{ }. In particular,

the result establishes that nkf is a valid criticality measure for (BSP).
Lemma 4.19 [f there exists an infinite index set KC and a point (x4, s4) such that

limz =0, limx/ =0, and lim(xg, sx) = (x, 54,
kelkC kelkC kelkC

then {yi Yk ic = Y« where (x4, Sk, Vi) is a first-order KKT point for problem (BSP).

Proof Under the conditions of the lemma, Assumption 4.2 yields opin (X, s5) > 0,
which, by continuity of oy, implies that omin (xXk, Sk) > %amin(x*, s¢) > 0 for
sufficiently large k. We now claim that

||Pk_lnk I < . for all sufficiently large k € K. (4.34)

Omin (X, S*)2

First, for all k € K\N, (4.34) holds since Lemma 3.3(ii) states that n, = 0 for
such k. On the other hand, for sufficiently large k € C N A such that oyin (xk, sx) >
%amin (x4, S4), (4.34) follows as a result of (4.31). Thus, we have established (4.34).
It now follows from Lemma 4.2, (4.34), and {7 }xcxc — O that

li =0. 4.35
lim n (4.35)
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Next, observe that

: f : f T
0 = lim =1mHP(V + J(xk, )
lim ;- = lim || By Vimg (nk) (Xks Sk)" Yk )
B ,,X T
- lim 8(xk) + Vi L(xk, yk)snk + J (X)) vk (4.36)
kek —pe + S Dyny + Sgyk 5
g(xx) + Ve Lk, yng + J (x) Ty
= lllrII% [—ne + Sk Dpni + Siyil A, . (4.37)
€

[—ne + Sk Dyni + Skyilz, )

Using (4.37) (specifically the third row of the matrix inside the norm), the fact that
{(xk, s kel — (xx, S4) Where [s4]z, > 0, (3.11), Lemma 4.2, and (4.35),

lim ]z, = (1S, elr, = [yilz..

It then follows from (4.37) (specifically the first row inside the norm), the fact
that {(xk, si)}rec — (X4, 84), (3.11), (3.10), Lemma 4.1, (4.35), and the fact that
{7y }kexx — 0—and hence the full rank of J 4, (x,) stated in Assumption 4.2—that

timlyila, = =[Ja, (0 da, ()] 0, ) (8 ee) + Iz, ()12, ) = Dy,

We have shown that the multiplier sequence converges on K, i.e., {Vk}rec — Y« for
some y; € RM, Combining this with (4.36), the fact that {(xx, sk)}kexc — (s, i),
(3.11), (3.10), Lemma 4.1, and (4.35) proves that

g(x) +J(x) Ty, =0 and S.y. = pe. (4.38)

Now note that (4.38), Lemma 3.4, and the fact that u > O imply that (s, y4«) >
0. Combining this with (4.38) and the fact that the conditions of the lemma and
Lemma 4.17 ensure that v(x,, s,) = 0, we have that (x, V4, s4) is a first-order KKT
point for problem (BSP) as given by Definition 1.2. O

Lemmas 4.17 and 4.19 prove that, with Assumption 4.2, we obtain a first-order
KKT point for problem (BSP) from any convergent subsequence over which {m}’}

and {n,{ } vanish. To prove that such a subsequence will exist, we make the following
assumption henceforth, for which we define

Sk = max{—c(xz), 0}. (4.39)

Assumption 4.3 There exist constants «, > 0 and k, > 0 independent of k such that
if vy < ., then, with §; defined in (4.39), we have omin (xXk, S) > «;.

Remark 4.20 Observe that (2.1) and (4.39) imply that §; < sy, from which it follows
that vy > v(xg, Sx) and omin (Xk, Sk) > Omin(Xk, Sx). Hence, Assumption 4.3 implies
that if vy < k., then omin (X, Sx) > k;, from which it follows that X,l’ > K.
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Our next results require the following projection operator. This operator is used for
theoretical purposes only; such projections need not be computed.

Definition 4.21 Let Proj;(d) denote the projection of d onto Range(Px J (x, s D).
Lemma 4.22 Ifk € N and vy < k., then

_ 2
1P gl < 57 (4.40)

7

Moreover, there exist constants {ky,, kr,} C (0, 00) so that if, in addition, k € D, then

o 2 . o
IProj (P di)lla < i and AmP? > ke minfice, , ke l|Proj (P dy) 2}
' (4.41)

Proof If k € N and vy < «k,, inequality (4.40) is an immediate consequence of

(4.31) and Assumption 4.3. Assume now that, in addition, k € D and define d,f =
Pk_ldk. Then, it follows from the fact that J (x, sk) PeProji(d]) = J (xk, si) Ped)l
Lemma 3.3(i), (3.19d), and the definition of mZ’P in Lemma 4.18 that

m PProj(dl)) = llcxe, s1) + J (xx, 1) PeProj(df) |12
= lle(xk, sk) + J (ks s Ped{ N1
= llcCak, s6) + J Gk, skl < ek, si)llz = m}7(0). (4.42)

We may then deduce from (4.30) with a; = Projk(dkp ) and Assumption 4.3 that

. — 4 2
IProj (P ' di) 12 = |IProju(d{) |2 < K—z”f’
J

which proves the first inequality in (4.41). It also follows from Lemma 4.4 and the
fact that the projection operator is nonexpansive that

max{k,, 136} > | P 'dilla > [Proj (P di)lla.

Combining this with k € DNAN, Lemma 3.3(ix), (2.15), (3.6), Lemma 4.3(i), Assump-
tion 4.3, and the first inequality in (4.41), we have
AmZ’d > kg Am" = Kk xg min{my, 87, 1 — k)

K2||Proju (P di) |l IProj (P 'di) |12 X ,
) ’ — Kfon )
2 max{x,, 1}

> KKk Min [

i.e., there exists {ky,, kz,} C (0, 00) for the second inequality in (4.41). O

We now prove that if the number of successful v-iterations is infinite, then, amongst
other things, limit points of the sequence of iterates are feasible.
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Lemma 4.23 If|S,| = oo, then {v;*} — 0, {vr} — 0, {7} — 0, and {ni} — 0.

