
Math. Program., Ser. A (2017) 161:73–134
DOI 10.1007/s10107-016-1003-9

FULL LENGTH PAPER

An interior-point trust-funnel algorithm for nonlinear
optimization

Frank E. Curtis1 · Nicholas I. M. Gould2 ·
Daniel P. Robinson3 · Philippe L. Toint4

Received: 20 December 2013 / Accepted: 8 March 2016 / Published online: 7 April 2016
© Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2016

Abstract We present an interior-point trust-funnel algorithm for solving large-scale
nonlinear optimization problems. The method is based on an approach proposed by
Gould and Toint (Math Prog 122(1):155–196, 2010) that focused on solving equality
constrained problems. Our method is similar in that it achieves global convergence
guarantees by combining a trust-region methodology with a funnel mechanism, but
has the additional capability of being able to solve problems with both equality and
inequality constraints. The prominent features of our algorithm are that (i) the sub-
problems that define each search direction may be solved with matrix-free methods so

Frank E. Curtis: This author was supported by U.S. Department of Energy Grant DE–SC0010615 and
U.S. National Science Foundation Grant DMS–1016291.
Nicholas I. M. Gould: This author was supported by the EPSRC Grant EP/I013067/1.
Daniel P. Robinson: This author was supported by U.S. National Science Foundation Grant
DMS–1217153.

B Daniel P. Robinson
daniel.p.robinson@gmail.com

Frank E. Curtis
frank.e.curtis@gmail.com

Nicholas I. M. Gould
nick.gould@stfc.ac.uk

Philippe L. Toint
philippe.toint@fundp.ac.be

1 Department of Industrial and Systems Engineering, Lehigh University, Bethlehem, PA, USA

2 Numerical Analysis Group, Rutherford Appleton Laboratory, Chilton, Oxfordshire, UK

3 Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD,
USA

4 Department of Mathematics and NaXys, University of Namur, Namur, Belgium

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-016-1003-9&domain=pdf

74 F. E. Curtis et al.

that derivativematrices need not be formed or factorized so long asmatrix-vector prod-
ucts with them can be performed; (ii) the subproblems may be solved approximately
in all iterations; (iii) in certain situations, the computed search directions represent
inexact sequential quadratic optimization steps, which may be desirable for fast local
convergence; (iv) criticality measures for feasibility and optimality aid in determining
whether only a subset of computations need to be performed during a given iteration;
and (v) no merit function or filter is needed to ensure global convergence.

Keywords Nonlinear optimization · Constrained optimization · Large-scale
optimization · Barrier-SQP methods · Trust-region methods · Funnel mechanism

Mathematics Subject Classification 49J52 · 49M37 · 65F22 · 65K05 · 90C26 ·
90C30 · 90C55

1 Introduction

We introduce a method for solving optimization problems of the form

minimize
x∈RN

f (x) subject to c(x) ≤ 0, (NP)

where f : R
N → R and c : R

N → R
M are twice continuously differentiable.

(Our method can also be applied when equality constraints are present, but, for sim-
plicity in our discussion, these are suppressed in our algorithm development and
analysis; see Sect. 6 for further discussion.) Our algorithm is designed to solve large-
scale instances of (NP). In particular, it is designed to be matrix-free in the sense
that an implementation of it only requires matrix-vector products with the constraint
Jacobian, its transpose, symmetric approximations of the Hessian of the Lagrangian,
and corresponding preconditioners. Consequently, iterative methods may be used to
approximately solve each subproblem arising in the algorithm.

The method we propose utilizes components of both interior-point (IP) and sequen-
tial quadratic optimization (commonly known as SQP) methods. Algorithms of this
type are often referred to as barrier-SQP methods. The interior-point aspects of our
algorithm allow us to avoid the combinatorial explosion that may occur within, say,
an active-set approach. The efficiency of interior-point methods for solving linear and
convex quadratic optimization problems has been well-established [1,7,12,13,17,24,
28,30,31]. Extending these methods for solving nonlinear problems has been the sub-
ject of research for decades [3,4,6,14,32–36] and numerical evidence illustrates strong
performance. We follow an approach similar to Byrd et al. [3,4] and solve a sequence
of barrier subproblems for decreasing values of the barrier parameter. This means that
we must solve a sequence of equality constrained subproblems, and these may be
solved efficiently with an SQP-based method. It is well known that traditional SQP
methods are very efficient for solving small- to medium-sized optimization prob-
lems [8,9,15,16], while more recently proposed SQP methods utilize exact second
derivatives and are, in theory, capable of solving large problems [19–21,29]. Prelim-
inary results when solving small- to medium-sized problems are promising, but their

123

An interior-point trust-funnel algorithm 75

effectiveness on large problems has not yet been confirmed. There have, however, been
several SQP strategies that have proved capable of solving large equality constrained
problems [2,23,27].

In this paper, we use the trust-funnel approach originally described in [23], and
then corrected in [22], as the basis for solving a sequence of equality constrained
barrier subproblems that arise in an interior-point framework. We note, however, that
a naïve implementation of the SQP method described in [22,23] within an interior-
point paradigm may result in a method for which the establishment of convergence
guarantees is elusive. This is a consequence of the fact that interior-point methods—
as their name suggests—require the algorithm iterates to remain in the strict interior
of the feasible region associated with the inequality constraints, while the method in
[22,23] does not innately possess the mechanisms necessary to avoid the boundary of
the feasible region in this context. In this paper, we describe modifications of this trust-
funnel method that are appropriate for our interior-point setting. These modifications
include imposing explicit constraints in the trust-region subproblems to ensure that
the iterates remain in the strict interior of the feasible region, and the incorporation of
scaled trust-region constraints and optimality measures. Scalings of these types have
been used previously [3,6].

The paper is organized as follows. In Sect. 2, to motivate our main ideas, we out-
line a preliminary trust-funnel algorithm for solving the barrier subproblem in an
interior-point approach. This method, which requires the exact solution of subprob-
lems in each iteration, forms the basis for our main trust-funnel algorithm, presented
in Sect. 3, which involves various enhancements vis-à-vis the method in Sect. 2. In
Sect. 4, we prove that our main trust-funnel algorithm will terminate finitely with
arbitrarily small positive tolerances on appropriate criticality measures. In Sect. 5, we
consider convergence of the barrier subproblem solutions for a decreasing sequence
of the barrier parameter. Finally, conclusions are provided in Sect. 6.

1.1 Notation

The gradient and Hessian of f at x are written as g(x) and ∇xx f (x) respectively. The
M × N matrix J (x) represents the Jacobian of the constraint function c evaluated at
x , with its j th row being ∇c j (x)T . The matrix ∇xx c j (x) is the Hessian of c j evaluated
at x . We let e denote the vector of all ones and I denote the identity matrix, both
of whose dimensions are determined by the context in which they are used. Given
a vector s ∈ R

M , [s] j is the j th element of s and S := diag([s]1, [s]2, . . . , [s]M).
A forcing function ω : [0,∞) → [0,∞) is defined as any continuous and strictly
increasing function that satisfies ω(0) = 0. For a real symmetric matrix P , we write
P � 0 to indicate that P is positive definite. Finally, given two scalar sequences {a j }
and {b j }, we write a j = O(b j) to indicate that there exists a constant c > 0 such that
a j ≤ cb j for all j .

1.2 NLP and barrier-SQP preliminaries

We make the following assumption throughout the paper.

123

76 F. E. Curtis et al.

Assumption 1.1 The functions f and c are twice continuously differentiable.

In fact, the global convergence guarantees that we establish for our algorithm hold
even if f and c are only once continuously differentiable and (uniformly bounded)
Hessian approximations are employed. However, for simplicity in our discussion and
in order to provide commentary on algorithmic choices that should be made to achieve
fast local convergence, we make Assumption 1.1.

Problem (NP) is not solved directly by our algorithm. Rather, we introduce a vector
of slack variables s ∈ R

M and solve the equivalent optimization problem

minimize
x∈RN ,s∈RM

f (x) subject to c(x, s) := c(x) + s = 0, s ≥ 0. (NPs)

The following definition gives first-order stationarity conditions for (NPs) [25,26].

Definition 1.1 (First-order KKT point for (NPs)) The vector triple (x, s, y) is a first-
order KKT point for problem (NPs) if it satisfies

g(x) + J (x)Ty = 0, c(x, s) = 0, Sy = 0, and (s, y) ≥ 0.

To solve (NPs), we (approximately) solve the barrier subproblem

minimize
x∈RN ,s∈RM

f (x, s) subject to c(x, s) = 0, s > 0 (BSP)

for decreasing values of the barrier parameter μ > 0, where we define

f (x, s) := f (x) − μ

M∑

i=1

ln([s]i). (1.1)

Given a Lagrange multiplier vector y for the constraint c(x, s) = 0, the Lagrangian
associated with (BSP) and its gradient with respect to (x, s) are

L(x, s, y) := f (x, s) + c(x, s)Ty and ∇(x,s)L(x, s, y) := ∇ f (x, s) + J (x, s)Ty,

where J (x, s) := ∇c(x, s)T = (
J (x) I

)
is the Jacobian of c(x, s) with respect to

(x, s). A primal-dual point (x, s, y) is a first-orderKKTpoint of the barrier subproblem
if it satisfies ∇(x,s)L(x, s, y) = 0, c(x, s) = 0 and (s, y) > 0. Multiplying the second
block of the first equation by S leads to the following equivalent definition.

Definition 1.2 (First-order KKT point for (BSP)) The vector triple (x, s, y) is a first-
order KKT-point for the barrier subproblem (BSP) if it satisfies

g(x) + J (x)Ty = 0, c(x, s) = 0, Sy = μe, and (s, y) > 0.

A comparison of Definitions 1.1 and 1.2 suggests that, as μ → 0, KKT points of the
barrier subproblem become increasingly accurate KKT points of problem (NPs).

123

An interior-point trust-funnel algorithm 77

Our trust-funnel strategy generates a sequence {(xk, sk, yk)} of primal, slack, and
dual variables. As is typical of interior-point methods, we require s0 > 0 and ensure
sk > 0 for all k via explicit constraints imposed on all search direction calculations,
and ensure that c(xk, sk) ≥ 0 holds at the beginning of iteration k by incorporating
the slack reset procedure (for all i ∈ {1, . . . , M})

[sk]i ←
{[sk]i if [c(xk, sk)]i ≥ 0,

−[c(xk)]i otherwise.
(1.2)

Defining the measure of constraint violation

v(x, s) := ‖c(x, s)‖2, (1.3)

it follows that if sprior

k is the value of sk prior to the slack reset, then

vk := v(xk, sk) ≤ v(xk, s
prior

k), sprior

k ≤ sk, and f (xk, sk) ≤ f (xk, s
prior

k); (1.4)

i.e., the barrier function and constraint violation decrease due to (1.2).
For reference, we now describe the step computation of a conventional SQPmethod

for solving the barrier subproblem (BSP). Given a kth iterate (xk, sk, yk), the trial step
in such a method is defined as the solution (when it exists) of

minimize
d=(dx ,ds)

f (xk, sk) + ∇ f (xk, sk)
T d + 1

2d
T∇(x,s)(x,s)L(xk, sk, yk)d

subject to c(xk, sk) + J (xk, sk)d = 0.

It may be verified that a solution d = (dx , ds) of this subproblem satisfies

⎛

⎝
∇xxL(xk, sk, yk) J (xk)T 0

J (xk) 0 I
0 Sk μS−1

k

⎞

⎠

⎛

⎝
dx

y
ds

⎞

⎠ = −
⎛

⎝
g(xk)

c(xk, sk)
−μe

⎞

⎠ , (1.5)

where y is an estimate of an optimal Lagrange multiplier vector for the constraint
c(xk, sk) + J (xk, sk)d = 0. The SQP step generated in this fashion is often called a
primal step since the dual vector yk does not appear in (1.5) other than in the Hessian
∇xxL. We can instead compute a primal-dual step by applying Newton’s Method to
the conditions in Definition 1.2, which leads to

⎛

⎝
∇xxL(xk, sk, yk) J (xk)T 0

J (xk) 0 I
0 Sk Yk

⎞

⎠

⎛

⎝
dx

y
ds

⎞

⎠ = −
⎛

⎝
g(xk)

c(xk, sk)
−μe

⎞

⎠ . (1.6)

This system is identical to (1.5), except that the (3, 3)-block now contains dual infor-
mation. It is easily verified that a solution of (1.6) is a KKT point for

123

78 F. E. Curtis et al.

minimize
d=(dx ,ds)

f (xk, sk) + ∇ f (xk, sk)
T d + 1

2d
T Gkd

subject to c(xk, sk) + J (xk, sk)d = 0,

where

Gk :=
(∇xxL(xk, sk, yk) 0

0 Yk S
−1
k

)
. (1.7)

In contrast to the conventional SQP trial step computation described in the previous
paragraph, our trust-funnel algorithm employs a step decomposition approach. In par-
ticular, given (xk, sk), a trial step dk := (dxk , dsk) is computed as the sum of a “normal”
step nk := (nxk , n

s
k) and a “tangential” step tk := (t xk , t sk), i.e.,

dk =
(
dxk
dsk

)
=
(
nxk
nsk

)
+
(
t xk
t sk

)
= nk + tk .

The normal step nk is computed to minimize a Gauss-Newton model of v at (xk, sk);
thus, it has the purpose of reducing linearized infeasibility. The tangential step tk is
intended to reduce the barrier function (1.1) and is calculated as an minimizer of
a quadratic model of the barrier function within an appropriate subspace that does
not undo the improvement in reducing linearized infeasibility achieved by nk . Once
dk = nk + tk is computed, an attempt to decrease the constraint violation and/or
barrier function is made, where the decision of which to consider is based on quantities
that reflect the overall merit of the constituent steps. A detailed explanation of these
aspects is given for a preliminary algorithm in Sect. 2 and for our complete algorithm in
Sect. 3.

2 A preliminary trust-funnel algorithm for the barrier subproblem

In this section, we present a preliminary trust-funnel algorithm for solving the barrier
subproblem (BSP) for a fixed value of the barrier parameter μ > 0. As μ is fixed
for a particular instance of (BSP), the dependence on μ of quantities in this section
is ignored. However, these dependencies—in particular, with respect to criticality
tolerances that are employed in the algorithm—will be a central focus in Sect. 5 when
we address the “outer” algorithm for solving problem (NPs).

The algorithm in this section is presented merely to motivate the features of our
main algorithm in Sect. 3. Indeed, there are various aspects of the algorithm in this
section that may result in computational inefficiencies; most notably, it involves the
(exact) solution of a sequence of subproblems during every iteration. By contrast, our
main algorithm involves features that aid in avoiding certain computations when they
are deemed unnecessary, and it allows for the inexact solution of subproblems. Still,
the presentation of the algorithm in this section should aid the reader in understanding
the overall strategy of our main algorithm.

123

An interior-point trust-funnel algorithm 79

2.1 Funnel mechanism

The signifying feature of a funnel method is a sequence, which we call {vmax
k }, of

positive and monotonically decreasing scalars that guide the iterates toward constraint
satisfaction. In particular, in our approach, we ensure that

sk > 0, c(xk, sk) ≥ 0, vk ≤ vmax
k , and vmax

k+1 ≤ vmax
k for all k. (2.1)

The set of points permitted by the gradually narrowing region defined by v(x, s) ≤ vmax
k

is the funnel [22,23], and the elements of {vmax
k } are the funnel radii.

2.2 Step computations

Each iteration of our preliminary algorithm involves the sequential solution of three
subproblems: the first to compute a normal step toward linearized constraint satis-
faction, the second to compute a new Lagrange multiplier estimate, and the third to
compute a tangential step toward optimality. The purpose of this section is to define
the quantities and subproblems involved in these computations.

The normal step is designed to predict a reduction in constraint violation. To achieve
this goal, consider the step nk := (nxk , n

s
k) as a solution of

minimize
n=(nx ,ns)

mv
k (n) subject to ‖P−1

k n‖2 ≤ δv
k , sk + ns ≥ κfbnsk, (2.2)

where we define the linearized constraint violation measure and scaling matrix

mv
k (n) := ‖c(xk, sk) + J (xk, sk)n‖2 and Pk :=

(
I 0
0 Sk

)
(2.3)

along with the fraction-to-the-boundary (e.g., see [32, § 2.2]) constant κfbn ∈ (0, 1) and
trust region radius δv

k > 0. Our introduction of the scaling matrix Pk can be motivated
in multiple ways. On the one hand, in terms of defining the trust region constraint in
(2.2), it can be motivated as a means of keeping the iterates sufficiently within the
nonnegative orthant; e.g., it aids in restricting [nsk] j to be relatively small when [sk] j
is close to zero [3]. More importantly, however, its introduction can be motivated by
the constraint violation minimization problem

minimize
x∈RN ,s∈RM

1
2v(x, s)2 subject to s ≥ 0, (2.4)

for which we have the first-order KKT conditions

min{s, c(x, s)} = 0 and J (x)Tc(x, s) = 0. (2.5)

A point (x, s) with s ≥ 0 and c(x, s) ≥ 0 [recall (2.1)] satisfies (2.5) as long as

0 = Pk J (xk, sk)
T c(xk, sk) = (J (xk)

T c(xk, sk), Skc(xk, sk)). (2.6)

123

80 F. E. Curtis et al.

With the normal step nk in hand, our preliminary algorithm next computes a new
Lagrange multiplier estimate. For this purpose, we let yk be the solution of

minimize
y∈RM

mL
k (y),

where mL
k (y) := 1

2

∥∥∥Pk
(
∇ f (xk, sk) + Ĝknk + J (xk, sk)

T y
)∥∥∥

2

2
,

(2.7)

where Ĝk has the same form as in (1.7), but with yk replaced by yk−1. This subproblem
can be motivated by observing that its objective function is a valid criticality measure
for minimizing the barrier function; recall the first-order KKT conditions for (BSP)
and see Sect. 3.2. The role of yk is two-fold: it is used in the formulation of the Hessian
in the tangential subproblem and in checking stationarity conditions for termination
of the algorithm.

After the new Lagrange multiplier estimate has been computed, we define—
now using the Hessian matrix Gk in (1.7) associated with the conventional SQP
subproblem—the tangential subproblem objective function

m f
k (d) := f (xk, sk) + ∇ f (xk, sk)

Td + 1
2d

TGkd. (2.8)

Our tangential step is then defined as a solution of the subproblem

minimize
t=(t x ,t s)

m f
k (nk + t)

subject to J (xk, sk)t = 0,

‖P−1
k (nk + t)‖2 ≤ min{κvfδ

v
k , δ

f
k }, sk + nsk + t s ≥ κfbt(sk + nsk),

(2.9)

where κvf > 0 and κfbt ∈ (0, 1) are constants and δ
f
k > 0 is a trust region radius.

2.3 Iteration types and step acceptance

With the normal and tangential steps computed, we must decide how to set the next
iterate (xk+1, sk+1), pair of trust region radii δv

k+1 and δ
f
k+1, and funnel radius vmax

k+1. In
our approach, these choices depend on first gauging whether progress in reducing the
barrier function, the constraint violation, or perhaps neither, is most likely to occur.
Specifically, we use the calculated steps to characterize the iteration as a y-iteration,
f -iteration or v-iteration in the spirit of [9–11]. The new iterate, trust region radii,
and funnel radius are then set based on whether the progress predicted within a given
iteration type is realized at the trial point

(x+
k , s+

k) := (xk, sk) + dk .

A y-iteration is any iteration satisfying the following definition.

Definition 2.1 (y-iteration) The kth iteration is a y-iteration if dk = 0.

123

An interior-point trust-funnel algorithm 81

Note that a y-iteration will occur when nk and tk are both equal to zero, so that the
only outcome of the iteration is a new Lagrange multiplier estimate. Therefore, in
such an iteration, we leave the values of the iterate, trust-region radii, and funnel
radius unchanged. For our preliminary algorithm, the kth iteration can be a y-iteration
only if (xk, sk, yk) is a first-order KKT point for the barrier subproblem; however, in
our main trust-funnel algorithm in Sect. 3, y-iterations may occur more frequently
when inexact subproblem solutions are allowed and encouraged.

The primary goal of an f -iteration is to reduce the barrier function. In this context,
we are interested in the predicted change in the barrier function by the normal step
and tangential step as given, respectively, by

Δm f,n
k := m f

k (0) − m f
k (nk) and Δm f,t

k := m f
k (nk) − m f

k (nk + tk).

To judge the potential for the full step dk to decrease the barrier function, we test
whether the following inequality holds:

Δm f,d
k := Δm f,n

k + Δm f,t
k ≥ κδΔm f,t

k for some κδ ∈ (0, 1). (2.10)

Satisfaction of (2.10) indicates that the decrease in the barrier function predicted
by dk is at least a fraction of that predicted by the tangential step tk . Based on this
observation and the idea of using vk ≤ vmax

k for all k to guide the algorithm toward
constraint satisfaction, the following definition is natural.

Definition 2.2 (f -iteration) The kth iteration is an f -iteration if tk �= 0, the inequality
(2.10) holds, and

v(x+
k , s+

k) ≤ vmax
k . (2.11)

As for conventional trust-region methods, the updates applied at the end of an f -
iteration are based on the quantity

ρ
f
k := f (xk, sk) − f (x+

k , s+
k)

Δm f,d
k

, (2.12)

which measures the ratio of actual-to-predicted decrease in the barrier function. In
short, if the kth iteration is an f -iteration and ρ

f
k ≥ η1 for some prescribed constant

η1 ∈ (0, 1), then the trial point is accepted as the new iterate, the funnel radius is left
unchanged, and the trust-region radii are potentially increased.

Finally, when the conditions defining a y- and/or f -iteration are not satisfied, the
iteration type defaults to that of a v-iteration.

Definition 2.3 (v-iteration) The kth iteration is a v-iteration if it is not a y- or an
f -iteration, i.e., if dk �= 0 and either tk = 0, the inequality (2.10) does not hold, or
the inequality (2.11) does not hold.

Though perhaps not readily apparent from this definition, the main achievement of a
v-iteration is a predicted reduction in constraint violation. (This fact will be clear in

123

82 F. E. Curtis et al.

the analysis of our main algorithm). Analogous to f -iterations, our updating strategy
for v-iterations depends on the quantity

ρv
k := vk − v(x+

k , s+
k)

Δmv,d
k

(2.13)

that measures the ratio of actual-to-predicted decrease in the constraint violation. It
also depends, however, on the predicted change in the constraint violation for the
normal and full trial steps, for which we define

Δmv,n
k := mv

k (0) − mv
k (nk) and Δmv,d

k := mv
k (0) − mv

k (dk). (2.14)

Specifically, if the kth iteration is a v-iteration, ρv
k ≥ η1,

nk �= 0, and Δmv,d
k ≥ κcdΔmv,n

k for some κcd ∈ (0, 1), (2.15)

then the trial point is accepted as the new iterate, the normal step trust region radiusmay
be increased, and the funnel radius is reduced. (Briefly, the second condition in (2.15),
(2.13), and the fact that Δmv,n

k is nonnegative due to the normal step computation
together imply that v(x+

k , s+
k) < v(xk, sk).)

