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We consider the iterative solution of symmetric positive-definite linear systems whose coefficient matrix may

be expressed as the outer product of low-rank terms. We derive suitable preconditioners for such systems,
and demonstrate their effectiveness on a number of test examples. We also consider combining these methods
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1. Introduction

We consider the solution af by » real linear systems of equations
Az =b (1.1)
where A is symmetric positive-definite and has the form
A= Z A AT (1.2)
i=1

Here A; is ann by n; real matrix, anck is a positive integer. Systems of this form arise
naturally in a number of ways.

1. Normal equations for least squares (see, for instance, [1]).
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2. The Schur complement following partial elimination in augmented systems (see, for
example, [8]).

3. Newton equations for partially separable optimization of unary functions (see [12]).

4. More general partially separable optimization (see [13]).

We shall assume thatis sufficiently large that the structure of the system must be exploited,
but we donotassume that all thd; are sparse.

We aim to solve (1.1) using an iterative method, and, given the symmetry and definiteness
of A, the method of preconditioned conjugate gradients (see [3,14]) is the natural choice.

The purpose of this paper is to describe a new class of preconditioners which reflect the
structure (1.2) ofA, and which are especially efficient when the matriggsare of low
rank, without necessarily being sparse. An extreme case would bealsemdense vector
andA; = a;, which results in a full but rank-one matriag.,aiT. In this case, most traditional
preconditioners would prove to be most ineffective. We do not wish to assemble the whole
of A, but prefer to use the componers in isolation. This will enable us to construct
preconditioners which are appropriate for parallel computation.

In Section 2 we introduce our subspace-by-subspace (SBS) preconditioners which are a
special type of element-by-element (EBE) preconditioner designed to deal with matrices
of the form (1.2) and other low-rank matrices. In the following section, we apply these
methods to least-squares problems, and demonstrate their effectiveness.

Quite clearly, SBS preconditioners will never be well suited to all problems, most par-
ticularly to those problems with one or more mataAx of (close to) full rank. In Section 4
we consider matrices for which some, but not all, terms are of the $#éya] . We show
that one of the great advantage of the SBS preconditioners is that they can be efficiently
combined with other element-by-element preconditioners to handle substructures of low
rank. This gives rise to composite preconditioners that are effective on a wide range of
matrices.

2. Development

In Section 2.1, we consider the basic ideas behind element-by-element preconditioning.
This is followed, in Section 2.2, by a description of our new class of preconditioners.

2.1. Element-by-element preconditioners

An obvious approach to finding a suitable preconditioner for (1.2) is tigjet A; Al.T, in
which case (1.2) becomes

A= Z E, 2.1)
i=1

Notice here that eacllementE; is positive semi-definite. In this section and the next, we
shall consider the general form (2.1) without necessarily assumingzthat A, A]. We
shall return to this particular form in Section 2.3.

A popular class of preconditioners for systems whose coefficient matrix has the form
(2.1) are theelement-by-elemepteconditioners (see, [16,19]). These have been seen to be
effective for systems arising from partial differential equations ([10,15]) and optimization

[5].

Copyright © 1999 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl6, 213—-234 (1999)



Subspace-by-subspace preconditioners for structured linear systeniz15

There are four fundamental ingredients involved in the construction of such a precondi-
tioner. We rearrange (2.1) to give

A= Ze:Di +Xez(Ei - D)) =D+ZE:(E1' — D) (2.2)

i=1 i=1 i=1

whereD; = A(E;), D = Y{_; D; = A(A) and A(M) denotes the diagonal matrix
comprising the diagonal of the matrid . Then

e e
A= D} <I,, +Y D A(E - Di)D%) D% = D3 (I,, + ZS,-) Dz (2.3)

i=1 i=1

wherel, is then by n identity matrix and we have definesl, = D’% (E; — Dl»)D’%.
The first critical step is to make the approximation

In+isi %ﬁ(In'FSt) (24)

The error in this approximation may be expressed in terms of second and higher order
products of the components, and thus the approximation will be good if either the individual
S; are small or zero (this is likely to be truefif; is very diagonally dominant), or the product
of the overlapping componeng; andsS; is small or zero.

As E; is positive semi-definite, it dlrectly follows thdt, + S; is positive definite and
thus has a Cholesky factorization (see Theorem 5.3 in Chapter 5 of [17])

w, €1 +8 =L,LT (2.5)

The matrixW; is known as th&Vinget decompositioof E; (see [16]). Notice that if;

has non-zeros ig; rows and columns, the Cholesky factor of its Winget decomposition will
differ from the identity matrix only in these rows. This symmetric decompositid/ofis

the second critical step. Combining (2.3), (2.4) and (2.5), we have

A~ D3 (HL LT) D> (2.6)

i=1

Unfortunately, (2.6) is not symmetric, and thus is not a satisfactory preconditioner. The
third crucial step is to make the further symmetrizing approximation

e e 1
ELILI ~ ([[lL) (]‘[ LiT) 2.7)

This approximation is, as before, exact if there is no overlap between the blocks and will
be good under exactly the same circumstances as its predecessor. We thus obtain the final

approximation
e 1
A~ Pggg = D? (]_[ Ll.) (]_[ L]) D? (2.8)

i=1
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which may be used as a preconditioner forSuch a matrix is known as tHeBE precon-
ditioner. In order to solve the system of equatidhggex = y efficiently, we exploit the
decomposition (2.8).

We are free to order the elements in any way we choose and may thus encourage paral-
lelism by ordering non-overlapping elements consecutively so that we can perform groups
of forward and back-solves in parallel. Clearly, the efficiency of the EBE preconditioner de-
pends on the partitioning of the initial matrix and on the size of the off-diagonal elements of
the elementary matrices. With this in mind, the final critical ingredient gréprocesshe
problem to amalgamate elements istger-elementwith the aim of reducing the overlap
between these super-elements. Reference [6] demonstrates that this is necessary in order to
make the preconditioner effective in practice. It has the additional benefit that vectorization
is more effective with the larger super-elements.