Proof Since |S,| = oo, it must be true that Algorithm 2 does not terminate finitely.
This implies that the result of Lemma 4.13 holds true. Moreover, Lemma 3.7 shows
that {vy™} is monotonically decreasing and bounded below by zero. Then, as in the
proof of Lemma 4.13, we have that if the update (3.35) sets VEE < Ko™ infinitely
often, then {vy*} — 0 and {vx} — 0, from which it follows by Lemma 4.2 that
{my} — 0. It then follows from these facts and (4.40) that {n;} — 0.

All that remains is to consider when the update (3.35) sets vy > ket for
all large k. From Lemma 4.13 we have that {min{vi, x;}}xex; — O for some infi-
nite K; € Sy, which in turn by Lemma 4.15 implies that {7}rcxc, — 0. Then,
by Lemma 4.17, {vi}rexc, — 0. We then have from Lemma 4.12 [in particular,
(4.17b)] that {vy; ke, — 0, which means that {v;*} — 0 and hence {v¢} — 0 by
Lemma 3.7. Combining this with Assumptions 1.1 and 4.1 and Lemma 4.2, we have
{m{} — 0. It follows from this, the fact that n; = 0 for k ¢ N [see Lemma 3.3(ii)],
and (4.40) that {n;} — 0. O

We now provide bounds for a certain type of unsuccessful v-iteration.
Lemma 4.24 Ifk € (N NV ND\S, and

. Kaa Koo 1 — kg 1 — Kay
i fmln[/cc, ol ZAe o o ] (4.43)
KpoK; Kao Ky KprakK;
then, for some constants {Kyq, Kg.} C (0, 1), we have
e —1
my(dy) < ko and ||Proj (P di)ll2 = Kol Py 1gll2- (4.44)

Proof Consider k € (M NV ND)\S, such that (4.43) holds. It follows from the fact
that k € A" ND, Lemma 3.3(ix), the inequality in (2.15), (3.6), Lemma 4.3(i), (4.43),
Assumption 4.3, and (3.1) that

mi(di) < mj(0) — Kk x min {7y, 8, 1 — ko)

< mR(0) — Kegkioky min {i,vg, 87, 1 — K } - (4.45)

It also follows from Lemma 4.8(ii), the fact that k € V\S,, Assumption 4.3, (3.1),
and (4.43) that

v : v v :
8¢ > min {kaur, Kao 00, KaaXp } = M {Kacr, KacksVk, Kaaki} = Kaoki V.

Substituting this into (4.45) ensures with (4.43) the existence of «,, € (0, 1) indepen-
dent of k such that

my (di) < mp(0) — KKk, Min (K, Uk, Kaok Uk, 1 — K}

= Vg — KeaKenky MIN {K), Kok} Vi < KogUk.

This is the first desired result. Defining d,f = P,:ldk, we may use the inequality
above, the triangle inequality, and J (xy, sk)PkdlgD = J (xx, sx) PrProj k(d,f ) to get
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vk — 1 (ks s10) PiProj(df) |12 < lleCer, ) + J (ks i) PiProj(df) |12

= lleCee. sk) + J (s 50 Pedl 12 = mj(di) < Kaavx.
Combining the above, k € N/, (4.43), (4.40), and norm inequalities shows that

2 2
—1 T
1P nill < — ) < 2 1Ped Caie, 517 112 v

KJ ]

17 Cxk, sk) PeProji(d) Il
11— Ko
7Gxk, i) Pell2IProju(df) 12
1 - Kcld '

2 T
= S 1Ped (e s1)” M2
KJ

2 T
= S I1Ped (e, 5107 2
KJ

It then follows from the definition of d,f , Lemma 4.2, and the fact that «,, € (0, 1)
that for some «, € (0, 1) independent of k, we have

2
(1 — Kkag)k 1 -1
— 1P nkll2 = Kl P ik,

IProj (P di) |l > —
k 201J (xk, s%) Pell3

which is the second desired result. O

For our next pair of results, we define the constants

2
Cw 1= K, Max [1, ol ] > 1 and (4.46a)
(1 = ks) (K — Dk (1 — k)€
1 - t n

o =min]1, o Qe | gy (4.46b)

1 — 11—k

Lemma 4.25 [fk ¢ ) such that

7l > e >0, (4.472)
minfr, 8y, 8/} < 65, and (4.47b)
1P el = sall P il (4.47¢)

then ty # 0 and (2.10) holds.

Proof Letk ¢ ) besuchthat(4.47) holds. If k € F, the results follow by the definition
of the index set F. Thus, for the remainder of the proof, assume k € V.

If np = 0, then #x # O (since otherwise k € ) by Lemma 3.3(vi)), so that by
(3.19)/(3.23a) and Lemma 4.3(ii), we have Am]"* = Am/" > 0, meaning that
(2.10) holds, as desired. Otherwise, if ny # 0, then since s > 0 and P, > 0 for all k
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and (4.47¢) holds, we have t; # 0, which implies k € 7\7j and (3.12) holds. It then
follows from the triangle inequality, (4.47c¢), and (4.46a) that

~1 —1 ~1
1P, dillz = 1P ticll2 — | P nkell2

1P nell2 ) e ko= 1Y | oo
=(1—”Pk—1t” 1P 2 = (= ) IR el (448)
k k2 tn

We also have that

—Am;{’n = Vf (x, si) i + Snf Gng

T,— —_ _
= (PVf (k. s0)) PO+ S(PC ) TPeGR PP ). (4.49)