2.4 A preliminary trust-funnel algorithm

We are now prepared to state our preliminary algorithm, stated as Algorithm 1 on page
10. It should be noted that while Algorithm 1 outlines the main computational steps in
our main approach (see Sect. 3), we do not claim that it is well-defined and/or globally
convergent. Indeed, for simplicity, we have stated the algorithm without termination
conditions or algorithmic features that would be necessary to ensure that it is well-
posed. We have also not given concrete updates for various quantities (e.g., specific
trust-region radii updates), since this would distract the reader from understanding
the core ideas. Finally, we claim that Algorithm 1 possesses various inefficiencies.
For example, despite the fact that the algorithm calls for the computation of a normal
step in every iteration, this computation could be wasteful if a given iterate is (nearly)
stationary for the measure of infeasibility and significant progress could be made
simply by computing a new multiplier estimate and tangential step. These types of
situations motivate the various algorithmic features and opportunities for exploiting
inexact solutions that are introduced along with the description of our main algorithm
in the following section.

3 A trust-funnel algorithm for the barrier subproblem

In this section, we present our main trust-funnel algorithm, which is designed to
improve upon the preliminary algorithm of Sect. 2 in two keyways. First, we introduce
conditions under which one can exploit inexact solutions of the subproblems defining

123

An interior-point trust-funnel algorithm 83

Algorithm 1 Preliminary trust-funnel algorithm for the barrier subproblem (BSP)
1: Input: (x0, s0, μ) with (s0, μ) > 0.

2: Choose {δv
0 , δ

f
0 , κvf } ∈ (0,∞) and {η1, κδ, κfbn, κfbt, κcd} ⊂ (0, 1).

3: Perform a slack reset to s0 as given by (1.2).
4: Set vmax

0 ≥ v(x0, s0).
5: for k = 0, 1, . . . do
6: Compute a normal step nk that solves (2.2).
7: Compute a multiplier vector yk that solves (2.7).
8: Compute a tangential step tk that solves (2.9).
9: Set the trial step dk ← nk + tk and trial iterate (x+

k , s+k) ← (xk , sk) + dk .
10: if dk = 0 then [y-iteration]

11: Set (xk+1, sk+1) ← (xk , sk), δ
v
k+1 ← δv

k , δ
f
k+1 ← δ

f
k , and vmax

k+1 ← vmax
k .

12: else if tk �= 0 and both (2.10) and (2.11) hold then [f -iteration]

13: if ρ
f
k ≥ η1 then

14: Set (xk+1, sk+1) ← (x+
k , s+k), δv

k+1 ≥ δv
k , δ

f
k+1 ≥ δ

f
k , and vmax

k+1 ← vmax
k .

15: else
16: Set (xk+1, sk+1) ← (xk , sk), δ

v
k+1 ← δv

k , δ
f
k+1 ∈ (0, δ f

k), and vmax
k+1 ← vmax

k .

17: else [v-iteration]
18: if ρv

k ≥ η1 and (2.15) holds then

19: Set (xk+1, sk+1) ← (x+
k , s+k), δv

k+1 ≥ δv
k , δ

f
k+1 ← δ

f
k , and vmax

k+1 ∈ (0, vmax
k).

20: else
21: Set (xk+1, sk+1) ← (xk , sk), δ

v
k+1 ∈ (0, δv

k), δ f
k+1 ← δ

f
k , and vmax

k+1 ← vmax
k .

22: Perform a slack reset to sk+1 as given by (1.2).

the normal step, Lagrange multiplier estimate, and tangential step. This is important
since, in large-scale settings, it is often preferable to employ iterative solvers, and
the opportunity of accepting inexact solutions allows for early termination of such
solvers. Second, to further reduce computational costs, we establish conditions under
which one can completely avoid computation of the normal step, Lagrange multiplier
estimate, and/or tangential step during certain iterations. The core strategy of the
algorithm in this section follows that of Algorithm 1 described in Sect. 2, but, in order
to ensure global convergence of our algorithm (which allows much computational
flexibility), intricate sets of conditions and safeguards are necessary. These are the
main topics of discussion in this section.

3.1 An inexact normal step

We begin our description of a technique for computing an inexact normal step by
introducing the “v-criticality” measures [recall (2.6)] given by

πv
k := πv(xk, sk) := ‖Pk J (xk, sk)

T c(xk, sk)‖2 and (3.1a)

χv
k := χv(xk, sk) :=

{
πv
k /vk if vk > 0,

0 otherwise.
(3.1b)

We use these measures to determine when a normal step must be computed. In par-
ticular, we only require a normal step to be computed when either the v-criticality
measure πv

k is large relative to an “ f -criticality” measure π
f
k−1 (defined in (3.14) and

associated with minimizing the barrier function), or when vk is large relative to vmax
k .

123

84 F. E. Curtis et al.

Specifically, for some κvv ∈ (0, 1) and forcing functionωn , we require the computation
of a normal step if either

πv
k > ωn(π

f
k−1) or vk ≥ κvvv

max
k . (3.2)

(If (3.2) does not hold, but πv
k > 0, then one may still consider computing a normal

step since the fact that πv
k > 0 implies that the computation would be well-defined.

However, in such cases, a normal step is not necessary for our convergence analysis.)
When a normal step is not computed, we set nk ← 0.

If a normal step nk := (nxk , n
s
k) is computed, then it is computed as an approximate

solution to (2.2), meaning that it should be feasible for (2.2) and yield a decrease
in mv

k no less than that achieved along a scaled steepest descent direction for mv
k .

The scaled steepest descent direction that we employ in this setting is derived in the
following manner. Performing the change of variables nP := P−1

k n so that the trust-
region constraint becomes ‖nP‖2 ≤ δv

k , the transformed problem for minimizing mv
k

has the steepest descent direction −Pk J (xk, sk)Tc(xk, sk). Returning to the original
space gives the scaled steepest descent direction −P2

k J (xk, sk)Tc(xk, sk). For (2.2),
we define the Cauchy step nC

k = (nC
k
x , nC

k
s) as the minimizer of the objective of (2.2)

in this scaled steepest descent direction, i.e.,

nC
k := nC

k(α
C
N), where nC

k(α) :=
(
nC
k
x (α)

nC
k
s(α)

)
:= −αP2

k J (xk, sk)
T c(xk, sk) (3.3)

and αC
N is the solution to

minimize
α≥0

mv
k (n

C
k(α)) subject to ‖P−1

k nC
k(α)‖2 ≤ δv

k , sk +nC
k
s(α) ≥ κfbnsk . (3.4)

We show in Lemma 3.5 that the decrease in mv
k obtained by nC

k is positive. Overall,
when (3.2) holds, we require a normal step satisfying the constraints of (2.2), i.e.,

‖P−1
k nk‖2 ≤ δv

k , sk + nsk ≥ κfbnsk, (3.5)

along with [recall (2.14)]

Δmv,n
k ≥ mv

k (0) − mv
k (n

C
k) (3.6)

and
nk belonging to the range space of P2

k J (xk, sk)
T . (3.7)

It is worthwhile to note that many steps satisfy (3.5)–(3.7) with the simplest being nC
k .

The condition (3.7) is automatically guaranteed by Krylov-type methods for minimiz-
ing mv

k (n). For future reference, we also define

α∗
N := argmin

α≥0
mv

k (n
C
k(α)) and n∗

k := nC
k(α

∗
N) (3.8)

123

An interior-point trust-funnel algorithm 85

as the minimizer of the feasibility model along the scaled steepest descent direction
(ignoring a trust-region constraint). Note that α∗

N is unique whenever πv
k > 0.

3.2 Inexact Lagrange multipliers and tangential steps

In contrast to the preliminary algorithm in Sect. 2—which involved the sequential com-
putation of a Lagrange multiplier and tangential step—the conditions that we enforce
for an inexact Lagrange multiplier and a Cauchy step for the tangential subproblem
are intertwined in our main algorithm. Hence, in this subsection, we consider together
the computation of new Lagrange multipliers and the tangential step. (It is important
to note that the Lagrange multiplier computation can still be performed independently
before the tangential step computation; all that is needed in the multiplier computation
is, for each multiplier estimate, information about a corresponding Cauchy step for
the tangential subproblem, which can be computed at modest computational cost. To
clarify this issue, we provide in Sect. 3.2.3 a summary discussion of our multiplier and
tangential step computation.)

We remark that for technical reasons in our global convergence analysis, we require
a small change to our definition of the matrix Gk [recall (1.7)] appearing in the barrier
function model (2.8). Specifically, we now define

Gk :=
(∇xxL(xk, sk, yB

k) 0
0 Dk

)
(3.9)

with yB
k being a (bounded) multiplier vector satisfying, for all i ∈ {1, 2, . . . , M},

[yB
k]i > 0 and ‖yB

k‖2 ≤ κy for some scalar κy > 0 (3.10)

and Dk being a positive definite (p.d.) diagonal matrix satisfying

‖Dk‖2 ≤ κD for some scalar κD > 0. (3.11)

The key aspect of this definition is to ensure boundedness of the components of Gk ,
which means that, in fact, one may use an approximate Hessian of the Lagrangian as
long as the sequence {Gk} is uniformly bounded.

Overall, as is typical in a step decomposition approach, our goal is to compute
a tangential step tk lying (approximately) in the null space of the constraint Jaco-
bian J (xk, sk) that satisfies m

f
k (nk + tk) ≤ m f

k (nk) while not undoing the predicted
gain in linearized feasibility provided by the normal step nk . On one hand, this lat-
ter requirement suggests that improvement in the barrier function should be sought
within the trust-region {d : ‖P−1

k d‖2 ≤ δv
k }, since it is only within this region that

the linearized constraint model is believed to be trustworthy. On the other hand, as
a separate consideration we assume that the barrier function model m f

k may only be

trusted within {d : ‖P−1
k d‖2 ≤ δ

f
k }. Overall, to allow flexibility in our algorithm, we

simply use as a necessary condition for computing a new Lagrange multiplier estimate
and (potentially) a tangential step the inequality

123

86 F. E. Curtis et al.

‖P−1
k nk‖2 ≤ κB min{κvfδ

v
k , δ

f
k } with κB ∈ (0, 1) and κvf > 0. (3.12)

If (3.12) does not hold, then we set yk ← yk−1 and tk ← 0.
Overall, the main idea of the strategy in the preceding paragraph is that, if (3.12)

does not hold, then (i) improvement toward feasibility may be expected from the nor-
mal step alone and (ii) the computation of a tangential step—and hence new Lagrange
multipliers for computing a productive tangential step—is unnecessary to ensure con-
vergence. Observe that if one chooses κBκvf ∈ (0, 1), then (3.12) states that new
multipliers and a tangential step need not be computed if the normal step lies on its trust
region boundary.We claim that onemay still consider computing newmultipliers and a
tangential step in such a case. However, in order to analyze an algorithm thatminimizes
per-iteration costs as much as possible, we employ (3.12) as described. Also note that
if κBκvf ≥ 1, then, by (3.5), the inequality (3.12) reduces to ‖P−1

k nk‖2 ≤ κBδ
f
k , which

suggests that new multipliers and a tangential step need not be computed when the
normal step lies outside the region in which the barrier function model is trustworthy.

When (3.12) is satisfied, we first compute a new Lagrange multiplier estimate as an
approximate solution of (2.7). For determining whether such a solution is acceptable,
we consider first the properties of the vector

rk := rk(yk) := P2
k (∇m f

k (nk) + J (xk, sk)
T yk), (3.13)

with which we define the related “ f -criticality” measures

π
f
k := π

f
k (yk) := ‖Pk(∇m f

k (nk) + J (xk, sk)
Tyk)‖2 and (3.14a)

χ
f
k := χ

f
k (yk) := ∇m f

k (nk)Trk(yk)

π
f
k (yk)

(3.14b)

associated with minimizing f . (As in the discussion leading to (3.3) for the normal
subproblem, the vector rk can be motivated as a means of defining a Cauchy point for
the tangential subproblem; see (3.17) and (3.21) later.) We determine that subprob-
lem (2.7) has been solved accurately enough as long as yk , rk , π

f
k , and χ

f
k at least

satisfy one (if not more) of the following three sets of conditions:

π
f
k ≤ επ and vk ≤ εv; (3.15a)

π
f
k ≤ ωt (π

v
k); or (3.15b)

χ
f
k ≥ κχπ

f
k . (3.15c)

Here, {επ , εv} > 0 and κχ ∈ (0, 1) are constants and ωt is a forcing function. We
require that the functions ωn and ωt [see (3.2) and (3.15b)] satisfy

ωt (ωn(τ)) ≤ κωτ for all τ ≥ 0 and for some κω ∈ (0, 1). (3.16)

123

An interior-point trust-funnel algorithm 87

With respect to the conditions in (3.15), a few remarks are in order. First, we remark
that one can show (see Lemma 3.8) that one can always satisfy one of the three sets of
conditions in (3.15), and thus this requirement for yk (and the related quantities rk , π

f
k ,

and χ
f
k) is well-posed. One can also see that if (3.15a) is satisfied, then (xk, sk, yk)

is an approximate first-order KKT point for the barrier subproblem for the tolerances
{επ , εv} > 0. (If this condition holds, then, as seen in the formal statement of it
at the end of this section, our main algorithm will terminate.) However, if (3.15a)
is not satisfied, but (3.15b) holds, then the f -criticality measure π

f
k is insubstantial

compared to the v-criticality measure πv
k . In this case, the computation of a tangential

step is skipped, i.e., we simply set tk ← 0. Otherwise, when (3.15a) and (3.15b) do
not hold (and necessarily (3.15c) holds), we decide that we must compute a tangential
step. In this case, it follows from the Definition (3.14), the condition (3.15c) and the
fact that π

f
k > 0 (since otherwise (3.15b) would have held) that rk is a direction of

strict ascent for m f
k (·) at nk . This property allows us to compute a tangential step tk

satisfying one of two sets of conditions as outlined in the following two subsections.
Our choice of which set of conditions to satisfy depends on whether a normal step is
computed. Specifically, if nk �= 0, then we require the computation of what we call a
relaxed SQP tangential step. Otherwise, if nk = 0, then we are still free to attempt to
compute a relaxed SQP tangential step, but we may instead compute what we call a
very relaxed SQP tangential step. In such a case, this latter option may be preferable
as it involves a weaker restriction on linearized infeasibility of the step.

3.2.1 A relaxed SQP tangential step

Given a constant κtg small enough such that κcd ∈ (0, 1 − κtg] ⊂ (0, 1) [recall that κcd

was defined in (2.15)], a relaxed SQP tangential step is defined as follows.

Definition 3.1 (Relaxed SQP tangential step) Define the Cauchy point

tCk := tCk (α
C
T), where tCk (α) :=

(
tCk

x (α)

tCk
s(α)

)
:= −α

(
r xk
r sk

)
= −αrk (3.17)

and αC
T is the minimizer of

minimize
α≥0

m f
k

(
nk + tCk (α)

)

subject to ‖P−1
k

(
nk + tCk (α)

)‖2 ≤ min{κvfδ
v
k , δ

f
k },

sk + nsk + tCk
s(α) ≥ κfbt(sk + nsk).

(3.18)

Then, tk is a relaxed SQP tangential step if

Δm f,t
k ≥ m f

k (nk) − m f
k (nk + tCk), (3.19a)

sk + nsk + t sk ≥ κfbt(sk + nsk), (3.19b)

123

88 F. E. Curtis et al.

‖P−1
k (nk + tk)‖2 ≤ min{κvfδ

v
k , δ

f
k }, and (3.19c)

mv
k (nk + tk) ≤ κtgm

v
k (0) + (1 − κtg)m

v
k (nk). (3.19d)

Condition (3.19a) ensures that the model of the barrier function is decreased at least
as much as by the Cauchy point tCk , (3.19b) is a fraction-to-the-boundary constraint,
(3.19c) is a trust-region constraint, and (3.19d) is a relaxation of the traditional SQP
constraint that c(xk, sk)+ J (xk, sk)(nk+tk) = 0 that ensures that linearized constraint
infeasibility is sufficiently reduced.

If a relaxedSQP tangential step satisfying (3.19) is computed, thenwemust evaluate
its usefulness in the sense that we must ensure that a relatively large tangential step
results in a sufficient decrease in the model m f

k of the barrier function. With this in
mind, we check whether the conditions

‖P−1
k tk‖2 > κtn‖P−1

k nk‖2 for some κtn > 1 (3.20)

and (2.10) are satisfied. The inequality (2.10) indicates that the predicted decrease
in the barrier function obtained from the tangential step is substantial compared to
any potential increase resulting from the normal step. If the step tk satisfies (3.20) but
violates (2.10), it does not serve its role and we reset it to zero.

3.2.2 A very relaxed SQP tangential step

Condition (3.19) may be too restrictive in certain cases. Specifically, if vk = 0, then
the algorithm will set nk ← 0, from which it follows that (3.19d) requires tk to be
in the null space of J (xk, sk). This is an unreasonable requirement in matrix-free
settings; indeed (3.19d) may be unreasonable in any situation when the normal step
computation is skipped and nk ← 0. Thus, to avoid such a requirement, we allow
for the computation of an alternative tangential step. Given the constant κfbt ∈ (0, 1)
employed in (3.19b), a constant κv ∈ (1,∞), and a constant κtt ∈ (κvv, 1) (with
κvv ∈ (0, 1) defined for (3.2)), the salient feature of our alternative is that it involves
a relaxed condition on the linearized infeasibility of the step. We emphasize that we
are only allowed to compute a tangential step of this type when nk = 0, though we
incorporate nk into the conditions in the following definition so that one may more
easily compare them to the conditions in Definition 3.1.

Definition 3.2 (Very relaxed SQP tangential step) Define the Cauchy point

tCk = tCk (α
C
T), where tCk (α) :=

(
tCk

x (α)

tCk
s(α)

)
:= −α

(
r xk
r sk

)
= −αrk (3.21)

and αC
T is the minimizer of

minimize
α≥0

m f
k

(
nk + tCk (α)

)

subject to ‖P−1
k

(
nk + tCk (α)

)‖2 ≤ min{κvfδ
v
k , δ

f
k , κvv

max
k },

sk + nsk + tCk
s(α) ≥ κfbt(sk + nsk).

(3.22)

123

An interior-point trust-funnel algorithm 89

Then, tk is a very relaxed SQP tangential step if

Δm f,t
k ≥ m f

k (nk) − m f
k (nk + tCk), (3.23a)

sk + nsk + t sk ≥ κfbt(sk + nsk), (3.23b)

‖P−1
k (nk + tk)‖2 ≤ min{κvfδ

v
k , δ

f
k , κvv

max
k }, and (3.23c)

mv
k (nk + tk) ≤ κttv

max
k . (3.23d)

Conditions (3.23a)–(3.23c) play the same role as conditions (3.19a)–(3.19c). How-
ever, since the Cauchy point defined by (3.21)–(3.22) involves a potentially smaller
trust-region radius than that defined in (3.18), the bound imposed in (3.23a) may be
different from that imposed in (3.19a), and this difference in the trust-region radii is
matched in (3.23c) [see (3.19c)]. The name “very relaxed SQP tangential step” has
been chosen because of condition (3.23d), which merely requires that the predicted
constraint violation be sufficiently less than a fraction of the upper bound vmax

k rather
than a fraction of the current violation [see (3.19d)]. In fact, the potentially smaller
trust-region radii in (3.22) and (3.23c) (as compared to those in (3.18) and (3.19c))
have been chosen to compensate for this relaxation.

3.2.3 Summary of inexact Lagrange multiplier and tangential step computation

Overall, the Lagrange multiplier and tangential step computation may proceed as
follows. First, an iterative solver may be applied to the least-squares subproblem (2.7)
until an approximate solution yk and the corresponding rk , π

f
k , and χ

f
k satisfy at

least one of (3.15a), (3.15b), or (3.15c). If (3.15a) or (3.15b) is satisfied, then the
algorithm may proceed with yk as the new multiplier estimate. Otherwise, if only
(3.15c) holds, then one should check whether the Cauchy step defined by (3.17)–
(3.18) satisfies (3.19) or (if nk = 0) the Cauchy step defined by (3.21)–(3.22) satisfies
(3.23). (In fact, by construction of the Cauchy steps, one need only check (3.19d)
in the former case and (3.23d) in the latter case since all other conditions in (3.19)
and (3.23) are guaranteed to hold by definition of the corresponding Cauchy steps.) If
either Cauchy step satisfies its corresponding set of conditions (with nk = 0 required
in the latter case), then the algorithm may proceed with yk as the new multiplier
estimate. Otherwise, the iterative solver for (2.7) should be continued until the above
strategy yields an acceptable new multiplier yk . Once a new multiplier estimate is
obtained in this manner, the algorithm may proceed to compute a tangential step
satisfying (3.19) or (if nk = 0) (3.23). This latter computation is well-defined as
the strategy for computing yk has at least guaranteed that a corresponding Cauchy
point satisfies the required conditions. (Indeed, under reasonable assumptions on the
iterative solver for (2.7), this entire strategy for computing yk and tk is well-posed; see
Lemma 3.8.

123

90 F. E. Curtis et al.

3.3 Iteration types, step acceptance, and updating strategies

Our inexact method uses the same iteration types as our preliminary algorithm in
Sect. 2. In this section, we give the precise updates that we use for the iterates, the
trust-region radii, and the funnel radius for the three types of iterations.

First, consider y-iterations as in Definition 2.1, which occur when nk and tk are
both zero, but could also (presumably) occur if nk = −tk and some components are
nonzero. (In fact, this latter case is ruled out by Lemma 3.3(vi).) During a y-iteration,
we perform—as in Algorithm 1—the updates

(xk+1, sk+1) ← (xk, sk), δ
f
k+1 ← δ

f
k , δv

k+1 ← δv
k , and vmax

k+1 ← vmax
k . (3.24)

As previously mentioned, since a y-iteration is defined by a zero primal step, the
only computation of interest is that of a new vector of Lagrange multiplier estimates.
Therefore, the updates in (3.24) leave the trust-region radii and bound on themaximum
allowed infeasibility unchanged for the subsequent iteration.

Second, consider f -iterations as in Definition 2.2, which have the primary pur-
pose of reducing the barrier function [recall (2.10)] while ensuring that the constraint
violation remains within the funnel radius [recall (2.11)]. If the kth iteration is an
f -iteration and ρ

f
k ≥ η1 [recall (2.12)], then we set

(xk+1, sk+1) ← (x+
k , s+

k) (3.25)

[sk+1]i ←
{

[sk+1]i if [c(xk+1, sk+1)]i ≥ 0,

−[c(xk+1)]i otherwise,
(3.26)

δ
f
k+1 ∈

{
[δ f

k ,∞) if ρ
f
k ≥ η2,

[γ2δ f
k , δ

f
k] otherwise,

(3.27)

δv
k+1 ∈ [δv

k ,∞). (3.28)

Otherwise (i.e., if ρ
f
k < η1), we set

(xk+1, sk+1) ← (xk, sk), δ
f
k+1 ∈ [γ1δ f

k , γ2δ
f
k], and δv

k+1 ← δv
k . (3.29)

In both cases, we set
vmax
k+1 ← vmax

k . (3.30)

In (3.25)–(3.30), the constants should be chosen to satisfy 0 < η1 ≤ η2 < 1 and
0 < γ1 ≤ γ2 < 1. Overall, we accept the trial point (x+

k , s+
k) if the achieved decrease

in the barrier function is comparable to the predicted decrease (and reject it otherwise),
update δ

f
k+1 using a typical trust-region updating strategy, possibly increase the normal

step trust-region radius, and leave the funnel radius unchanged.
For technical reasons, after a f -iteration in which the trial point is accepted, we

reset the size of the normal step trust region radius during the next iteration in which
a normal step is computed. Specifically, if a normal step is computed during iteration
k and the last successful iteration was an f -iteration, we enforce

123

An interior-point trust-funnel algorithm 91

δv
k ≥ κn‖P−1

k n∗
k‖2 for some κn > 0, (3.31)

where n∗
k is given by (3.8). Besides being needed for our convergence analysis, this

safeguard is practical in that a (sequence of) f -iteration(s) with ρ
f
k ≥ η1 may make

inaccurate the information on the adequacy of the model mv
k (·) and trust region radius

δv
k gathered during previous iterations.
Third, consider v-iterations as in Definition 2.3, which have as their main goal an

improvement toward feasibility. If ρv
k ≥ η1 and (2.15) holds, then we set

(xk+1, sk+1) ← (x+
k , s+

k) (3.32)

[sk+1]i ←
{

[sk+1]i if [c(xk+1, sk+1)]i ≥ 0,

−[c(xk+1)]i otherwise,
(3.33)

δv
k+1 ∈

{
[δv

k ,∞) if ρv
k ≥ η2,

δv
k otherwise,

(3.34)

vmax
k+1 ← max{κt1v

max
k , v(xk+1, sk+1) + κt2

(
vk − v(xk+1, sk+1)

)}. (3.35)

Otherwise (i.e., if ρv
k < η1 or (2.15) does not hold), we set

(xk+1, sk+1) ← (xk, sk), δv
k+1 ∈ [γ1δv

k , γ2δ
v
k], and vmax

k+1 ← vmax
k . (3.36)

In both cases, we set
δ
f
k+1 ← δ

f
k . (3.37)

In (3.32)–(3.37), the constants should be chosen to satisfy {κt1, κt2} ⊂ (0, 1). In this
manner, the trial point is accepted if the normal step is nonzero and the improvement
in linearized feasibility is comparable to its predicted value, which is itself comparable
to the improvement yielded by the normal step.

