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We consider the iterative solution of symmetric positive-definite linear systems whose coefficient matrix may
be expressed as the outer product of low-rank terms. We derive suitable preconditioners for such systems,
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with existing techniques to cope with the commonly-occuring case where the coefficient matrix is the linear
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1. Introduction

We consider the solution ofn by n real linear systems of equations

Ax = b (1.1)

whereA is symmetric positive-definite and has the form

A =
e∑

i=1

AiA
T
i (1.2)

HereAi is ann by ni real matrix, ande is a positive integer. Systems of this form arise
naturally in a number of ways.

1. Normal equations for least squares (see, for instance, [1]).
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2. The Schur complement following partial elimination in augmented systems (see, for
example, [8]).

3. Newton equations for partially separable optimization of unary functions (see [12]).
4. More general partially separable optimization (see [13]).

We shall assume thatn is sufficiently large that the structure of the system must be exploited,
but we donotassume that all theAi are sparse.

We aim to solve (1.1) using an iterative method, and, given the symmetry and definiteness
of A, the method of preconditioned conjugate gradients (see [3,14]) is the natural choice.

The purpose of this paper is to describe a new class of preconditioners which reflect the
structure (1.2) ofA, and which are especially efficient when the matricesAi are of low
rank, without necessarily being sparse. An extreme case would be whenai is a dense vector
andAi = ai , which results in a full but rank-one matrix,aia

T
i . In this case, most traditional

preconditioners would prove to be most ineffective. We do not wish to assemble the whole
of A, but prefer to use the componentsAi in isolation. This will enable us to construct
preconditioners which are appropriate for parallel computation.

In Section 2 we introduce our subspace-by-subspace (SBS) preconditioners which are a
special type of element-by-element (EBE) preconditioner designed to deal with matrices
of the form (1.2) and other low-rank matrices. In the following section, we apply these
methods to least-squares problems, and demonstrate their effectiveness.

Quite clearly, SBS preconditioners will never be well suited to all problems, most par-
ticularly to those problems with one or more matrixAi of (close to) full rank. In Section 4
we consider matrices for which some, but not all, terms are of the formAiA

T
i . We show

that one of the great advantage of the SBS preconditioners is that they can be efficiently
combined with other element-by-element preconditioners to handle substructures of low
rank. This gives rise to composite preconditioners that are effective on a wide range of
matrices.

2. Development

In Section 2.1, we consider the basic ideas behind element-by-element preconditioning.
This is followed, in Section 2.2, by a description of our new class of preconditioners.

2.1. Element-by-element preconditioners

An obvious approach to finding a suitable preconditioner for (1.2) is to letEi = AiA
T
i , in

which case (1.2) becomes

A =
e∑

i=1

Ei (2.1)

Notice here that eachelementEi is positive semi-definite. In this section and the next, we
shall consider the general form (2.1) without necessarily assuming thatEi = AiA

T
i . We

shall return to this particular form in Section 2.3.
A popular class of preconditioners for systems whose coefficient matrix has the form

(2.1) are theelement-by-elementpreconditioners (see, [16,19]). These have been seen to be
effective for systems arising from partial differential equations ([10,15]) and optimization
[5].
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There are four fundamental ingredients involved in the construction of such a precondi-
tioner. We rearrange (2.1) to give

A =
e∑

i=1

Di +
e∑

i=1

(Ei − Di ) = D +
e∑

i=1

(Ei − Di ) (2.2)

whereDi = 1(Ei ), D = ∑e
i=1 Di = 1(A) and1(M ) denotes the diagonal matrix

comprising the diagonal of the matrixM . Then

A = D
1
2

(
In +

e∑
i=1

D− 1
2 (Ei − Di )D

− 1
2

)
D

1
2 = D

1
2

(
In +

e∑
i=1

Si

)
D

1
2 (2.3)

whereIn is then by n identity matrix and we have definedSi = D− 1
2 (Ei − Di )D

− 1
2 .

The first critical step is to make the approximation

In +
e∑

i=1

Si ≈
e∏

i=1

(In + Si ) (2.4)

The error in this approximation may be expressed in terms of second and higher order
products of the components, and thus the approximation will be good if either the individual
Si are small or zero (this is likely to be true ifEi is very diagonally dominant), or the product
of the overlapping componentsSi andSj is small or zero.

As Ei is positive semi-definite, it directly follows thatIn + Si is positive definite and
thus has a Cholesky factorization (see Theorem 5.3 in Chapter 5 of [17])

W i

def= In + Si = LiL
T
i (2.5)

The matrixW i is known as theWinget decompositionof Ei (see [16]). Notice that ifEi

has non-zeros inei rows and columns, the Cholesky factor of its Winget decomposition will
differ from the identity matrix only in these rows. This symmetric decomposition ofW i is
the second critical step. Combining (2.3), (2.4) and (2.5), we have

A ≈ D
1
2

(
e∏

i=1

LiL
T
i

)
D

1
2 (2.6)

Unfortunately, (2.6) is not symmetric, and thus is not a satisfactory preconditioner. The
third crucial step is to make the further symmetrizing approximation

e∏
i=1

LiL
T
i ≈

(
e∏

i=1

Li

)(
1∏

i=e

LT
i

)
(2.7)

This approximation is, as before, exact if there is no overlap between the blocks and will
be good under exactly the same circumstances as its predecessor. We thus obtain the final
approximation

A ≈ P EBE = D
1
2

(
e∏

i=1

Li

)(
1∏

i=e

LT
i

)
D

1
2 (2.8)
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which may be used as a preconditioner forA. Such a matrix is known as theEBEprecon-
ditioner. In order to solve the system of equationsP EBEx = y efficiently, we exploit the
decomposition (2.8).

We are free to order the elements in any way we choose and may thus encourage paral-
lelism by ordering non-overlapping elements consecutively so that we can perform groups
of forward and back-solves in parallel. Clearly, the efficiency of the EBE preconditioner de-
pends on the partitioning of the initial matrix and on the size of the off-diagonal elements of
the elementary matrices. With this in mind, the final critical ingredient is topreprocessthe
problem to amalgamate elements intosuper-elementswith the aim of reducing the overlap
between these super-elements. Reference [6] demonstrates that this is necessary in order to
make the preconditioner effective in practice. It has the additional benefit that vectorization
is more effective with the larger super-elements.