Using the triangle and Cauchy-Schwarz inequalities, Lemma 4.2, and the fact that
(3.12), (4.47b) and (4.46b) imply ||Pk_1nk I < min{/cvf8}j, 8,{} < 1, we then have

|Am]™"| < k(1P mells + SIPC i) < 260l P ikl (4.50)

Moreover, it follows from the fact that k € 7\7p, Lemma 4.3(ii), (4.47a), (3.38),
(4.47b), and (4.46b) that

Aml{’t > Ka€x min{ey, (1 — KB)Sltqv (1 = K Kn} = K (1 — KB)SII{' (4.51)

Combining (4.51), (4.50), k € T\7y, Lemma 4.4, (4.48), (4.47¢c), and (4.46a) yields

Amg"| 26l Pl 2kl P el
Amlt T kaex (L= k)8, T kiex (1 — k)| P il
2Kk, 1P il
< I = 1—Ks.
Ko€x (1 — k) (kw — 1) | P, tell2
Hence, (2.10) holds, which completes the proof. O

We next prove that if the primal iterate is nearly feasible, then certain v-iterations
will be successful.

Lemma 4.26 Ifk € VN D,

—1 —1
1P, 2 < Gull Py nkll2, (4.52)
and
. Kao Koo 1 —Kpn 1— K KRIKJZ KJ3KR2K5RH(1 —n1)
vk < minjk., S . , . 5 (4.53)
Kpaks Kao K Kpaks  2KpKeakuw  2kc(1 4 6u) Ky

then k € S, and 8}(’+1 > 8}(’.
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Proof Consider k € V N D such that (4.52) and (4.53) hold. If n; = 0, then (4.52)
implies that #; = 0, which in turn implies by Lemma 3.3(vi) that k € ). However,
this contradicts the supposition that k € ), so we must have n; # 0. In this case,
Lemma 3.3(ii) ensures that k € NV, so that overall we have k e NNV N D.

To obtain a contradiction, suppose that k ¢ S, so that overall we have k € (V' N
VY ND)\S,. This and the bound (4.53) imply that the results of Lemmas 4.22 and 4.24
hold, i.e., that (4.41) and (4.44) hold. Moreover, k € D and Lemma 3.3(ix) imply that
(2.15) holds. Using this and the facts that ny # 0 and k € V\S,, it follows from (3.36)
that p;' < n1. However, since (4.41) and (4.44) hold,

d . A . —1
Am > iy min{k, , ky, [Proj (P di) o} = i min{i, kKol P nkll2)-

R1?

In fact, it follows from (4.40), Lemma 4.2 and (4.53) that

1 2K 0Kwe 2K g
KRngRn”Pk nk||2 S 2 T[k S
K] KJ

Vk = Ky

and thus
d —
Am > kkokiga | P el (4.54)

Furthermore, by (2.13), (4.2), (4.54), the triangle inequality, (4.52), (4.40), the Cauchy-
Schwarz inequality, Lemma 4.2, and (4.53), we have that

v+ dif se+d)) —mpy) | kel P del3

log — 11 =

d — -1
Amz KJKRZKsRn”Pk nill2
2 -1
(4 6)°IP  nelly 261+ 6.)%k,,
< =< 3 v < 1 —n1,
KyjKroKrn K| KraKra

and hence ,o,g > 11, which is a contradiction. Thus, we must conclude that k € S,.
The fact that & = 8; now follows from the fact that k € S, and (3.34). O

We now prove finite termination when the set of successful v-iterations is finite.
Lemma 4.27 If|S,| < oo, then Algorithm 2 terminates finitely.

Proof We prove the result by contradiction, and so suppose that |S,| < oo, but
that Algorithm 2 does not terminate finitely. It then follows from Theorem 4.11 that
|S| = oo, which when combined with the fact that |S,| < oo implies that |S¢| = oo;
i.e., it follows that there are an infinite number of successful iterations, and all belong
to Sy for all sufficiently large k. We may also deduce from these facts—and since the
barrier function is decreased for k € Sy and the slack reset only possibly decreases
the barrier function—that the sequence { f (xx, sx)} is monotonically decreasing for
sufficiently large k. Moreover, since vy, < v for all k ¢ S, and |Sy| < oo, we
have that there exists a constant v3s > 0 such that

vp® = vas > 0 for all sufficiently large k. (4.55)

e¢]

We now consider two cases depending on whether, for some € £ > 0,(4.11) holds.
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Case 1: Suppose that (4.11) holds for some €y > 0. It then follows from Lemma 4.9
that (4.12) also holds, in which case we have from (3.19a)/(3.23a), the fact that Sy C
F <€ T\7y, Lemma 4.3(ii), (4.11), (4.12), (3.38), and (4.55) that

Am]{’l = Kcln]{ min{nkf, (11— KB)(SIIC’ (1- Kﬂ’[)Kﬂm}

> kq€pminfep, (1 — k)8, (1 — k) }

> kq€pminfe s, (1 — k) min{k, 8y, €7, kv, (1 — Kn) K} (4.56)
for sufficiently large k € Sy. We now consider two subcases, deriving contradictions
in each, which will prove that the condition of this case (namely, that there exists
€ > 0 such that (4.11) holds) cannot occur.

Subcase 1.1: Suppose there exists an infinite subsequence Ky < Sy such that
{8,’(’},66,@. — 0. Since §; | < §; only if k € V\S, and §; | < & otherwise (and
any potential reset of §; in Step 13 increases its value), it follows that there exists an
infinite subsequence K, € V\S, such that {6} }xexc, — 0. Our goal in the remainder
of this subcase is to prove that for all sufficiently large k € K, € V, we have that all of
the conditions of an f-iteration are satisfied, which is a contradiction since VNF = .
This will prove that such a sequence Ky € Sy cannot exist.