2.2. Subspace-by-subspace preconditioners

The derivation in the previous section is appropriate whether oEhad$ rank deficient.
However, this is not true of an efficient implementation as we shall now see.

We suppose thaE; has non-zeros ia; rows and columns (it can even be dense, i.e.,
e; = n). As we have already observed, the Cholesky factors of its Winget decomposition
will then differ from the identity matrix only in thess#lementatows and columns. Denoting

the non-zero rows and columns &f by E;‘g’", and using similar definitions foW;, D;
andD, we obtain

g 1 : : 1 : 1 ¢ 1
Wi =1, + (D% 2(E] - DI)(D*) % =10 + (D¥) iE/ (D¥) "2 (2.9)

wherelz‘g" =1, — (D%i)—lD;‘g" is positive semi-definite. We suppose, for now, tln“é"t
has positive values, but will shortly return to the singular case.

Now suppose thak; is of rankr;. Then we see immediately thW(f" is a rankr;
modification of the positive-definite diagonal matrif". Thus, ifr; < e; it would seem
to be preferable tapdatethe Cholesky factors oWZg" following a sequence of rank-

modifications rather than assembling and factoWég" directly (see, for example, [11]).
More importantly, ifr; < e;, an alternative to the Cholesky factorization more suited to the
nature ofE; is clearly desirable.
Let B = (11.%")‘%(D%")‘%Ei%" (D%i)‘%(1l.%i)‘% be a rescaling ofZ". Then we may
write (2.9) as
o, . 1 . @. 1
wé = 1%z (Iei +B?°’) (152 (2.10)

We now aim to decomposk, + Bi%" into the symmetric product of easily invertible parts.
We suppose we may find a decompositiorﬂﬁ" of the form

& _ o0 BY O\ 09T _ i g ((BY 0\ [ (DT
B'= @ < 0 0)(Qi) = Zi)< 0 0)<(Z;¢1)T

Ii pIi v i
= Y;'B;'(Y; )"

(2.12)

wherle" is orthogonal and defines a transformation from the elemental fotamal
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representation oB?’" ,and this representatioﬁif" ,isanr; by r; symmetric positive definite
matrix (for instance, but not restricted to, tridiagonal, see [20], Chapter 7). Furthermore, let
L} be the Cholesky factor o, + B!’ Then

9; )
I, +B) = Q?"(Irf+Bf 0 )(Qf')T

0 Ieir,
$i 7 IiNT
— Q?l( i (Ol ) 1707 )(Q?z)T
9 C Fi\T
_ S L,' 0 IinT A Ji (L,' ) 0 FiNT
- (0 Jamrer (% L0 )@
— M;%(M;%)T
(2.12)
where
. $i
mrEQr (0 @y (2.13)

Hence, we have obtained a factorization of the Winget decomposition of the form
@, @. 1 . . @. 1
wi =M ]hTal)z (2.14)

We may now use this as the basis of an EBE-like method. In particular, the resulting
preconditioner is of the form

e 1
A~ Pgpg = D? (H(li)%Mi> (H(Mi)-r(li)%> D:? (2.15)

i=1

i=e

where1; and M; are simplyli%" and M;q”' appropriately embedded (in their elemental
row and column positions) withid,,. We refer to this as aubspace-by-subspa¢8BS)
preconditioner because of the dependendm& on the subspaces defined by the matrices
Yf" ande L

Atfirst glance we do not appear to have gained anything by this. In particular, the forward
and back substitutions required when using (2.15) appear to be at least as expensive as using
(2.8). However, more careful consideration reveals that this may not be so. Consider, for

instance, the single ste{p?")%Mf”:cf’f = y’i. Using the orthogonality and partitioning
$i
of Q;' and (2.13), we have that
i _ Y (Lfi)_l 0 ST 83 g,
' =Q 0 I @) (1) 2y
— Yfz (sz)—l(Y;g’z)T + Zfz (Z;%)T> (11%1)*%3/3’, (216)
. _ . g _1 g

= (L, + Y] (@ - 1,) (r])T) a2y
The matrifo" is not required, merely its first; cqumnsz". Thus we see that the
principal costs are two matrix vector products with matrices of dimensiobge; ande;

by r;, respectively, and a single triangular solve with a matrix of orgeFhe comparative
cost of a forward substitution in (2.8) is for a triangular solve with a matrix of oegder

Copyright © 1999 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl6, 213—-234 (1999)



218 M. J.Dayc, J. P. @camps and N. |. M. Gould

Neglecting lower-order terms, this indicates that the SBS approach is seen to be more
efficient whenever 2.e; + %riz < %eiz, that is whenever

ri < (V5= 2)e; ~ 0.236¢; (2.17)

The other relevant ste@V;")T (1{")3z% =y’ i very similar. For in this case, we have
that ,
; Gi _1 i L.)i -T 0 . .
ati = (11'% ) ZQ? (L) (Q? )Ty
0 Ieir,
= (li%l)_é Yf’ (sz)—T(Yif,)T + Z;@z (Z;%)T) yy, (218)
1 ) . ,
= (1[%[)72 Iei + Y;(PI ((Lf‘)_T — Ir,-) (th)T) yyi

and the principal costs are identical to the previous case.
We now consider how to cope with the possibility thﬁt may be singular. Notice that

1;“0”’ will actually be positive definite if and only if each elemental variable occurs in at least
one other element. Any variable which occurs in a single element is said esgused

An exposed variable may be directly eliminateithin its elemengthis is also called static
condensation in finite element techniques); the resulting smaller element, formed from the
Schur complement following this elimination, will itself be positive semi-definite. At first
sight, it might then appear that it suffices to directly eliminate all exposed variables. However
this is not so, as these eliminations may expose more varigiiles reduced probleni-or
example, suppose elemernhvolves variables 12, 3, 4 andE;g’" is of the form