2.2. Subspace-by-subspace preconditioners

The derivation in the previous section is appropriate whether or notEi is rank deficient.
However, this is not true of an efficient implementation as we shall now see.

We suppose thatEi has non-zeros inei rows and columns (it can even be dense, i.e.,
ei = n). As we have already observed, the Cholesky factors of its Winget decomposition
will then differ from the identity matrix only in theseelementalrows and columns. Denoting
the non-zero rows and columns ofEi by E%i

i , and using similar definitions forW i , Di

andD, we obtain

W %i

i = Iei
+ (D%i )−

1
2 (E%i

i − D%i

i )(D%i )−
1
2 = %i

i + (D%i )−
1
2 E%i

i (D%i )−
1
2 (2.9)

where%i

i = Iei
− (D%i )−1D%i

i is positive semi-definite. We suppose, for now, that%i

i

has positive values, but will shortly return to the singular case.
Now suppose thatEi is of rank ri . Then we see immediately thatW %i

i is a rankri

modification of the positive-definite diagonal matrix%i

i . Thus, if ri < ei it would seem

to be preferable toupdatethe Cholesky factors ofW %i

i following a sequence of rank-ri

modifications rather than assembling and factoringW %i

i directly (see, for example, [11]).
More importantly, ifri � ei , an alternative to the Cholesky factorization more suited to the
nature ofEi is clearly desirable.

Let B%i

i = (%i

i )−
1
2 (D%i )−

1
2 E%i

i (D%i )−
1
2 (%i

i )−
1
2 be a rescaling ofE%i

i . Then we may
write (2.9) as

W %i

i = (%i

i )
1
2

(
Iei

+ B%i

i

)
(%i

i )
1
2 (2.10)

We now aim to decomposeIei
+ B%i

i into the symmetric product of easily invertible parts.

We suppose we may find a decomposition ofB%i

i of the form

B%i

i = Q(i

i

(
B(i

i 0
0 0

)
(Q(i

i )T = (Y (i

i Z(i

i )

(
B(i

i 0
0 0

)(
(Y (i

i )T

(Z(i

i )T

)
= Y (i

i B(i

i (Y (i

i )T

(2.11)
whereQ(i

i is orthogonal and defines a transformation from the elemental to aninternal
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representation ofB%i

i , and this representation,B(i

i , is anri byri symmetric positive definite
matrix (for instance, but not restricted to, tridiagonal, see [20], Chapter 7). Furthermore, let
L(i

i be the Cholesky factor ofIei
+ B(i

i . Then

Iei
+ B%i

i = Q(i

i

(
Iri

+ B(i

i 0
0 Iei−ri

)
(Q(i

i )T

= Q(i

i

(
L(i

i (L(i

i )T 0
0 Iei−ri

)
(Q(i

i )T

= Q(i

i

(
L(i

i 0
0 Iei−ri

)
(Q(i

i )TQ(i

i

(
(L(i

i )T 0
0 Iei−ri

)
(Q(i

i )T

= M(i

i (M(i

i )T

(2.12)
where

M(i

i

def= Q(i

i

(
L(i

i 0
0 Iei−ri

)
(Q(i

i )T (2.13)

Hence, we have obtained a factorization of the Winget decomposition of the form

W %i

i = (%i

i )
1
2 M(i

i (M(i

i )T(%i

i )
1
2 (2.14)

We may now use this as the basis of an EBE-like method. In particular, the resulting
preconditioner is of the form

A ≈ P SBS = D
1
2

(
e∏

i=1

(i )
1
2 M i

)(
1∏

i=e

(M i )
T(i )

1
2

)
D

1
2 (2.15)

wherei andM i are simply%i

i andM(i

i appropriately embedded (in their elemental
row and column positions) withinIn. We refer to this as asubspace-by-subspace(SBS)
preconditioner because of the dependence ofM(i

i on the subspaces defined by the matrices

Y (i

i andZ(i

i .
At first glance we do not appear to have gained anything by this. In particular, the forward

and back substitutions required when using (2.15) appear to be at least as expensive as using
(2.8). However, more careful consideration reveals that this may not be so. Consider, for

instance, the single step(%i

i )
1
2 M(i

i x(i = y(i . Using the orthogonality and partitioning

of Q(i

i and (2.13), we have that

x(i = Q(i

i

(
(L(i

i )−1 0
0 Iei−ri

)
(Q(i

i )T(%i

i )−
1
2 y(i

=
(
Y (i

i (L(i

i )−1(Y (i

i )T + Z(i

i (Z(i

i )T
)

(%i

i )−
1
2 y(i

=
(
Iei

+ Y (i

i

(
(L(i

i )−1 − Iri

)
(Y (i

i )T
)

(%i

i )−
1
2 y(i

(2.16)

The matrixQ(i

i is not required, merely its firstri columnsY (i

i . Thus we see that the
principal costs are two matrix vector products with matrices of dimensionsri by ei andei

by ri , respectively, and a single triangular solve with a matrix of orderri . The comparative
cost of a forward substitution in (2.8) is for a triangular solve with a matrix of orderei .
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Neglecting lower-order terms, this indicates that the SBS approach is seen to be more
efficient whenever 2riei + 1

2r
2
i ≤ 1

2e
2
i , that is whenever

ri ≤ (
√

5 − 2)ei ≈ 0.236ei (2.17)

The other relevant step(M(i

i )T(%i

i )
1
2 x(i = y(i is very similar. For in this case, we have

that

x(i = (%i

i )−
1
2 Q(i

i

(
(L(i

i )−T 0
0 Iei−ri

)
(Q(i

i )Ty(i

= (%i

i )−
1
2

(
Y (i

i (L(i

i )−T (Y (i

i )T + Z(i

i (Z(i

i )T
)

y(i

= (%i

i )−
1
2

(
Iei

+ Y (i

i

(
(L(i

i )−T − Iri

)
(Y (i

i )T
)

y(i

(2.18)

and the principal costs are identical to the previous case.
We now consider how to cope with the possibility that%i

i may be singular. Notice that

%i

i will actually be positive definite if and only if each elemental variable occurs in at least
one other element. Any variable which occurs in a single element is said to beexposed.
An exposed variable may be directly eliminatedwithin its element(this is also called static
condensation in finite element techniques); the resulting smaller element, formed from the
Schur complement following this elimination, will itself be positive semi-definite. At first
sight, it might then appear that it suffices to directly eliminate all exposed variables. However
this is not so, as these eliminations may expose more variablesin the reduced problem. For
example, suppose elementi involves variables 1, 2, 3, 4 andE%i

i is of the form
1 1 1 1
1 1 1 1
1 1 2 2
1 1 2 3

 (2.19)

and that variable 1 occurs in no other elements, while variable 2 appears in precisely one
other element, elementj . If we eliminate variable 1 within elementi, we obtain the Schur
complement  1 1 1

1 2 2
1 2 3

−
 1 1 1

1 1 1
1 1 1

 =
 0 0 0

0 1 1
0 1 2


But now variable 2 does not occur in the reducedE

%i

i ,(
1 1
1 2

)
and only occurs in elementj . Thus, in the reduced problem variable 2 is exposed. This
has happened simply because the original elementE

%i

i was singular, but not all singular
elements will automatically expose new variables when current exposes are eliminated.