Using the fact that {8} }xex, — 0 and Lemma 4.6, we may conclude that, for all
sufficiently large k € K, we have k € (V N D)\S,. In addition, since |S,| < oo
and {8}}rexc, — 0, we may conclude from Lemma 4.8(ii) and Lemma 4.15 that
{m}kerc, —> 0, which in turn implies with Lemma 4.17 that {vi}rerc, — 0. Now,
suppose that there exists an infinite subsequence k), € K, such that K, NN = ¢.
The following then hold for all sufficiently large k € K|, € IC, € V\S,:

(a) ngx = 0by Lemma 3.3(ii) (and thus (2.10) holds);
(b) 7 # 0 by (a), Lemma 3.3(vi), and the fact that k € V; and
(©) vk < Kk, U™ = Kk, v3s by Step 10, (3.2), and (4.55).

w00
It then follows from Assumption 1.1, Lemma 4.4, the fact that {5 },cx;, — 0, state-
ment (c) above, and the bound «,, < 1 that v(xx+dy, sy +d;) < v for all sufficiently
large k € K),. Overall, this yields (2.11), and thus we have that all of the conditions of
an f-iteration hold, so k € F. However, this is a contradiction since k € IC; C Vand
VNF = . Thus, such an infinite subsequence IC’U C K, cannot exist, so we may con-
clude that for all sufficiently large k € K, we have k € A. To summarize, at this point
in this subcase, we may assume without loss of generality that there exists an infinite
subsequence K, © (N NV ND)\S, over which {8} }rexc, = 0, {7} }kex, — 0, and
{vkkerc, = 0.

It follows from Lemma 4.24, K, € (N NV N D)\S,, and {vi}kex, — O that
m}(dy) < Kkqavi for all sufficiently large k € K,. Using this fact, (4.2), the triangle
inequality, Lemmas 4.4, 3.7, and (4.55), we have

v(x,j', s,j') < KaaVps' + k(8¢ )2 for all sufficiently large & € IC,.
This then implies that v(x,j , s,j ) < v = vp™ for all sufficiently large k € IC; such

that (8}(’)2 < (1 = kag) /K Ve Thus, since {8} }rex, — 0, we may conclude that
(2.11) holds for all sufficiently large k € IC,.
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Next, suppose that for ¢, > 0 defined in (4.46a), we have
||Pk_1tk||2 < gm||Pk_lnk||2 for all sufficiently large k € IC,. 4.57)

We may then use K, C (N NV N D), {vrekc, — 0, (4.57), and Lemma 4.26 to
conclude that |S, N IC,| = oo, which contradicts the fact that |S,| < oo. Therefore,
there exists an infinite subsequence K] € KC,, such that if k € K] then (4.57) fails.

We now show that with k € K] € I, € V\S,, the conditions of Lemma 4.25
hold. Consider k € K. First, since k € K] € V, we know that k ¢ ). Second,
since k € K}, we know from the previous paragraph that (4.57) does not hold, and
therefore that #; # 0 and ry was computed to satisfy (3.15a), (3.15b), or (3.15c).
Since we have supposed that the algorithm does not terminate finitely, we may use
the fact that {vi }rexc, — 0 along with (3.15a) to conclude that (4.47a) holds for all
sufficiently large k € K. Third, since {8 }rex, — 0, we have that (4.47b) holds
for all sufficiently large k € K. Fourth, we know from the definition of the set /)
that (4.57) fails, which is to say that (4.47c) holds. We may now apply Lemma 4.25
to deduce that # # 0 and (2.10) holds for all sufficiently large k € K. Thus, along
with our previous conclusion that (2.11) holds for all sufficiently large k € KC,, we
conclude that for all sufficiently large k € K/, we have that all of the conditions of an
f-iteration are satisfied. However, as previously mentioned, this is impossible since
K € Ky € Vand F NV = @. Thus, our supposition for Subcase 1.1 that there is an
infinite subsequence Ky C Sy with {8} }rex ; — 0, is impossible.

Subcase 1.2: Suppose that there exists €, > 0 such that 6}5 > ¢, forall k € Sf, and
recall that |S¢| = co. We may combine (4.56) and §; > ¢, forall k € Sy to conclude
that there exists k" such that, for all k > k" with k € Sy, we have

Am[’t > K€ £ min {ef, (1 — k) min{k €4, €7, kK, U5}, (1 — Km)/cn,n} > 0. (4.58)

Combining |S,| < 00, |Sf| = 00, (2.12), and (2.10) (which holds for k € F) yields

k—1 k—1
Faw.s) = fars) = D LF@Gs) = FOj 501 = mks D, Aml!,
j=K.jeSy j=K.jeSy

(4.59)
which with (4.58) proves that { f (xx, sx)} — —oo. However, this is a contradiction
since f is bounded below by Lemma 4.2 and Assumptions 1.1 and 4.1.

Since neither Subcase 1.1 nor 1.2 can occur, it follows that Case 1 cannot occur.

Case 2: Suppose that there exists L € F with
s
limz] =0. 4.60
ke k (4.60)

For all k € KL € F C 7T\7y, we have that ty # 0 was computed (and not reset to
zero), in which case (3.15b) must not hold. Combining this with (4.60) shows that

0 = limye n{ > limgex w; () > 0, so that {7}’ }yexc = 0. Hence, by Lemma 4.17,
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{vk}kerc — 0, which when combined with (4.60) shows that (3.15a) will be satisfied
for all sufficiently large k € K. However, this contradicts our supposition that the
algorithm does not terminate finitely. O

The previous result proves that if the algorithm does not terminate finitely, then
there are an infinite number of successful v-iterations. We now establish an important
consequence of this fact.