1111
1111
11 2 2 (2.19)
11 2 3

and that variable 1 occurs in no other elements, while variable 2 appears in precisely one
other element, elemerjt If we eliminate variable 1 within elemehtwe obtain the Schur
complement

111 111 0 0O
12 2]-1111)]=1011
1 2 3 111 01 2

But now variable 2 does not occur in the redudéjfﬂ,

11
1 2
and only occurs in element Thus, in the reduced problem variable 2 is exposed. This

has happened simply because the original elelﬂé‘%ﬁtwas singular, but not all singular
elements will automatically expose new variables when current exposes are eliminated.
Fortunately, a simple scheme for removing all exposed variables is obvious. At each stage,
eliminate all currently exposed variables. Now check if extra variables have been exposed.
If so, start the next stage. If not, the reduced problem has no exposed variables, and thus

the resultingﬁgi are all positive definite. Notice that, as all eliminations take place within
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elements, no communication is required during the elimination. At the end of each stage,
the list of elements containing each variable may be simply revised, and newly exposed
variables detected. This process ends in at m@seps.

2.3. Subspace-by-subspace preconditioners for structured problems

We now return to our original problem, that is the case for wiizh= A, A . In this case,
it is straightforward to compute the required matri@;@" (or Yf") and Bf" in (2.11).
Suppose tha#d; has non-zeros ig; rows. Denoting these rows bay;‘g", we obtain

B =ctictyT (2.20)

1

whereC¥ = (1%)~2(D%)~2A% . Now, let

$i
chi = Q" ( Ré' g ) v (2.21)

wherle" and V?" are orthogonal an(R‘f" is triangular and of rank;, be a complete
orthogonal decomposition (ﬂ’jfg" (see, for instance, [1]). Then cIearB,f" = Rf" (Rf")T,

and we have the ingredients of (2.11). The decomposition (2.21) may be determined by a QR
factorization with column pivoting, while the actual form we require, involving only the first

ri cqumnsz" oer", may be obtained using the modified Gram—-Schmidt process (again
with column pivoting). We should caution the reader that under exceptional circumstances
these methods may incorrectly estimate the rarﬂzﬁf, and a singular-value decomposition
may be preferred. Again, see [1] for details.

A potential difficulty occurs Wherij‘g" is singular. As we have already mentioned, this
can only happen if one or more elemental variables are restricted to this single element.
We mentioned that in this case we may directly eliminate these exposed variables, and the
resulting smaller element is still positive semi-definite. However, unless we are careful, it
may not inherit the structure (2.20). We now show that, in fact, we can still arrange the
computation so that the smaller element is of the form (2.20).

To see this, suppose, without loss of generality, that theAiesemental variables only
occur inEf”". We may then find an orthogonal matlli](;fg" so that

Ab Ab

1 1

&
(D¥)"2ASUY = ( R’ 0 ) (2.22)

whereR;‘g" is k by k, non-singular and upper triangular—the matr,b;?()" may, for instance
be formed as a product of plane rotations. We may then write (2.9) as

& 0 0 RY 0 (RIHT (AT
wé = o )+ e i 2
i ( 0 1[& ) ( A%, A:& ) ( 0 (A;ér)T

1

A 2.23
( R(lgz (Rl%z )T R%I (A%z )T ( )

i i
Az%l (RI%I)T I{iéi + Az%l (A%’)T + Az%l (Al%z)T
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Eliminating the firstk elemental variables then leaves the Schur complerﬁ%h{—
ijg" (Z;‘g"')T, which is of the form (2.9), but now With‘]j.g" non-singular. Notice, the matrix
Ul.%" need not be stored.

Unfortunately, this does not completely remove the problem because, although the Schur
complement is of the correct form, it may happen that one or more of the rows of the

reduced matrixzi%" contains only zeros. Thus, the variable associated with this row is

no longer involved in théth reduced element, and this may expose the variable within
another element. As in the more general case considered at the end of Section 2.2, a number
of stages may be required, each eliminating exposed variables and marking any further
exposed variables for elimination at the next stage.

3. Least squares problems

3.1. Development

A rich source of systems of the form (1.1)—(1.2) are least-squares problems,

minimize ||Ax — b2 (3.2)

xeR”

where A is anm by n rectangular matrix withn > n. A solution to (3.1) satisfies the
normal equations

ATAz = ATb. (3.2)
If we group rows ofA so that
A
A=| - (3.3)
A,
then (3.2) is simply
Y AlAz=ATb (3.4)

i=1
which is of the form (1.1)—(1.2). Clearly there is considerable freedom in the partitioning
of A into (3.3). Extreme examples ark;, = aiT ande = m, WhereaiT is theith row of

A,or A1 = A ande = 1. We wish to solve (3.2) using a suitably preconditioned variant

of conjugate gradients appropriate for least-squares problems (see, [1], Sections 7.4 and
7.5). We also wish to use the flexibility of the form (3.4) to construct suitable subspace-by-
subspace preconditioners.

The SBS(1) preconditioner simply choosds = al.T ande = m and follows the con-
struction in Sections 2.2 and 2.3. It is, moreover, easy to detect and eliminate exposed
variables before constructing the preconditioner. To do this, we first initialize an empty list
of rows% and variable& to be directly eliminated. We now scan the rows and columns of
A notin® and<, respectively, for a column singleton. If one is found, we add its index
to €, add the row ta® and repeat the search. If none are found, all remaining columns
have two or more non-zero entries (or are null which implies thas rank deficient). If
we suppose thadl is of full rank, this implies that we can permute the rows and columns

Copyright © 1999 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl6, 213—-234 (1999)
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Algorith  Leta;...a,, be given vectors.