Fortunately, a simple scheme for removing all exposed variables is obvious. At each stage,
eliminate all currently exposed variables. Now check if extra variables have been exposed.
If so, start the next stage. If not, the reduced problem has no exposed variables, and thus
the resulting%i

i are all positive definite. Notice that, as all eliminations take place within

Copyright © 1999 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl., 6, 213–234 (1999)
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elements, no communication is required during the elimination. At the end of each stage,
the list of elements containing each variable may be simply revised, and newly exposed
variables detected. This process ends in at mostn steps.

2.3. Subspace-by-subspace preconditioners for structured problems

We now return to our original problem, that is the case for whichEi = AiA
T
i . In this case,

it is straightforward to compute the required matricesQ(i

i (or Y (i

i ) andB(i

i in (2.11).

Suppose thatAi has non-zeros inei rows. Denoting these rows byA%i

i , we obtain

B%i

i = C%i

i (C%i

i )T (2.20)

whereC%i

i = (%i

i )−
1
2 (D%i )−

1
2 A%i

i . Now, let

C%i

i = Q(i

i

(
R(i

i 0
0 0

)
V (i

i (2.21)

whereQ(i

i andV (i

i are orthogonal andR(i

i is triangular and of rankri , be a complete

orthogonal decomposition ofC%i

i (see, for instance, [1]). Then clearly,B(i

i = R(i

i (R(i

i )T,
and we have the ingredients of (2.11). The decomposition (2.21) may be determined by a QR
factorization with column pivoting, while the actual form we require, involving only the first
ri columnsY (i

i orQ(i

i , may be obtained using the modified Gram–Schmidt process (again
with column pivoting). We should caution the reader that under exceptional circumstances
these methods may incorrectly estimate the rank ofC%i

i , and a singular-value decomposition
may be preferred. Again, see [1] for details.

A potential difficulty occurs when%i

i is singular. As we have already mentioned, this
can only happen if one or more elemental variables are restricted to this single element.
We mentioned that in this case we may directly eliminate these exposed variables, and the
resulting smaller element is still positive semi-definite. However, unless we are careful, it
may not inherit the structure (2.20). We now show that, in fact, we can still arrange the
computation so that the smaller element is of the form (2.20).

To see this, suppose, without loss of generality, that the firstk elemental variables only
occur inE%i

i . We may then find an orthogonal matrixU%i

i so that

(D%i )−
1
2 A%i

i U%i

i =
(

R%i

i 0
Â%i

i A%i

i

)
(2.22)

whereR%i

i is k by k, non-singular and upper triangular—the matrixU%i

i may, for instance
be formed as a product of plane rotations. We may then write (2.9) as

W %i

i =
(

0 0
0 %i

i

)
+
(

R%i

i 0
Â%i

i A%i

i

)(
(R%i

i )T (Â%i

i )T

0 (A%i

i )T

)

=
(

R%i

i (R%i

i )T R%i

i (Â%i

i )T

Â%i

i (R%i

i )T %i

i + Â%i

i (Â%i

i )T + A%i

i (A%i

i )T

) (2.23)
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Eliminating the first k elemental variables then leaves the Schur complement%i

i +
A%i

i (A%i

i )T, which is of the form (2.9), but now with%i

i non-singular. Notice, the matrix

U%i

i need not be stored.
Unfortunately, this does not completely remove the problem because, although the Schur

complement is of the correct form, it may happen that one or more of the rows of the
reduced matrixA%i

i contains only zeros. Thus, the variable associated with this row is
no longer involved in theith reduced element, and this may expose the variable within
another element. As in the more general case considered at the end of Section 2.2, a number
of stages may be required, each eliminating exposed variables and marking any further
exposed variables for elimination at the next stage.

3. Least squares problems

3.1. Development

A rich source of systems of the form (1.1)–(1.2) are least-squares problems,

minimize
x∈<n

‖Ax − b‖2 (3.1)

whereA is anm by n rectangular matrix withm > n. A solution to (3.1) satisfies the
normal equations

ATAx = ATb. (3.2)

If we group rows ofA so that

A =
 A1

· · ·
Ae

 (3.3)

then (3.2) is simply
e∑

i=1

AT
i Aix = ATb (3.4)

which is of the form (1.1)–(1.2). Clearly there is considerable freedom in the partitioning
of A into (3.3). Extreme examples areAi = aT

i ande = m, whereaT
i is theith row of

A, or A1 = A ande = 1. We wish to solve (3.2) using a suitably preconditioned variant
of conjugate gradients appropriate for least-squares problems (see, [1], Sections 7.4 and
7.5). We also wish to use the flexibility of the form (3.4) to construct suitable subspace-by-
subspace preconditioners.