3.4 A trust-funnel algorithm

We are now prepared to state our trust-funnel method for solving (BSP). For con-
venience, we define sets that classify each iteration, as well as the computations
performed in them. The first group of sets distinguishes between iteration types:

Y := {k ∈ N : dk = 0}; F := {k ∈ N : tk �= 0 and (2.10)-(2.11) hold};
V := N\(Y ∪ F).

(Lemma 3.3 below shows that these sets are mutually exclusive and exhaustive.) The
second group distinguishes iterations for which the normal and/or tangential steps
satisfy various conditions, and whether the tangential step was reset to zero:

N := {k ∈ N : nk was computed to satisfy (3.5)-(3.7)};
T := {k ∈ N : tk was computed to satisfy either (3.19) or (3.23)};

123

92 F. E. Curtis et al.

TD := {k ∈ T : the computed tk satisfied (3.19)};
T0 := {k ∈ TD : the computed tksatisfied (3.19) and (3.20), but not (2.10)};

(Note that tk is reset to zero for k ∈ T0.) Furthermore, the set of iterations for which
dk satisfies the linearized constraint contraction condition (3.19d) plays an important
role in our analysis; thus, along with the sets above, we define

D := {k ∈ N : the step dk = nk + tk satisfies (3.19d)}.

Our last group of sets distinguishes iterations that produce a change in the primal
space. In particular, if ρ

f
k ≥ η1 holds during an f -iteration, or if (2.15) holds and

ρv
k ≥ η1 during a v-iteration, then iteration k is called successful. The following sets

capture the types of successful iterations:

S f :={k∈F : ρ
f
k ≥ η1}; Sv :={k∈V : (2.15) holds and ρv

k ≥η1}; S :=S f ∪ Sv.

Finally, for convenience when referring to the trust-region radius for the tangential
subproblem (see (3.19c) and (3.23c)), we define δt−1 := 1 and, for k ≥ 0,

δtk :=

⎧
⎪⎨

⎪⎩

δtk−1 if k /∈ T ,

min{κvfδ
v
k , δ

f
k } if k ∈ T ∩ TD,

min{κvfδ
v
k , δ

f
k , κvv

max
k } if k ∈ T \TD.

(3.38)

We formally state our trust-funnel method as Algorithm 2 on page 19, and provide
an informal flow diagram in the “Appendix” on page 56.

As a guide for the reader with respect to the salient properties of the various types of
iterations we have defined, we provide the following lemma regarding basic facts that
may be deduced from the design of our algorithm. Unless stated otherwise, reference
to the tangential step tk corresponds to the value used in Step 37 of Algorithm 2,
i.e., the value after the possible reset in Step 31. For the purposes of this lemma, we
assume that if the algorithm does not terminate during iteration k, then all steps of the
algorithm during the iteration are well-defined. We prove this fact formally in the next
subsection.

Lemma 3.3 If Algorithm 2 does not terminate during the kth iteration, then:

(i) If k ∈ N , then χv
k > 0, πv

k > 0, mv
k (0)−mv

k(n
C
k) > 0,Δmv,n

k > 0, and nk �= 0.
(ii) If nk �= 0, then k ∈ N .
(iii) If k ∈ T , then χ

f
k ≥ κχπ

f
k > 0 and m f

k (nk) − m f
k (nk + tCk) > 0.

(iv) If k ∈ T \T0, then tk �= 0 and Δm f,t
k > 0. If k ∈ T0, then tk = 0 and (3.12)

holds.
(v) If tk �= 0, then k ∈ T \T0.
(vi) k ∈ Y if and only if nk = tk = 0.
(vii) If k ∈ Y , then k ∈ D and π

f
k ≤ κωπ

f
k−1 with κω ∈ (0, 1) defined as in (3.16).

(viii) If k /∈ D, then k ∈ T \TD and (3.23) holds.

123

An interior-point trust-funnel algorithm 93

Algorithm 2 Trust-funnel algorithm for the barrier subproblem (BSP)
1: Input: (x0, s0, y−1, μ, επ , εv) with (s0, y−1, μ, επ , εv) > 0.

2: Choose {δ f
0 , δv

0 , κvf , κca, κy, κD, κn} ⊂ (0,∞), {κcr, κtn, κv} ⊂ (1,∞), 0 < η1 ≤ η2 < 1, 0 < γ1 ≤ γ2 < 1,
{κtt, κδ , κtg, κω, κχ , κB, κvv, κfbn, κfbt, κt1, κt2} ⊂ (0, 1), and κcd ∈ (0, 1 − κtg].

3: Perform a slack reset to s0 as given by (1.2).

4: Set vmax
0 ← max{κca, κcrv(x0, s0)} and π

f
−1 ← 0.

5: Set S f -flag ← false.
6: for k = 0, 1, . . . do
7: Compute vk from (2.1) and πv

k and χv
k from (3.1).

8: if vk > 0 and χv
k = 0 then

9: Return the infeasible stationary point (xk , sk).
Normal Step Computation

10: if (3.2) holds, or at least πv
k > 0 then [k ∈ N]

11: if k ≥ 1 and S f -flag = true then
12: Compute n∗

k satisfying (3.8).

13: Set δv
k ← max{δv

k , κn‖P−1
k n∗

k‖2} and S f -flag ← false.

14: Compute nk satisfying (3.5)–(3.7).
15: else
16: Set nk ← 0.

Lagrange Multiplier and Tangential Step Computation

17: Choose yBk and p.d. diagonal Dk satisfying (3.10)–(3.11), then set Gk by (3.9).
18: if (3.12) holds then
19: Compute yk , rk , π

f
k , and χ

f
k from (2.7) and (3.13)–(3.14) by the strategy in §3.2.3.

20: if (3.15a) holds then
21: Return the (approximate) first-order KKT point (xk , sk , yk).
22: else if (3.15b) holds then
23: Set tk ← 0.
24: else [k ∈ T]
25: if k ∈ N then
26: Compute tk so that (3.19) is satisfied.
27: else
28: Compute tk so that either (3.19) or (3.23) is satisfied.
29: if (3.19) holds then [k ∈ TD]
30: if (3.20) is satisfied but (2.10) fails then [k ∈ T0]
31: Set tk ← 0.
32: else
33: Set yk ← yk−1 and tk ← 0, then set rk , π

f
k , and χ

f
k by (3.13)–(3.14).

34: if (3.15a) holds then
35: Return the (approximate) first-order KKT point (xk , sk , yk).

Iteration Type and Step Acceptance Determination
36: (if (3.19d) holds then add k to the set D.) [k ∈ D]
37: Set the trial step dk ← nk + tk and trial iterate (x+

k , s+k) ← (xk , sk) + dk .
38: if dk = 0 then [k ∈ Y]
39: Perform the y-iteration updates given by (3.24).
40: else if tk �= 0 and both (2.10) and (2.11) hold then [k ∈ F]

41: if ρ
f
k ≥ η1 then [k ∈ S f]

42: Perform the successful f -iteration updates given by (3.25)–(3.28) and (3.30).
43: Set S f -flag ← true.
44: else
45: Perform the unsuccessful f -iteration updates given by (3.29) and (3.30).
46: else [k ∈ V]
47: if ρv

k ≥ η1 and (2.15) holds then [k ∈ Sv]
48: Perform the successful v-iteration updates given by (3.32)–(3.35) and (3.37).
49: else
50: Perform the unsuccessful v-iteration updates given by (3.36) and (3.37).

(ix) If k ∈ D, then the inequality in (2.15) holds.
(x) TD ⊆ D.
(xi) If k ∈ T \TD, then nk = 0 and k /∈ N .

123

94 F. E. Curtis et al.

Proof To prove part (i), let k ∈ N , in which case we have that the conditions in Step 10
held true. This could occur only if πv

k > 0, or if in (3.2) we had πv
k > ωn(π

f
k−1) ≥ 0

or vk ≥ κvvv
max
k . Thus, to prove that k ∈ N implies πv

k > 0, all that remains is to
investigate the case when vk ≥ κvvv

max
k . Since vmax

k > 0 by construction, this inequality
implies vk > 0. If πv

k = 0 (which, since vk > 0, implies χv
k = 0), then the algorithm

would have terminated in Step 9. Thus, we may again conclude that πv
k > 0, which

establishes this strict inequality for all k ∈ N . In turn, by (3.1) and the fact that vk > 0
when πv

k > 0, we must have χv
k > 0 for all k ∈ N . Now, since πv

k > 0, it follows that
−P2

k J (xk, sk)T c(xk, sk) is a direction of strict decrease for mv
k at n = 0, from which

it follows by (3.3) that mv
k (0) − mv

k (n
C
k) > 0. In turn, (3.6) implies the remainder of

part (i).
Part (ii) follows since if nk �= 0, then the conditions in Step 10 must have held (or

else the algorithm would have set nk ← 0), in which case k ∈ N .
Next, we prove part (iii). If k ∈ T , then it follows fromSteps 19–28 of the algorithm

that after the computation of yk (and all dependent quantities) both (3.15a) and (3.15b)
did not hold (implying that π f

k > 0), but (3.15c) did. Combining (3.15c) and the fact

that π f
k > 0 yields ∇m f

k (nk)Trk ≥ κχ(π
f
k)2 > 0 (as desired), which implies that rk is

a direction of strict ascent for m f
k at nk . Combining this fact with (3.17)–(3.18) and

(3.21)–(3.22) yields m f
k (nk) − m f

k (nk + tCk) > 0.
Building on the proof of part (iii), we next prove part (iv). If we have k ∈ T \T0,

we may combine m f
k (nk) − m f

k (nk + tCk) > 0 with (3.19a)/(3.23a) to conclude that

tk �= 0 and Δm f,t
k > 0, as desired. (Since k /∈ T0, this tangential step was not reset

to zero, so we have maintained tk �= 0 in Step 37.) If k ∈ T0, it follows from Steps
18–31 that (3.12) holds, but that the algorithm reset tk ← 0.

To prove part (v), we first note that if tk �= 0, then a tangential step was computed
and thus k ∈ T .Moreover, since tk �= 0, we know that k /∈ T0, whichmeans k ∈ T \T0,
as desired.

We now prove part (vi). If nk = tk = 0, then dk = 0 and we have k ∈ Y by the
definition of Y; this proves one direction. For the other direction, in order to derive a
contradiction, suppose that k ∈ Y (so that dk = nk + tk = 0), but that nk �= 0 and/or
tk �= 0. Indeed, since nk + tk = 0, we must have nk �= 0 and tk �= 0. It then follows
from parts (ii) and (v) that k ∈ Y ∩N ∩ (T \T0). Consequently, from part (i) we have
that mv

k (0) > mv
k (nk). This fact and the equation nk + tk = 0 imply that (3.19d) must

not be satisfied. However, according to Steps 25–26 of the algorithm, since k ∈ N we
compute tk to satisfy (3.19), a contradiction.

To prove part (vii), suppose k ∈ Y . It follows from part (vi) that nk = tk = 0 so
that (3.19d) holds (which means k ∈ D, as desired), and then from part (i) that k /∈ N .
Hence, from Step 10 of the algorithm, it follows that (3.2) must be violated. Moreover,
since nk = 0, we also know that (3.12) holds and thus an oblique projected gradient
rk was computed (as stipulated in Step 19) to satisfy at least one of (3.15a), (3.15b)
and (3.15c). In fact, under the conditions of this lemma, it follows that (3.15a) must not
haveheld, soweknow that either (3.15b) or (3.15c) is satisfied as a result of this calcula-
tion. Suppose that (3.15c) holds so that the algorithmwould have proceeded to compute
a tangential step and k ∈ T . If k /∈ T0, then it would follow from part (iv) that tk �= 0,

123

An interior-point trust-funnel algorithm 95

which by part (vi) contradicts the fact that k ∈ Y . Thus, we must have k ∈ T0, i.e.,
we reset tk ← 0 because the computed tangential step satisfied (3.20), but not (2.10).
This is a contradiction because (2.10) would have been satisfied trivially since nk = 0.
Thus (3.15c) must not hold, which implies that (3.15b) must hold. Since we have
shown that (3.15b) holds and (3.2) does not hold, we conclude that π

f
k ≤ ωt (π

v
k) ≤

ωt (ωn(π
f
k−1)) ≤ κωπ

f
k−1, where we have used the monotonicity of ωt and (3.16).

To establish part (viii), let k /∈ D. It follows from part (vii) that k /∈ Y . Now, suppose
that tk = 0. Combining this with the fact that k /∈ Y implies from part (vi) that nk �= 0,
which may then be combined with part (ii) to deduce that k ∈ N . This fact along with
part (i) and the fact that tk = 0 implies thatmv

k (nk + tk) ≤ κtgmv
k (0)+ (1− κtg)mv

k (nk)
(see (3.19d)), and hence k ∈ D, which is a contradiction. Therefore, we must have
tk �= 0, which from part (v) implies that k ∈ T \T0 and that the computed tangential
step was not reset to zero. Thus, tk satisfies either (3.19) or (3.23). In fact, since k /∈ D
so that (3.19d) is not satisfied, we conclude that k /∈ TD and (3.23) must be satisfied.

To prove part (ix), suppose k ∈ D so that (3.19d) holds. It follows that

Δmv,d
k = mv

k (0) − mv
k (dk) ≥ mv

k (0) − κtgm
v
k (0) − (1 − κtg)m

v
k (nk)

= (1 − κtg)
(
mv

k (0) − mv
k (nk)

) = (1 − κtg)Δmv,n
k , (3.39)

which, since κcd ∈ (0, 1 − κtg], means that the inequality in (2.15) holds, as desired.
To prove (x), let k ∈ TD. It follows that a relaxed SQP tangential step tk was com-

puted to satisfy (3.19). Thus, if tk is not reset to zero, we know that (3.19d) holds.
However, if tk was reset to zero, then (3.19d) holds trivially when nk = 0 and from
parts (i) and (ii) when nk �= 0. We have shown in all cases that (3.19d) holds, and
therefore k ∈ D.

Finally, to prove part (xi), let k ∈ T \TD. By Steps 25–31, it follows that (3.23)
holds and k /∈ N for all k ∈ T \TD. It then follows from part (ii) that nk = 0. ��

3.5 Well-posedness

The purpose of this section is to prove that Algorithm 2 is well-posed in the sense
that if iteration k is reached, then, in a reasonable implementation of the algorithm,
all computations within iteration k will terminate finitely.

Our first result shows important consequences of the slack reset procedure.

Lemma 3.4 The slack reset (3.26) and (3.33) in Steps 42 and 48 yields sk such that
(xk, sk) satisfies sk > 0 and c(xk, sk) ≥ 0.

Proof The fact that sk > 0 follows from the choice s0 > 0, the fact that the slack
reset (3.26) and (3.33) only possibly increases the slack variables (as shown in (1.4)),
and the fact that the fraction-to-the-boundary rules in (3.5) and (3.19b)/(3.23b) hold
when normal and tangential steps are computed.

We now prove that c(xk, sk) ≥ 0 holds. Prior to the slack reset performed in
Steps 42 and 48, if [c(xk, sk)]i ≥ 0, then (3.26) and (3.33) leave [sk]i unchanged so
that [c(xk, sk)]i ≥ 0 still holds. Otherwise, if [c(xk, sk)]i < 0, then after the slack
reset (3.26)/(3.33) we have that [c(xk) + sk]i = 0, which completes the proof. ��

123

96 F. E. Curtis et al.

We now show that the Cauchy step for the normal step problem is well-posed.

Lemma 3.5 If k ∈ N , then nC
k defined by (3.3)–(3.4) is computed and satisfies

mv
k (0) − mv

k (n
C
k) ≥ κ cn

k χv
k min

{
πv
k , δv

k , 1 − κfbn

}
> 0, (3.40)

where
κ cn
k := 1

1 + ‖J (xk, sk)Pk‖22
∈ (0, 1]. (3.41)

Proof Since k ∈ N , we may observe from Lemma 3.3(i) that πv
k > 0 and χv

k > 0,
and hence vk > 0. We now show that nC

k(α) [recall (3.3)] is feasible for (3.4) when

k ∈ N and 0 ≤ α ≤ 1

πv
k
min{δv

k , (1 − κfbn)} =: αB. (3.42)

Consider any α ∈ [0, αB]. It follows from the definitions of nC
k(α) and πv

k that

‖P−1
k nC

k(α)‖2 = ‖αPk J (xk, sk)
Tc(xk, sk)‖2 = απv

k ≤ δv
k .

It also follows from the definition of nC
k
s(α) and Lemma 3.4 that

[−nC
k
s(α)]i = α[Sk]2i i [c(xk, sk)]i ≤ α[sk]i‖Pk J (xk, sk)

Tc(xk, sk)‖2
= απv

k [sk]i ≤ (1 − κfbn)[sk]i for i = 1, 2, . . . M,

so sk + nC
k
s(α) ≥ κfbnsk . Overall, nC

k(α) is feasible for (2.2) for all α ∈ [0, αB].
Now, observe that αC

N [recall (3.4)] yields m
v
k (n

C
k) = mv

k (n
C
k(α

C
N)) ≤ mv

k (n
C
k(α)) for

all α ∈ [0, αB]. It then follows from [3, Lemma 1] with the quantities

“t” := αB, “a” := 2‖J (xk, sk)P
2
k J (xk, sk)

Tc(xk, sk)‖22, “b” := 2(πv
k)2 > 0,

the fact that

“a” ≤ 2‖J (xk, sk)Pk‖22‖Pk J (xk, sk)
Tc(xk, sk)‖22 = 2‖J (xk, sk)Pk‖22(πv

k)2

and the definition of πv
k that

(
mv

k (0)
)2 − (

mv
k (n

C
k)
)2

≥ “b”min

{
“b”

“a”
, “t”

}

≥ 2(πv
k)2 min

{
1

‖J (xk, sk)Pk‖22
,

δv
k

πv
k

,
1 − κfbn

πv
k

}

≥ 2πv
k min

{
πv
k

1 + ‖J (xk, sk)Pk‖22
, δv

k , 1 − κfbn

}

= 2vkχ
v
k min

{
πv
k

1 + ‖J (xk, sk)Pk‖22
, δv

k , 1 − κfbn

}
> 0. (3.43)

123

An interior-point trust-funnel algorithm 97

Hence, mv
k (n

C
k) < mv

k (0), and therefore

mv
k (0) − mv

k (n
C
k) = (mv

k (0))
2 − (mv

k (n
C
k))

2

mv
k (0) + mv

k (n
C
k)

≥ (mv
k (0))

2 − (mv
k (n

C
k))

2

2mv
k (0)

= (mv
k (0))

2 − (mv
k (n

C
k))

2

2vk
. (3.44)

Inequality (3.40) follows from (3.44), (3.43), and 1 + ‖J (xk, sk)Pk‖22 ≥ 1. ��
Since we impose the bound (3.31) on the trust-region radius for the normal step

problem on certain iterations, we derive a lower bound on its right-hand side.

Lemma 3.6 If k ∈ N , then, with n∗
k defined in (3.8) and κ cn

k defined in (3.41),

‖P−1
k n∗

k‖2 ≥ κ cn
k πv

k .

Proof Let wk := Pk J (xk, sk)T c(xk, sk). By (3.8) and sincemk is convex with uncon-
strained minimizer corresponding to a nonnegative α, it follows that n∗

k = nC
k(α

∗
N)) is

the unconstrained minimizer of [mv
k (n

C
k (α))]2, from which it follows that

P−1
k n∗

k = − ‖wk‖22
‖J (xk, sk)Pkwk‖22

Pk J (xk, sk)
T c(xk, sk).

This, along with ‖J (xk, sk)Pkwk‖2 ≤ ‖J (xk, sk)Pk‖2‖wk‖2 and (3.1), yields

‖P−1
k n∗

k‖2 = ‖wk‖22
‖J (xk, sk)Pkwk‖22

πv
k ≥ πv

k

‖J (xk, sk)Pk‖22
.

The desired bound then follows from (3.41). ��
Next, we establish the remaining claims made in (2.1). (We remark that certain

bounds established in the proof of Lemma 3.7 are refined in Lemma 4.12.)

Lemma 3.7 The slack reset (3.26) and (3.33) in Steps 42 and 48 yields sk+1 such that
(xk+1, sk+1) satisfies vk+1 ≤ vmax

k+1 and, at the end of iteration k + 1, vmax
k+2 ≤ vmax

k+1.

Proof Our proof is by induction. We have v0 ≤ vmax
0 by the initialization of vmax

0 . Now
suppose that vi ≤ vmax

i for i ∈ {0, . . . , k} for some k ≥ 1. The slack reset in Steps
42 and 48 cannot increase the constraint violation [recall (1.4)], which implies, for
k ∈ Y∪F , the inequality vk+1 ≤ vmax

k+1. Hence, it remains to consider k ∈ V . Ifρv
k < η1

or (2.15) does not hold, then the step is rejected, so vk+1 ≤ vmax
k+1 as a consequence of

(3.36). Otherwise, (2.15) states that nk �= 0, from which Lemma 3.3 implies k ∈ N ,
and thus Lemma 3.5 and (3.6) imply thatΔmv,n

k > 0. It then follows from the fact that
ρv
k ≥ η1, (2.13), and (3.32) that vk+1 < vk . Since κt2 ∈ (0, 1) in (3.35), this implies

vk+1 < vk+1 + κt2

(
vk − vk+1) < vk ≤ vmax

k , (3.45)

123

98 F. E. Curtis et al.

so (3.35) implies vmax
k+1 ≤ vmax

k . Combining (3.35) and (3.45), we have that vmax
k+1 ≥

vk+1 + κt2

(
vk − vk+1) > vk+1. Thus, in all cases, we have vk+1 ≤ vmax

k+1.
To establish that vmax

k+2 ≤ vmax
k+1, note that if k /∈ V , then vmax

k+2 ← vmax
k+1, so all that

remains is to consider k ∈ V . Observing (3.35), we see again that vmax
k+2 ← vmax

k+1 if
either (2.15) is violated or ρv

k+1 < η1. By contrast, if (2.15) holds and ρv
k+1 ≥ η1, then

we must have nk+1 �= 0 and from Lemma 3.3(ii) that k+1 ∈ N . Moreover, it follows
from (3.32), (2.13), (2.15), (3.6) and Lemma 3.5 as above that vk+2 < vk+1. Thus, if
the maximum value in (3.35) is the second term, it follows that vmax

k+2 < vk+1 ≤ vmax
k+1.

