
On the Use of Block Stretching for Solving

Unassembled Linear Systems.

Michel J. Daydé1 — Jérôme P. Décamps1 — Nicholas I. M. Gould2

1ENSEEIHT-IRIT, 2 rue Camichel, 31071 Toulouse CEDEX, France,
2CCD, Rutherford Appleton Laboratory, Oxfordshire, OX11 0QX, England.

ABSTRACT. We consider so-called “matrix stretching” technique that make structured unassem-

bled linear systems larger, but sparser. Our solution technique combines a direct factorization

of the leading block diagonal submatrix of the stretched system, with a preconditioned conju-

gate gradient solution of the Schur complement system which results from the factorization of

the diagonal blocks. We show that matrix stretching is an effective technique, particularly for

ill-conditioned systems. The Schur complement is often considerably better conditioned than

the whole system.

RÉSUMÉ. Nous nous intéressons à une technique d’étirement de matrices qui trasnforme des

systèmes linéaires structurés en des systèmes plus grande taille et plus creux. Notre méthode de

ésolution est composée d’une factorisation de la première sous-matrice du système étiré qui est

bloc diagonale, et un gradient conjgué préconditioné sur le complément de Schur résultant de

la factorisation des blocs diagonaux. Nous montrons que cette technique est particulièrement

efficace sur des systèmes mal conditionnés, essentiellement parce que le complément de SChur

est mieux conditionné que le système initial.



2

1. Introduction

Stretching, a sparse matrix preprocessing technique that makes matrices sparser

but, at the same time, larger was first introduced in [10]. [1] showed that such tech-

niques are an effective way of treating matrices with dense rows or columns before

forming their LDU or QR factorizations. Similar ideas have been developed by [14]

and [2] for solving the Schur complements arising from interior point methods in the

context of linear programming.

In this paper, we apply matrix stretching to the solution of a linear systems of

“finite-element” type without assembling the coefficient matrices from its “elements”.

This requires that we introduce extra variables to recouple the “element” blocks of the

matrix. The resulting enlarged system is a sparse “augmented system”, which can be

solved using a range of direct and iterative methods.

To be precise, we consider the solution of the symmetric system of linear equations

of the form

Bx = (

ne
∑

i=1

Bi)x = b, [1.1]

where each symmetric elementary matrix Bi only involves a small subset of the vari-

ables x. We let Bi be the matrix obtained from by Bi by removing its zero rows and

columns. Note that we do not assume that each Bi is positive definite, merely that

it is non-singular. Linear systems of the form (1.1) arise when solving the Newton

equations for the unconstrained minimization of a partially separable function ([11]),

and from finite-element methods for the solution of partial-differential equations.

The stretched system we obtain is an augmented system of the form

(

B
S

A

A
T

0

)(

x
S

λ

)

=

(

b
S

0

)

[1.2]

where B
S is block diagonal and A is very sparse. The diagonal blocks of BS are the

B
i. The matrix A is used to recouple the Bi when they share variables. The required

solution x may easily recovered from x
S. The system (1.2) may be solved in many

ways and we choose the well-known Schur complement approach.

2. Description of the stretching algorithm

The general algorithm for building the required stretched system is simple. Sup-

pose B is of order n. We construct a system of the form











B1
S

A1

. . .
...

B
S

ne
Ane

A
T
1 . . . A

T
ne

0





















x
S

1
...

x
S

ne

λ











=











b
S

1
...

b
S

ne

0











[2.3]



3

using the algorithm described in Algorithm 2.1.

Having solved the stretched system, we simply recover x from x
S, by setting xi

to its value in one of the blocks involving it. Note that we start the stretching process

for variable i with the first element in which it is involved. Other strategies may prove

more effective, and further experiments are required.

We now illustrate this on a simple example. We consider the solution of Bx = b

where B is structured as





8 1
1 8 1

1 8









x1

x2

x3



 =





b1
b2
b3



 . [2.4]

Additionally, we assume that B is composed of two elements B1 and B2 — B1

involves variables x1, x2, while B2 involves x2, x3. Thus

B
1 =

(

8 1
1 4

)

and B
2 =

(

4 1
1 8

)

The “overlap” in this simple example only involves the variable x3. Our stretching

algorithm then yields the symmetric augmented system













8 1
1 4 +1

4 1 −1
1 8

+1 −1

























x1
S

x2
S

x3
S

x4
S

λ1













=













b1
b2
0
b3
0













. [2.5]

3. The solution of stretched linear systems

3.1. The Schur complement method

The Schur complement method (see [4]) takes advantage of the structure of the

system (2.3). The method is formalized as Algorithm 3.1. This approach offers great

opportunities for parallelisation since Steps 1 and 3 can be computed element-wise

in parallel. Moreover, one hopes, in Step 2, to exploit parallelism within the PCG

iteration — conjugate gradients (CG) are chosen since we may not want to form S.