Lemma 4.28 If|S,| = oo and (4.52) holds for all sufficiently large k € V N D, then
8¢ > €, forsome €, > 0 forallk. 4.61)

Proof First, by Lemma 4.23, the fact that |S,| = oo implies that {vy} — 0. Hence,
for sufficiently large k € V N D, we have that (4.52) and (4.53) hold, which implies

by Lemma 4.26 that §; = 8¢. Second, if k € V\D, then it follows from Lemma 4.6

that KV‘-S;: > min{x,8}, 8,{ s ke, up™} > Ky Third, if k € Y U F, then by (3.24), (3.28),
and (3.29) we have that §;, | > &;. The result follows by combining these facts. O

We now prove a result about certain v-iterations that are unsuccessful.

Lemma 4.29 Ifk € V\S,, (4.43) holds,

1—ku\> (1= \> (K 3
o < min[( ““) ( ) (—V) ] (4.62)
Kc Kc Kyt

50 < (up™)7 (4.63)

and

then k € D and (2.11) holds.

Proof Letk € V\S, and observe that (4.62) and (4.63) imply that «,;§; < k.. Hence,
by Lemma 4.6, we have that k € D. That is, k € (V N D)\S,. We now consider two
cases depending on whether or notk € N.

Suppose k € N sothatk € (MNVYND)\S,. It then follows from (4.2), the triangle
inequality, the fact that (4.43) holds, and Lemmas 4.4 and 4.24 that

V(o + dY e+ df) < kv + keS8

Then, from this inequality, Lemma 3.7, (4.63), and (4.62), we have that

ax max i
v(xg + d]f7 Sk + d]:) =< Kch]r: + ke (vk )2

= U]:wx (Kc]d + K¢ W) = U]r(m‘xa

which means that (2.11) holds, as desired.

Now suppose k ¢ N (so that n; = 0). It then follows from (4.2), the triangle
inequality, Lemmas 4.4 and 3.7, (3.19d) (which holds since k € D), and the fact that
Vg < K, vp™ (which holds by (3.2) since k ¢ N), (4.62), and (4.63) that
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vk +df s+ df) < midy) + ke(8))°
< KU+ ke (v;'?‘“)% < U (ke + ke JUP) < ot
which means that (2.11) holds, as desired. O
We now prove that there are a finite number of successful v-iterations.
Theorem 4.30 The set S, is finite.

Proof We prove the result by contradiction, and so suppose that |S,| = oo. It then
follows from Lemma 4.23 that {vi*} — 0, {vx} — O, {7} — 0, and {nx} — 0.
Moreover, since |S,| = oo, we have that (3.15a) must not hold for all sufficiently
large k, or else the algorithm would terminate finitely in Step 21 or 35, which is a
contradiction. Thus, since {vy} — 0, we have

nl‘f > €, > 0 for all sufficiently large k. (4.64)

It follows from this fact and Lemma 4.9 that (4.12) holds. Also it follows from the
facts that {v} — 0, {v;*} — 0, and |Sy| = oo that there exists ko such that (4.43),
(4.53), and (4.62) hold for all k > ko.

We now prove a lower bound for §; that holds for all sufficiently large k, written
as equation (4.68) below. We prove the bound by considering two cases.

Case 1: Suppose that (4.52) holds for all sufficiently large k > kg such thatk € VND.
Then, since |S,| = oo, we may apply Lemma 4.28 to deduce that (4.61) holds for all
sufficiently large k.

Case 2: Suppose that there exists an infinite index set
Ki={k=k:keVND and [P iell2 > Gl P 'nell2 ).

Since §; (vi™) is not decreased (increased) for k € S, UY U F, our goal is to provide
a lower bound for §; over k € K1\S,. We do this by considering two subcases.
Subcase 1: Consider k such that kg < k € K1\ (S, UN). Since k ¢ N, it follows from
Lemma 3.3(ii) that ny = 0. By Lemma 3.3(vi), this means that #; ## 0 (since otherwise
we would have &k € )), which in turn means by Lemma 3.3(v) that k € 7\7y and
that (2.10) holds (since ny = 0). We may then conclude from the fact that k € V\S,,
the choice of ko being large enough such that (4.43) and (4.62) hold for k > k¢, and
Lemma 4.29 that if (4.63) holds, then (2.11) also holds. However, this would imply
that k € F, which contradicts the definition of K| since VN F = . Thus, (4.63) must
not hold and

5 > (v,j“")% for all k such that ko < k € K1\(Sy UN). (4.65)
Subcase 2: Consider k such that kg < k € (K1 N A)\S,. By (4.64), we have that

(4.47a) holds. Similarly, by the definition of I, we have that (4.47¢c) holds. Now
suppose that (4.47b) and (4.63) both hold. Then, since k ¢ ) and (4.47a), (4.47D),
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and (4.47c¢) all hold, we may apply Lemma 4.25 to conclude that #; # 0 and (2.10)
holds. Also, since k € V\S,, we have shown that (4.43) and (4.62) hold, and we have
supposed that (4.63) holds, we may apply Lemma 4.29 to conclude that (2.11) holds.
Overall, we have shown that all of the conditions of an f-iteration are satisfied so that
k € F.However, this contradicts the fact that k € K; € V and VN F = @. Therefore,
at least one of (4.47b) or (4.63) must not hold, yielding

8¢ > min {2, (v}:“)i] forall k suchthat kg <k € (KK NAN)\S,.  (4.66)
Kyt

Combining (4.65)/(4.66) from Subcases 1/2 shows that, for Case 2, we have

8¢ > min Iﬁ, (v;“)i] forall k suchthat ko <k € K1\S,. (4.67)
K.

v

Moreover, the fact that {vy} — 0 and Lemma 4.26 implies that for any k with kg <
k € (W ND\K;, we have k € S,. Thus, for all k > ko with k € (V N D)\S,,
we have k € K1\S,. As a result, the inequality in (4.67) holds for all k with kg <
k € (VN D)\S,. This conclusion, along with the deduction that «,.6; > &y, for all
k € V\D from Lemma 4.6 yields

K

v . Ss maxy 2 KV .
8 me[K—,(vk )4, ] forall k with kg <k € V\S,,
vf

vf

which, when combined with the fact that §;’ (resp. v;**) is not decreased (resp. increased)
fork € S, UY U F, yields

K

5 zmin[ﬁ,(uza*)i, "] forall k > ko.
Kt

Kyt

Combining the results of Cases 1 and 2, we have that
KyS; > min {vae*, Ss, va(v;("“‘)%, KV} for all sufficiently large k. (4.68)
Using this fact, (4.12), and {v;*} — 0 yields

minfk, 87, 8/ } > K (uf*)3 for large k. (4.69)

Under our supposition that the set S, is infinite, at least one of the following two
scenarios must occur. In both, we reach a contradiction to this supposition that S, is
infinite, which proves the theorem.