Otherwise, if the maximum value in (3.35) is the first term, then vmax
k+2 < vmax

k+1 trivially
follows since κt1 ∈ (0, 1). ��

We now show that the computations of the least-squares multipliers, yk ,—along
with the accompanying quantities rk , π

f
k , and χ

f
k —are well-defined. For this, we

make the following reasonable assumption.

Assumption 3.1 If the iterative solver employed to solve (2.7) runs for an infinite
number of iterations, then it produces a bounded sequence {y(i)}∞i=0 with

lim
i→∞ ∇mL

k (y(i)) = 0. (3.46)

We now confirm that our strategy for computing Lagrange multiplier estimates and
tangential steps is well-defined. In particular, it shows that the strategy in Sect. 3.2.3
produces aLagrangemultiplier estimate andCauchy point for a tangential subproblem,
and that the Cauchy point is a valid option for the tangential step.

Lemma 3.8 If {y(i)}∞i=0 is produced by an iterative solver employed to solve (2.7)
that satisfies Assumption 3.1, then for some (finite) index i the vector yk ← y(i) yields
rk , π

f
k , and χ

f
k satisfying (3.15a), (3.15b), or (3.15c), where, in case only (3.15c) is

satisfied, we also have that either

(i) the Cauchy point tCk defined by (3.17)–(3.18) satisfies (3.19), or
(ii) the Cauchy point tCk defined by (3.21)–(3.22) satisfies (3.23).

Proof If, for any i , either (3.15a) or (3.15b) is satisfied, then the result follows. Thus,
without loss of generality, let us assume for the remainder of the proof that both (3.15a)
and (3.15b) do not hold for all i .

In order to derive a contradiction, suppose that for all i either (3.15c) does not hold
or it does while neither statement (i) nor (ii) holds. This means that the iterative solver
employed to solve (2.7) (that satisfies Assumption 3.1) does not terminate finitely,
which, in turn, implies the existence of a limit point y∞ and an infinite index set I
such that {y(i)}i∈I → y∞. Moreover, (3.46) implies that

0 = ∇mL
k (y∞) = J (xk, sk)rk(y

∞). (3.47)

Suppose that π
f
k (y∞) = 0. If vk ≤ εv , then this implies that, for all sufficiently

large i ∈ I, the vector yk ← y(i) yields (3.15a), a contradiction. Otherwise, if vk > εv ,

123

An interior-point trust-funnel algorithm 99

then we must have χv
k > 0 or else Algorithm 2 would have terminated in Step 9. Since

this fact, the fact that vk > εv , and (3.1) imply that πv
k > 0, it follows along with

π
f
k (y∞) = 0 that, for all sufficiently large i ∈ I, the vector yk ← y(i) yields (3.15b),

another contradiction. Since we have reached a contradiction in both of these cases,
we must conclude that π f

k (y∞) > 0. Combining this strict inequality with (3.47) and
the fact that

∇m f
k (nk) = P−2

k rk(y
∞) − J (xk, sk)

Ty∞

shows that

χ
f
k (y∞) = rk(y∞)T (P−2

k rk(y∞) − J (xk, sk)Ty∞)

π
f
k (y∞)

= (π
f
k (y∞))2

π
f
k (y∞)

= π
f
k (y∞).

Since κχ ∈ (0, 1), the outer equations in this sequence show that, for all sufficiently
large i ∈ I, the vector yk ← y(i) yields (3.15c).

Now, to complete the proof, we must show that either statement (i) or (ii) must be
satisfied for some sufficiently large i ∈ I. To this end, first observe from (3.47) that
{rk(y(i))}i∈I → rk(y∞) ∈ Null(J (xk, sk)). We introduce the notation tCrk (i) := tCk
when tCk is defined by (3.17)–(3.18) with rk = rk(y(i)) associated with the relaxed
SQP tangential subproblem, and tCvk (i) := tCk when tCk is defined by (3.21)–(3.22)
with rk = rk(y(i)) associated with the very relaxed SQP tangential subproblem.
We observe from (3.17) and (3.21), the constraints of (3.18) and (3.22), and the
fact that rk(y∞) ∈ Null(J (xk, sk)) that there exist tCrk (∞) and tCvk (∞) such that
{tCrk (i)}i∈I → tCrk (∞) ∈ Null(J (xk, sk)) and {tCvk (i)}i∈I → tCvk (∞) ∈ Null(J (xk, sk)).
By definition, the Cauchy point tCrk (i) satisfies (3.19a)–(3.19c) for all i . Similarly, the
Cauchy point tCvk (i) satisfies (3.23a)–(3.23c) for all i . Thus, we need only show that
for some sufficiently large i ∈ I either tCrk (i) satisfies (3.19d) or tCvk (i) satisfies (3.23d).
Suppose that nk �= 0, in which case Lemma 3.3(ii) implies that k ∈ N . It then follows
from Lemma 3.3(i) that mv

k (nk) < mv
k (0), and thus the right-hand side of (3.19d) is

strictly greater thanmv
k (nk). Therefore, since t

Cr
k (∞) ∈ Null(J (xk, sk)), it follows that

tCrk (i) satisfies (3.19d) for all sufficiently large i ∈ I, which is to say that statement (i)
holds. Now suppose that nk = 0, in which case Lemma 3.3(i) implies that k /∈ N . By
virtue of (3.2), this must mean that vk < κvvv

max
k . It follows from the facts that nk = 0,

vk < κvvv
max
k , κtt ∈ (κvv, 1), and {tCvk (i)}i∈I → tCvk (∞) ∈ Null(J (xk, sk)) that tCvk (i)

satisfies (3.23d) for all sufficiently large i ∈ I. We have reached the conclusion that
statement (ii) holds. This completes the proof. ��

Finally, we give a bound on the decrease in our barrier model provided by the
Cauchy step for the tangential subproblem.

Lemma 3.9 If k ∈ T , then tCk defined by (3.17)–(3.18) or (3.21)–(3.22) is computed
and satisfies

m f
k (nk) − m f

k (nk + tCk) ≥ κ ct
kπ

f
k min

{
π

f
k , (1 − κB)δ

t
k, (1 − κfbt)κfbn

}
> 0,

123

100 F. E. Curtis et al.

where

κ ct
k := κ2

χ

2(1 + ‖PkGk Pk‖2) ∈ (0, 1/2).

Proof We first consider k ∈ TD, i.e., when the Cauchy step tCk is computed from

(3.17)–(3.18) with the trust region radius δtk = min{κvfδ
v
k , δ

f
k } (see (3.38)). It follows

fromLemma 3.3(iii) thatχ f
k ≥ κχπ

f
k > 0 so, by (3.14),∇m f

k (nk)Trk ≥ κχ(π
f
k)2 > 0.

We now show that tCk (α) [recall (3.17)] is feasible for (3.18) when

k ∈ TD and 0 ≤ α ≤ (π
f
k)−1 min

{
(1 − κB)δ

t
k, (1 − κfbt)κfbn

} =: αB.

Indeed, consider any α ∈ [0, αB]. The definitions of tCk (α), rk , and αB imply

‖P−1
k tCk (α)‖2 = ‖P−1

k αrk‖2 = α‖P−1
k rk‖2 = απ

f
k ≤ (1 − κB)δ

t
k . (3.48)

Using the triangle inequality, (3.12) (which must hold since k ∈ TD ⊆ T), (3.38), and
(3.48), we then have

‖P−1
k

(
nk + tCk (α)

)‖2 ≤ ‖P−1
k nk‖2 + ‖P−1

k tCk (α)‖2
≤ κBδ

t
k + (1 − κB)δ

t
k ≤ δtk = min{κvfδ

v
k , δ

f
k },

which shows that tCk (α) satisfies the first constraint in problem (3.18). To show that
tCk
s(α) also satisfies the second constraint in problem (3.18), first observe that if

[tCk s(α)]i = [−αrsk]i ≥ 0, then [sk + nsk + tCk
s(α)]i ≥ [sk + nsk]i ≥ κfbt[sk + nsk]i ≥ 0

since κfbt ∈ (0, 1). Thus, it suffices to consider i such that [rsk]i > 0. It follows from

the definitions of αB and π
f
k , (3.13), [rsk]i > 0, Lemma 3.4, and (3.5) that

α ≤ αB ≤ (1 − κfbt)κfbn

π
f
k

≤ (1 − κfbt)κfbn

‖S−1
k r sk‖2

≤ (1 − κfbt)κfbn

|[rsk]i/[Sk]i i |
= (1 − κfbt)κfbn[sk]i

[rsk]i
≤ (1 − κfbt)[sk + nsk]i

[rsk]i
.

Using the definition of tCk
s(α) and the previous inequality leads to

[−tCk
s(α)]i = α[rsk]i ≤ (1 − κfbt)[sk + nsk]i

from which we may conclude that [sk + nsk + tCk
s(α)]i ≥ κfbt[sk + nsk]i for all i ∈

{1, . . . , M}. This proves that tCk s(α) satisfies the constraints of problem (3.18), and
completes the proof that tCk (α) is feasible for problem (3.18) for all α ∈ [0, αB].

We now observe that the minimizer αC
T of (3.18) yields m f

k (nk + tCk) ≡ m f
k (nk +

tCk (α
C
T)) ≤ m f

k (nk + tCk (α)) for all α ∈ [0, αB]. We also have from the Cauchy-Schwarz
and standard norm inequalities that

123

An interior-point trust-funnel algorithm 101

|rTk Gkrk | =
∣∣∣
(∇m f

k (nk) + J (xk, sk)
Tyk
)T
P2
k Gk P

2
k

(∇m f
k (nk) + J (xk, sk)

Tyk
)T∣∣∣

≤ (π
f
k)2‖PkGk Pk‖2.

It then follows from [3, Lemma 1] with the quantities

“t” := αB, “a” := |rTk Gkrk |, “b” := ∇m f
k (nk)

T rk > 0,

(the strict inequality was shown earlier in this proof) that

m f
k (nk) − m f

k (nk + tCk)

≥ “b”

2
min

{
“b”

“a”
, “t”

}

≥ ∇m f
k (nk)Trk
2

min

{
∇m f

k (nk)Trk

(π
f
k)2‖PkGk Pk‖2

,
(1 − κB)δ

t
k

π
f
k

,
(1 − κfbt)κfbn

π
f
k

}

≥ ∇m f
k (nk)Trk

2π f
k

min

{
∇m f

k (nk)Trk

π
f
k (1 + ‖PkGk Pk‖2)

, (1 − κB)δ
t
k, (1 − κfbt)κfbn

}

= χ
f
k

2
min

{
χ

f
k

(1 + ‖PkGk Pk‖2) , (1 − κB)δ
t
k, (1 − κfbt)κfbn

}

≥ κ2
χ
π

f
k

2(1 + ‖PkGk Pk‖2) min
{
π

f
k , (1 − κB)δ

t
k, (1 − κfbt)κfbn

}
,

where we have used 1 + ‖PkGk Pk‖2 ≥ 1 and χ
f
k ≥ κχπ

f
k with κχ ∈ (0, 1).

The proof for k ∈ T \TD is similar, but uses δtk = min{κvf, δ
v
k , δ

f
k , κvv

max
k }, (3.21)

instead of (3.17), (3.22) instead of (3.18), and (by Lemma 3.3(xi)) the fact that nk = 0
for k ∈ T \TD. ��

4 Convergence of the trust-funnel algorithm for the barrier subproblem

The following assumption is assumed to hold for the remainder of the paper.

Assumption 4.1 The sequence of iterates {xk} is contained in a compact set.

The following is an immediate consequence of Assumptions 1.1 and 4.1.

Lemma 4.1 There exists an upper bound κH ≥ 1 for ‖g(xk)‖2, ‖c(xk)‖2, ‖J (xk)‖2,
‖∇xx f (xk)‖2, and ‖∇xxci (xk)‖2 for all k and i ∈ {1, . . . , M}.

We now prove that important sequences related to our method are bounded.

Lemma 4.2 There exists a upper bound κub ≥ κH for vk , ‖sk‖2, ‖J (xk, sk)Tc(xk, sk)‖2,
πv
k , ‖Pk J (xk, sk)T ‖2, χv

k , ‖PkGk Pk‖2, and ‖Pk∇ f (xk, sk)‖2 for all k.

123

102 F. E. Curtis et al.

Proof The result is clearly true if the algorithm terminates finitely. Otherwise, it fol-
lows from Lemma 3.7 that vk ≤ vmax

k ≤ vmax
0 for all k, which proves that {vk} can be

bounded as claimed. Combining this with the triangle inequality yields

‖sk‖2 − ‖c(xk)‖2 ≤ ‖c(xk) + sk‖2 = ‖c(xk, sk)‖2 ≤ vmax
0 for all k.

We may deduce from this bound and Lemma 4.1 that {‖sk‖2} can be bounded as
claimed. It then follows from the triangle inequality that

‖J (xk, sk)
Tc(xk, sk)‖2 ≤

∥∥∥∥

(
J (xk)Tc(xk, sk)

0

)∥∥∥∥
2
+
∥∥∥∥

(
0

c(xk, sk)

)∥∥∥∥
2
,

which may then be combined with the Cauchy-Schwarz inequality, Lemma 4.1, and
the boundedness of {vk} (already proved) to conclude that {‖J (xk, sk)Tc(xk, sk)‖2}
can be bounded as claimed. The boundedness of {πv

k } follows from that of {‖sk‖2}
and {‖J (xk, sk)Tc(xk, sk)‖2}. It then follows from the boundedness of {‖sk‖2} and, by
Lemma 4.1, that of {‖J (xk)‖2} that {‖Pk J (xk, sk)T ‖2} can be bounded as claimed.
This, along with the Cauchy-Schwarz inequality, implies that {χv

k } can be bounded as
claimed. The boundedness of ‖PkGk Pk‖2 follows from the boundedness of {‖sk‖2},
(3.9), (3.10), Assumptions 1.1 and 4.1, and (3.11). Finally, it follows from Lemma 4.1
and the fact that Pk∇ f (xk, sk) = (g(xk),−μe) that {‖Pk∇ f (xk, sk)‖2} canbebounded
as claimed. ��

Using Lemma 4.2, we may now improve the Cauchy decrease bounds provided
in Lemmas 3.5 and 3.9, as well as the result of Lemma 3.6 by making the leading
constants independent of the iteration number.

Lemma 4.3 For all k, the following hold:

(i) If k ∈ N , then nC
k defined by (3.3)–(3.4) is computed and

mv
k (0) − mv

k (n
C
k) ≥ κcnχ

v
k min{πv

k , δv
k , 1 − κfbn} > 0

for some constant κcn ∈ (0, 1] independent of k.
(ii) If k ∈ T , then tCk defined by (3.17)–(3.18) or (3.21)–(3.22) is computed and

m f
k (nk) − m f

k (nk + tCk) ≥ κctπ
f
k min{π f

k , (1 − κB)δ
t
k, (1 − κfbt)κfbn} > 0

for some constant κct ∈ (0, 1/2] independent of k.
(iii) If k ∈ N , then, with n∗

k defined in (3.8) and κcn ∈ (0, 1] from part (i),

‖P−1
k n∗

k‖2 ≥ κcnπ
v
k .

Proof The results follow from Lemmas 3.5, 3.9 and 3.6 along with Lemma 4.2. ��
The next lemma bounds the size of the trial step in different scenarios.

123

An interior-point trust-funnel algorithm 103

Lemma 4.4 If Algorithm 2 does not terminate during iteration k, then

‖P−1
k dk‖2

⎧
⎪⎨

⎪⎩

= ‖P−1
k nk‖2 ≤ δv

k if k /∈ T ,

= ‖P−1
k nk‖2 ≤ min{κvfδ

v
k , δ

v
k , δ

f
k } if k ∈ T0,

≤ δtk if k ∈ T \T0.

In particular, for all k, we have ‖P−1
k dk‖2 ≤ max{κvfδ

v
k , δ

v
k }.

Proof Let k /∈ T , from which Lemma 3.3(v) implies tk = 0 and dk = nk . If nk = 0,
then the result holds trivially. Conversely, if nk �= 0, then Lemma 3.3(ii) implies that
k ∈ N and the result follows from (3.5). Now let k ∈ T , for which we have three
cases. First, if k ∈ T0, then it follows from Lemma 3.3(iv) that tk = 0 and (3.12)
holds. Combining this with tk = 0, (3.5), and the fact that κB ∈ (0, 1) shows that

‖P−1
k dk‖2 = ‖P−1

k nk‖2 ≤ min{κB min{κvfδ
v
k , δ

f
k }, δv

k } ≤ min{κvfδ
v
k , δ

v
k , δ

f
k }.

Second, if k ∈ TD\T0, then the result follows from (3.19c) and (3.38). Third, if
k ∈ T \TD, then the result follows from (3.23c) and (3.38). ��

We now bound the differences between the problem functions and their models.

Lemma 4.5 The following hold:

(i) There exists a constant κG > 0 independent of k such that

| f (xk + dxk , sk + dsk) − m f
k (dk)| ≤ κG‖P−1

k dk‖22 for all k. (4.1)

(ii) There exists a constant κC > 0 independent of k such that

|v(xk + dxk , sk + dsk) − mv
k (dk)| ≤ κC‖P−1

k dk‖22 for all k. (4.2)

Proof We first prove part (i). By the triangle inequality, we have

| f (xk + dxk , sk + dsk) − m f
k (dk)|

≤ | f (xk + dxk) − f (xk) − ∇ f (xk)
T dxk − 1

2d
x
k
T∇xxL(xk, y

B
k)d

x
k |

+
∣∣∣∣∣−μ

M∑

i=1

ln([sk + dsk]i) + μ

M∑

i=1

ln([sk]i) + μeT S−1
k dsk − 1

2d
s
k
T Dkd

s
k

∣∣∣∣∣ .

(4.3)
Under Assumptions 1.1 and 4.1, and by (3.10), there exists κG1 > 0 such that

| f (xk + dxk) − f (xk) − ∇ f (xk)
T dxk − 1

2d
x
k
T∇xxL(xk, y

B
k)d

x
k | ≤ κG1‖dxk ‖22. (4.4)

Moreover, note that for each i ∈ {1, . . . , M}, we have by (3.5) and (3.19b)/(3.23b)
that [sk]i + [dsk]i ≥ κfbtκfbn[sk]i > 0 for all k regardless of whether a tangential step tk

123

104 F. E. Curtis et al.

was computed. TheMean Value Theorem yields ln([sk]i +[dsk]i)− ln[sk]i = [dsk]i/ξi ,
where ξi lies between [sk]i and [sk]i + [dsk]i . Hence
∣∣∣∣ln([sk]i + [dsk]i) − ln[sk]i − [dsk]i

[sk]i
∣∣∣∣ ≤ sup

ξ∈[[sk]i ,[sk]i+[dsk]i]

∣∣∣∣
[dsk]i

ξ
− [dsk]i

[sk]i
∣∣∣∣

= [sk]i
[sk]i + [dsk]i

([dsk]i
[sk]i

)2

≤ 1

κfbtκfbn

([dsk]i
[sk]i

)2

,

where in the middle equation we have used the fact that the sup occurs at ξ = [sk]i +
[dsk]i . Hence, by (3.11) and Lemma 4.2, we have that

∣∣∣∣∣−μ

M∑

i=1

ln([sk + dsk]i) + μ

M∑

i=1

ln([sk]i) + μeT S−1
k dsk − 1

2d
s
k
T Dkd

s
k

∣∣∣∣∣

≤ 1

κfbtκfbn

dsk
T
(μS−2

k)dsk + 1
2 |dsk T Dkd

s
k | ≤ κG2‖S−1

k dsk‖22,
(4.5)

where κG2 = μ/κfbtκfbn + 1
2κ

2
ubκD > 0. The result now follows from (4.3)– (4.5) and

Lemma 4.4 with κG := κG1 + κG2.
We now prove part (ii). By Lemma 4.1, Taylor’s expansion theorem yields

c(xk+dxk , sk+dsk)=c(xk, sk) + J (xk, sk)dk+wk where [wk]i = 1
2d

xT
k ∇xxci (ξik)d

x
k

for some scalars ξik ∈ [xk, xk + dxk]. As a consequence, we obtain with the triangle
inequality that there exists a constant κC > 0 so that

|v(xk+dxk , sk+dsk)−mv
k (dk)|=|‖c(xk+dxk , sk+dsk)‖2 − ‖c(xk, sk) + J (xk, sk)dk‖2|

≤ ‖wk‖2 ≤ κC‖dxk ‖22 ≤ κC‖P−1
k dk‖22,

where we have used Lemma 4.1 and the Cauchy-Schwarz inequality. ��
We now prove an important fact about v-iterations; namely, if k ∈ V and one of the

trust region radii or funnel radius is sufficiently small, then k ∈ D.

Lemma 4.6 If k ∈ V and

min{κvfδ
v
k , δ

f
k , κvv

max
k } ≤ (1 − κtt)

κCκv

=: κV , (4.6)

then k ∈ D.

Proof For a proof by contradiction, suppose that (4.6) holds while k ∈ V\D. We
show that all of the conditions of an f -iteration are satisfied, implying that k ∈ F ,
contradicting the supposition that k ∈ V .

Since k /∈ D, we have from Lemma 3.3(viii) that k ∈ T \TD and (3.23) holds.
Then, since T0 ⊆ TD, it follows that k ∈ T \T0, so by Lemma 3.3(iv) we have tk �= 0.

123

An interior-point trust-funnel algorithm 105

Moreover, k ∈ T \T0 implies by Lemma 4.4 that ‖P−1
k dk‖2 ≤ δtk , which along with

the fact that k ∈ T \TD and (3.38) implies

‖P−1
k dk‖2 ≤ min{κvfδ

v
k , δ

f
k , κvv

max
k } ≤ κvv

max
k . (4.7)

Thus, with (4.2), the triangle inequality, (3.23d), (4.7), and (4.6), we have

v(xk + dxk , sk + dsk) ≤ κttv
max
k + κC‖P−1

k dk‖22
≤ κttv

max
k + κCκvv

max
k min{κvfδ

v
k , δ

f
k , κvv

max
k } ≤ vmax

k ,

so (2.11) holds. We also have from Lemma 3.3(xi) that nk = 0, so (2.10) holds. Thus,
all of the conditions of an f -iteration are satisfied, so the result follows. ��

The preceding lemmas have the following useful consequence.

Lemma 4.7 There exists a constant κn�2 ∈ (0, 1] such that if k ∈ V and

min{κvfδ
v
k , δ

f
k } ≤ min{1, κV , κn�2π

v
k }, (4.8)

then k ∈ N ∩ D.

Proof We first note that, by Lemma 4.2, we have χv
k ≤ κub for all k. Then, with

κn�2 := min

{
1,

κv

κub

}
∈ (0, 1], (4.9)

we have with Lemma 3.7 that

κn�2π
v
k = κn�2χ

v
k vk ≤ κn�2κubvk ≤ κvvk ≤ κvv

max
k . (4.10)

Let k ∈ V and (4.8) hold. Then, along with (4.10) we have that

min{κvfδ
v
k , δ

f
k , κvv

max
k } = min{κvfδ

v
k , δ

f
k } ≤ κV .