The SBS(1) preconditioner simply choosesAi = aT
i ande = m and follows the con-

struction in Sections 2.2 and 2.3. It is, moreover, easy to detect and eliminate exposed
variables before constructing the preconditioner. To do this, we first initialize an empty list
of rows5 and variables# to be directly eliminated. We now scan the rows and columns of
A not in 5 and#, respectively, for a column singleton. If one is found, we add its index
to #, add the row to5 and repeat the search. If none are found, all remaining columns
have two or more non-zero entries (or are null which implies thatA is rank deficient). If
we suppose thatA is of full rank, this implies that we can permute the rows and columns

Copyright © 1999 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl., 6, 213–234 (1999)
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Algorith Leta1 . . .am be given vectors.
ComputeOcc(i), i = 1, . . . , n, the number ofaj containing variablei.
LetSl denote the current set of the vectors to be merged, and let
Occs(i), i = 1, . . . , n, be the number of occurrences of variable i withinSl

Setl = 1, Sl = ∅, Occs(i) = 0, i = 1, . . . , n

For k = 1, . . . , m

Sl = Sl + {ak}
Update Occs
If ∃i such thatOccs(i) = Occ(i), reset

Sl = Sl - {ak}
l = l + 1, Sl = ∅, Occs(i) = 0, i = 1, . . . , n

End If
End For

Figure 1. Construction of the sets of rank-one terms to be amalgamated

of A so that

PAQ =
(

R Ae

0 Ar

)
whereP andQ are permutation matrices and each column ofAr has at least two non-zero
entries. Substituting in (3.4) and simplifying reveals that if we solve

AT
r Arxr = AT

r br and (3.5)

Rxe = be − Aexr (3.6)

then

x = Q

(
xe

xr

)
, where

(
be

br

)
= Pb

Of course, (3.5) are the normal equations for the reduced least-squares problem

minimize
xr∈<nr

‖Arxr − br‖2

The advantage is that each column of this problem has at least two non-zeros and hence
choosingAi = aT

i for this problem reveals no exposed variables.
A second possibility is to merge groups of rows ofA to form theAi . We can then use

the amalgamation algorithm described in Figure 1 to merge rank-one terms. It basically
regroups rank-one terms to ensure that no variable belongs to a single element.

We also impose a threshold,kmax, on the maximum number of rows allowed in an amal-
gamated element (i.e., the maximum size of the setSl). In practice, in view of (2.17),kmax
should be no larger than(

√
5 − 2) × n.

We recognize that the algorithm described in Figure 1 is quite naive. However, it has
proved effective in practice and attempts to design more sophisticated algorithms—for
instance, to try to group terms which have a large overlap together—have not proved sig-
nificantly better.

Copyright © 1999 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl., 6, 213–234 (1999)
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Table 1. Characteristics of the test matrices. For each matrix,m gives the number of rows,n the
number of columns, andnz the number of non-zeros. The number of variables directly eliminated
is ne, while ns gives the resulting number of columns in the Schur complement. Columns 7–10

give the degree of overlap defined as the average number of groups sharing each variable and the
average number of rank-one terms within each group (which is also the average rank of the

groups). The column headedκ gives the condition number of each problem

Degree of overlap/average group size

kmax =
Name m n nz ne ns 1 5 20 50 κ

il1033 1 033 320 4 732 12 308 15.2/1.0 5.9/5.0 3.8/17.3 3.2/30.0 1.9E+4
BRATU1D 4 007 3 004 6 007 1 3 003 2.6/1.0 2.1/5.0 2.0/19.9 2.0/49.6 6.5E+5
TRIDIA 2 000 1 000 2 998 1 999 3.0/1.0 2.2/5.0 2.0/20.0 2.0/50.0 7.1E+3
BROWNBS3 997 2 997 6 993 0 2 997 2.3/1.0 2.1/5.0 2.0/20.0 2.0/50.0 1.4E+6
DQDRTIC 3 994 2 994 5 988 0 2 994 2.0/1.0 2.0/5.0 2.0/20.0 2.0/49.9 5.6E+9
EXPFITC 1 009 502 2 755 0 502 5.5/1.0 3.0/5.0 3.0/19.8 2.9/48.0 7.3E+2
HYDCAR20 99 99 734 0 99 7.4/1.0 4.3/4.9 3.5/19.8 3.3/19.8 1.0E+6
MAXLIKA 243 235 2 003 0 235 8.5/1.0 3.0/5.0 2.0/18.7 2.0/40.5 4.2E+1
ORTHREGC1 005 500 3 500 0 500 7.0/1.0 2.2/5.0 2.1/19.7 2.0/47.8 2.0E+2

3.2. Numerical experiments

We have tested the SBS preconditioner on a number of rectangular matrices from the
Harwell–Boeing collection (see [9]), and on a number of Jacobian matrices from prob-
lems arising from theCUTE collection (see [2]). The characteristics of these problems are
summarized in Table 1. We include details of how many exposed variables can be trivially
removed, and the resulting problem sizes. Further experiments are reported in [7].

The matrixil1033 was derived from an Harwell–Boeing matrix in [18], and subse-
quently used in tests in [1]. The remaining matrices were chosen arbitrarily from theCUTE
collection.

3.2.1. Experiments with zero residual problems
For our first set of experiments, we consider the least-squares solution of overdetermined,
consistent sets of equations. The zero-residual problems min‖Ax − b‖2 are defined by
requiring the exact solution to bex∗ = (1, . . . , 1)T, and settingb = Ax∗. The origin is
taken as the initial estimate of the solution.

In Table 2, we compare the conjugate gradient (CG) solution of the normal equations
without preconditioning, to the same method preconditioned by a diagonal preconditioner,
a band approximation—in our case band(k), a band matrix with semi-bandwidthk whose
non-zeros are those fromATA—or by an SBS(kmax) preconditioner, whose elements are
composed of at mostkmax rank-one terms using the algorithm described in Figure 1. For
the band preconditioner, once we have the approximation to the band ofATA, we use the
LDLT band solver from theLANCELOT package (see [4]). We note that, in this case, the
factors may be modified to guarantee that the preconditioner is safely positive definite. The
diagonal preconditioner is simply band(0).
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We use the variant of the CG method for least-squares problems described in [1], Section
7.4.1). Convergence is recorded as soon as

‖AT(Ax̄ − b)‖2 ≤ 10−15‖b‖2 (3.7)

We report #it, the number of iterations needed for convergence,tcon, the construction time
(in CPU seconds) for the preconditioner,tcg, the convergence time for the CG method
neglecting the construction time, anderr, the relative error‖x∗−x̄‖2/‖x∗‖2 in the computed
solutionx̄. A star indicates that the method reached a maximum number of iterations without
satisfying (3.7)—in our experiments, a maximum of 10n iterations were permitted. The
entries marked in bold correspond to the method(s) which performed best in terms of total
time required. All of the experiments reported in this paper were performed on a SUN
workstation with a 125 MHz HyperSPARC processor.

For the nine problems tested, the unpreconditioned method performed best (in terms of
total computational time) in two cases, the diagonal preconditioner proved to be best in two
cases, the band in two cases, the SBS in two cases, while the diagonal and SBS precondi-
tioners tied on problemEPXFITC. For the problemsil1033 only the SBS preconditioner
converges within the permitted number of iterations.