Scenario 1: Suppose that S| := S,\7 isinfinite. Fork € Sy, we have that either (3.12)
does not hold or (3.15b) holds. In fact, since (4.64) holds and {r;'} — 0, condition
(3.15b) cannot hold infinitely often for k € Sy, implying that for all sufficiently large
k € S; we have that (3.12) does not hold. Then, since #;y = 0 fork € §§ C V, we
have by Lemma 3.3(vi) that n; # O (or else k € ))). We may now use the facts that
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vp > 0,8 > 0, and 5{ > 0 for all k, (4.40), (4.69), Lemmas 3.7 and 4.2, and the
fact that {vxy} — O to conclude that, for sufficiently large k € Sy,

-1
P 'n 27 2K,V 26, L
I k kll2 < k < ub Uk _ ub o3 < .

. - 3 — 3 2
min{ie,8f. 8 )~ k2 (upd T e od KK

However, this means that (3.12) holds for all sufficiently large k € Sj, contradicting
our earlier conclusion that it does not. Thus, this scenario cannot occur.

Scenario 2: Suppose that S, = S, N 7 is infinite. Our goal is to show that for
all sufficiently large k € S, we have that all of the conditions of an f-iteration
are satisfied, which is impossible since S, € V and V N F = (. We begin by
showing that (2.10) holds for all sufficiently large £ € S». To do this, first note
that since S, € S, € N and {vx} — 0, we may apply the result of Lemma 4.22
for sufficiently large k € S». Then, using (4.49), the triangle and Cauchy-Schwarz
inequalities, Lemma 4.2, (3.1b), and that {z;'} — 0 (implying in turn that 277 < KJZ
and thus, in view of (4.40), that || Pk_lnk [l < 1 for all sufficiently large k), it follows
as in the proof of Lemma 4.25 (see (4.50)) that

2
Ky 4k
Sl < (4.70)
KJ KJ

fin —1 1y p—1 2
[Am"| < k(1P nicll2 + 511P, nell3) <

for all sufficiently large k € S;. It also follows from {v;*} — 0, S, € V, and
Lemma 4.6 that k € D for all sufficiently large k € S,. Moreover, since S, C 7, it
follows that for all k € S, atangential step #x 7 0 was computed to satisfy either (3.19)
or (3.23). However, for all k € S», it follows from (2.15) that n; # 0, and then
from Lemma 3.3(xi) that k € 7p, i.e., that (3.19) holds. This implies by (3.38) that
8, = min{k5y, 5{ } for all sufficiently large k£ € S». Combining this with k € Tp,
(3.19a), Lemma 4.3(ii), (4.64), (4.69), {v;*} — 0, and Lemma 3.7 gives, for all
sufficiently large k € S»,

Am" > koex min {ex, (1= k)L, (1 = Kn ko, }

= kuex min {€r, (1 = i) minfie, 87, 8}, (1 = k)i |

w

axy 3 I
> Ku€r (1 — k) (V™) 3 = ko€ (1 — Kp)k0)

Combining this with (4.70) and {vx} — 0 shows that

1
n 2.7
[Amy " dicivy

Am,{” T Ka€r (1 — Ky)kyk?

< 1 —k; for all sufficiently large k € S».

Hence, (2.10) holds for sufficiently large k € S;, as desired. From here, it follows
from Step 30 that the computed tangential step is not reset to zero, i.e., k € Tp\7y
for all sufficiently large k € Sy, from which it follows that #; # O for all sufficiently
large k € S». Moreover, since k € S, implies by Lemma 3.7 that (2.11) holds, we
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have from the fact that S, € S, that (2.11) holds for all k € S;. To summarize, we
have shown that for all sufficiently large k € Sy, all conditions of an f-iteration are
satisfied, which is a contradiction. Thus, this scenario cannot occur.

Overall, we have shown that under our supposition that |S,| = oo, neither Scenario
1 nor 2 may occur. However, since one of them must occur when |S,| = oo, we have
reached a contradiction to our supposition, and the result is proved. O

We conclude by summarizing our convergence results.

Theorem 4.31 The following hold for Algorithm 2:

(1) IfAssumptions 1.1, 3.1, and 4.1 hold, then either Algorithm 2 terminates finitely or
there exists an infinite index set KC such that limpexc min{vg, x'} = limgexc ) =
0. In the latter case, any limit point (X, sx) of {(Xk, k) }reic satisfies ¥ (xy, $4) =
0 and is therefore a critical point of minimizing %v(x, $)? subject to s > 0.

(i) If Assumptions 1.1, 3.1, 4.1, and 4.2 hold, then either Algorithm 2 terminates
finitely or there exists an infinite index set K such that limgcxc min{vg, 0} =
limgexc ) = 0. Inthe latter case, any limit point (x4, sx) of {(Xk, Si) }rekc satisfies
v(xy, Sx) = 0 50 that (x4, s4) is feasible for (NPs).