Then, by Lemma 4.6, we have k ∈ D (as desired), so k ∈ V ∩ D. Now, in order
to derive a contradiction to the claim that k ∈ N , suppose that k ∈ (V ∩ D)\N .
Since k /∈ N , we have from Lemma 3.3(ii) that nk = 0, so (2.10) holds. Then, since
k ∈ V , we must have tk �= 0 (since otherwise Lemma 3.3(vi) would imply that k ∈ Y ,
which is a contradiction). Thus, we have that k ∈ T \T0. At the same time, k /∈ N
implies that (3.2) does not hold, so vk < κvvv

max
k < κttv

max
k . This bound, (4.2), the

triangle inequality, (3.19d), the fact that nk = 0, Lemma 3.7, the fact that k ∈ T \T0,
Lemma 4.4, (3.38), (4.10) and (4.8) imply

123

106 F. E. Curtis et al.

v(xk + dxk , sk + dsk) ≤ |mv
k (dk)| + κC‖P−1

k dk‖22
≤ |mv

k (0)| + κC‖P−1
k dk‖22

< κttv
max
k + κC(min{κvfδ

v
k , δ

f
k })2

≤ κttv
max
k + κCκvv

max
k min{κvfδ

v
k , δ

f
k },

which, when combined with (4.8) and (4.6), yields

v(xk + dxk , sk + dsk) ≤ κttv
max
k + (1 − κtt)v

max
k = vmax

k

so that (2.11) holds. Combining this with the facts that tk �= 0 and (2.10) hold shows
that k ∈ F , which is a contradiction. Thus, we conclude that k ∈ N . ��

We now prove that, in certain situations, a sufficiently small trust region radius is
guaranteed to lead to a successful iteration.

Lemma 4.8 The following hold:

(i) If k ∈ F and

δtk ≤ min

{
(1 − κfbt)κfbn

1 − κB

,
π

f
k

1 − κB

,
κδκct(1 − κB)(1 − η2)π

f
k

κG

}
=: min{κ�f1, κ�f2π

f
k }

then ρ
f
k ≥ η2, k ∈ S f , and δ

f
k+1 ≥ δ

f
k .

(ii) If k ∈ V and

δv
k ≤ min

{
1

κvf

,
κV
κvf

,
κn�2π

v
k

max{κvf, 1} , 1 − κfbn,
κcdκcnχ

v
k (1 − η2)

κC(max{κvf, 1})2
}

=: min{κ�c1, κ�c2π
v
k , κ�c3χ

v
k },

then k ∈ N ∩ D ∩ Sv , ρv
k ≥ η2, and δv

k+1 ≥ δv
k .

Proof For part (i), the proof that ρ
f
k ≥ η2, which implies that k ∈ S f , is the

same as for [5, Theorem 6.4.2] and uses (2.12), (2.10) (which holds since k ∈ F),
(3.19a)/(3.23a), Lemma 4.3(ii), the assumed upper bound on δtk , (4.1), tk �= 0, and

Lemma 4.4. The fact that δ f
k+1 ≥ δ

f
k then follows from (3.27) and (3.29).

To prove part (ii), we first observe from the assumed upper bound on δv
k that π

v
k > 0

and χv
k > 0 since δv

k > 0 by construction in the algorithm. Moreover, the assumed
upper bound on δv

k and Lemma 4.7 imply that k ∈ N ∩ D. We now conclude from
Lemma 3.3(ix) that (2.15) holds. Thus, using (4.2), Lemma 4.4, (2.15), (3.6), and
Lemma 4.3(i), we have

|ρv
k − 1| =

∣∣∣∣∣
v(xk + dxk , sk + dsk) − mv

k (dk)

�mv,d
k

∣∣∣∣∣

≤
∣∣∣∣∣
κC(max{κvf, 1}δv

k)
2

κcd�mv,n
k

∣∣∣∣∣ ≤ κC(max{κvf, 1}δv
k)

2

κcdκcnχ
v
k min{πv

k , δv
k , 1 − κfbn} .

123

An interior-point trust-funnel algorithm 107

In fact, we have from the assumed upper bound on δv
k and κn�2 ∈ (0, 1] that δv

k =
min{πv

k , δv
k , 1 − κfbn}, so that

|ρv
k − 1| ≤ κC(max{κvf, 1})2δv

k

κcdκcnχ
v
k

≤ 1 − η2.

Thus, ρv
k ≥ η2 ≥ η1, which means that k ∈ Sv and, by (3.34), that δv

k+1 ≥ δv
k . ��

We now give a lower bound on the trust-region radii when the criticality measures
π

f
k and min{vk, χv

k } are bounded away from zero on f - or v-iterations.

Lemma 4.9 If there exists a constant ε f > 0 such that

π
f
k ≥ ε f for all k ∈ F , (4.11)

then, for some constant εF > 0, we have

δ
f
k ≥ εF for all k. (4.12)

Proof The statement follows from Lemma 4.8(i), (3.38),F ⊆ T \T0, and the fact that
δ
f
k+1 ← δ

f
k for k /∈ F . ��

Lemma 4.10 If there exists a constant εθ > 0 such that

min{vk, χv
k } ≥ εθ for all k ∈ V, (4.13)

then
δv
k ≥ γ1 min

{
δv
0 , κ�c1, κ�c2ε

2
θ , κ�c3εθ

}
=: εC for all k. (4.14)

Proof With γ1 ∈ (0, 1) defined for (3.29), we prove by induction that, for all k,

δv
k ≥ γ1 min

{
δv
0 , κ�c1, κ�c2

[
min

j∈{0,...,k}∩V
πv
j

]
, κ�c3

[
min

j∈{0,...,k}∩V
χv
j

]}
. (4.15)

This inequality holds trivially for k = 0, so supposing that it holds for iteration k, we
prove that it holds for iteration k + 1. Observe that δv

k cannot be decreased if Step 13
is reached; hence, we may ignore this safeguard throughout this proof.

First, suppose that k ∈ Y ∪ (F\S f). Since δv
k+1 ← δv

k and (xk+1, sk+1) ←
(xk, sk) for such iterations, we conclude that (4.15) holds at iteration k + 1. Second,
if k ∈ S f ∪ Sv , then the fact that δv

k+1 ≥ δv
k ensures that (4.15) holds at iteration

k + 1. Finally, suppose that k ∈ V\Sv . In this case, Lemma 4.8(ii) implies that
δv
k > min{κ�c1, κ�c2π

v
k , κ�c3χ

v
k }. This may then be combined with (3.36) to deduce

that δv
k+1 ≥ γ1 min{κ�c1, κ�c2π

v
k , κ�c3χ

v
k } so that (4.15) holds at iteration k + 1. The

bound (4.14) then follows from (4.15), (4.13), (3.1), Lemma 4.2, and the observation
that δv

k is not decreased for k ∈ Y ∪ F . ��

123

108 F. E. Curtis et al.

We now give our first main result, which states that if there are finitely many
successful iterations, then Algorithm 2 terminates finitely.

Theorem 4.11 If |S| < ∞, then Algorithm 2 terminates finitely.

Proof To derive a contradiction, suppose that Algorithm 2 does not terminate finitely.
It then follows from the fact that |S| < ∞, (3.24), (3.29), (3.30), and (3.36) that for
some x∗ ∈ R

N , s∗ ∈ R
M , and {v∗, vmax∗ , πv∗ , χv∗ } ⊂ R there exists an integer ks such

that, for all k ≥ ks , Step 13 is not reached,

(xk, sk, vk, v
max
k , πv

k , χv
k) = (x∗, s∗, v∗, vmax∗ , πv∗ , χv∗), and k /∈ S. (4.16)

Also, vmax∗ > 0 while the fact that |S| < ∞ and Lemma 3.4 ensure that s∗ > 0.
First, we prove that |V| < ∞. In order to derive a contradiction, suppose that

|V| = ∞. Then, by (4.16) (in particular, the fact that k /∈ S for k ≥ ks), it follows that
(3.36) sets δv

k+1 ≤ γ2δ
v
k for all k ∈ V with k ≥ ks . Combining this with the fact that

(3.24) and (3.29) set δv
k+1 ← δv

k for all k ∈ Y∪F with k ≥ ks , it follows that {δv
k } → 0.

We also have from Lemma 4.8(ii) and the facts that |V| = ∞ and |S| < ∞ that we
must have 0 = limk∈V min{πv

k , χv
k } = limk∈V min{χv

k vk, χ
v
k } = min{χv∗ v∗, χv∗ }. If

v∗ > 0, then this implies that χv∗ = 0. However, this implies that for k = ks the
algorithm would terminate finitely in Step 9, which contradicts the supposition of the
proof. Thus, we must have that v∗ = 0. Since v∗ = 0, it follows from the conditions
of Step 10 that nk = 0 for all k ≥ ks . This implies that (3.12) will be satisfied for
all k ≥ ks , which in turn implies by Step 18 of the algorithm that yk , rk , π

f
k , and

χ
f
k will be computed to satisfy (3.15a), (3.15b), or (3.15c). If (3.15a) were to hold,

then the algorithm would terminate finitely, which is a contradiction. Thus, we know
that (3.15a) does not hold for all k ≥ ks , which combined with the fact that v∗ = 0
implies thatπ f

k > επ > 0 for all k ≥ ks . It follows from this fact, Lemma4.8(i), (3.38),
and {δv

k } → 0 that if |F | = ∞ (recall F ⊆ T), then we would have {δtk}k∈F → 0
and an infinite number of successful f -iterations. However, since this violates the fact
that |S| < ∞, it follows at this point that we must have |F | < ∞. Next, it follows
from the facts that v∗ = 0 and {δv

k } → 0, the last conclusion in Lemma 4.4, and (4.16)
(specifically, that vmax∗ > 0) that (2.11) will be satisfied for all sufficiently large k. We
may also deduce from the fact that nk = 0 for all k ≥ ks that (2.10) holds for all k ≥ ks .
Sincewe have shown that |F | < ∞ and that both (2.10) and (2.11) hold for sufficiently
large k, we may conclude that tk = 0 for all sufficiently large k. Therefore, since we
have shown that nk = tk = 0 for all sufficiently large k, we have from Lemma 3.3(vi)
that k ∈ Y for all sufficiently large k, which combined with Lemma 3.3(vii) implies
that {π f

k } → 0. However, this contradicts our earlier conclusion that π
f
k ≥ επ > 0

for all k ≥ ks . Overall, we have contradicted the supposition that |V| = ∞.
Next, suppose that |F | < ∞. Combining this with the fact that |V| < ∞ ensures

that k ∈ Y for all sufficiently large k. It follows from this fact and Lemma 3.3(vii) that
{π f

k } → 0, and that yk , rk , π
f
k , and χ

f
k will be computed to satisfy (3.15a), (3.15b), or

(3.15c) for all sufficiently large k. During the computation of these quantities, (3.15a)
can never be satisfied, since in that case the algorithm would terminate finitely, which
contradicts the supposition of the proof. Hence, since (3.15a) is never satisfied and

123

An interior-point trust-funnel algorithm 109

{π f
k } → 0, we may deduce that v∗ > εv > 0. It then follows that χv∗ > 0 (and

from (3.1) that πv∗ > 0), or else for k = ks the algorithm would terminate in Step
9, which is a contradiction. Thus, min{χv∗ , πv∗ , v∗} > 0, which with (4.16), the fact

that {π f
k } → 0, and (3.2) implies that k ∈ N for all sufficiently large k. Thus, by

Lemma 3.3(i), we have nk �= 0, which by Lemma 3.3(vi) contradicts our earlier
conclusion that k ∈ Y . Overall, we have proven that we cannot have |F | < ∞, so we
must have |F | = ∞.

Since |F | = ∞, |V| < ∞, and |S| < ∞, we know from (3.24) and (3.29)
that {δ f

k } → 0, which when combined with (3.38), the fact that F ⊆ T \T0, and
Lemma 4.8(i) implies that {π f

k }k∈F → 0. Since (3.15a), (3.15b), or (3.15c) holds
for k ∈ F ⊆ T \T0, and since the algorithm does not terminate finitely, we know
that (3.15a) must not hold for all k ∈ F . Combining this with the fact that {π f

k }k∈F →
0 implies that vk > εv for all sufficiently large k ∈ F . Hence, since |F | = ∞, it follows
from (4.16) that v∗ > εv > 0. We then must conclude that min{v∗, χv∗ } > 0, or else
for k = ks the algorithm would terminate finitely in Step 9, which is a contradiction.
Also, from χv∗ > 0 and (3.1), it follows that πv∗ > 0. Since {π f

k }k∈F → 0, it follows
that (3.15b) will be satisfied for all sufficiently large k ∈ F , which implies that tk = 0
and thus k /∈ F , which once again is a contradiction.

Overall, in all cases, we have reached contradictions of our supposition that Algo-
rithm 2 does not terminate finitely, so the result is proved. ��

We now bound the constraint violation following a successful v-iteration.

Lemma 4.12 There are constants {κvπ1, κvπ2, κvπ3} ⊂ (0,∞) so that if k ∈ Sv , then

vk+1 ≤ vk − χv
k min{κ

vπ1, κvπ2π
v
k , κ

vπ3δ
v
k }, and (4.17a)

vmax
k+1 ≤ max{κt1v

max
k , vk − (1 − κt2)χ

v
k min{κ

vπ1, κvπ2π
v
k , κ

vπ3δ
v
k }}, (4.17b)

while (3.20) does not hold.

Proof Let k ∈ Sv , which by the definition of Sv means that (2.15) holds. In particular,
we have nk �= 0. Combining this fact with Lemma 3.3(ii) means that k ∈ Sv ∩ N . It
follows from this fact, (3.32), (2.13), (2.15), (3.6), and Lemma 4.3(i) that

vk+1 ≤ vk − η1Δmv,d
k ≤ vk − η1κcdΔmv,n

k ≤ vk − η1κcdκcnχ
v
k min{πv

k , δv
k , 1 − κfbn};

i.e., there exist {κvπ1, κvπ2, κvπ3} ⊂ (0,∞) such that (4.17a) holds. Combining this
with (3.35) yields (4.17b). Note that (4.17a) and Lemma 3.7 imply (2.11) holds.

Wenowprove that (3.20) does not hold. To reach a contradiction, suppose that (3.20)
holds, which immediately implies that tk �= 0. Lemma 3.3(iv) then implies that k ∈
T \T0, which combined with the fact that (3.20) is assumed to hold shows that (2.10)
holds. Thus all the conditions of an f -iteration are satisfied so that k ∈ F , which,
since V ∩ F = ∅, contradicts the fact that k ∈ Sv ⊆ V . ��

We now show that, if there are infinitely many iterations, then the v-criticality
measure min{vk, χv

k } converges to zero, at least along a subsequence of iterates.

123

110 F. E. Curtis et al.

Lemma 4.13 If Algorithm 2 does not terminate finitely, then

0 =

⎧
⎪⎨

⎪⎩

lim inf
k∈Sv

min{vk, χv
k } if |Sv| = ∞,

lim inf
k∈S f

min{vk, χv
k } if |Sv| < ∞.

(4.18)

Proof We proceed by considering the two cases distinguished in (4.18).

Case 1: Suppose that |Sv| = ∞. We first recall that, with Lemma 3.7, we have that
{vmax

k } is monotonically decreasing and bounded below by zero. We now proceed by
considering the consequences of the update (3.35), which is applied for all k ∈ Sv .
Since |Sv| = ∞, if (3.35) sets vmax

k+1 ≤ κt1v
max
k infinitely often, then {vmax

k } → 0, which
implies by Lemma 3.7 that {vk} → 0, yielding the desired limit in (4.18). Otherwise,
if the update (3.35) sets vmax

k+1 > κt1v
max
k for all sufficiently large k ∈ Sv , then by

Lemmas 4.12 and 3.7 we have for sufficiently large k ∈ Sv that

vmax
k+1 ≤ vmax

k − (1 − κt2)χ
v
k min{κ

vπ1, κvπ2π
v
k , κ

vπ3δ
v
k }. (4.19)

If there is a subsequence of Sv along which {χv
k } converges to zero, then the first limit

of (4.18) follows. Let us suppose, therefore, that {χv
k }k∈Sv

is bounded away from zero.
Then, the fact that {vmax

k } is monotonically decreasing and bounded below implies that
{vmax

k − vmax
k+1} → 0, and hence (4.19) gives that

{min{πv
k , δv

k }}k∈Sv
→ 0. (4.20)

We now consider two subcases with the goal of showing that there exists a subse-
quence of {πv

k }k∈Sv
that vanishes. First, suppose that |S f | < ∞ and let k0 be the last

index in the (ordered) set S f . Thus, for k > k0, the inclusion k ∈ S implies k ∈ Sv .
As a consequence, for k > k0, we have by (3.24) and (3.29) that the normal step trust
region radius is only increased when k ∈ Sv and only decreased when k ∈ V\Sv .
(Here, since |S f | < ∞ and by the procedure for updating S f -flag, we may assume
without loss of generality that Step 13 is not reached k > k0). If |V\Sv| < ∞, then
δv
k is bounded away from zero due to (3.24), (3.29), and (3.34), from which (4.20)
implies {πv

k }k∈Sv
→ 0. On the other hand, if |V\Sv| = ∞, then, since |Sv| = ∞, we

may define the infinite set K0 whose elements are the indices of the first successful
v-iterations following a set of iterations that includes elements of V but not Sv . Con-
sider an arbitrary k ∈ K0 ⊆ Sv with k ≥ k0 and define ku(k) ∈ V\Sv to be the index
of the last unsuccessful v-iteration before iteration k. (By convention, let ku(k) = k0
if (V\Sv) ∩ {k | k ≥ k0} = ∅.) Note that, by construction, δv

k is not modified between
iterations ku(k)+1 and k (as these must correspond to y-iterations or unsuccessful f -
iterations), which implies that δv

ku(k)+1 = δv
k . Moreover, the primal and slack variables

are not modified between iterations ku(k) and k and thus πv
ku(k)

= πv
k and χv

ku(k)
= χv

k .
These observations, (3.36) and Lemma 4.8(ii) imply that, for k ∈ K0 ⊆ Sv sufficiently
large,

123

An interior-point trust-funnel algorithm 111

δv
k = δv

ku(k)+1 ≥ γ1δ
v
ku(k)≥ γ1 min{κ�c1, κ�c2π

v
ku(k)

, κ�c3χ
v
ku(k)

} = γ1 min{κ�c1, κ�c2π
v
k , κ�c3χ

v
k }. (4.21)

Now, to reach a contradiction to (4.20), suppose that there exists a subsequenceK1 ⊆
K0 such that {πv

k }k∈K1 is bounded away from zero. Combining this with (4.21) and the
fact that {χv

k }k∈Sv
is assumed to be bounded away fromzero (which led to (4.20)) shows

that {δv
k }k∈K1 is bounded away fromzero. This contradicts (4.20) sinceK1 ⊆ K0 ⊆ Sv .

Thus, we conclude that {πv
k }k∈K0 → 0. As a consequence, we deduce that, in this first

subcase where |S f | < ∞, there always exists an infinite subsequence (Sv or K0) of
Sv along which {πv

k } converges to zero.
Consider next the subcase where |S f | = ∞, which means that successful f - and

v-iterations interlace infinitely often. In this subcase, lettingK1 denote the infinite set
whose elements are the indices of the first successful v-iterations following a set of
iterations that includes elements of S f but not Sv , we may define for any k ∈ K1 ⊆ Sv

the index kp(k) representing the last successful f -iteration prior to iteration k. With
this definition, it follows that any iteration between kp(k) ∈ S f and k ∈ Sv is either
a y-iteration or unsuccessful, from which it follows that

(xkp(k)+1, skp(k)+1) = · · · = (xk, sk) and πv
kp(k)+1 = · · · = πv

k .

On one hand, if for all sufficiently large k ∈ K1 the indices in {kp(k)+1, . . . , k−1}
do not belong to V , then the only possible modification of the normal step trust region
radius would be the safeguard (3.31). This and Lemma 4.3(iii) show that

δv
k ≥ max{δv

k , κn‖P−1
k n∗

k‖} ≥ κnκcnπ
v
k for all sufficiently large k ∈ K1, (4.22)

where we have used the fact that k ∈ K1 ⊆ Sv and Lemma 3.3(ii) implies that
k ∈ N . The inequalities in (4.22) may be followed by the same argument as that
following (4.21) to conclude that {πv

k }k∈K1 → 0. On the other hand, if for infinitely
many k any element of {kp(k) + 1, . . . , k − 1} is an element of V\Sv , then along this
subsequence we may define ku(k) ∈ V\Sv to be the index of the last unsuccessful
v-iteration before iteration k. Then, using the same reasoning as in the first subcase,
we may conclude that (4.21) holds. Employing (4.21) and (4.22) and applying similar
arguments, we conclude that a subsequence of {πv

k } vanishes.
We have obtained from the two above subcases that there exists an infinite subse-

quence K ⊆ Sv with {πv
k }k∈K → 0, regardless of the cardinality of S f . The fact that

{χv
k }k∈Sv

is bounded away from zero and (3.1) then imply that {vk}k∈K → 0, ensuring
the desired limit in (4.18).

Case 2: Suppose that |Sv| < ∞. In this case, by the fact that vmax
k+1 < vmax

k only when
k ∈ Sv , there exists a constant vmax∞ > 0 such that vmax

k = vmax∞ for all sufficiently large
k. By Theorem 4.11, the assumption that Algorithm 2 does not terminate finitely, and
|Sv| < ∞, it follows that |S f | = ∞. Now, to derive a contradiction, suppose that
there exists a constant εmin > 0 such that

min{vk, χv
k } ≥ εmin for all sufficiently large k. (4.23)

123

112 F. E. Curtis et al.

Since |Sv| < ∞, we know from (3.24) for k ∈ Y , from (2.12), (3.25), and (3.29)
for k ∈ F , from (3.36) for k ∈ V\Sv , and the fact that the slack reset only possibly
decreases the barrier function that { f (xk, sk)} is monotonically decreasing. Moreover,
it follows from Assumptions 1.1 and 4.1 and Lemma 4.2 that { f (xk, sk)} is bounded
below, so overall we have that { f (xk, sk)} → flow for some flow > −∞. It follows from
this fact, |S f | = ∞, (2.12), (3.25), (2.10) (which holds for k ∈ F), (3.19a)/(3.23a),

and Lemma 4.3(ii) that {min{π f
k , δtk}}k∈S f → 0. Suppose that for some infinite index

set K3 ⊆ S f and scalar π
f

min > 0 we have π
f
k ≥ π

f
min for all k ∈ K3. It follows that

{δtk}k∈K3 → 0. However, from Lemma 4.10 and (4.23), it follows that {δv
k }k∈V is

bounded away from zero for all k. Combining this with the facts that {δtk}k∈K3 → 0

and vmax
k = vmax∞ > 0 for all sufficiently large k implies from (3.38) that {δ f

k }k∈K3 → 0.
It then follows from Lemma 4.9 that there exists an infinite index setK4 ⊆ F such that
{π f

k }k∈K4 → 0. Since K4 ⊆ F ⊆ T \T0, we know that (3.15a), (3.15b), or (3.15c)
is satisfied for all k ∈ K4. However, we also know that (3.15a) cannot be satisfied
since Algorithm 2 is assumed not to terminate finitely. It does, however, follow from
{π f

k }k∈K4 → 0 and (4.23) that (3.15b) will be satisfied for all sufficiently large k ∈ K4
so that tk = 0 for all sufficiently large k ∈ K4 ⊆ F ⊆ T \T0, which is a contradiction.
Thus, we conclude that the setK3 cannot exist, so that {π f

k }k∈S f → 0. It follows from
this fact, (4.23), the definition of χv

k given in (3.1), and since the algorithm does not
terminate finitely that (3.15b) will be satisfied (and hence tk = 0) for all sufficiently
large k ∈ S f ⊆ F ⊆ T \T0, which again is a contradiction. Thus, our supposition
that (4.23) held must be incorrect and therefore there is a subsequence K5 such that
{min{vk, χv

k }}k∈K5 → 0. Moreover, since |Sv| < ∞ and |S f | = ∞, we conclude
that (4.18) holds. ��

To proceed further, at s ∈ R
M , we define the active and inactive sets

A(s) := {i ∈ {1, 2, . . . , M} : [s]i = 0} and I(s) := {1, 2, . . . M}\A(s) (4.24)

and denote these sets at a point s∗ ∈ R
M by

A∗ := A(s∗) and I∗ := I(s∗).