ComputeOcce(i),i = 1,..., n, the number oh; containing variable.
Let S; denote the current set of the vectors to be merged, and let
Oces(i),i =1, ..., n, be the number of occurrences of variable i witl§jn

Setl =1,85=0,0ces(i)=0,i=1,...,n
Fork=1,...,m
Sy = 8 + {ay}
Update Occs
If 3i such thatOcces (i) = Occ(i), reset
Sy =8 - {ax}
I=1+4+15=0,0ces(i)=0,i=1,...,n
End If
End For

Figure 1. Construction of the sets of rank-one terms to be amalgamated

of A so that
_( R A,
PAQ = ( 0 A, )

whereP and@ are permutation matrices and each colummgtas at least two non-zero
entries. Substituting in (3.4) and simplifying reveals that if we solve

AlAxz = Alb and (3.5)
Rx, = b,— A,z (3.6)

m:Q(ie ) where (ze ):Pb

Of course, (3.5) are the normal equations for the reduced least-squares problem

then

minimize ||A,x, — b, |2

xpeRr

The advantage is that each column of this problem has at least two non-zeros and hence
choosingA; = al.T for this problem reveals no exposed variables.

A second possibility is to merge groups of rowsAfto form the A;. We can then use
the amalgamation algorithm described in Figure 1 to merge rank-one terms. It basically
regroups rank-one terms to ensure that no variable belongs to a single element.

We also impose a thresholdyay, on the maximum number of rows allowed in an amal-
gamated element (i.e., the maximum size of theSgetn practice, in view of (2.17%max
should be no larger thai/5 — 2) x n.

We recognize that the algorithm described in Figure 1 is quite naive. However, it has
proved effective in practice and attempts to design more sophisticated algorithms—for
instance, to try to group terms which have a large overlap together—have not proved sig-
nificantly better.
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Table 1. Characteristics of the test matrices. For each matrgiyes the number of rows, the
number of columns, ang; the number of non-zeros. The number of variables directly eliminated
is n., while ng gives the resulting number of columns in the Schur complement. Columns 7-10
give the degree of overlap defined as the average number of groups sharing each variable and the
average number of rank-one terms within each group (which is also the average rank of the
groups). The column headedyives the condition number of each problem

Degree of overlap/average group size

kmax =

20 50 K

3.2/30.0

Name m n nz ne ng 1 5

111033 1033 320 4732 12 308 15.2/1.0 5.9/5.0 3.8/17.3 1.9E+4

BRATU1D 4007 3004 6007
TRIDIA 2000 1000 2998
BROWNBS3997 2997 6993
DQDRTIC 3994 2994 5988

EXPFITC 1009
HYDCAR20 99
MAXLIKA 243
ORTHREGQ 005

502 2755
99 734
235 2003
500 3500

13003
1 999
0 2997
0 2994
0 502

2.6/1.0 2.1/5.0 2.0/19.9
3.0/1.0 2.2/5.0 2.0/20.0
2.3/1.0 2.1/5.0 2.0/20.0
2.0/1.0 2.0/5.0 2.0/20.0
5.5/1.0 3.0/5.0 3.0/19.8

2.0/49.6
2.0/50.0
2.0/50.0
2.0/49.9
2.9/48.0

6.5E+5
7.1E+3
1.4E+6
5.6E+9
7.3E+2

0 99 7.4/1.0 4.3/49 3.5/19.8 3.3/19.8 1.0E+6
0 235 8.5/1.0 3.0/5.0 2.0/18.7 2.0/40.5 4.2E+1

0 500 7.0/1.0 2.2/5.0 2.1/19.7 2.0/47.8 2.0E+2

3.2. Numerical experiments

We have tested the SBS preconditioner on a number of rectangular matrices from the
Harwell-Boeing collection (see [9]), and on a number of Jacobian matrices from prob-
lems arising from th€UTE collection (see [2]). The characteristics of these problems are
summarized in Table 1. We include details of how many exposed variables can be trivially
removed, and the resulting problem sizes. Further experiments are reported in [7].

The matrixil1033 was derived from an Harwell-Boeing matrix in [18], and subse-
quently used in tests in [1]. The remaining matrices were chosen arbitrarily froBLif&
collection.

3.2.1. Experiments with zero residual problems

For our first set of experiments, we consider the least-squares solution of overdetermined,
consistent sets of equations. The zero-residual problemg sin— b||> are defined by
requiring the exact solution to be* = (1,...,1)T, and settingg = Az*. The origin is

taken as the initial estimate of the solution.

In Table 2, we compare the conjugate gradient (CG) solution of the normal equations
without preconditioning, to the same method preconditioned by a diagonal preconditioner,
a band approximation—in our case b&hd a band matrix with semi-bandwidthwhose
non-zeros are those from" A—or by an SB®max) preconditioner, whose elements are
composed of at mogtnax rank-one terms using the algorithm described in Figure 1. For
the band preconditioner, once we have the approximation to the ba#d.4f we use the
LDLT band solver from theANCELOT package (see [4]). We note that, in this case, the
factors may be modified to guarantee that the preconditioner is safely positive definite. The
diagonal preconditioner is simply bag).
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We use the variant of the CG method for least-squares problems described in [1], Section
7.4.1). Convergence is recorded as soon as

IAT(AZ — b)|]2 < 107 5)b||2 3.7)

We report #it, the number of iterations needed for convergepggthe construction time

(in CPU seconds) for the preconditioneyy, the convergence time for the CG method
neglecting the constructiontime, a@id, the relative erroffx*—x||2/||2*||2 in the computed
solutionz. A star indicates that the method reached a maximum number of iterations without
satisfying (3.7)—in our experiments, a maximum ofilierations were permitted. The
entries marked in bold correspond to the method(s) which performed best in terms of total
time required. All of the experiments reported in this paper were performed on a SUN
workstation with a 125 MHz HyperSPARC processor.

For the nine problems tested, the unpreconditioned method performed best (in terms of
total computational time) in two cases, the diagonal preconditioner proved to be best in two
cases, the band in two cases, the SBS in two cases, while the diagonal and SBS precondi-
tioners tied on problel@PXFITC. For the problem#1033 only the SBS preconditioner
converges within the permitted number of iterations.