(iii) IfAssumptions 1.1, 3.1, 4.1, 4.2, and 4.3 hold, then either Algorithm 2 terminates
finitely in Step 9 with an infeasible stationary point (xy, si) with vy > k. or it
terminates finitely in Step 21 or 35 with an approximate first-order KKT point
(Xk, Sk, V) for the barrier problem (BSP).

Proof Part (i) follows from Lemmas 4.13,4.15, and 4.16. Part (ii) follows from part (i)
and Lemma4.17. Also, it follows from Theorem 4.30 and Lemma 4.27 that Algorithm 2
terminates finitely. Thus, part (iii) follows since, under Assumption 4.3, a subsequence
cannot converge to an infeasible stationary point with vy < k.. (For this last conclusion,
recall Remark 4.20.) O

5 A trust-funnel algorithm for the nonlinear optimization problem

The previous section considers the global convergence properties of our trust-funnel
algorithm when applied to solve the barrier subproblem (BSP). This section describes
how a sequence of barrier subproblems with decreasing values for the barrier parameter
may be solved to find a first-order KKT point for (NPs).

To achieve our stated goal, we require the constants €, and €, in Algorithm 2 to
depend on . Moreover, for practical reasons, it is advisable to make other constants in
Algorithm 2 depend on p as well. In the previous section, for ease of exposition, we did
not explicitly state these dependencies since p was fixed. This does not pose a problem
in this section since we use Algorithm 2 to solve a sequence of barrier problems where
for each particular instance the barrier parameter is fixed and therefore our previous
analysis still holds. A summary of the constants that depend on p and precisely where
they are used is given in Table 1. In addition to requiring them to be positive, it is
appropriate to have them satisfy

lim €;(n) = lim €,(n) = lim «,,(u) = lim k() =0 and 5.1
u—0 u—0 u—0 n—0
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Table 1 Parameters for Algorithm 2 that depend on p

Parameter Used Parameter Used Parameter Used

Ky = Ky (1) (3.10) Kkp = kp() (3.11) €x = €x (1) (3.152)

Ko = Kt (1) (3.19b)/(3.23b) Kion = Kron (1) (2.2)((3.5) €v = €y(1) (3.15a)
lim «,(n) = lim k() = oo. 5.2)
n—0 n—0

Moreover, the convergence result that we present additionally assumes that

ex(uj) < G and ey(u)) < ouf (53)

for some &1 € (0, 1), {¢2, B} C (0, 00), @ > 1, and that a particular choice for the
positive-definite matrix Dy in (3.11) is used; specifically, foreach 1 <i < m, let

ko() f sl > ko)),

dili == [Dxlii ==
L] LDili uj[sk]fz otherwise.

(5.4)

Other choices are possible, e.g., based on the primal-dual update Dy = Y;S, ! and
only require a small modification in the proof.
With these requirements, we now state our method for solving problem (NPs).

Algorithm 3 Trust-funnel algorithm for solving (NPs).

1: Input: (xq, s, Yo, o) satisfying (sq, yo, (o) > O.
2: Choose a parameter y;, € (0, 1) and forcing functions € (-) and €y (-).
30 Set (xg™, s, ¥y <= (x0, S0, Yo) and j < 0.
4:for j =0,1,... do
Obtain (x 41,41, Yj+1) =BSP(X;-”’", s;."“", y;."”‘", W €x (i), €p(paj)) from Algorithm 2.
if Algorithm 2 terminated in Step 9 then
Return the infeasible stationary point (x4, 5j41)-

L I

Setpjr1 € (0, yupl
Use i, pjy1,and (xjq1, 841, Yj41) to compute the starting point (x;.“f'_"l , s;.‘f;fl, y}“_‘"_‘l).

Theorem 5.1 If Assumptions 1.1, 3.1, 4.1, 4.2, and 4.3 hold with (5.3)—(5.4), then

(i) Algorithm 3 returns an infeasible stationary point in Step 7, or
(ii) there exists a limit point (X4, Sx, Y«) of the iterates {(x 11, sj11, Yj+1)} computed
by Algorithm 3 such that (x4, Sx, y«) is a first-order KKT point for problem (NPs).

Proof If statement (i) occurs, then there is nothing left to prove. Therefore, suppose that
statement (i) does not occur, in which case we have that Algorithm 2 never terminates
in Step 9, which by (3.15a) and (5.3) means that for all j > 0 we have

Al i) S ey < apd and v <6 < opf. (55)
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In particular, we have that the sequence {(x;y1,5j4+1,y;+1)} is infinite, and from
the second part of (5.5), the triangle inequality, and Assumption 4.1, that {s;1} is
bounded. Combining this fact with Assumption 4.1 implies the existence of an infinite
index set 7 and a point (X, s4) with s, > 0 such that

Hm (xj41,8j41) = (X4, %) (5.6)
jed

It follows from this fact, (5.5), i; — 0, and Assumption 1.1 that

lim v = v(xs, 54) = 0. 6.7
jed

We comment that for the remainder of the proof, the quantities Pj11, njy1, etc. are
used to represent the final values of the relevant quantities computed in Algorithm 2
when tis called in line 5 during iteration j of Algorithm 3; they are the complementary
quantities to (X1, 8j+1, Yj+1)-

It follows from norm inequalities, the definition of P, (4.40), the factthatn; = 0
if j ¢ N (see Lemma 3.3(ii)), (3.1), (5.6), (5.7), Assumption 1.1, and (5.5) that, for
alli € {1,2,...,m}, we have

[ 4 1)i -1 s -1 2
—| < IS7 A5l < P4l < 2 T+

[sj+1]i ]

= O@j41) = O for jeJ.
Since we maintain positive slacks throughout Algorithm 2, we may conclude that
%4, 1il = O(Mf.}[sjﬂ]i) forall 1 <i<mandjeJ. (5.8)
We now develop a crucial bound by considering two cases motivated by (5.4). First,

suppose that for a given i we have /Lj[sH_l]i_Z < kp(it ), so that from (5.4) we have
[dj+11i = wjlsj+1]72. It then follows from this fact and (5.8) that

1 .
ILsj+1)ildj i liln’  Jil = O(u; Py for jeJ.
Second, suppose that for a given i we have ;Lj[st]fz > Kkp( ), so that from (5.4)

we have [dj11]; = kp(pj) < ,u,j[sj+1];2, and thus [sj+1]i2[dj+1],- < i j. Combining
this fact with (5.8) shows that

s jalild i il Dil = Ol s 1 Fld sl = O Py for jed. (5.9
Therefore, (5.9) holds in both cases, i.e., (5.9) holds forall 1 <i <mand j € J.