In most cases, the SBS preconditioner converges in fewer iterations than its competitors.
However, this efficiency in number of iterations is not systematically reflected in the com-
putational time as one SBS iteration is typically more costly than one band iteration. For
one problem (TRIDIA ), the band preconditioner requires significantly fewer iterations than
the SBS preconditioner. However, this is not surprising since these matrices are tridiagonal,
and the CG method acts as a direct method with the band preconditioner. The problems
BRATU1D, BROWNBSandDQDRTICalso exhibit a band structure with semi-bandwidths,
respectively, of 5, 4 and 7. As we have already noted, the factors of the band are sometimes
modified to ensure that the preconditioner is safely positive definite. The perturbations in-
troduced on problemsBRATU1DandBROWNBSexplain why the band preconditioner is
not exact even whenk exceeds the semi-bandwidth of the problem. This is not the case on
DQDRTICand convergence is achieved in one iteration whenk is larger than 7. It also helps
to explain why the band preconditioner may occasionally be worse than no preconditioning.

In Figure 2, we show the eigenvalue spectrum of the unpreconditioned systemATA
and the eigenvalue spectrum of the preconditioned system using SBS(1) for the problem
DQDRTIC.

The structure of the problemsil1033 andHYDCAR20is very irregular, the non-zeros
being spread throughout the matrix. SBS preconditioners seem more able to deal with such
irregular structure than its competitors.

The problemsEXPFITC, MAXLIKA andORTHREGChave a very similar structure, in
that the first few columns ofA are (almost or completely) dense leading to a denseATA.
We consider the problemEXPFITC in detail. Columns 1 to 3 of the matrixA involve
roughly half the variables, while columns 4 and 5 are completely dense. The main diagonal
of the matrix is also dense. As a consequence, the matrixATA is dense, and clearly a band
preconditioner has no little chance of success. SBS proves to be effective as soon askmax is
large enough to capture the first five columns in a single group, which happens whenever
kmax ≥ 5. We show in Figure 3 the eigenvalue spectrum of the unpreconditioned problem
and the eigenvalue spectrum of the preconditioned system using SBS(1) and SBS(5). The
eigenvalue spectrum of the preconditioned system is slightly improved compared with the
unpreconditioned one. SBS(5) is able to capture the set of dense columns into a single
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Figure 2. Eigenvalues of the problemDQDRTIC: unpreconditioned (left) and preconditioned
using SBS(1) (right)

group, and the eigenvalues of the preconditioned system are significantly more clustered,
which helps to explain the convergence in two iterations.

The impact of increasingkmax depends on the structure of the problems. There is little
effect on problemil1033 for example, while the number of iterations settles down to two
askmax increases from 1 to 5 (and beyond) on theORTHREGCproblems. In some cases,
increasingkmax increases the number of iterations, as we see forHYDCAR20. A small value
of kmax, saykmax = 5 or 10, seems to be a good choice in our tests.

In general, the relative error is smaller when a SBS preconditioner is used. It is also
evident that SBS usually (but not always) performs better than its competitors when the
problem is ill-conditioned. For the well-conditioned examples, the cost of forming and
applying the preconditioner does not, in general, pay off.

In summary, the SBS preconditioner appears to be an attractive alternative to less sophis-
ticated possibilities when using the CG method to solve least-squares problems, particularly
when the problem is ill-conditioned and when it does not have a kind of band structure. We
have observed that SBS—as do other element-by-element preconditioners—takes advan-
tage of a wider range of sparsity patterns than band preconditioners.

3.2.2. Experiments with non-zero residual problems
In addition to the consistent sets of equations we considered in the last section, we also
performed tests on least-squares problems with non-zero residuals. The problems are con-
structed as follows. We build a random vectorb0 in the interval [-1,1], and solve the least-
squares problem min‖Ax−b0‖2 using the LAPACK library. The residualr0 corresponding
to this solution is almost surely non-zero and satisfiesATr0 = 0. This then ensures that the
solutionx∗ = (1 . . . 1)T we seek solves the least-squares problem min‖Ax − b‖2, where
b = r0 + Ax∗.

We report on experiments using six problems with non-zero residual in Table 3. These
results are similar to those obtained with zero residual problems. Again the relative error
in the solution is seen to be much smaller using SBS in many cases (see, for example,
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Figure 3. Eigenvalues of the problemEXFITC: unpreconditioned (top left), preconditioned
using SBS(1) (top right) and preconditioned using SBS(5) (down centre)
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Table 2. Results with no, diag, band(k), and SBS(kmax) preconditioners on zero residual
problems

band(k), k = SBS(kmax), kmax =

Name no diag 1 2 5 20 1 5 20 50

il1033 #it 3 080* 3 080* 3 080* 3 080* 3 080* 3 080* 1 835 1 827 1 739 1 640
tcon 0.00 0.00 0.00 0.00 0.00 0.02 0.070.05 0.13 0.32
tcg 6.70 5.68 6.05 7.02 7.82 10.45 41.2520.30 23.72 35.23
err 2E-03 1E-03 2E-03 1E-03 5E-04 2E-02 3E-11 4E-11 3E-10 2E-11

BRATU1D #it 25 210* 36 1 549 2 179 805 805 16 10 9 9
tcon 0.00 0.02 0.02 0.02 0.03 0.12 0.98 0.68 0.65 2.20
tcg 146.27 0.22 11.58 18.43 9.18 22.05 1.30 0.45 0.65 1.25
err 5E-01 4E-11 3E-11 8E-11 4E-07 4E-07 7E-16 1E-12 5E-14 3E-14

TRIDIA #it 1 810 23 1 1 1 1 10 8 6 5
tcon 0.00 0.00 0.00 0.00 0.02 0.03 0.23 0.17 0.30 0.80
tcg 4.43 0.07 0.00 0.02 0.02 0.03 0.38 0.17 0.17 0.27
err 2E-15 2E-16 3E-16 3E-16 3E-16 3E-16 1E-16 4E-16 1E-16 1E-16

BROWNBS#it 10 33 10 9 9 9 14 7 3 3
tcon 0.02 0.02 0.00 0.00 0.03 0.15 1.25 0.98 1.22 2.90
tcg 0.08 0.30 0.12 0.13 0.15 0.32 1.32 0.37 0.30 0.58
err 5E-04 2E-09 1E-04 2E-04 2E-04 2E-04 5E-10 1E-09 9E-10 2E-11