In most cases, the SBS preconditioner converges in fewer iterations than its competitors.
However, this efficiency in number of iterations is not systematically reflected in the com-
putational time as one SBS iteration is typically more costly than one band iteration. For
one problemTRIDIA ), the band preconditioner requires significantly fewer iterations than
the SBS preconditioner. However, this is not surprising since these matrices are tridiagonal,
and the CG method acts as a direct method with the band preconditioner. The problems
BRATU1DBROWNB&NdDQDRTICalso exhibit a band structure with semi-bandwidths,
respectively, of 5, 4 and 7. As we have already noted, the factors of the band are sometimes
modified to ensure that the preconditioner is safely positive definite. The perturbations in-
troduced on problemBRATU1Dand BROWNBS8Xxplain why the band preconditioner is
not exact even wheh exceeds the semi-bandwidth of the problem. This is not the case on
DQDRTICand convergence is achieved in one iteration whisrarger than 7. It also helps
to explain why the band preconditioner may occasionally be worse than no preconditioning.

In Figure 2, we show the eigenvalue spectrum of the unpreconditioned systemn
and the eigenvalue spectrum of the preconditioned system using SBS(1) for the problem
DQDRTIC

The structure of the problenil4033 andHYDCAR2GQs very irregular, the non-zeros
being spread throughout the matrix. SBS preconditioners seem more able to deal with such
irregular structure than its competitors.

The problemEXPFITC, MAXLIKA andORTHREG®Gave a very similar structure, in
that the first few columns of are (almost or completely) dense leading to a def5e.

We consider the probleBXPFITC in detail. Columns 1 to 3 of the matrid involve
roughly half the variables, while columns 4 and 5 are completely dense. The main diagonal
of the matrix is also dense. As a consequence, the mdtriA is dense, and clearly a band
preconditioner has no little chance of success. SBS proves to be effective as gggqias

large enough to capture the first five columns in a single group, which happens whenever
kmax > 5. We show in Figure 3 the eigenvalue spectrum of the unpreconditioned problem
and the eigenvalue spectrum of the preconditioned system using SBS(1) and SBS(5). The
eigenvalue spectrum of the preconditioned system is slightly improved compared with the
unpreconditioned one. SBS(5) is able to capture the set of dense columns into a single
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Figure 2. Eigenvalues of the probldd@QDRTIC unpreconditioned (left) and preconditioned
using SBS(1) (right)

group, and the eigenvalues of the preconditioned system are significantly more clustered,
which helps to explain the convergence in two iterations.

The impact of increasingnax depends on the structure of the problems. There is little
effect on problenil1033 for example, while the number of iterations settles down to two
askmax increases from 1 to 5 (and beyond) on BRTHREG@roblems. In some cases,
increasingemayx increases the number of iterations, as we seEl# idCAR20A small value
of kmax, SaY¥kmax = 5 or 10, seems to be a good choice in our tests.

In general, the relative error is smaller when a SBS preconditioner is used. It is also
evident that SBS usually (but not always) performs better than its competitors when the
problem is ill-conditioned. For the well-conditioned examples, the cost of forming and
applying the preconditioner does not, in general, pay off.

In summary, the SBS preconditioner appears to be an attractive alternative to less sophis-
ticated possibilities when using the CG method to solve least-squares problems, particularly
when the problem is ill-conditioned and when it does not have a kind of band structure. We
have observed that SBS—as do other element-by-element preconditioners—takes advan-
tage of a wider range of sparsity patterns than band preconditioners.

3.2.2. Experiments with non-zero residual problems
In addition to the consistent sets of equations we considered in the last section, we also
performed tests on least-squares problems with non-zero residuals. The problems are con-
structed as follows. We build a random vecbgrin the interval [-1,1], and solve the least-
squares problem mihAx — bg||2 using the LAPACK library. The residuab corresponding
to this solution is almost surely non-zero and satisfiés-o = 0. This then ensures that the
solutionz* = (1...1)T we seek solves the least-squares problem|diz — b||», where
b=1ro+ Ax*.

We report on experiments using six problems with non-zero residual in Table 3. These
results are similar to those obtained with zero residual problems. Again the relative error
in the solution is seen to be much smaller using SBS in many cases (see, for example,
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Figure 3. Eigenvalues of the probldBXFITC: unpreconditioned (top left), preconditioned
using SBS(1) (top right) and preconditioned using SBS(5) (down centre)
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Table 2.
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Results with no, diag, bakdi(and SBSKmax) preconditioners on zero residual

problems

Name no

diag

bandk), k=
5

SBSkmax), kmax=
1 5 20

1 2 20 50

11033 #it
Tcon
tcg
err

BRATUI1D #it
fcon
tcg
err
#it
fcon
err

BROWNBSH#it
fcon
Icg
err

DQDRTIC #it

Icon
err

EXPFITC #it
Icon
err

HYDCAR20#it
fcon

err

MAXLIKA #it
fcon
tcg
err

ORTHREGGHit
fcon
err

TRIDIA

3080*
0.00
6.70

2E-03

25210*
0.00
146.27
5E-01

1810
0.00
4.43

2E-15

10
0.02
0.08

5E-04

11
0.00
0.10

6E-16

843

0.00

1.25
3E-11

990*
0.00
0.45

5E-01

30
0.00
0.03

3E-14
290
0.00
0.45

1E-12

3080* 3080* 3080* 3080* 3080* 1835 1827 1739 1640
0.00 0.00 0.00 0.00 0.02 0.00.05 0.13 0.32
568 6.05 7.02 7.82 10.45 41.29.30 23.72 35.23
1E-03 2E-03 1E-03 5E-04 2E-02 3E-11 4E-11 3E-10 2E-11

36 1549 2179 805 805 16 10 9 9
0.02 002 0.02 0.03 0.12 098 0.68 0.65 2.20
0.22 1158 18.43 9.18 22.05 130 0.45 065 125
4E-11 3E-11 8E-11 4E-07 4E-07 7E-16 1E-12 5E-14 3E-14