In addition, recalling that Pk := diag(I, Sk), we define σmin(xk, sk) as the smallest
singular value of (J (xk) Sk)T = (J (xk, sk)Pk)T .

Lemma 4.14 If there exists an infinite index setK with {min{vk, χv
k }}k∈K → 0, then,

for an arbitrary limit point (x∗, s∗) of {(xk, sk)}k∈K, it follows that either
(i) v(x∗, s∗) = 0, i.e., (x∗, s∗) is feasible for problem (NPs), or
(ii) χv(x∗, s∗) = 0 and x∗ is an infeasible point at which the Jacobian of active

constraints JA∗(x∗) has linearly dependent rows.

Proof We consider three cases. First, suppose that limk∈K vk = 0. Then, any limit
point (x∗, s∗) of the sequence {(xk, sk)}k∈K yields v(x∗, s∗) = 0 so that (x∗, s∗) is
feasible for problem (NPs), as desired.

123

An interior-point trust-funnel algorithm 113

Second, suppose that vk ≥ vmin for some vmin > 0 and all sufficiently large k ∈ K.
Let (x∗, s∗) be any limit point of the sequence {(xk, sk)}k∈K. Combining these facts
with the slack reset procedure (c.f., (1.2)), it follows that (x∗, s∗) is infeasible for
problem (NPs). Moreover, from vk ≥ vmin for all sufficiently large k ∈ K and the
assumptions of this lemma, it follows that

0 = lim
k∈K

χv
k = lim

k∈K
‖Pk J (xk, sk)T c(xk, sk)‖2

‖c(xk, sk)‖2 ≥ lim
k∈K

σmin(xk, sk) = σmin(x∗, s∗).

Thus, (J (x∗) S∗) = J (x∗, s∗)P∗ with P∗ := diag(I, S∗)must have a subset of linearly
dependent rows. Due to the structure of this matrix, it follows that this subset does not
contain row i when [s∗]i > 0; it only contains rows indexed byA∗, and thus JA∗(x∗)
has linearly dependent rows, which proves the result.

Finally, if the first two cases do not occur, we can partition K into two infinite
disjoint index sets, call them K1 and K2, such that for some ε > 0 we have

lim
k∈K1

vk = 0, lim
k∈K2

χv
k = 0, and vk ≥ ε for k ∈ K2. (4.25)

Since any limit point associated with K must be a limit point for K1 and/or K2, it
suffices to prove the result for an arbitrarily chosen limit point of K1 and K2. Any
limit point (x∗, s∗) of the sequence {(xk, sk)}k∈K1 yields v(x∗, s∗) = 0 so that (x∗, s∗)
is feasible for problem (NPs), as desired. Next, consider any limit point of the sequence
{(xk, sk)}k∈K2 , call it (x∗, s∗). We may now use the same argument as for the second
case (withK replaced byK2), to conclude that (x∗, s∗) is infeasible for problem (NPs)
and that JA∗(x∗) has linearly dependent rows. ��

We now prove a useful fact about our employed infeasibility measures.

Lemma 4.15 For any infinite index set K, we have

lim
k∈K

min{vk, χv
k } = 0 if and only if lim

k∈K
πv
k = 0. (4.26)

Proof First, if limk∈K vk = 0, then (4.26) follows from Lemma 4.2. Second, if vk ≥
vmin for some vmin > 0 and all sufficiently large k ∈ K, then it follows from (3.1) that
{χv

k }k∈K → 0 if and only if {πv
k }k∈K → 0, which again establishes (4.26).

Finally, suppose that the two previous cases do not hold. To prove the “only if”
implication, suppose that {min{vk, χv

k }}k∈K → 0. Then, as in the third case of the proof
of Lemma 4.14, we can partition K into disjoint subsets K1 and K2 such that (4.25)
holds. By Lemma 4.2, it then follows that {πv

k }k∈K1 → 0, and by (3.1) we must also
have {πv

k }k∈K2 → 0. Consequently, {πv
k }k∈K → 0, as desired. Now, to prove the “if”

implication, suppose that {πv
k }k∈K → 0 and, to obtain a contradiction, suppose further

that there exists a constant ε > 0 such thatKε := {k ∈ K : min{vk, χv
k } ≥ ε} is infinite.

It then follows from the definition of χv
k in (3.1) that the infinite sequence {πv

k }k∈Kε
is

bounded away from zero, which is a contradiction. Hence, {min{vk, χv
k }}k∈K → 0. ��

The relevance of having an infinite index set K such that (4.26) holds is elucidated
in the following lemma.

123

114 F. E. Curtis et al.

Lemma 4.16 If there exists an infinite index set K such that {πv
k }k∈K → 0, then any

limit point (x∗, s∗) of {(xk, sk)}k∈K is a first-order KKT point for (2.4).

Proof For an arbitrary limit point (x∗, s∗) of {(xk, sk)}k∈K, it follows from Lemma 3.4
and the supposition {πv

k }k∈K → 0 that

s∗ ≥ 0, c(x∗, s∗) ≥ 0, S∗c(x∗, s∗) = 0, and J (x∗)Tc(x∗, s∗) = 0, (4.27)

from which it follows that (2.5) holds at (x∗, s∗). ��
We now make the following assumption throughout the rest of the paper.

Assumption 4.2 If there exists an infinite index setK such that {πv
k }k∈K → 0, then,

for an arbitrary limit point (x∗, s∗) of {(xk, sk)}k∈K, it follows thatA∗ = ∅ or JA∗(x∗)
has full row rank (i.e., σmin(x∗, s∗) > 0).

An important consequence of this assumption is the following.

Lemma 4.17 If there exists an infinite index set K such that {πv
k }k∈K → 0, then for

an arbitrary limit point (x∗, s∗) of {(xk, sk)}k∈K, it follows that v(x∗, s∗) = 0, i.e.,
(x∗, s∗) is feasible for problem (NPs). Moreover, {vk}k∈K → 0.

Proof Under the conditions of the lemma, we have from Lemma 4.16 that (4.27)
holds. In particular, using the definitions in (4.24) and (4.27), we have

[s∗]I∗ > 0 and cI∗(x∗) < cI∗(x∗, s∗) = 0; (4.28a)

[s∗]A∗ = 0 and cA∗(x∗) = cA∗(x∗, s∗) ≥ 0. (4.28b)

If A∗ = ∅, then (4.28a) implies v(x∗, s∗) = 0. Otherwise, by (4.27) and (4.28a),

0 = J (x∗)Tc(x∗, s∗) = JA∗(x∗)TcA∗(x∗, s∗) = JA∗(x∗)TcA∗(x∗).

Assumption 4.2 implies that JA∗(x∗) has full row rank, so the above implies that
0 = cA∗(x∗) = cA∗(x∗, s∗). Combining this with (4.28a) yields v(x∗, s∗) = 0. This
fact and Lemmas 4.1 and 4.2 imply that {vk}k∈K → 0. ��

We now prove a crucial bound on the size of the normal step relative to πv
k .

Lemma 4.18 Let k ∈ N and define mv,P
k (a) := ‖c(xk, sk) + J (xk, sk)Pka‖2. If

σmin(xk, sk) > 0 and ak is any (nonzero) vector satisfying

mv,P
k (ak) < mv,P

k (0) with ak belonging to the range of Pk J (xk, sk)
T , (4.29)

then

‖ak‖2 ≤ 2

σmin(xk, sk)2
πv
k . (4.30)

In particular,

‖P−1
k nk‖2 ≤ 2

σmin(xk, sk)2
πv
k . (4.31)

123

An interior-point trust-funnel algorithm 115

Proof Let k ∈ N and define the quadratic model m̂v,P
k (·) := 1

2 (m
v,P
k (·))2. Note that

∇xx m̂
v,P
k (0) = PT

k J (xk, sk)
TJ (xk, sk)Pk .

By definition, σmin(xk, sk) is the smallest eigenvalue of this matrix on the range space
of Pk J (xk, sk)T . Therefore, the second part of (4.29) yields

aTk ∇xx m̂
v,P
k (0)ak ≥ σmin(xk, sk)

2‖ak‖22 > 0. (4.32)

Let

t∗ := argmin
t≥0

m̂v,P
k (tak).

It then follows from [5, Lemma 6.5.1] (and its proof) and (4.29) that

1
2 ≤ t∗ = |aTk ∇x m̂

v,P
k (0)|

aTk ∇xx m̂
v,P
k (0)ak

≤ ‖ak‖2 πv
k

aTk ∇xx m̂
v,P
k (0)ak

≤ πv
k

σmin(xk, sk)2‖ak‖2 , (4.33)

where we have used the Cauchy–Schwarz inequality to deduce the second inequality
and (4.32) to deduce the third. Rewriting (4.33), we obtain (4.30). The inequality (4.31)
then follows by choosing ak = P−1

k nk , which is allowed by (3.7) and the observation

that mv,P
k (P−1

k nk) = mv
k (nk) < mv

k (0) = vk = mv,P
k (0). ��

Wenext prove a result illustrating the importance of the sequence {π f
k }. In particular,

the result establishes that π f
k is a valid criticality measure for (BSP).

Lemma 4.19 If there exists an infinite index set K and a point (x∗, s∗) such that

lim
k∈K

πv
k = 0, lim

k∈K
π

f
k = 0, and lim

k∈K
(xk, sk) = (x∗, s∗),

then {yk}k→K → y∗ where (x∗, s∗, y∗) is a first-order KKT point for problem (BSP).

Proof Under the conditions of the lemma, Assumption 4.2 yields σmin(x∗, s∗) > 0,
which, by continuity of σmin, implies that σmin(xk, sk) ≥ 1

2σmin(x∗, s∗) > 0 for
sufficiently large k. We now claim that

‖P−1
k nk‖2 ≤ 8

σmin(x∗, s∗)2
πv
k for all sufficiently large k ∈ K. (4.34)

First, for all k ∈ K\N , (4.34) holds since Lemma 3.3(ii) states that nk = 0 for
such k. On the other hand, for sufficiently large k ∈ K ∩ N such that σmin(xk, sk) ≥
1
2σmin(x∗, s∗), (4.34) follows as a result of (4.31). Thus, we have established (4.34).
It now follows from Lemma 4.2, (4.34), and {πv

k }k∈K → 0 that

lim
k∈K

nk = 0. (4.35)

123

116 F. E. Curtis et al.

Next, observe that

0 = lim
k∈K

π
f
k = lim

k∈K

∥∥∥Pk
(
∇m f

k (nk) + J (xk, sk)
Tyk
)∥∥∥

2

= lim
k∈K

∥∥∥∥

(
g(xk) + ∇xxL(xk, yB

k)n
x
k + J (xk)Tyk

−μe + Sk Dkn
s
k + Sk yk

)∥∥∥∥
2

(4.36)

= lim
k∈K

∥∥∥∥∥∥

⎛

⎝
g(xk) + ∇xxL(xk, yB

k)n
x
k + J (xk)Tyk

[−μe + Sk Dkn
s
k + Sk yk]A∗[−μe + Sk Dkn
s
k + Sk yk]I∗

⎞

⎠

∥∥∥∥∥∥
2

. (4.37)

Using (4.37) (specifically the third row of the matrix inside the norm), the fact that
{(xk, sk)}k∈K → (x∗, s∗) where [s∗]I∗ > 0, (3.11), Lemma 4.2, and (4.35),

lim
k∈K

[yk]I∗ = [μS−1∗ e]I∗ =: [y∗]I∗ .

It then follows from (4.37) (specifically the first row inside the norm), the fact
that {(xk, sk)}k∈K → (x∗, s∗), (3.11), (3.10), Lemma 4.1, (4.35), and the fact that
{πv

k }k∈K → 0—and hence the full rank of JA∗(x∗) stated in Assumption 4.2—that

lim
k∈K

[yk]A∗ = −[JA∗(x∗)JA∗(x∗)T
]−1

JA∗(x∗)
(
g(x∗) + JI∗(x∗)T [y∗]I∗

)
=: [y∗]A∗ .

We have shown that the multiplier sequence converges on K, i.e., {yk}k∈K → y∗ for
some y∗ ∈ R

M . Combining this with (4.36), the fact that {(xk, sk)}k∈K → (x∗, s∗),
(3.11), (3.10), Lemma 4.1, and (4.35) proves that

g(x∗) + J (x∗)Ty∗ = 0 and S∗y∗ = μe. (4.38)

Now note that (4.38), Lemma 3.4, and the fact that μ > 0 imply that (s∗, y∗) >

0. Combining this with (4.38) and the fact that the conditions of the lemma and
Lemma 4.17 ensure that v(x∗, s∗) = 0, we have that (x∗, y∗, s∗) is a first-order KKT
point for problem (BSP) as given by Definition 1.2. ��

Lemmas 4.17 and 4.19 prove that, with Assumption 4.2, we obtain a first-order
KKT point for problem (BSP) from any convergent subsequence over which {πv

k }
and {π f

k } vanish. To prove that such a subsequence will exist, we make the following
assumption henceforth, for which we define

ŝk = max{−c(xk), 0}. (4.39)

Assumption 4.3 There exist constants κc > 0 and κJ > 0 independent of k such that
if vk ≤ κc, then, with ŝk defined in (4.39), we have σmin(xk, ŝk) ≥ κJ.

Remark 4.20 Observe that (2.1) and (4.39) imply that ŝk ≤ sk , from which it follows
that vk ≥ v(xk, ŝk) and σmin(xk, sk) ≥ σmin(xk, ŝk). Hence, Assumption 4.3 implies
that if vk ≤ κc, then σmin(xk, sk) ≥ κJ, from which it follows that χv

k ≥ κJ.

123

An interior-point trust-funnel algorithm 117

Our next results require the following projection operator. This operator is used for
theoretical purposes only; such projections need not be computed.

Definition 4.21 Let Projk(d) denote the projection of d onto Range(Pk J (xk, sk)T).

Lemma 4.22 If k ∈ N and vk ≤ κc, then

‖P−1
k nk‖2 ≤ 2

κ2
J

πv
k . (4.40)

Moreover, there exist constants {κR1, κR2} ⊂ (0,∞) so that if, in addition, k ∈ D, then

‖Projk(P−1
k dk)‖2 ≤ 2

κ2
J

πv
k and Δmv,d

k ≥ κJ min{κR1, κR2‖Projk(P−1
k dk)‖2}.

(4.41)

Proof If k ∈ N and vk ≤ κc, inequality (4.40) is an immediate consequence of
(4.31) and Assumption 4.3. Assume now that, in addition, k ∈ D and define dP

k :=
P−1
k dk . Then, it follows from the fact that J (xk, sk)PkProjk(d

P
k) = J (xk, sk)PkdP

k ,

Lemma 3.3(i), (3.19d), and the definition of mv,P
k in Lemma 4.18 that

mv,P
k (Projk(d

P
k)) = ‖c(xk, sk) + J (xk, sk)PkProjk(d

P
k)‖2

= ‖c(xk, sk) + J (xk, sk)Pkd
P
k ‖2

= ‖c(xk, sk) + J (xk, sk)dk‖2 < ‖c(xk, sk)‖2 = mv,P
k (0). (4.42)

We may then deduce from (4.30) with ak = Projk(d
P
k) and Assumption 4.3 that

‖Projk(P−1
k dk)‖2 = ‖Projk(dP

k)‖2 ≤ 2

κ2
J

πv
k ,

which proves the first inequality in (4.41). It also follows from Lemma 4.4 and the
fact that the projection operator is nonexpansive that

max{κvf, 1}δv
k ≥ ‖P−1

k dk‖2 ≥ ‖Projk(P−1
k dk)‖2.

Combining this with k ∈ D∩N , Lemma 3.3(ix), (2.15), (3.6), Lemma 4.3(i), Assump-
tion 4.3, and the first inequality in (4.41), we have

Δmv,d
k ≥ κcdΔmv,n

k ≥ κcdκcnχ
v
k min{πv

k , δv
k , 1 − κfbn}

≥ κcdκcnκJ min

{
κ2
J ‖Projk(P−1

k dk)‖2
2

,
‖Projk(P−1

k dk)‖2
max{κvf, 1} , 1 − κfbn

}
;

i.e., there exists {κR1, κR2} ⊂ (0,∞) for the second inequality in (4.41). ��
We now prove that if the number of successful v-iterations is infinite, then, amongst

other things, limit points of the sequence of iterates are feasible.

123

118 F. E. Curtis et al.

Lemma 4.23 If |Sv| = ∞, then {vmax
k } → 0, {vk} → 0, {πv

k } → 0, and {nk} → 0.

Proof Since |Sv| = ∞, it must be true that Algorithm 2 does not terminate finitely.
This implies that the result of Lemma 4.13 holds true. Moreover, Lemma 3.7 shows
that {vmax

k } is monotonically decreasing and bounded below by zero. Then, as in the
proof of Lemma 4.13, we have that if the update (3.35) sets vmax

k+1 ≤ κt1v
max
k infinitely

often, then {vmax
k } → 0 and {vk} → 0, from which it follows by Lemma 4.2 that

{πv
k } → 0. It then follows from these facts and (4.40) that {nk} → 0.
All that remains is to consider when the update (3.35) sets vmax

k+1 > κt1v
max
k for

all large k. From Lemma 4.13 we have that {min{vk, χv
k }}k∈K1 → 0 for some infi-

nite K1 ⊆ Sv , which in turn by Lemma 4.15 implies that {πv
k }k∈K1 → 0. Then,

by Lemma 4.17, {vk}k∈K1 → 0. We then have from Lemma 4.12 [in particular,
(4.17b)] that {vmax

k+1}k∈K1 → 0, which means that {vmax
k } → 0 and hence {vk} → 0 by

Lemma 3.7. Combining this with Assumptions 1.1 and 4.1 and Lemma 4.2, we have
{πv

k } → 0. It follows from this, the fact that nk = 0 for k /∈ N [see Lemma 3.3(ii)],
and (4.40) that {nk} → 0. ��

We now provide bounds for a certain type of unsuccessful v-iteration.

Lemma 4.24 If k ∈ (N ∩ V ∩ D)\Sv and

vk ≤ min

{
κc,

κ�c1

κ�c2κJ

,
κ�c3

κ�c2

,
1 − κfbn

κJ

,
1 − κfbn

κ�c2κJ

}
, (4.43)

then, for some constants {κcld, κsRn} ⊂ (0, 1), we have

mv
k (dk) ≤ κcldvk and ‖Projk(P−1

k dk)‖2 ≥ κsRn‖P−1
k nk‖2. (4.44)

Proof Consider k ∈ (N ∩ V ∩ D)\Sv such that (4.43) holds. It follows from the fact
that k ∈ N ∩D, Lemma 3.3(ix), the inequality in (2.15), (3.6), Lemma 4.3(i), (4.43),
Assumption 4.3, and (3.1) that

mv
k (dk) ≤ mv

k (0) − κcdκcnχ
v
k min

{
πv
k , δv

k , 1 − κfbn

}

≤ mv
k (0) − κcdκcnκJ min

{
κJvk, δ

v
k , 1 − κfbn

}
. (4.45)

It also follows from Lemma 4.8(ii), the fact that k ∈ V\Sv , Assumption 4.3, (3.1),
and (4.43) that

δv
k > min

{
κ�c1, κ�c2π

v
k , κ�c3χ

v
k

} ≥ min {κ�c1, κ�c2κJvk, κ�c3κJ} = κ�c2κJvk .

Substituting this into (4.45) ensures with (4.43) the existence of κcld ∈ (0, 1) indepen-
dent of k such that

mv
k (dk) ≤ mv

k (0) − κcdκcnκJ min {κJvk, κ�c2κJvk, 1 − κfbn}
= vk − κcdκcnκJ min {κJ, κ�c2κJ} vk ≤ κcldvk .

This is the first desired result. Defining dP
k := P−1

k dk , we may use the inequality
above, the triangle inequality, and J (xk, sk)PkdP

k = J (xk, sk)PkProjk(d
P
k) to get

123

An interior-point trust-funnel algorithm 119

vk − ‖J (xk, sk)PkProjk(d
P
k)‖2 ≤ ‖c(xk, sk) + J (xk, sk)PkProjk(d

P
k)‖2

= ‖c(xk, sk) + J (xk, sk)Pkd
P
k ‖2 = mv

k (dk) ≤ κcldvk .

Combining the above, k ∈ N , (4.43), (4.40), and norm inequalities shows that

‖P−1
k nk‖2 ≤ 2

κ2
J

πv
k ≤ 2

κ2
J

‖Pk J (xk, sk)
T ‖2 vk

≤ 2

κ2
J

‖Pk J (xk, sk)
T ‖2 ‖J (xk, sk)PkProjk(d

P
k)‖2

1 − κcld

≤ 2

κ2
J

‖Pk J (xk, sk)
T ‖2 ‖J (xk, sk)Pk‖2‖Projk(dP

k)‖2
1 − κcld

.

It then follows from the definition of dP
k , Lemma 4.2, and the fact that κcld ∈ (0, 1)

that for some κsRn ∈ (0, 1) independent of k, we have

‖Projk(P−1
k dk)‖2 ≥ (1 − κcld)κ

2
J

2‖J (xk, sk)Pk‖22
‖P−1

k nk‖2 ≥ κsRn‖P−1
k nk‖2,

which is the second desired result. ��
For our next pair of results, we define the constants

ςtn := κtn max

{
1,

2κub

(1 − κδ)(κtn − 1)κct(1 − κB)επ

}
> 1 and (4.46a)

ςδ := min

{
1,

επ

1 − κB

,
(1 − κfbt)κbfn

1 − κB

}
∈ (0, 1]. (4.46b)

Lemma 4.25 If k /∈ Y such that

π
f
k ≥ επ > 0, (4.47a)

min{κvfδ
v
k , δ

f
k } ≤ ςδ, and (4.47b)

‖P−1
k tk‖2 ≥ ςtn‖P−1

k nk‖2, (4.47c)

then tk �= 0 and (2.10) holds.

Proof Let k /∈ Y be such that (4.47) holds. If k ∈ F , the results follow by the definition
of the index set F . Thus, for the remainder of the proof, assume k ∈ V .