DQDRTIC #it 11 5 5 5 5 1 1 1 1 1
tcon 0.00 0.00 0.02 0.02 0.03 0.15 1.27 0.92 1.20 2.63
tcg 0.10 0.07 0.05 0.07 0.08 0.07 0.12 0.08 0.12 0.25
err 6E-16 2E-14 2E-14 2E-13 5E-14 4E-16 4E-14 4E-14 4E-14 4E-14

EXPFITC #it 843 33 242 298 265 215 26 2 2 2
tcon 0.00 0.05 0.05 0.05 0.03 0.05 0.07 0.07 0.17 0.58
tcg 1.25 0.05 0.37 0.50 0.55 0.83 0.52 0.03 0.05 0.10
err 3E-11 6E-12 1E-11 3E-12 9E-12 2E-11 6E-13 6E-15 1E-14 1E-14

HYDCAR20#it 990* 990* 990* 990* 990* 397 716 414 285 326
tcon 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.03
tcg 0.45 0.30 0.32 0.35 0.43 0.32 1.77 0.65 0.70 0.83
err 5E-01 7E-02 8E00 9E-01 1E00 6E-10 5E-12 5E-11 6E-12 3E-11

MAXLIKA #it 30 25 326 127 100 103 24 13 2 2
tcon 0.00 0.02 0.03 0.02 0.02 0.05 0.00 0.02 0.03 0.08
tcg 0.03 0.02 0.25 0.12 0.10 0.18 0.17 0.05 0.02 0.02
err 3E-14 5E-14 1E-13 9E-14 1E-13 1E-13 2E-14 8E-15 2E-15 2E-15

ORTHREGC#it 290 135 654 337 296 297 77 2 2 2
tcon 0.00 0.07 0.07 0.08 0.07 0.08 0.070.05 0.08 0.27
tcg 0.45 0.20 1.15 0.62 0.65 1.17 1.580.02 0.02 0.05
err 1E-12 8E-13 7E-13 7E-13 6E-13 1E-12 3E-13 2E-15 2E-15 2E-15
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Table 3. Results with no, diag, band(k), and SBS(kmax) preconditioners on non-zero residual
problems.κ is the condition number of each matrix

band(k), k = SBS(kmax), kmax =

Name no diag 1 2 5 20 1 5 20 50

BRATU1D #it 25 210* 36 1 567 2 250 798 798 16 10 9 9
tcon 0.00 0.00 0.02 0.00 0.03 0.10 0.92 0.70 0.95 2.13

κ=6.5E5 tmcg 137.66 0.27 11.95 19.43 9.10 23.27 1.17 0.45 0.63 1.23
err 0.4 5E-11 5E-11 5E-11 4E-07 4E-07 2E-11 2E-11 2E-11 2E-11

DQDRTIC #it 11 5 5 5 5 1 1 1 1 1
tcon 0.00 0.02 0.00 0.00 0.03 0.17 0.22 0.88 1.27 2.80

κ=5.6E9 tcg 0.10 0.07 0.07 0.10 0.10 0.05 0.20 0.08 0.13 0.26
err 3E-14 2E-14 2E-14 2E-13 3E-14 7E-15 3E-14 3E-14 3E-14 3E-14

HYDCAR20 #it 990* 990* 990* 990* 990* 397 716 414 285 326
tcon 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.02 0.03

κ=1.0E6 tcg 0.22 0.28 0.35 0.35 0.43 0.28 1.77 0.67 0.60 0.75
err 0.5 7E-02 7.7 0.8 1.5 6E-10 5E-12 5E-11 6E-12 3E-11

BROWNBS#it 10 33 10 7 9 9 14 7 3 3
tcon 0.00 0.00 0.02 0.02 0.02 0.15 1.22 0.87 1.18 2.63

κ=1.4E6 tcg 0.08 0.30 0.12 0.10 0.17 0.32 1.23 0.37 0.30 0.53
err 5E-04 2E-09 1E-04 5E-04 1E-04 1E-04 5E-10 1E-09 9E-10 9E-11

EXPFITC #it 901 34 270 339 279 227 22 2 2 2
tcon 0.00 0.03 0.05 0.05 0.07 0.07 0.070.05 0.15 0.62

κ=7.3E2 tcg 1.33 0.07 0.50 0.67 0.65 1.00 0.480.02 0.05 0.10
err 8E-11 6E-11 6E-11 6E-11 6E-11 6E-11 6E-11 6E-11 6E-11 6E-11

ORTHREGC#it 320 151 778 364 316 327 76 2 2 2
tcon 0.00 0.07 0.07 0.07 0.08 0.10 0.080.05 0.10 0.27

κ=2.0E2 tcg 0.42 0.23 1.53 0.73 0.78 1.48 1.630.03 0.03 0.05
err 1E-10 1E-10 1E-10 1E-10 1E-10 1E-10 1E-10 1E-10 1E-10 1E-10

problemsBRATU1D, BROWNBSandHYDCAR20). The SBS preconditioner is the fastest
preconditioner for problemsEXPFITC andORTHREGC.

4. Mixing SBS with other element-by-element preconditioners

Quite clearly, SBS preconditioners will never be well suited to all problems, most particu-
larly to those problems with elements of (close to) full rank. In this section we consider a
second possibility, namely, to combine SBS preconditioners with other element-by-element
preconditioners to handle substructures of low rank. We first give two examples.

Suppose we wish to find the least-squares solution to anon-linearset of equations by
minimizing F (x) = 1

2‖f(x)‖2
2, wheref(x) = (f1(x) . . . fm(x))T. Then the coefficient

matrix associated with the Newton equations∇xxF (x)1x = −∇xF (x) is of the form

∇xxF (x) =
m∑

i=1

fi(x)∇xxfi(x) +
m∑

i=1

∇xfi(x)(∇xfi(x))T. (4.1)
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The first summation in (4.1) is a generic ‘sum of weighted elements’, and would typically
be treated using an EBE method. The second summation is of rank-one terms, and could
be treated using the SBS methods developed in this paper.