23 1 1 1 1 10 8 6 5
0.00 0.00 0.00 0.02 0.03 0.23 0.17 030 0.80
0.07 0.00 0.02 0.02 0.03 0.38 0.17 0.17 0.27
2E-16 3E-16 3E-16 3E-16 3E-16 1E-16 4E-16 1E-16 1E-16

33 10 9 9 9 14 7 3 3
0.02 000 000 0.03 015 125 098 122 290
0.30 0.12 0.13 0.5 032 132 037 030 0.58
2E-09 1E-04 2E-04 2E-04 2E-04 5E-10 1E-09 9E-10 2E-11

5 5 5 5 1 1 1 1 1
0.00 002 0.02 0.03 015 127 092 120 263
0.07 0.05 0.07 0.08 0.07 0.12 0.08 0.12 0.25
2E-14 2E-14 2E-13 S5E-14 4E-16 4E-14 4E-14 4E-14 4E-14

33 242 298 265 215 26 2 2 2
005 005 0.05 0.03 0.05 0.070.07 0.17 0.58
0.05 037 050 055 0.83 0.520.03 005 0.10
6E-12 1E-11 3E-12 9E-12 2E-11 6E-13 6E-15 1E-14 1E-14

990* 990* 990* 990* 397 716 414 285 326
0.00 0.00 0.00 0.000.00 0.00 0.00 0.02 0.03
030 032 035 043032 177 065 0.70 0.83
7E-02 8EOO0 9E-01 1EOO 6E-10 5E-12 5E-11 6E-12 3E-11

25 326 127 100 103 24 13 2 2
0.02 0.03 0.02 0.02 005 0.00 0.02 0.03 0.08
002 025 0.12 010 0.18 0.17 0.05 0.02 0.02
5E-14 1E-13 9E-14 1E-13 1E-13 2E-14 8E-15 2E-15 2E-15
135 654 337 296 297 77 2 2 2
0.07 0.07 0.08 0.07 0.08 0.00.05 0.08 0.27
0.20 115 0.62 0.65 117 1.58.02 0.02 0.05
8E-13 7E-13 7E-13 6E-13 1E-12 3E-13 2E-15 2E-15 2E-15
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Table 3. Results with no, diag, ba&dl(and SBS{nax) preconditioners on non-zero residual
problemsx is the condition number of each matrix

bandk), k= SBSkmax), kmax=

Name no diag 1 2 5 20 1 5 20 50

BRATU1D #it 25210* 36 1567 2250 798 798 16 10 9 9
tcon 0.00 0.00 0.02 0.00 0.03 0.10 0.92 0.70 0.95 213

k=6.5E5 fmcg 137.66 0.27 11.95 19.43 9.10 23.27 1.17 0.45 0.63 1.23
err 0.4 5E-11 5E-11 5E-11 4E-07 4E-07 2E-11 2E-11 2E-11 2E-11

DQDRTIC #it 11 5 5 5 5 1 1 1 1 1
tcon 0.00 0.02 0.00 0.00 0.03 0.17 0.22 0.88 1.27 2.80
k=5.6E9 14 0.10 0.07 0.07 0.10 0.10 0.05 0.20 0.08 0.13 0.26
err 3E-14 2E-14 2E-14 2E-13 3E-14 7E-15 3E-14 3E-14 3E-14 3E-14

HYDCAR20#it 990* 990* 990* 990* 990* 397 716 414 285 326

tcon 0.00 0.00 0.00 0.00 0.000.00 0.02 0.00 0.02 0.03

k=1.0E6 g 022 028 035 035 043028 1.77 067 0.60 0.75
er 05 7E-02 7.7 08 15 6E-10 5E-12 5E-11 6E-12 3E-11

BROWNBS#it 10 33 10 7 9 9 14 7 3 3
tcon 0.00 0.00 002 0.02 0.02 015 122 0.87 118 263
k=14E6 14 0.08 030 0.12 010 0.17 032 123 037 0.30 0.3
err 5E-04 2E-09 1E-04 5E-04 1E-04 1E-04 5E-10 1E-09 9E-10 9E-11

EXPFITC #it 901 34 270 339 279 227 22 2 2 2

tcon 0.00 0.03 005 0.05 0.07 0.07 0.00.05 0.15 0.62
k=7.3E2 1ty 133 0.07 050 0.67 0.65 1.00 0.48.02 0.05 0.10

err 8E-11 6E-11 6E-11 6E-11 6E-11 6E-11 6E-11 6E-11 6E-11 6E-11

ORTHREGG#it 320 151 778 364 316 327 76 2 2 2

tcon 0.00 0.07 0.07 0.07 0.08 0.10 0.08©.05 0.10 0.27

k=2.0E2 1y 042 023 153 073 0.78 1.48 1.63.03 0.03 0.05
err 1E-10 1E-10 1E-10 1E-10 1E-10 1E-10 1E-10 1E-10 1E-10 1E-10

problemsBRATU1D BROWNB&ndHYDCAR2D The SBS preconditioner is the fastest
preconditioner for problemBXPFITC andORTHREGC

4. Mixing SBS with other element-by-element preconditioners

Quite clearly, SBS preconditioners will never be well suited to all problems, most particu-
larly to those problems with elements of (close to) full rank. In this section we consider a
second possibility, namely, to combine SBS preconditioners with other element-by-element
preconditioners to handle substructures of low rank. We first give two examples.

Suppose we wish to find the least-squares solutionrioralinearset of equations by
minimizing F'(x) = %||_f(:n)||%, wheref(x) = (fi(x) ... fu(x))". Then the coefficient
matrix associated with the Newton equations F'(x) Ax = —V, F(x) is of the form

Vo F@) =) i@V fi@ + Y Vo fi@ (Ve fi(@). (4.2)
i=1 i=1
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The first summation in (4.1) is a generic ‘sum of weighted elements’, and would typically
be treated using an EBE method. The second summation is of rank-one terms, and could
be treated using the SBS methods developed in this paper.