We use the LDLT factorization of the elements formed during the step 1 to compute

the Schur complement. We then obtain

S =

ne
∑

i=1

A
T
i (Bi

S)−1
Ai =

nb
∑

i=1

sis
T
i , [3.6]

where nb is the dimension of BS in (1.2). This decomposition proves to be useful

during the construction of the preconditioners we consider.



4

Algorithm 2.1: The stretching algorithm

Initialization of BS

For each element i = 1, · · · , ne

B
S

i is the matrix B
i

Initialization of A and b
S

For each variable i = 1, · · · , n
Compute list, the list of elements possessing i.

If i is shared by deg(i) elements,

create (deg(i)-1) columns for each Aj for j = 1, ne.

list(1) is the first element possessing i

Let k be the row of BS

list(1) associated with variable i.

Set the (deg(i)− 1) columns of row k of Alist(1) to 1.

Set the corresponding value in b
S to bi.

For j = 2, · · · , deg(i)
Let k be the row of BS

list(j) associated with variable i.

Set column j − 1 of row k of Alist(j) to −1
Set the corresponding value in b

S to 0.

Algorithm 3.1: The Schur complement algorithm on the stretched system

1. ∀i ∈ 1, .., ne, solve Bi
S
zi = bi

S (using the LDLT factorization from

LAPACK, see [3])

2. Use the PCG method to solve Sλ = s, where the ns by ns Schur com-

plement S =
∑ne

i=1 A
T
i (Bi

S)−1
Ai and s =

∑ne

i=1 A
T
i zi

3. Solve Bi
S
xi

S = b
S +Aiλ (using LAPACK)

4. ∀k ∈ 1, .., n, recover xk from its value in xi
S, where (e.g.) Bi

S is the last

element involving xk.

3.2. Preconditioning the Schur complement

We have used a number of different preconditioners. These include the Chan di-

agonal preconditioner, a traditional band preconditioner, and the Element-by-Element

preconditioners EBE. We consider each in some detail. Other preconditioners have

also been considered in [7].

3.2.1. The Chan diagonal preconditioner

The aim here is to estimate values of the diagonal of S merely by forming products

of S with appropriate vectors. [5] propose approximating this diagonal by the product

of the Schur complement with p (p < ns) so-called probing vectors. The ith probing

vector, vi, has ones in positions i + kp, k = 0, 1, · · ·, and zeros elsewhere. Any



5

negative diagonal elements so formed are subsequently replaced by ǫ
1/3
m — ǫm is the

of the machine precision — which appears, empirically, to be a satisfactory value.

3.2.2. Traditional band preconditioner

We might equally assemble a band submatrix of the Schur complement, and fac-

torize it using the LANCELOT band factorization ([6]). Unlike the probing vector

preconditioners, the band submatrix computed in this way is the exact band restriction

of the Schur complement S.

3.2.3. Element-by-Element preconditioners

Element-By-Element (EBE) preconditioners were introduced in [12] and [13] and

have been successfully applied in a number of applications in engineering and physics

and in the solution of partially separable linear systems (see [8]).

We can construct the elements of the Schur complement as the sum
∑ne

i=1 Si where

Si = A
T
i B

−1
i Ai and then form an EBE preconditioner based this unassembled struc-

ture. Let ∆(S) and ∆(Si) be the diagonal parts of S and Si respectively. Then we

obtain the EBE preconditioner

PEBE = ∆(S)1/2

{

ne
∏

i=1

Li

ne
∏

i=1

Di

1
∏

i=ne

L
T
i

}

∆(S)1/2,

where Li and Di are the LDLT factors of the Winget terms

LiDiL
T
i = Wi ≡ I+∆(S)−1/2(Si −∆(Si))∆(S)−1/2

4. Experiments with matrix stretching

We have experimented matrix stretching on some of the unassembled matrices

from the Harwell-Boeing collection (see [9]). Since only the structure of these prob-

lems is available, the numerical values of the elemental matrices have been set to

random values. We have generated, for the two structures CEGB2802 and MAN5976,

four test problems with increasing condition numbers. Further experiments are avail-

able in [7].

In order to have an efficient Schur complement method, the size of the Schur com-

plement should ideally be much smaller than the size of the initial problem. For this

reason, we have used element amalgamation in our test problems. This is achieved

with the merge algorithm introduced by [8]) where elements are amalgamated un-

til a certain threshold is reached. The lower the threshold, the smaller is the Schur

complement. For our experiments, the threshold used by the amalgamation algorithm

is −105. Some of the characteristics of the problems used in our tests are given in

Table 4.1.