A second example relates to the minimization of a non-linear functionf (x) subject
to a set of (non-linear) constraintsci (x) = 0, i = 1, . . . m, using penalty or augmented
Lagrangian methods (very similar arguments hold for inequality constraints using barrier
methods). In this case, a penalty function of the form

φ(x, λ, ρ) = f (x) + λTc(x) + 1
2ρ‖c(x)‖2

2 (4.2)

will be (approximately) minimized for a sequence of Lagrange multiplier estimatesλ and
penalty parametersρ. Once again, Newton’s method requires the solution of a system of
linear equations whose coefficient matrix,∇xxφ(x, λ, ρ) is of the form

∇xxφ(x, λ, ρ) = ∇xxf (x) +
m∑

i=1

(λi + ρci(x))∇xxci(x) + ρ

m∑
i=1

∇xci(x)(∇xci(x))T.

(4.3)
The first summation in (4.3) is again a generic ‘sum of weighted elements’, and can be
treated using an EBE method, while the second summation, being a sum of rank-one terms,
can be handled using an SBS method. Any additional structure within the remaining term
∇xxf (x), such as might result iff is partially separable (see [13]), can be treated using
EBE or SBS preconditioners, as appropriate.

In general, element-by-element and subspace-by-subspace preconditioners can be mixed
in an obvious way. Suppose the generic matrixA is of the form

A =
ee∑

i=1

Ee
i +

es∑
i=1

Es
i (4.4)

where the elements in the first sum are of general ‘finite element’ type, while those in the
second sum are of low rank. Then we can treat theEe

i exactly as we described in Section 2.1,
and the remaining terms as described in Section 2.2. We compute the preconditioners
elementwise (as described earlier) and obtain the mixed preconditioner

A ≈ P mix = D
1
2

(
ee∏

i=1

Li

es∏
i=1

(%i

i )
1
2 M(i

i

)(
1∏

i=es

(M(i

i )T(%i

i )
1
2

1∏
i=ee

LT
i

)
D

1
2 (4.5)

The order of the terms in (4.5) is arbitrary, and in practice the EBE and SBS terms in (4.5)
might be interleaved to encourage parallelism. Preliminary tests do not, in general, reveal
significant differences in performance when different orderings are used.

4.1. Tests on an artificial problem

We first illustrate the efficacy of such an approach on the artificial problem shown in
Figure 4.1
This problem is formed by addingne elements, each havingve variables and overlapping
its neighbours byvo variables, to a single rank-one elementaaT involving all the variables.
Thene diagonal blocks are randomly generated to have eigenvalues in the range [1, λmax],
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Figure 4. The test problem

while ai = 0.1i for 1 ≤ i ≤ n. The right-hand side is chosen so that the exact solution is
(1, . . . , 1)T.

In Tables 4 and 5, we compare the following preconditioners on this test problem:

• mixed, theP mix preconditioner (4.5) where we apply the EBE preconditioner to thene

‘finite’ elements and SBS to the rank-one term,
• the EBE preconditioner applied to the complete set ofne + 1 elements,
• diag, a diagonal preconditioner, and
• band preconditioner with semi-bandwidths of 1 (band(1)) and 5 (band(5)). Increasing

the semi-bandwidth to larger values does not help significantly with such problems.

In Table 4, we study the effect of varying the condition number of the matrix when there
is a 20 % overlap between the blocks (that is,ve = 10 andvo = 2)—we letne = 100, and
thusn = 802. We report #it, the number of CG iterations,tcon, the time to construct the
preconditioner,tpre, the time spent applying the preconditioner,tcg, the convergence time
for the CG iteration, andtsol, the total time to solve the linear system (tsol = tcon + tcg).

When increasingλmax from 10 up to 105, even if the condition number of the matrix
slightly decreases, the eigenvalue spectrum is less clustered which makes the problem harder
to solve and thus explains why the number of iterations increases for all the preconditioners.
For example, whenλmax = 10, there is a cluster of eigenvalues around 106 and all other
eigenvalues are spread between 100 and 102, while whenλmax = 105, there is still a cluster
of eigenvalues around 106 but the other eigenvalues are spread between 100 and 105.

Firstly, we see that the mixed preconditioner is effective. When compared with the other
preconditioners, it requires the smallest number of CG iterations for the three condition
numbers studied. The construction time required by EBE is dramatically larger than that
of the mixed preconditioner, purely because EBE has to factorize the dense matrix arising
from the rank-one element using a (modified) Cholesky algorithm. Moreover, this has a
significant effect on the time to apply the preconditioner, and the total computational time.

We now compare mixed with the second best preconditioner for each of the three condition
numbers studied (the diagonal preconditioner for the two values ofλmax (10 and 103) and
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Table 4. Matrix withne = 100,ve = 10,vo = 2 andn = 802. The blocks are generated with
eigenvalues in the range [1, λmax]. tcon is the time of construction of the preconditioner,tpre the

time spent applying the preconditioner,tcg the time of convergence of the CG method,tsol the total
time of the linear solver and #it the number of iterations needed for converging.κ is the condition

number of the matrix

Preconditioner tcon tpre tcg tsol #it

λmax = 10,κ = 1.6 × 106

mixed 0.2 0.1 1.3 1.5 13
EBE 16.7 2.9 4.9 21.6 27
diag 0.0 0.1 18.6 18.6 244

band(1) 0.1 1.4 108.7 108.9 1 412
band(5) 0.1 1.5 50.7 50.8 730

λmax = 103, κ = 1.3 × 106

mixed 0.2 0.5 8.4 8.7 113
EBE 14.9 16.9 29.2 44.1 180
diag 0.0 0.1 23.9 23.9 354

band(1) 0.1 2.3 179.3 179.3 2 578
band(5) 0.1 1.7 60.6 60.6 873

λmax = 105, κ = 1.0 × 106

mixed 0.2 1.3 22.5 22.7 300
EBE 16.2 41.9 72.0 88.2 409
diag 0.0 0.2 80.3 80.3 1 031

band(1) 0.1 1.5 129.5 129.6 1 682
band(5) 0.1 1.6 60.9 61.0 886

band(5) for the remaining one (105)). The gain in total computational time due to the use of
a mixed preconditioner is 15.5 whenλmax = 10, and 2.7 for the other two values ofλmax.
We should note that the number of iterations for the mixed preconditioner increases as the
conditioning worsens, so we cannot claim that the method is perfect.

In Table 5, we compare the effect of varying the degree of overlap between the blocks
from 0% to 50%, while keeping the condition number of the blocks fixed at 105. Once
again, the mixed preconditioner proves to be the best in terms of number of iterations and
total computational time. The mixed preconditioner appears to be consistently about 2.7
times faster than band(5).