A second example relates to the minimization of a non-linear function) subject
to a set of (non-linear) constraints(x) = 0,i = 1,...m, using penalty or augmented
Lagrangian methods (very similar arguments hold for inequality constraints using barrier
methods). In this case, a penalty function of the form

(. A p) = f(@) + A e(@) + Lplc@)|3 (4.2)

will be (approximately) minimized for a sequence of Lagrange multiplier estimatesl
penalty parameters. Once again, Newton's method requires the solution of a system of
linear equations whose coefficient matrik,. ¢ (x, A, p) is of the form

Vi@, A, p) = Vir f (@) + Y0 + pci (@) Varci(@) + p Y Veei (@) (Voci(@))'

i=1 i=1 (43)

The first summation in (4.3) is again a generic ‘sum of weighted elements’, and can be
treated using an EBE method, while the second summation, being a sum of rank-one terms,
can be handled using an SBS method. Any additional structure within the remaining term
V.x f(x), such as might result if is partially separable (see [13]), can be treated using
EBE or SBS preconditioners, as appropriate.

In general, element-by-element and subspace-by-subspace preconditioners can be mixed
in an obvious way. Suppose the generic matixs of the form

€e Cs
A=) E{+) E; (4.4)
i=1 i=1

where the elements in the first sum are of general ‘finite element’ type, while those in the
second sum are of low rank. Then we can treafiiexactly as we described in Section 2.1,
and the remaining terms as described in Section 2.2. We compute the preconditioners
elementwise (as described earlier) and obtain the mixed preconditioner
1 (1 = PR B : yT%v;lT 1
A~ Py =Dz ([[L ][z ) [ []@;) ;)2 [ L] | D2 (4.5)

S
i=1 i=1 i=eg i=e,

The order of the terms in (4.5) is arbitrary, and in practice the EBE and SBS terms in (4.5)
might be interleaved to encourage parallelism. Preliminary tests do not, in general, reveal
significant differences in performance when different orderings are used.

4.1. Tests on an artificial problem

We first illustrate the efficacy of such an approach on the artificial problem shown in
Figure 4.1

This problem is formed by adding. elements, each having variables and overlapping

its neighbours by, variables, to a single rank-one element’ involving all the variables.
Then, diagonal blocks are randomly generated to have eigenvalues in the rangg,{1
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Ve

Figure 4. The test problem

while ¢; = 0.1i for 1 < i < n. The right-hand side is chosen so that the exact solution is
a,....,nT.
In Tables 4 and 5, we compare the following preconditioners on this test problem:

e Mmixed the P,,;, preconditioner (4.5) where we apply the EBE preconditioner taithe
finite’ elements and SBS to the rank-one term,

o the EBE preconditioner applied to the complete set.of 1 elements,

e diag, a diagonal preconditioner, and

e band preconditioner with semi-bandwidths of 1 (bénjand 5 (ban¢b)). Increasing
the semi-bandwidth to larger values does not help significantly with such problems.

In Table 4, we study the effect of varying the condition number of the matrix when there
is a 20 % overlap between the blocks (thatis= 10 andv, = 2)—we letn, = 100, and
thusn = 802. We report #it, the number of CG iterationg,, the time to construct the
preconditionersyre, the time spent applying the preconditiongg, the convergence time
for the CG iteration, and, the total time to solve the linear systeny(= tcon + fcg)-

When increasing.max from 10 up to 16, even if the condition number of the matrix
slightly decreases, the eigenvalue spectrum is less clustered which makes the problem harder
to solve and thus explains why the number of iterations increases for all the preconditioners.
For example, whenmax = 10, there is a cluster of eigenvalues arounfl 46d all other
eigenvalues are spread betweef 40d 13, while whenimayx = 10P, there is still a cluster
of eigenvalues around $®ut the other eigenvalues are spread betwe&ramd 16.

Firstly, we see that the mixed preconditioner is effective. When compared with the other
preconditioners, it requires the smallest number of CG iterations for the three condition
numbers studied. The construction time required by EBE is dramatically larger than that
of the mixed preconditioner, purely because EBE has to factorize the dense matrix arising
from the rank-one element using a (modified) Cholesky algorithm. Moreover, this has a
significant effect on the time to apply the preconditioner, and the total computational time.

We now compare mixed with the second best preconditioner for each of the three condition
numbers studied (the diagonal preconditioner for the two values,gf (10 and 18) and
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Table 4. Matrix withn, = 100,v, = 10,v, = 2 andn = 802. The blocks are generated with
eigenvalues in the range,[Amaxl. 7con iS the time of construction of the preconditiongye the
time spent applying the preconditiongg, the time of convergence of the CG methag, the total
time of the linear solver and #it the number of iterations needed for convergiaghe condition
number of the matrix

Preconditioner  fon Tpre feg Isol #it
Amax = 10,6 = 1.6 x 10°
mixed 0.2 0.1 1.3 1.5 13
EBE 16.7 2.9 4.9 21.6 27
diag 0.0 0.1 18.6 18.6 244
band(1) 01 14 1087 1089 1412
band(5) 0.1 1.5 50.7 50.8 730
Amax = 103, k = 1.3 x 10°
mixed 0.2 0.5 84 87 113
EBE 149 16.9 29.2 44.1 180
diag 0.0 0.1 23.9 23.9 354
band(1) 0.1 2.3 1793 179.3 2578
band(5) 0.1 1.7 60.6 60.6 873
Amax = 10°, k = 1.0 x 10°
mixed 0.2 1.3 225 227 300
EBE 16.2 41.9 72.0 88.2 409
diag 0.0 0.2 80.3 80.3 1031
band(1) 0.1 15 1295 1296 1682
band(5) 0.1 1.6 60.9 61.0 886

band(5) for the remaining one (3)). The gain in total computational time due to the use of
a mixed preconditioner is 15 whenimax = 10, and 27 for the other two values Gfmax.
We should note that the number of iterations for the mixed preconditioner increases as the
conditioning worsens, so we cannot claim that the method is perfect.