We compare the following solution techniques:



6

— Solution of the initial system Bx = b:

CG Diag — PCG with a diagonal preconditioner, and

CG EBE — PCG with the Element-by-Element preconditioner EBE.

— Solution of the stretched system (1.2):

NONE — unpreconditioned CG applied to Sλ = s,

CHANd — PCG with the Chan diagonal preconditioner applied to Sλ = s,

EBE — PCG with an EBE preconditioner applied to Sλ = s,

Band — PCG with a band preconditioner applied to Sλ = s, and

Dir — a direct solver applied to Sλ = s.

When solving the initial system (1.1) by an iterative method, we stop as soon as ‖Bx−
b‖ ≤ 10−9 ‖b‖; when we solve the stretched system (1.2) using Algorithm 3.1, Step

2 is terminated as soon as ‖Sλ − s‖ ≤ 10−10 ‖s‖. In our experiments, the number

of probing vectors used for the Chan diagonal preconditioner is 0.1ns. For the band

preconditioner, we report results using a matrix of semi-bandwidth of 0.2ns. Other

values were tried for the various preconditioners but those reported here achieved the

best compromise over all the problems considered in our experiments.

In the Table 4.1, we report the results of the tests performed on our test set. Ttotal

gives the total time required to solve the linear system and Iter gives the number of

iterations required to solve the Schur complement system. The experiments were

performed on a SUN workstation with a 125 MHZ HyperSPARC processor.

We make the following observations. Firstly, solving the systems using CG with-

out preconditioning is the least effective method of all. Unfortunately, the Chan di-

agonal preconditioner also appears to be both rather costly and ineffective for these

general matrices. Secondly, the EBE preconditioner appears to be reliable and effi-

cient with all our test problems, for both the initial and stretched systems. However,

the cost of constructing the preconditioner may be high, the method only pays off

overall for the more ill conditioned problems. [8] observed a similar behaviour un-

der more general circumstances. The main drawback when using this preconditioner

on the Schur complement is that its memory requirements are sometimes prohibitive.

Thirdly, it is clear here that the direct factorization of the Schur complement is a very

appealing alternative when it is feasible. In our experiments it is often the best option,

but EBE proves to be almost as competitive. We would not expect that, for larger

problems, the method will not be as attractive, as the Schur complement, while having

considerable hidden structure, is quite often dense. Finally, from a numerical point of

view, the matrix stretching approach is highly interesting because of the observation

we made in Table 4.1 that the Schur complement is, for the examples we considered,

always better conditioned than the initial matrix. We noted that by amalgamating more

and more of the elements from the problem CEGB2802 the condition number of the

Schur complement also improved. Once the condition number of the initial problem

is large enough, matrix stretching appears to be more efficient than directly attacking

the initial system.



7

CEGB2802

Threshold = -1e-5, n = 2694, ne = 12, min = 267, max = 432, aver = 290.3, ns = 789, %Ts = 29.3

Number 1 2 3 4

κ 2.1× 10
2

1.1× 10
4

5.2× 10
5

2.3× 10
7

System Preconditioner κS 9.4× 10
1

2.7× 10
3

8.6× 10
4

3.4× 10
6

Stretched NONE Ttotal 17.5 66.4 282.4 609.6

Iter 92 408 1822 3945*

CHANd Ttotal 23.0 40.5 91.7 169.2

Iter 59 169 446 969

EBE Ttotal 10.9 13.4 17.5 21.0

Iter 14 24 38 62

Band Ttotal 13.2 13.4 14.8 107.6

20% Iter 4 6 7 451

Dir Ttotal 24.7 24.9 24.6 23.7

Iter 1 1 1 1

Initial CG Ttotal 5.5 25.3 132.9 668.3

Diag Iter 47 234 1245 6150

CG Ttotal 6.6 15.7 58.1 241.7

EBE Iter 13 48 211 915

MAN5976

Threshold = -1e-5, n = 5882, ne = 22, min = 226, max = 445, aver = 331.7, ns = 1416, %Ts = 24.1