If nk = 0, then tk �= 0 (since otherwise k ∈ Y by Lemma 3.3(vi)), so that by
(3.19a)/(3.23a) and Lemma 4.3(ii), we have Δm f,d

k = Δm f,t
k ≥ 0, meaning that

(2.10) holds, as desired. Otherwise, if nk �= 0, then since sk > 0 and Pk � 0 for all k

123

120 F. E. Curtis et al.

and (4.47c) holds, we have tk �= 0, which implies k ∈ T \T0 and (3.12) holds. It then
follows from the triangle inequality, (4.47c), and (4.46a) that

‖P−1
k dk‖2 ≥ ‖P−1

k tk‖2 − ‖P−1
k nk‖2

=
(
1 − ‖P−1

k nk‖2
‖P−1

k tk‖2

)
‖P−1

k tk‖2 ≥
(

κtn − 1

κtn

)
‖P−1

k tk‖2. (4.48)

We also have that

−Δm f,n
k = ∇ f (xk, sk)

Tnk + 1
2n

T
kGknk

= (
Pk∇ f (xk, sk)

)T
P−1
k nk + 1

2 (P
−1
k nk)

TPkGk Pk(P
−1
k nk). (4.49)

Using the triangle and Cauchy-Schwarz inequalities, Lemma 4.2, and the fact that
(3.12), (4.47b) and (4.46b) imply ‖P−1

k nk‖2 ≤ min{κvfδ
v
k , δ

f
k } ≤ 1, we then have

|Δm f,n
k | ≤ κub(‖P−1

k nk‖2 + 1
2‖P−1

k nk‖22) ≤ 2κub‖P−1
k nk‖2. (4.50)

Moreover, it follows from the fact that k ∈ T \T0, Lemma 4.3(ii), (4.47a), (3.38),
(4.47b), and (4.46b) that

Δm f,t
k ≥ κctεπ min{επ , (1 − κB)δ

t
k, (1 − κfbt)κfbn} = κctεπ (1 − κB)δ

t
k . (4.51)

Combining (4.51), (4.50), k ∈ T \T0, Lemma 4.4, (4.48), (4.47c), and (4.46a) yields

|Δm f,n
k |

Δm f,t
k

≤ 2κub‖P−1
k nk‖2

κctεπ (1 − κB)δ
t
k

≤ 2κub‖P−1
k nk‖2

κctεπ (1 − κB)‖P−1
k dk‖2

≤ 2κubκtn

κctεπ (1 − κB)(κtn − 1)

‖P−1
k nk‖2

‖P−1
k tk‖2

≤ 1 − κδ.

Hence, (2.10) holds, which completes the proof. ��
We next prove that if the primal iterate is nearly feasible, then certain v-iterations

will be successful.

Lemma 4.26 If k ∈ V ∩ D,

‖P−1
k tk‖2 ≤ ςtn‖P−1

k nk‖2, (4.52)

and

vk ≤ min

{
κc,

κ�c1

κ�c2κJ

,
κ�c3

κ�c2

,
1 − κfbn

κJ

,
1 − κfbn

κ�c2κJ

,
κR1κ

2
J

2κR2κsRnκub

,
κ3
J κR2κsRn(1 − η1)

2κC(1 + ςtn)2κub

}
(4.53)

then k ∈ Sv and δv
k+1 ≥ δv

k .

123

An interior-point trust-funnel algorithm 121

Proof Consider k ∈ V ∩ D such that (4.52) and (4.53) hold. If nk = 0, then (4.52)
implies that tk = 0, which in turn implies by Lemma 3.3(vi) that k ∈ Y . However,
this contradicts the supposition that k ∈ V , so we must have nk �= 0. In this case,
Lemma 3.3(ii) ensures that k ∈ N , so that overall we have k ∈ N ∩ V ∩ D.

To obtain a contradiction, suppose that k /∈ Sv , so that overall we have k ∈ (N ∩
V ∩D)\Sv . This and the bound (4.53) imply that the results of Lemmas 4.22 and 4.24
hold, i.e., that (4.41) and (4.44) hold. Moreover, k ∈ D and Lemma 3.3(ix) imply that
(2.15) holds. Using this and the facts that nk �= 0 and k ∈ V\Sv , it follows from (3.36)
that ρv

k < η1. However, since (4.41) and (4.44) hold,

Δmv,d
k ≥ κJ min{κR1, κR2‖Projk(P−1

k dk)‖2} ≥ κJ min{κR1, κR2κsRn‖P−1
k nk‖2}.

In fact, it follows from (4.40), Lemma 4.2 and (4.53) that

κR2κsRn‖P−1
k nk‖2 ≤ 2κR2κsRn

κ2
J

πv
k ≤ 2κR2κsRnκub

κ2
J

vk ≤ κR1,

and thus
Δmv,d

k ≥ κJκR2κsRn‖P−1
k nk‖2. (4.54)

Furthermore, by (2.13), (4.2), (4.54), the triangle inequality, (4.52), (4.40), theCauchy-
Schwarz inequality, Lemma 4.2, and (4.53), we have that

|ρv
k − 1| =

∣∣∣∣∣
v(xk + dxk , sk + dsk) − mv

k (dk)

Δmv,d
k

∣∣∣∣∣ ≤ κC‖P−1
k dk‖22

κJκR2κsRn‖P−1
k nk‖2

≤ κC(1 + ςtn)
2‖P−1

k nk‖2
κJκR2κsRn

≤ 2κC(1 + ςtn)
2κub

κ3
J κR2κsRn

vk ≤ 1 − η1,

and hence ρv
k ≥ η1, which is a contradiction. Thus, we must conclude that k ∈ Sv .

The fact that δv
k+1 ≥ δv

k now follows from the fact that k ∈ Sv and (3.34). ��
We now prove finite termination when the set of successful v-iterations is finite.

Lemma 4.27 If |Sv| < ∞, then Algorithm 2 terminates finitely.

Proof We prove the result by contradiction, and so suppose that |Sv| < ∞, but
that Algorithm 2 does not terminate finitely. It then follows from Theorem 4.11 that
|S| = ∞, which when combined with the fact that |Sv| < ∞ implies that |S f | = ∞;
i.e., it follows that there are an infinite number of successful iterations, and all belong
to S f for all sufficiently large k. We may also deduce from these facts—and since the
barrier function is decreased for k ∈ S f and the slack reset only possibly decreases
the barrier function—that the sequence { f (xk, sk)} is monotonically decreasing for
sufficiently large k. Moreover, since vmax

k+1 ← vmax
k for all k /∈ Sv and |Sv| < ∞, we

have that there exists a constant vmax∞ > 0 such that

vmax
k = vmax∞ > 0 for all sufficiently large k. (4.55)

We now consider two cases depending on whether, for some ε f > 0, (4.11) holds.

123

122 F. E. Curtis et al.

Case 1: Suppose that (4.11) holds for some ε f > 0. It then follows from Lemma 4.9
that (4.12) also holds, in which case we have from (3.19a)/(3.23a), the fact that S f ⊆
F ⊆ T \T0, Lemma 4.3(ii), (4.11), (4.12), (3.38), and (4.55) that

Δm f,t
k ≥ κctπ

f
k min{π f

k , (1 − κB)δ
t
k, (1 − κfbt)κfbn}

≥ κctε f min{ε f , (1 − κB)δ
t
k, (1 − κfbt)κfbn}

≥ κctε f min{ε f , (1 − κB)min{κvfδ
v
k , εF , κvv

max∞ }, (1 − κfbt)κfbn} (4.56)

for sufficiently large k ∈ S f . We now consider two subcases, deriving contradictions
in each, which will prove that the condition of this case (namely, that there exists
ε f > 0 such that (4.11) holds) cannot occur.

Subcase 1.1: Suppose there exists an infinite subsequence K f ⊆ S f such that
{δv

k }k∈K f → 0. Since δv
k+1 < δv

k only if k ∈ V\Sv and δv
k+1 ← δv

k otherwise (and
any potential reset of δv

k in Step 13 increases its value), it follows that there exists an
infinite subsequence Kv ⊆ V\Sv such that {δv

k }k∈Kv
→ 0. Our goal in the remainder

of this subcase is to prove that for all sufficiently large k ∈ Kv ⊆ V , we have that all of
the conditions of an f -iteration are satisfied, which is a contradiction sinceV∩F = ∅.
This will prove that such a sequence K f ⊆ S f cannot exist.

Using the fact that {δv
k }k∈Kv

→ 0 and Lemma 4.6, we may conclude that, for all
sufficiently large k ∈ Kv , we have k ∈ (V ∩ D)\Sv . In addition, since |Sv| < ∞
and {δv

k }k∈Kv
→ 0, we may conclude from Lemma 4.8(ii) and Lemma 4.15 that

{πv
k }k∈Kv

→ 0, which in turn implies with Lemma 4.17 that {vk}k∈Kv
→ 0. Now,

suppose that there exists an infinite subsequence K′
v ⊆ Kv such that K′

v ∩ N = ∅.
The following then hold for all sufficiently large k ∈ K′

v ⊆ Kv ⊆ V\Sv:

(a) nk = 0 by Lemma 3.3(ii) (and thus (2.10) holds);
(b) tk �= 0 by (a), Lemma 3.3(vi), and the fact that k ∈ V; and
(c) vk < κvvv

max
k = κvvv

max∞ by Step 10, (3.2), and (4.55).

It then follows from Assumption 1.1, Lemma 4.4, the fact that {δv
k }k∈K′

v
→ 0, state-

ment (c) above, and the bound κvv < 1 that v(xk+dxk , sk+dsk) ≤ vmax
k for all sufficiently

large k ∈ K′
v . Overall, this yields (2.11), and thus we have that all of the conditions of

an f -iteration hold, so k ∈ F . However, this is a contradiction since k ∈ K′
v ⊆ V and

V∩F = ∅. Thus, such an infinite subsequenceK′
v ⊆ Kv cannot exist, so wemay con-

clude that for all sufficiently large k ∈ Kv we have k ∈ N . To summarize, at this point
in this subcase, we may assume without loss of generality that there exists an infinite
subsequence Kv ⊆ (N ∩ V ∩ D)\Sv over which {δv

k }k∈Kv
→ 0, {πv

k }k∈Kv
→ 0, and

{vk}k∈Kv
→ 0.

It follows from Lemma 4.24, Kv ⊆ (N ∩ V ∩ D)\Sv , and {vk}k∈Kv
→ 0 that

mv
k (dk) ≤ κcldvk for all sufficiently large k ∈ Kv . Using this fact, (4.2), the triangle

inequality, Lemmas 4.4, 3.7, and (4.55), we have

v(x+
k , s+

k) ≤ κcldv
max∞ + κC(δ

v
k)

2 for all sufficiently large k ∈ Kv.

This then implies that v(x+
k , s+

k) ≤ vmax∞ = vmax
k for all sufficiently large k ∈ Kv such

that (δv
k)

2 ≤ ((1 − κcld)/κC)v
max∞ . Thus, since {δv

k }k∈Kv
→ 0, we may conclude that

(2.11) holds for all sufficiently large k ∈ Kv .

123

An interior-point trust-funnel algorithm 123

Next, suppose that for ςtn > 0 defined in (4.46a), we have

‖P−1
k tk‖2 ≤ ςtn‖P−1

k nk‖2 for all sufficiently large k ∈ Kv. (4.57)

We may then use Kv ⊆ (N ∩ V ∩ D), {vk}k∈Kv
→ 0, (4.57), and Lemma 4.26 to

conclude that |Sv ∩ Kv| = ∞, which contradicts the fact that |Sv| < ∞. Therefore,
there exists an infinite subsequence K′′

v ⊆ Kv such that if k ∈ K′′
v then (4.57) fails.

We now show that with k ∈ K′′
v ⊆ Kv ⊆ V\Sv , the conditions of Lemma 4.25

hold. Consider k ∈ K′′
v . First, since k ∈ K′′

v ⊆ V , we know that k /∈ Y . Second,
since k ∈ K′′

v , we know from the previous paragraph that (4.57) does not hold, and
therefore that tk �= 0 and rk was computed to satisfy (3.15a), (3.15b), or (3.15c).
Since we have supposed that the algorithm does not terminate finitely, we may use
the fact that {vk}k∈Kv

→ 0 along with (3.15a) to conclude that (4.47a) holds for all
sufficiently large k ∈ K′′

v . Third, since {δv
k }k∈Kv

→ 0, we have that (4.47b) holds
for all sufficiently large k ∈ K′′

v . Fourth, we know from the definition of the set K′′
v

that (4.57) fails, which is to say that (4.47c) holds. We may now apply Lemma 4.25
to deduce that tk �= 0 and (2.10) holds for all sufficiently large k ∈ K′′

v . Thus, along
with our previous conclusion that (2.11) holds for all sufficiently large k ∈ Kv , we
conclude that for all sufficiently large k ∈ K′′

v we have that all of the conditions of an
f -iteration are satisfied. However, as previously mentioned, this is impossible since
K′′

v ⊆ Kv ⊆ V and F ∩ V = ∅. Thus, our supposition for Subcase 1.1 that there is an
infinite subsequence K f ⊆ S f with {δv

k }k∈K f → 0, is impossible.

Subcase 1.2: Suppose that there exists ε∗ > 0 such that δv
k ≥ ε∗ for all k ∈ S f , and

recall that |S f | = ∞. We may combine (4.56) and δv
k ≥ ε∗ for all k ∈ S f to conclude

that there exists k′ such that, for all k ≥ k′ with k ∈ S f , we have

Δm f,t
k ≥ κctε f min

{
ε f , (1 − κB)min{κvfε∗, εF , κvv

max∞ }, (1 − κfbt)κfbn

}
> 0. (4.58)

Combining |Sv| < ∞, |S f | = ∞, (2.12), and (2.10) (which holds for k ∈ F) yields

f (xk′ , sk′) − f (xk, sk) =
k−1∑

j=k′, j∈S f

[f (x j , s j) − f (x j+1, s j+1)] ≥ η1κδ

k−1∑

j=k′, j∈S f

Δm f,t
j ,

(4.59)
which with (4.58) proves that { f (xk, sk)} → −∞. However, this is a contradiction
since f is bounded below by Lemma 4.2 and Assumptions 1.1 and 4.1.

Since neither Subcase 1.1 nor 1.2 can occur, it follows that Case 1 cannot occur.

Case 2: Suppose that there exists K ⊆ F with

lim
k∈K

π
f
k = 0. (4.60)

For all k ∈ K ⊆ F ⊆ T \T0, we have that tk �= 0 was computed (and not reset to
zero), in which case (3.15b) must not hold. Combining this with (4.60) shows that
0 = limk∈K π

f
k ≥ limk∈K ωt (π

v
k) ≥ 0, so that {πv

k }k∈K = 0. Hence, by Lemma 4.17,

123

124 F. E. Curtis et al.

{vk}k∈K → 0, which when combined with (4.60) shows that (3.15a) will be satisfied
for all sufficiently large k ∈ K. However, this contradicts our supposition that the
algorithm does not terminate finitely. ��

The previous result proves that if the algorithm does not terminate finitely, then
there are an infinite number of successful v-iterations. We now establish an important
consequence of this fact.

Lemma 4.28 If |Sv| = ∞ and (4.52) holds for all sufficiently large k ∈ V ∩ D, then

δv
k ≥ ε∗ for some ε∗ > 0 for all k. (4.61)

Proof First, by Lemma 4.23, the fact that |Sv| = ∞ implies that {vk} → 0. Hence,
for sufficiently large k ∈ V ∩ D, we have that (4.52) and (4.53) hold, which implies
by Lemma 4.26 that δv

k+1 ≥ δv
k . Second, if k ∈ V\D, then it follows from Lemma 4.6

that κvfδ
v
k ≥ min{κvfδ

v
k , δ

f
k , κvv

max
k } > κV . Third, if k ∈ Y ∪ F , then by (3.24), (3.28),

and (3.29) we have that δv
k+1 ≥ δv

k . The result follows by combining these facts. ��
We now prove a result about certain v-iterations that are unsuccessful.

Lemma 4.29 If k ∈ V\Sv , (4.43) holds,

vmax
k ≤ min

{(
1 − κcld

κC

)2

,

(
1 − κvv

κC

)2

,

(
κV
κvf

) 4
3
}

, (4.62)

and
δv
k ≤ (vmax

k)
3
4 (4.63)

then k ∈ D and (2.11) holds.

Proof Let k ∈ V\Sv and observe that (4.62) and (4.63) imply that κvfδ
v
k ≤ κV . Hence,

by Lemma 4.6, we have that k ∈ D. That is, k ∈ (V ∩ D)\Sv . We now consider two
cases depending on whether or not k ∈ N .

Suppose k ∈ N so that k ∈ (N ∩V∩D)\Sv . It then follows from (4.2), the triangle
inequality, the fact that (4.43) holds, and Lemmas 4.4 and 4.24 that

v(xk + dxk , sk + dsk) ≤ κcldvk + κC(δ
v
k)

2.

Then, from this inequality, Lemma 3.7, (4.63), and (4.62), we have that

v(xk + dxk , sk + dsk) ≤ κcldv
max
k + κC (vmax

k)
3
2

= vmax
k

(
κcld + κC

√
vmax
k

) ≤ vmax
k ,

which means that (2.11) holds, as desired.
Now suppose k /∈ N (so that nk = 0). It then follows from (4.2), the triangle

inequality, Lemmas 4.4 and 3.7, (3.19d) (which holds since k ∈ D), and the fact that
vk < κvvv

max
k (which holds by (3.2) since k /∈ N), (4.62), and (4.63) that

123

An interior-point trust-funnel algorithm 125

v(xk + dxk , sk + dsk) ≤ mv
k (dk) + κC(δ

v
k)

2

≤ κvvv
max
k + κC (vmax

k)
3
2 ≤ vmax

k

(
κvv + κC

√
vmax
k

) ≤ vmax
k ,

which means that (2.11) holds, as desired. ��
We now prove that there are a finite number of successful v-iterations.

Theorem 4.30 The set Sv is finite.

Proof We prove the result by contradiction, and so suppose that |Sv| = ∞. It then
follows from Lemma 4.23 that {vmax

k } → 0, {vk} → 0, {πv
k } → 0, and {nk} → 0.

Moreover, since |Sv| = ∞, we have that (3.15a) must not hold for all sufficiently
large k, or else the algorithm would terminate finitely in Step 21 or 35, which is a
contradiction. Thus, since {vk} → 0, we have

π
f
k ≥ επ > 0 for all sufficiently large k. (4.64)

It follows from this fact and Lemma 4.9 that (4.12) holds. Also it follows from the
facts that {vk} → 0, {vmax

k } → 0, and |Sv| = ∞ that there exists k0 such that (4.43),
(4.53), and (4.62) hold for all k ≥ k0.

We now prove a lower bound for δv
k that holds for all sufficiently large k, written

as equation (4.68) below. We prove the bound by considering two cases.

Case 1: Suppose that (4.52) holds for all sufficiently large k ≥ k0 such that k ∈ V∩D.
Then, since |Sv| = ∞, we may apply Lemma 4.28 to deduce that (4.61) holds for all
sufficiently large k.

Case 2: Suppose that there exists an infinite index set

K1 := {k ≥ k0 : k ∈ V ∩ D and ‖P−1
k tk‖2 > ςtn‖P−1

k nk‖2 }.

Since δv
k (v

max
k) is not decreased (increased) for k ∈ Sv ∪Y ∪F , our goal is to provide

a lower bound for δv
k over k ∈ K1\Sv . We do this by considering two subcases.

Subcase 1:Consider k such that k0 ≤ k ∈ K1\(Sv ∪N). Since k /∈ N , it follows from
Lemma 3.3(ii) that nk = 0. By Lemma 3.3(vi), this means that tk �= 0 (since otherwise
we would have k ∈ Y), which in turn means by Lemma 3.3(v) that k ∈ T \T0 and
that (2.10) holds (since nk = 0). We may then conclude from the fact that k ∈ V\Sv ,
the choice of k0 being large enough such that (4.43) and (4.62) hold for k ≥ k0, and
Lemma 4.29 that if (4.63) holds, then (2.11) also holds. However, this would imply
that k ∈ F , which contradicts the definition ofK1 since V ∩F = ∅. Thus, (4.63) must
not hold and

δv
k > (vmax

k)
3
4 for all k such that k0 ≤ k ∈ K1\(Sv ∪ N). (4.65)

Subcase 2: Consider k such that k0 ≤ k ∈ (K1 ∩ N)\Sv . By (4.64), we have that
(4.47a) holds. Similarly, by the definition of K1, we have that (4.47c) holds. Now
suppose that (4.47b) and (4.63) both hold. Then, since k /∈ Y and (4.47a), (4.47b),

123

126 F. E. Curtis et al.

and (4.47c) all hold, we may apply Lemma 4.25 to conclude that tk �= 0 and (2.10)
holds. Also, since k ∈ V\Sv , we have shown that (4.43) and (4.62) hold, and we have
supposed that (4.63) holds, we may apply Lemma 4.29 to conclude that (2.11) holds.
Overall, we have shown that all of the conditions of an f -iteration are satisfied so that
k ∈ F . However, this contradicts the fact that k ∈ K1 ⊆ V and V ∩F = ∅. Therefore,
at least one of (4.47b) or (4.63) must not hold, yielding

δv
k > min

{
ςδ

κvf

, (vmax
k)

3
4

}
for all k such that k0 ≤ k ∈ (K1 ∩ N)\Sv. (4.66)

Combining (4.65)/(4.66) from Subcases 1/2 shows that, for Case 2, we have

δv
k ≥ min

{
ςδ

κvf

, (vmax
k)

3
4

}
for all k such that k0 ≤ k ∈ K1\Sv. (4.67)

Moreover, the fact that {vk} → 0 and Lemma 4.26 implies that for any k with k0 ≤
k ∈ (V ∩ D)\K1, we have k ∈ Sv . Thus, for all k ≥ k0 with k ∈ (V ∩ D)\Sv ,
we have k ∈ K1\Sv . As a result, the inequality in (4.67) holds for all k with k0 ≤
k ∈ (V ∩ D)\Sv . This conclusion, along with the deduction that κvfδ

v
k > κV for all

k ∈ V\D from Lemma 4.6 yields

δv
k ≥ min

{
ςδ

κvf

, (vmax
k)

3
4 ,

κV
κvf

}
for all k with k0 ≤ k ∈ V\Sv,

which,whencombinedwith the fact that δv
k (resp.v

max
k) is not decreased (resp. increased)

for k ∈ Sv ∪ Y ∪ F , yields

δv
k ≥ min

{
ςδ

κvf

, (vmax
k)

3
4 ,

κV
κvf

}
for all k ≥ k0.

Combining the results of Cases 1 and 2, we have that

κvfδ
v
k ≥ min

{
κvfε∗, ςδ, κvf(v

max
k)

3
4 , κV

}
for all sufficiently large k. (4.68)

Using this fact, (4.12), and {vmax
k } → 0 yields

min{κvfδ
v
k , δ

f
k } ≥ κvf(v

max
k)

3
4 for large k. (4.69)

Under our supposition that the set Sv is infinite, at least one of the following two
scenarios must occur. In both, we reach a contradiction to this supposition that Sv is
infinite, which proves the theorem.
Scenario 1:Suppose thatS1 := Sv\T is infinite. For k ∈ S1, we have that either (3.12)
does not hold or (3.15b) holds. In fact, since (4.64) holds and {πv

k } → 0, condition
(3.15b) cannot hold infinitely often for k ∈ S1, implying that for all sufficiently large
k ∈ S1 we have that (3.12) does not hold. Then, since tk = 0 for k ∈ S1 ⊆ V , we
have by Lemma 3.3(vi) that nk �= 0 (or else k ∈ Y). We may now use the facts that

123

An interior-point trust-funnel algorithm 127

vmax
k > 0, δv

k > 0, and δ
f
k > 0 for all k, (4.40), (4.69), Lemmas 3.7 and 4.2, and the

fact that {vk} → 0 to conclude that, for sufficiently large k ∈ S1,

‖P−1
k nk‖2

min{κvfδ
v
k , δ

f
k }

≤ 2πv
k

κ2
J κvf(v

max
k)

3
4

≤ 2κubvk

κ2
J κvf(vk)

3
4

= 2κub

κ2
J κvf

v
1
4
k ≤ κB.