We may now use the same proof as for Lemma 4.19, combined with (5.7), (5.9),
and the first part of (5.5) to deduce that lim;c 7 yj+1 = y« for some y, satisfying
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gxye) +J (x*)Ty>k = 0 and S,y, = 0. To prove that (xy, sy, ys) is a first-order KKT
point for problem (NPs), it only remains to prove that y* > 0, as we do next.
From the first part of (5.5), we know that

o
glﬂj >

g(xj+1) + vxxﬁ(xj-i-la y;+])n§'+] + J(xj-‘rl)Tyj"rl
—uje+ Sj+1Dj+1n§+1 + Sjr1yj+1

2

> H—Mje + Sjr1Djin g + Sjt1yje1 H2

>| = pj+sjilildjaliln Di+Isj4)ilyj+lil forall 1<i<m. (5.10)
We now consider two cases. First, suppose that i is such that [s,]; > 0. In this case
it follows from (5.10), (5.9), the fact that u; — 0, and (5.6) that lim ¢ 7[y;+1]; =

[v*]; = 0, as desired. Second, suppose that i is such that [s,]; = 0. It may be observed
from (5.10) that —¢ypu§ < —pj + [sjr1lildjliln’ 1i + [sje1dily 11, so

—aiu§ = Isjrlildjplilng 4 1i

[sj+1]i

[yj+1li = (5.11)

It follows from (5.11), &1 € (0, 1), > 1, 8 > 0, uj — 0, (5.9), and the positivity
of the slack variables as imposed in Algorithm 2, that [y;11]; > 0 for all sufficiently
large j € J. Combining this with lim j¢ 7 yj+1 = y« shows that [y,]; > 0. O

6 Conclusion and discussion

In this paper, we have presented a new algorithm for solving constrained nonlin-
ear optimization problems. The algorithm is of the inexact barrier-SQP variety, i.e.,
it approximately solves a sequence of barrier subproblems using an inexact SQP
method. In Sects. 3 and 4, we proved that each barrier subproblem could be solved
approximately using a new inexact-SQP method based on a trust-funnel mechanism
(not requiring a filter or penalty function). The algorithm is extremely flexible in
that, during each iteration, it automatically determines the types of steps and updates
that are expected to be most productive, where potential productivity is determined
by available criticality measures. In each iteration, each subproblem may be solved
approximately using matrix-free iterative methods, which means that the algorithm is
viable for solving large-scale barrier subproblems. We then proved in Sect. 5 that an
approximate solution of the original nonlinear optimization problem may be obtained
by approximately solving a sequence of barrier subproblems for a decreasing sequence
of barrier parameters.

Although we have not considered them explicitly in this paper, we remark that
equality constraints, call them c;(x) = 0, may easily be included in our algorithm. To
do this, one may simply redefine

clx,s) = (c(x) * S)

ce(x)
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and adjust the barrier problem (BSP), violation measure (1.3) and v-criticality measure
(3.1) in obvious ways. Clearly, two-sided bounds on inequality constraints may also
be incorporated in a similar fashion.

7 Appendix

The following is a flow diagram of our trust-funnel method stated as Algorithm 2.

Compute vy, 7}, and x}.

Return infeasible stationary point. |‘yT Is x} = 0 and v > 07

Lwo

Is 7} > wa(mf_)) or vp > k™, or at least 7§ > 07

Lyes Lo

Set ny = 0.

Is S;-flag = true?

lyes no

Set 6 — max{dy, | Py 'ni[l2}-

!

Compute normal step ny, satisfying (3.5)-(3.7).

!

Compute Gy, from (3.9) as the Hessian matrix for the tangential step subproblem.

!

Is || Pg k|2 < wn mindrody, 0f 12

lYCs lno

—> Compute gy, 7k, 7)., and x| to satisfy (3.15a), (3.15b), or (3.15¢).

Return KKT point. k—— Does (3.15a) hold?
lno

Does (3.15b) hold?
Lyes Lno

Set t; = 0.
lycs lno

Set yg < yk—1, tx =0, and calculate 74, ¢, and x{.

es
Does (3.15a) hold? ———s|Return KKT point.

no

Does the £ computed
from 7y, satisfy

o the relaxed SQP
condition (3.18)7

lyes

Compute t, to satisfy
the relaxed SQP
condition (3.19).

N

Does the ¢ computed
from ry, satisty the |,
relaxed (3.18) or very
relaxed (3.21)
conditions?

v

Compute ), to satisfy
the relaxed (3.19) or
very relaxed (3.23)
conditions.

!

Set dy < ny, +ty, and (x7, 51) — (, sk) + di-

!

Use Definitions (2.1), (2.2), and (2.3) to classify the type of iteration.

ly—itcration
Do updates (3.24).

@ Springer

L titeration

Is pl > m?

Lyes Lo

Do updates (3.25)-(3.28).

|

Iteration is complete. Proceed onto the next iteration.

Do updates (3.29).

|
I

lv-itcration

Is pf > m, g # 0, and Ampd > keaAmp"?

Lyes Lo

Do updates (3.32)(3.

|

Do updates (3.36).
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