Number 1 2 3 4

κ 1.7× 10
2

8.8× 10
3

4.6× 10
5

1.8× 10
7

System Preconditioner κS 8.0× 10
1

1.9× 10
3

5.7× 10
4

1.9× 10
6

Stretched NONE Ttotal 38.2 135.6 501.6 1695.8

Iter 84 337 1287 4368

CHANd Ttotal 72.6 121.7 264.5 1177.3

Iter 59 181 543 2913

EBE Ttotal 25.4 33.3 49.4 80.6

Iter 17 36 73 136

Band Ttotal 40.0 42.6 45.2 368.9

20% Iter 6 10 17 573

Dir Ttotal 67.6 67.6 68.2 71.6

Iter 1 1 1 1

Initial CG Ttotal 12.2 51.0 196.4 632.0

Diag Iter 44 187 720 2482

CG Ttotal 14.3 28.1 59.8 124.6

EBE Iter 13 36 86 190

Table 4.1. A comparison of the preconditioners on variants of CEGB2802 and

MAN5976. Key: n is the number of variables in the initial problem; ne is the num-

ber of blocks in the initial system; min, max and aver are respectivly the minimum,

maximum and average size of the blocks in the initial system; ns is the number of

variables in the Schur complement; and %Ts is the percentage 100 ns / n; κ and κS

are the condition numbers of, respectively, the problem and the Schur complement.



8

5. Conclusions

In this paper, we have demonstrated the advantages of using a block stretching

method in combination with a Schur complement solution approach. Such a method

can be applied on the symmetric unassembled matrices arising from finite element

problems or from partially separable optimization. The main benefit of matrix stretch-

ing appears to be that on ill-conditioned systems, the condition number of the Schur

complement is lower than that of the initial system, and thus less sophisticated pre-

conditioned may be required. The other main benefit of matrix stretching is obviously

its potential for parallelisation, since the diagonal blocks within the stretched system

can be factorized independently. The challenge is to make sure that the iterative so-

lution step on the Schur complement is also effectively parallelised. Naturally, we do

not expect such an approach to be efficient on all kinds of partially separable linear

systems, but believe that we have demonstrated that, at least in some cases, there is

considerable benefit to be gained from stretching. Amalgamation algorithms such as

the ones described in [8] are of great importance since they may provide a decrease in

size of the Schur complement. The most difficult problem is still to identify efficient

preconditioners for the Schur complement.

6. References

[1] F. L. Alvarado. Matrix enlarging methods and their application. BIT, 37(3):473–505, 1997.

[2] K. D. Andersen. A modified schur-complement method for handling dense columns in

interior-point methods for linear programming. ACM TOMS, 22(3):348–356, 1996.

[3] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,

S. Hammarling, A. McKenney, and D. Sorensen. Lapack : A portable linear algebra library

for high-performance computers. Technical Report Report CS-90-105, Computer Science

Departement, University of Tennessee, 1990. Technical Report LAPACK Working Note 20.

[4] O. Axelsson. Iterative Solution Methods. Cambridge University Press, Cambridge, USA,

1996.

[5] T. Chan and D. Goovaerts. Domain decomposition benefical even sequentially. Technical

Report Technical report CAM 88–18, Departement of Mathematic, UCLA, Los Angeles

CA 90024–1555, 1988.

[6] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. LANCELOT: a Fortran package for large-

scale nonlinear optimization (Release A). Number 17 in Springer Series in Computational

Mathematics. Springer Verlag, Heidelberg, Berlin, New York, 1992.

[7] M. Daydé, J. P. Décamps, and N. I. M. Gould. Subspace-by-subspace preconditioners for

structured linear systems. Technical report, ENSEEIHT-IRIT, Toulouse, France, 1997. to

appear.

[8] M. J. Daydé, J. Y. L’Excellent, and N. I. M. Gould. On the use of element-by-element pre-

conditioners to solve large scale partially separable optimization problems. SIAM Journal

on Scientific Computing, 18(6):1767–1787, 1997.

[9] I. S. Duff, R. G. Grimes, and J. G. Lewis. Users’ guide for the Harwell-Boeing sparse matrix

collection. Technical Report TR/PA/92/86, CERFACS, Toulouse, France, 1992.



9

[10] J. F. Grcar. Matrix stretching for linear equations. Technical Report SAND90-8723, Sandia

National Laboratories, 1990.

[11] A. Griewank and Ph. L. Toint. Local convergence analysis for partitioned quasi-Newton

updates. Numerische Mathematik, 39:119–137, 1982.

[12] T. J. R Hughes, I. Levit, and J. Winget. An element-by-element solution algorithm for

problems of structural and solid mechanics. Compututational Methods in Applied Mechan-

ics and Engineering, 36:241–254, 1983.

[13] M. Ortiz, P. M. Pinsky, and R. L. Taylor. Unconditionally stable element-by-element algo-

rithms for dynamic problems. Compututational Methods in Applied Mechanics and Engi-

neering, 36:223–239, 1983.

[14] R. J. Vanderbei. Splitting dense columns in sparse linear systems. Linear Algebra Appl.,

152:107–117, 1991.