However, this means that (3.12) holds for all sufficiently large k ∈ S1, contradicting
our earlier conclusion that it does not. Thus, this scenario cannot occur.
Scenario 2: Suppose that S2 = Sv ∩ T is infinite. Our goal is to show that for
all sufficiently large k ∈ S2, we have that all of the conditions of an f -iteration
are satisfied, which is impossible since S2 ⊆ V and V ∩ F = ∅. We begin by
showing that (2.10) holds for all sufficiently large k ∈ S2. To do this, first note
that since S2 ⊆ Sv ⊆ N and {vk} → 0, we may apply the result of Lemma 4.22
for sufficiently large k ∈ S2. Then, using (4.49), the triangle and Cauchy-Schwarz
inequalities, Lemma 4.2, (3.1b), and that {πv

k } → 0 (implying in turn that 2πv
k ≤ κ2

J

and thus, in view of (4.40), that ‖P−1
k nk‖2 ≤ 1 for all sufficiently large k), it follows

as in the proof of Lemma 4.25 (see (4.50)) that

|Δm f,n
k | ≤ κub(‖P−1

k nk‖2 + 1
2‖P−1

k nk‖22) ≤ 4κub

κ2
J

πv
k ≤ 4κ2

ub

κ2
J

vk (4.70)

for all sufficiently large k ∈ S2. It also follows from {vmax
k } → 0, S2 ⊆ V , and

Lemma 4.6 that k ∈ D for all sufficiently large k ∈ S2. Moreover, since S2 ⊆ T , it
follows that for all k ∈ S2 a tangential step tk �= 0was computed to satisfy either (3.19)
or (3.23). However, for all k ∈ S2, it follows from (2.15) that nk �= 0, and then
from Lemma 3.3(xi) that k ∈ TD, i.e., that (3.19) holds. This implies by (3.38) that
δtk = min{κvfδ

v
k , δ

f
k } for all sufficiently large k ∈ S2. Combining this with k ∈ TD,

(3.19a), Lemma 4.3(ii), (4.64), (4.69), {vmax
k } → 0, and Lemma 3.7 gives, for all

sufficiently large k ∈ S2,

Δm f,t
k ≥ κctεπ min

{
επ , (1 − κB)δ

t
k, (1 − κfbt)κfbn

}

= κctεπ min
{
επ , (1 − κB)min{κvfδ

v
k , δ

f
k }, (1 − κfbt)κfbn

}

≥ κctεπ (1 − κB)κvf(v
max
k)

3
4 ≥ κctεπ (1 − κB)κvfv

3
4
k .

Combining this with (4.70) and {vk} → 0 shows that

|Δm f,n
k |

Δm f,t
k

≤ 4κ2
ubv

1
4
k

κctεπ (1 − κB)κvfκ2
J

≤ 1 − κδ for all sufficiently large k ∈ S2.

Hence, (2.10) holds for sufficiently large k ∈ S2, as desired. From here, it follows
from Step 30 that the computed tangential step is not reset to zero, i.e., k ∈ TD\T0
for all sufficiently large k ∈ S2, from which it follows that tk �= 0 for all sufficiently
large k ∈ S2. Moreover, since k ∈ Sv implies by Lemma 3.7 that (2.11) holds, we

123

128 F. E. Curtis et al.

have from the fact that S2 ⊆ Sv that (2.11) holds for all k ∈ S2. To summarize, we
have shown that for all sufficiently large k ∈ S2, all conditions of an f -iteration are
satisfied, which is a contradiction. Thus, this scenario cannot occur.

Overall, we have shown that under our supposition that |Sv| = ∞, neither Scenario
1 nor 2 may occur. However, since one of them must occur when |Sv| = ∞, we have
reached a contradiction to our supposition, and the result is proved. ��

We conclude by summarizing our convergence results.

Theorem 4.31 The following hold for Algorithm 2:

(i) If Assumptions1.1,3.1, and4.1hold, then eitherAlgorithm2 terminates finitely or
there exists an infinite index setK such that limk∈Kmin{vk, χv

k } = limk∈K πv
k =

0. In the latter case, any limit point (x∗, s∗) of {(xk, sk)}k∈K satisfiesπv(x∗, s∗) =
0 and is therefore a critical point of minimizing 1

2v(x, s)2 subject to s ≥ 0.
(ii) If Assumptions 1.1, 3.1, 4.1, and 4.2 hold, then either Algorithm 2 terminates

finitely or there exists an infinite index set K such that limk∈Kmin{vk, χv
k } =

limk∈K πv
k = 0. In the latter case, any limit point (x∗, s∗)of {(xk, sk)}k∈K satisfies

v(x∗, s∗) = 0 so that (x∗, s∗) is feasible for (NPs).
(iii) If Assumptions 1.1, 3.1, 4.1, 4.2, and 4.3 hold, then either Algorithm 2 terminates

finitely in Step 9 with an infeasible stationary point (xk, sk) with vk > κc or it
terminates finitely in Step 21 or 35 with an approximate first-order KKT point
(xk, sk, yk) for the barrier problem (BSP).

Proof Part (i) follows fromLemmas 4.13, 4.15, and 4.16. Part (ii) follows from part (i)
andLemma4.17.Also, it follows fromTheorem4.30 andLemma4.27 thatAlgorithm2
terminates finitely. Thus, part (iii) follows since, under Assumption 4.3, a subsequence
cannot converge to an infeasible stationary pointwith vk ≤ κc. (For this last conclusion,
recall Remark 4.20.) ��

5 A trust-funnel algorithm for the nonlinear optimization problem

The previous section considers the global convergence properties of our trust-funnel
algorithm when applied to solve the barrier subproblem (BSP). This section describes
howa sequence of barrier subproblemswith decreasing values for the barrier parameter
may be solved to find a first-order KKT point for (NPs).

To achieve our stated goal, we require the constants επ and εv in Algorithm 2 to
depend onμ. Moreover, for practical reasons, it is advisable to make other constants in
Algorithm 2 depend onμ aswell. In the previous section, for ease of exposition, we did
not explicitly state these dependencies sinceμwas fixed. This does not pose a problem
in this section since we use Algorithm 2 to solve a sequence of barrier problems where
for each particular instance the barrier parameter is fixed and therefore our previous
analysis still holds. A summary of the constants that depend on μ and precisely where
they are used is given in Table 1. In addition to requiring them to be positive, it is
appropriate to have them satisfy

lim
μ→0

επ (μ) = lim
μ→0

εv(μ) = lim
μ→0

κfbn(μ) = lim
μ→0

κfbt(μ) = 0 and (5.1)

123

An interior-point trust-funnel algorithm 129

Table 1 Parameters for Algorithm 2 that depend on μ

Parameter Used Parameter Used Parameter Used

κy = κy(μ) (3.10) κD = κD(μ) (3.11) επ = επ (μ) (3.15a)

κfbt = κfbt(μ) (3.19b)/(3.23b) κfbn = κfbn(μ) (2.2)/(3.5) εv = εv(μ) (3.15a)

lim
μ→0

κy(μ) = lim
μ→0

κD(μ) = ∞. (5.2)

Moreover, the convergence result that we present additionally assumes that

επ (μ j) ≤ ζ1μ
α
j and εv(μ j) ≤ ζ2μ

β
j (5.3)

for some ζ1 ∈ (0, 1), {ζ2, β} ⊂ (0,∞), α ≥ 1, and that a particular choice for the
positive-definite matrix Dk in (3.11) is used; specifically, for each 1 ≤ i ≤ m, let

[dk]i := [Dk]i i :=
{

κD(μ j) if μ j [sk]−2
i > κD(μ j),

μ j [sk]−2
i otherwise.

(5.4)

Other choices are possible, e.g., based on the primal-dual update Dk = Yk S
−1
k , and

only require a small modification in the proof.
With these requirements, we now state our method for solving problem (NPs).

Algorithm 3 Trust-funnel algorithm for solving (NPs).
1: Input: (x0, s0, y0, μ0) satisfying (s0, y0, μ0) > 0.
2: Choose a parameter γμ ∈ (0, 1) and forcing functions επ (·) and εv(·).
3: Set (x start

0 , sstart0 , ystart0) ← (x0, s0, y0) and j ← 0.
4: for j = 0, 1, . . . do
5: Obtain (x j+1, s j+1, y j+1)=BSP(x start

j , sstartj , ystartj , μ j , επ (μ j), εv(μ j)) from Algorithm 2.
6: if Algorithm 2 terminated in Step 9 then
7: Return the infeasible stationary point (x j+1, s j+1).

8: Set μ j+1 ∈ (0, γμμ j].
9: Use μ j , μ j+1, and (x j+1, s j+1, y j+1) to compute the starting point (x start

j+1, s
start
j+1, y

start
j+1).

Theorem 5.1 If Assumptions 1.1, 3.1, 4.1, 4.2, and 4.3 hold with (5.3)–(5.4), then

(i) Algorithm 3 returns an infeasible stationary point in Step 7, or
(ii) there exists a limit point (x∗, s∗, y∗) of the iterates {(x j+1, s j+1, y j+1)} computed

by Algorithm 3 such that (x∗, s∗, y∗) is a first-order KKT point for problem (NPs).

Proof If statement (i) occurs, then there is nothing left to prove.Therefore, suppose that
statement (i) does not occur, in which case we have that Algorithm 2 never terminates
in Step 9, which by (3.15a) and (5.3) means that for all j ≥ 0 we have

π
f
j+1(y j+1) ≤ επ (μ j) ≤ ζ1μ

α
j and v j+1 ≤ εv(μ j) ≤ ζ2μ

β
j . (5.5)

123

130 F. E. Curtis et al.

In particular, we have that the sequence {(x j+1, s j+1, y j+1)} is infinite, and from
the second part of (5.5), the triangle inequality, and Assumption 4.1, that {s j+1} is
bounded. Combining this fact with Assumption 4.1 implies the existence of an infinite
index set J and a point (x∗, s∗) with s∗ ≥ 0 such that

lim
j∈J

(x j+1, s j+1) = (x∗, s∗). (5.6)

It follows from this fact, (5.5), μ j → 0, and Assumption 1.1 that

lim
j∈J

v j+1 = v(x∗, s∗) = 0. (5.7)

We comment that for the remainder of the proof, the quantities Pj+1, n j+1, etc. are
used to represent the final values of the relevant quantities computed in Algorithm 2
when it is called in line 5 during iteration j ofAlgorithm 3; they are the complementary
quantities to (x j+1, s j+1, y j+1).

It follows from norm inequalities, the definition of Pj+1, (4.40), the fact that n j = 0
if j /∈ N (see Lemma 3.3(ii)), (3.1), (5.6), (5.7), Assumption 1.1, and (5.5) that, for
all i ∈ {1, 2, . . . ,m}, we have

∣∣∣∣∣
[nsj+1]i
[s j+1]i

∣∣∣∣∣ ≤ ‖S−1
j+1n

s
j+1‖2 ≤ ‖P−1

j+1n j+1‖2 ≤ 2

κ2
J

πv
j+1

= O(v j+1) = O(μ
β
j) for j ∈ J .

Since we maintain positive slacks throughout Algorithm 2, we may conclude that

|[nsj+1]i | = O(μ
β
j [s j+1]i) for all 1 ≤ i ≤ m and j ∈ J . (5.8)

We now develop a crucial bound by considering two cases motivated by (5.4). First,
suppose that for a given i we have μ j [s j+1]−2

i ≤ κD(μ j), so that from (5.4) we have
[d j+1]i = μ j [s j+1]−2

i . It then follows from this fact and (5.8) that

|[s j+1]i [d j+1]i [nsj+1]i | = O(μ
1+β
j) for j ∈ J .

Second, suppose that for a given i we have μ j [s j+1]−2
i > κD(μ j), so that from (5.4)

we have [d j+1]i = κD(μ j) < μ j [s j+1]−2
i , and thus [s j+1]2i [d j+1]i < μ j . Combining

this fact with (5.8) shows that

|[s j+1]i [d j+1]i [nsj+1]i | = O(μ
β
j [s j+1]2i [d j+1]i) = O(μ

1+β
j) for j ∈ J . (5.9)

Therefore, (5.9) holds in both cases, i.e., (5.9) holds for all 1 ≤ i ≤ m and j ∈ J .
We may now use the same proof as for Lemma 4.19, combined with (5.7), (5.9),
and the first part of (5.5) to deduce that lim j∈J y j+1 = y∗ for some y∗ satisfying

123

An interior-point trust-funnel algorithm 131

g(x∗) + J (x∗)Ty∗ = 0 and S∗y∗ = 0. To prove that (x∗, s∗, y∗) is a first-order KKT
point for problem (NPs), it only remains to prove that y∗ ≥ 0, as we do next.

From the first part of (5.5), we know that

ζ1μ
α
j ≥

∥∥∥∥∥

(
g(x j+1) + ∇xxL(x j+1, yB

j+1)n
x
j+1 + J (x j+1)

Ty j+1

−μ j e + S j+1Dj+1nsj+1 + S j+1y j+1

)∥∥∥∥∥
2

≥
∥∥∥−μ j e + S j+1Dj+1n

s
j+1 + S j+1y j+1

∥∥∥
2

≥| − μ j +[s j+1]i [d j+1]i [nsj+1]i +[s j+1]i [y j+1]i | for all 1≤ i≤m. (5.10)

We now consider two cases. First, suppose that i is such that [s∗]i > 0. In this case
it follows from (5.10), (5.9), the fact that μ j → 0, and (5.6) that lim j∈J [y j+1]i =
[y∗]i = 0, as desired. Second, suppose that i is such that [s∗]i = 0. It may be observed
from (5.10) that −ζ1μ

α
j ≤ −μ j + [s j+1]i [d j+1]i [nsj+1]i + [s j+1]i [y j+1]i , so

[y j+1]i ≥ −ζ1μ
α
j + μ j − [s j+1]i [d j+1]i [nsj+1]i

[s j+1]i . (5.11)

It follows from (5.11), ζ1 ∈ (0, 1), α ≥ 1, β > 0, μ j → 0, (5.9), and the positivity
of the slack variables as imposed in Algorithm 2, that [y j+1]i > 0 for all sufficiently
large j ∈ J . Combining this with lim j∈J y j+1 = y∗ shows that [y∗]i ≥ 0. ��

6 Conclusion and discussion

In this paper, we have presented a new algorithm for solving constrained nonlin-
ear optimization problems. The algorithm is of the inexact barrier-SQP variety, i.e.,
it approximately solves a sequence of barrier subproblems using an inexact SQP
method. In Sects. 3 and 4, we proved that each barrier subproblem could be solved
approximately using a new inexact-SQP method based on a trust-funnel mechanism
(not requiring a filter or penalty function). The algorithm is extremely flexible in
that, during each iteration, it automatically determines the types of steps and updates
that are expected to be most productive, where potential productivity is determined
by available criticality measures. In each iteration, each subproblem may be solved
approximately using matrix-free iterative methods, which means that the algorithm is
viable for solving large-scale barrier subproblems. We then proved in Sect. 5 that an
approximate solution of the original nonlinear optimization problem may be obtained
by approximately solving a sequence of barrier subproblems for a decreasing sequence
of barrier parameters.

Although we have not considered them explicitly in this paper, we remark that
equality constraints, call them cE(x) = 0, may easily be included in our algorithm. To
do this, one may simply redefine

c(x, s) :=
(
c(x) + s
cE(x)

)

123

132 F. E. Curtis et al.

and adjust the barrier problem (BSP), violationmeasure (1.3) and v-criticalitymeasure
(3.1) in obvious ways. Clearly, two-sided bounds on inequality constraints may also
be incorporated in a similar fashion.

7 Appendix

The following is a flow diagram of our trust-funnel method stated as Algorithm 2.

123

An interior-point trust-funnel algorithm 133

References

1. Argáez, M., Tapia, R.: On the global convergence of a modified augmented Lagrangian linesearch
interior-point Newton method for nonlinear programming. J Optim Theory Appl 114, 1–25 (2002)

2. Byrd, R.H., Curtis, F.E., Nocedal, J.: An inexact SQP method for equality constrained optimization.
SIAM J. Optim. 19, 351–369 (2008)

3. Byrd, R.H., Gilbert, J.C., Nocedal, J.: A trust region method based on interior point techniques for
nonlinear programming. Math. Program. 89, 149–185 (2000)

4. Byrd, R.H., Hribar, M.E., Nocedal, J.: An interior point algorithm for large-scale nonlinear program-
ming. SIAM J. Optim. 9, 877–900 (1999)

5. Conn, A.R., Gould, N.I.M., Toint, Ph.L.: Trust-Region Methods. Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA (2000)

6. Curtis, F.E., Schenk,O.,Wächter, A.:An interior-point algorithm for large-scale nonlinear optimization
with inexact step computations. SIAM J. Sci. Comput. 32, 3447–3475 (2010)

7. Czyzyk, J., Fourer, R., Mehrotra, S.: Using a massively parallel processor to solve large sparse linear
programs by an interior-point method. SIAM J. Sci. Comput. 19, 553–565 (1998)

8. Fletcher, R.: Practical Methods of Optimization. Wiley-Interscience (Wiley), New York (2001)
9. Fletcher, R., Gould, N.I.M., Leyffer, S., Toint, Ph.L., Wächter, A.: Global convergence of a trust-

region SQP-filter algorithm for general nonlinear programming. SIAM J. Optim. 13, 635–659 (2002).
[(electronic) (2003)]

10. Fletcher, R., Leyffer, S.: Nonlinear programming without a penalty function. Math. Program. 91,
239–269 (2002)

11. Fletcher, R., Leyffer, S., Toint, Ph.L.: On the global convergence of a filter-SQP algorithm. SIAM J.
Optim. 13, 44–59 (2002)

12. Fourer, R., Mehrotra, S.: Performance of an augmented system approach for solving least-squares
problems in an interior-point method for linear programming. Math. Program. 19, 26–31 (1991)

13. Fourer, R., Mehrotra, S.: Solving symmetric indefinite systems in an interior-point method for linear
programming. Math. Program. 62, 15–39 (1993)

14. Gertz, E.M., Gill, P.E.: A primal-dual trust region algorithm for nonlinear optimization.Math. Program
Ser. B 100, 49–94 (2004)

15. Gill, P.E., Murray, W., Saunders, M.A.: SNOPT: an SQP algorithm for large-scale constrained opti-
mization. SIAM Rev. 47, 99–131 (2005)

16. Gill, P.E., Murray, W., Wright, M.H.: Practical Optimization. Academic Press Inc. (Harcourt Brace
Jovanovich Publishers), London (1981)

17. Gondzio, J.: Interior point methods 25 years later. Eur. J. Oper. Res. 218, 587–601 (2012)
18. Gould, N.I.M., Orban, D., Toint, Ph.L.: GALAHAD, a library of thread-safe Fortran 90 packages for

large-scale nonlinear optimization. ACM Trans. Math. Softw. 29, 353–372 (2003)
19. Gould, N.I.M., Robinson, D.P.: A second derivative SQPmethod: global convergence. SIAM J. Optim.

20, 2023–2048 (2010)
20. Gould, N.I.M., Robinson, D.P.: A second derivative SQP method: local convergence and practical

issues. SIAM J. Optim. 20, 2049–2079 (2010)
21. Gould, N.I.M., Robinson, D.P.: A second derivative SQP method with a “trust-region-free” predictor

step. IMA J. Numer. Anal. 32, 580–601 (2012)
22. Gould, N.I.M., Robinson, D.P., Thorne, H.S.: On solving trust-region and other regularised subprob-

lems in optimization. Math. Program. Comput. 2, 21–57 (2010)
23. Gould, N.I.M., Toint, Ph.L.: Nonlinear programming without a penalty function or a filter. Math.

Program. 122, 155–196 (2010)
24. Karmarkar, N.: A new polynomial-time algorithm for linear programming. Combinatorica 4, 373–395

(1984)
25. Karush, W.: Minima of Functions of Several Variables with Inequalities as Side Conditions. Master’s

thesis, Department of Mathematics, University of Chicago, Illinois, USA (1939)
26. Kuhn, H.W., Tucker, A.W.: Nonlinear programming. In: Neyman, J. (ed.) Proceedings of the Sec-

ond Berkeley Symposium on Mathematical Statistics and Probability. University of Berkeley Press,
California (1951)

27. Lalee, M., Nocedal, J., Plantenga, T.: On the implementation of an algorithm for large-scale equality
constrained optimization. SIAM J. Optim. 8, 682–706 (1998)

123

134 F. E. Curtis et al.

28. Mehrotra, S.:On the implementation of a primal-dual interior pointmethod. SIAMJ.Optim. 2, 575–601
(1992)

29. Morales, J.L., Nocedal, J., Wu, Y.: A sequential quadratic programming algorithm with an additional
equality constrained phase. IMA J. Numer. Anal. 32, 553–579 (2012)

30. Orban, D., Gould, N.I.M., Robinson, D.P.: Trajectory-following methods for large-scale degenerate
convex quadratic programming. Math. Program. Comput. 5, 113–142 (2013)

31. Vanderbei, R.J.: LOQO: an interior point code for quadratic programming. Optim. Methods Softw. 11,
451–484 (1999)

32. Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for
large-scale nonlinear programming. Math. Program. Ser. A 106, 25–57 (2006)

33. Yabe, H., Yamashita, H.: Q-superlinear convergence of primal-dual interior point quasi-Newton meth-
ods for constrained optimization. J. Oper. Res. Soc. Jpn. 40, 415–436 (1997)

34. Yamashita, H., Yabe, H.: Superlinear and quadratic convergence of some primal-dual interior point
methods for constrained optimization. Math. Program. 75, 377–397 (1996)

35. Yamashita, H., Yabe, H.: An interior point methodwith a primal-dual quadratic barrier penalty function
for nonlinear optimization. SIAM J. Optim. 14, 479–499 (2003)

36. Yamashita, H., Yabe, H., Tanabe, T.: A globally and superlinearly convergent primal-dual interior
point trust region method for large scale constrained optimization. Math. Program. Ser. A 102, 111–
151 (2005)

123

	An interior-point trust-funnel algorithm for nonlinear optimization
	Abstract
	1 Introduction
	1.1 Notation
	1.2 NLP and barrier-SQP preliminaries

	2 A preliminary trust-funnel algorithm for the barrier subproblem
	2.1 Funnel mechanism
	2.2 Step computations
	2.3 Iteration types and step acceptance
	2.4 A preliminary trust-funnel algorithm

	3 A trust-funnel algorithm for the barrier subproblem
	3.1 An inexact normal step
	3.2 Inexact Lagrange multipliers and tangential steps
	3.2.1 A relaxed SQP tangential step
	3.2.2 A very relaxed SQP tangential step
	3.2.3 Summary of inexact Lagrange multiplier and tangential step computation

	3.3 Iteration types, step acceptance, and updating strategies
	3.4 A trust-funnel algorithm
	3.5 Well-posedness

	4 Convergence of the trust-funnel algorithm for the barrier subproblem
	5 A trust-funnel algorithm for the nonlinear optimization problem
	6 Conclusion and discussion
	7 Appendix
	References