In Table 5, we compare the effect of varying the degree of overlap between the blocks
from 0% to 50%, while keeping the condition number of the blocks fixed at Ohce
again, the mixed preconditioner proves to be the best in terms of number of iterations and

total computational time. The mixed preconditioner appears to be consistently about 2
times faster than band(5).

4.2. Tests on some optimization problems

We now turn to less contrived examples which arise from optimization. Gfvand c,
we apply a truncated Newton algorithm (see [5]) to minimize an augmented Lagrangian
function of the form (4.2) for fixed values of the Lagrange multiplier estimates0 and
increasing values gf. The truncated Newton equations are solved using preconditioned
conjugate gradients, and we consider diagonal, EBE and mixed preconditioners; in the
mixed preconditioner, the terms;” ; Vic;(z)(Vic; (x))T of (4.3) are approximated using
the SBS method, while the remainder is handled using EBE factors.

In Tables 6-8, we show results for three different problems fronCii& E collection.
For each preconditioner, we repéxtw the number of iterations of the truncated Newton
algorithm, icg the total number of CG iterations required for the solutige, the total
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Table 5. Matrices witt, = 100,v, = 10 andv, = 0 t0 5.Amax = 10° and« gives the
condition number of the problem

mixed EBE diag band (1) band (5)
Over-
lap order « #it 150 Hit Isol #it Isol #it tsol #it tsol

1000 3.3E6 56564.2 865 259.1 1723 179.6 3783 3985 1726 182.8
901 2.1E6 42039.7 634 165.8 1257 107.6 2249 192.2 1183 101.6
802 1.0E6 30022.7 409 882 1031 80.3 1682 129.6 886 61.0
703 3.9E5 207118 278 450 783 412 1010 532 602 323
604 9.9E4 139 6.2 183 23.3 483 19.2 743 29.7 410 16.6
505 24E4 99 3.3 126 119 345 99 454 130 304 8.9

arhwNPEFRO

Table 6. Solution of the proble®TEENBRAwith different penalty values

Preconditioner inew icg tew fsol fcon Icg inew icg mew Isol fcon  fcg

diag 7 8 20 1.7 00 1.7 8 96 22 20 00 20
EBE 8 154 85 83 1.0 7.3 9 194 106 104 1.1 93
mixed 7 38 39 28 08 20 8 37 40 29 10 19
p =100 p = 1000
Preconditioner inew icg few Ifsol fcon Icg inew icg new Ifsol fcon fcg
diag 8 89 21 18 00 18 9 115 26 24 00 24
EBE 9 159 89 87 11 7.6 10 219 120 118 1.2 105
mixed 8 38 41 3.0 09 20 9 40 45 31 10 21

computational time for the Newton procesg, the total time required by the linear solver,
fcon the construction time of the preconditioner amgglthe convergence time for the CG
method.

The penalty parameteris varied from 1 to 18, which increases the condition number
of the Hessian. As before, the number of CG iterations is always least when using the
mixed preconditioner. For the probleBTEENBRATable 6), the diagonal preconditioner
is marginally the most efficient in terms of computational time for all four penalty parameters
considered, while the mixed preconditioner is significantly faster than EBESREGDNETA
(Table 7), the mixed preconditioner is always the best preconditioner when considering the
time spent in the conjugate gradient iteration and requires slightly fewer Newton iterations
than other preconditioners whenis greater than 10. The gains arising from the use of
the mixed preconditioner increase with the penalty parameter value. FinalyENHS28
(Table 8), the mixed preconditioner proves to be fastest for all but the smallest
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Table 7. Solution of the proble@RIDNETAwith different penalty values

p:]_ ,0:10

Precondition€linew  icg Ifnew Ifsol fcon  fcg inew icg fnew  fsol fcon  Icg

diag 6 194 17.2 166 0.0 16.6 7 592 51.6 50.9 0.0 50.9
EBE 6 153 351 345 21 324 7 446 984 97.7 2.4 952
mixed 6 58 18.1 153 21 133 7 17348 416 24 39.2
p =100 p = 1000
Preconditionefiney icg Inew Isol fcon fcg inew  icg Inew  Isol Icon Ieg

diag 8 1209 105.0 104.2 0.0 104.2 9 1790 153.4 153.4 0.0 153.4
EBE 8 1018 223.7 222.9 2.7 220.2 9 1680 368.7 364.8 3.1 364.8
mixed 7 271 67.1 639 24 615 8 53430.0126.4 2.7 123.7

Table 8. Solution of the proble ENHS28with different penalty values

p:]_ ,0=10
Preconditioner inew  icg twew fsol teon  teg new icg tnew  tsol feon  leg
diag 6 46 12.7 109 0.0 10.9 8 103 26.0 23.8 0.0 23.8
EBE 6 19 193 175 6.1 114 7 25 240 220 7.1 149
mixed 5 12 171 124 51 7.2 5 956 106 52 54
p =100 p = 1000
Preconditioner inew icg Mew Isol fcon fcg inew Icg Inew Isol fcon Icg
diag 8 116 29.2 27.0 0.0 27.0 10 143 353 32.7 0.0 327
EBE 8 37 31.7 295 8.0 214 9 42 358 334 89 245
mixed 6 13 19.2 13.7 6.0 7.7 7 12210 144 71 74
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5. Conclusions

The subspace-by-subspace preconditioner we have described allows us to take advantage
of low-rank terms in an unassembled matrix. The preliminary results we have reported
demonstrate that the approach has some promise in comparison with a number of currently
popular preconditioners such as band or EBE methods. Mixing SBS and EBE precondi-
tioners proves to be attractive for problems where some, but not all, elements have low
rank.

However, we recognize that the tests are at best an attempt to demonstrate the viability
of the approach, and that there are a number of unresolved issues, such as improvements to
the amalgamation algorithm and a complete understanding of the effects that reordering the
elements has on the quality of the preconditioner. More importantly, it is not known what
effect such preconditioners have on the spectrum of the preconditioned matrix. We intend
to consider these and other issues in due course.
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