4.2. Tests on some optimization problems

We now turn to less contrived examples which arise from optimization. Givenf andc,
we apply a truncated Newton algorithm (see [5]) to minimize an augmented Lagrangian
function of the form (4.2) for fixed values of the Lagrange multiplier estimatesλ = 0 and
increasing values ofρ. The truncated Newton equations are solved using preconditioned
conjugate gradients, and we consider diagonal, EBE and mixed preconditioners; in the
mixed preconditioner, the terms

∑m
i=1 ∇xci(x)(∇xci(x))T of (4.3) are approximated using

the SBS method, while the remainder is handled using EBE factors.
In Tables 6–8, we show results for three different problems from theCUTE collection.

For each preconditioner, we reportinew the number of iterations of the truncated Newton
algorithm, icg the total number of CG iterations required for the solution,tnew the total
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Table 5. Matrices withne = 100,ve = 10 andvo = 0 to 5.λmax = 105 andκ gives the
condition number of the problem

mixed EBE diag band (1) band (5)
Over-
lap order κ #it tsol #it tsol #it tsol #it tsol #it tsol

0 1 000 3.3E6 565 64.2 865 259.1 1723 179.6 3 783 398.5 1 726 182.8
1 901 2.1E6 420 39.7 634 165.8 1 257 107.6 2 249 192.2 1 183 101.6
2 802 1.0E6 300 22.7 409 88.2 1 031 80.3 1 682 129.6 886 61.0
3 703 3.9E5 207 11.8 278 45.0 783 41.2 1 010 53.2 602 32.3
4 604 9.9E4 139 6.2 183 23.3 483 19.2 743 29.7 410 16.6
5 505 2.4E4 99 3.3 126 11.9 345 9.9 454 13.0 304 8.9

Table 6. Solution of the problemSTEENBRAwith different penalty values

ρ = 1 ρ = 10

Preconditioner inew icg tnew tsol tcon tcg inew icg tnew tsol tcon tcg

diag 7 86 2.0 1.7 0.0 1.7 8 96 2.2 2.0 0.0 2.0
EBE 8 154 8.5 8.3 1.0 7.3 9 194 10.6 10.4 1.1 9.3

mixed 7 38 3.9 2.8 0.8 2.0 8 37 4.0 2.9 1.0 1.9

ρ = 100 ρ = 1000

Preconditioner inew icg tnew tsol tcon tcg inew icg tnew tsol tcon tcg

diag 8 89 2.1 1.8 0.0 1.8 9 115 2.6 2.4 0.0 2.4
EBE 9 159 8.9 8.7 1.1 7.6 10 219 12.0 11.8 1.2 10.5

mixed 8 38 4.1 3.0 0.9 2.0 9 40 4.5 3.1 1.0 2.1

computational time for the Newton process,tsol the total time required by the linear solver,
tcon the construction time of the preconditioner andtcg the convergence time for the CG
method.

The penalty parameterρ is varied from 1 to 103, which increases the condition number
of the Hessian. As before, the number of CG iterations is always least when using the
mixed preconditioner. For the problemSTEENBRA(Table 6), the diagonal preconditioner
is marginally the most efficient in terms of computational time for all four penalty parameters
considered, while the mixed preconditioner is significantly faster than EBE. ForGRIDNETA
(Table 7), the mixed preconditioner is always the best preconditioner when considering the
time spent in the conjugate gradient iteration and requires slightly fewer Newton iterations
than other preconditioners whenρ is greater than 10. The gains arising from the use of
the mixed preconditioner increase with the penalty parameter value. Finally, forGENHS28
(Table 8), the mixed preconditioner proves to be fastest for all but the smallestρ.
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Table 7. Solution of the problemGRIDNETAwith different penalty values

ρ = 1 ρ = 10

Preconditionerinew icg tnew tsol tcon tcg inew icg tnew tsol tcon tcg

diag 6 194 17.2 16.6 0.0 16.6 7 592 51.6 50.9 0.0 50.9
EBE 6 153 35.1 34.5 2.1 32.4 7 446 98.4 97.7 2.4 95.2

mixed 6 58 18.1 15.3 2.1 13.3 7 17344.8 41.6 2.4 39.2

ρ = 100 ρ = 1000

Preconditionerinew icg tnew tsol tcon tcg inew icg tnew tsol tcon tcg

diag 8 1 209 105.0 104.2 0.0 104.2 9 1790 153.4 153.4 0.0 153.4
EBE 8 1 018 223.7 222.9 2.7 220.2 9 1680 368.7 364.8 3.1 364.8

mixed 7 271 67.1 63.9 2.4 61.5 8 536130.0 126.4 2.7 123.7

Table 8. Solution of the problemGENHS28with different penalty values

ρ = 1 ρ = 10

Preconditioner inew icg tnew tsol tcon tcg inew icg tnew tsol tcon tcg

diag 6 46 12.7 10.9 0.0 10.9 8 103 26.0 23.8 0.0 23.8
EBE 6 19 19.3 17.5 6.1 11.4 7 25 24.0 22.0 7.1 14.9

mixed 5 12 17.1 12.4 5.1 7.2 5 915.6 10.6 5.2 5.4

ρ = 100 ρ = 1000

Preconditioner inew icg tnew tsol tcon tcg inew icg tnew tsol tcon tcg

diag 8 116 29.2 27.0 0.0 27.0 10 143 35.3 32.7 0.0 32.7
EBE 8 37 31.7 29.5 8.0 21.4 9 42 35.8 33.4 8.9 24.5

mixed 6 13 19.2 13.7 6.0 7.7 7 12 21.0 14.4 7.1 7.4
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5. Conclusions

The subspace-by-subspace preconditioner we have described allows us to take advantage
of low-rank terms in an unassembled matrix. The preliminary results we have reported
demonstrate that the approach has some promise in comparison with a number of currently
popular preconditioners such as band or EBE methods. Mixing SBS and EBE precondi-
tioners proves to be attractive for problems where some, but not all, elements have low
rank.

However, we recognize that the tests are at best an attempt to demonstrate the viability
of the approach, and that there are a number of unresolved issues, such as improvements to
the amalgamation algorithm and a complete understanding of the effects that reordering the
elements has on the quality of the preconditioner. More importantly, it is not known what
effect such preconditioners have on the spectrum of the preconditioned matrix. We intend
to consider these and other issues in due course.
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