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Abstract

We consider the solution of the n by n system of linear equations, Ax = b, where
A is both sparse and structured so that it may be expressed as

Sparse structured linear systems arise in many applications. The elementary matrices
A; are of low rank, and are usually sparse so that their nonzero entries may be
represented as a small, dense block.

We assume that A is a large and normally positive definite symmetric matrix.
The solution technique considered is the conjugate gradient method using a range of
Element-By-Element (EBE) preconditioners that were introduced by [9] and [12] and
have been successfully applied in a number of applications in engineering and physics
(see, for example, [10], and [5]).

1 Introduction

We consider the solution of the n by n system of linear equations, Ax = b, where A is
both sparse and structured so that it may be expressed as

A=>" A, (1.1)

The elementary matrices A; are of low rank, and are usually sparse so that their nonzero
entries may be represented as a small, dense block. We are especially interested by the
linear systems that come from the solution of large scale nonlinear optimization problems
using the all-pervasive property of partial separability, first studied by [6]. The function f
is said to be partially separable if f(x) = YF_, fi(x), where each element function f; has

a large invariant subspace. Crucially, the Hessian matrix of such a function is of the form
of (1.1).
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We shall assume that A is a large and normally positive definite symmetric matrix. The
solution technique considered is the conjugate gradient method using the Element-By-
Element (EBE) preconditioners that were introduced by [9] and [12] and have been suc-
cessfully applied in a number of applications in engineering and physics (see, for example,
[10], and [5]). A detailed analysis of this technique is given by [14]. The following element-
by-element preconditioners are considered : the Element matrix Factorization (EMF) of
[7] based on a Cholesky factorization of each element; the Finite Element preconditioner
(FEP) of [11]; the one-pass (EBE) and two-pass (EBE2) element-by-element precondition-
ers of [9] and [12], initially described and used in the context of finite element techniques for
partial differential equations; the “Gauss Seidel” EBE preconditioner (GS EBE); the over-
lapping block (OVBC) element-by-element preconditioner; and the incomplete Cholesky
(IC) preconditioner.

These preconditioners have some important features. They can be computed element-wise
and most of them do not require assembly. Furthermore, they allow efficient parallelization
of the matrix-vector and of the solution step involved in the preconditioned gradient
iteration.

2 Finite Element preconditioners

In this section, we review the range of element-by-element preconditioners that we have
investigated. Most of them were originally proposed for solving the linear systems that
arise from finite-element solution of partial differential equations. We note that specific
error analyses are possible for particular classes of model differential equations, but a
more general analysis is most likely impossible. Thus, all of the preconditioners should be
viewed as heuristics which aim to approximate A at low cost.

As we are assuming that the element matrix A; has non-zeros in just n; rows, we may
write

A, =clacc,, (2.1)

where the rows of the n; by n connectivity matrix, C;, are simply the rows of the n by n
identity matrix corresponding to the variables used in the element, and AfY is a dense n;
by n; symmetric matrix.

2.1 Element Matrix Factorization

First, we assume that the elementary matrices A are positive definite. The basic idea
(see [7]) for forming the preconditioner is to factorize each elementary matrix into

AS = LLST, (2.2)



where Lf is a lower triangular matrix. The preconditioner is then

P P T
Pryr = <Z Li) <Z Li) ; (2.3)

1=1

where L; = CTL¢. Clearly Y-0_, L; is also lower triangular and thus (2.3) is easy to
invert. More generally, letting L; = L; + D;, where L; is the strictly lower triangular part
of L; and D; = A(L;), we might choose

P P P P T
Pryr(0) = <1+9 Z 1+9)2Di><1+9 Z 1+9)ZD1‘> ,
= 1=1 1=1
(2.4)
where 6 is a non-negative parameter. In our experiments for simplicity we choose 8 = 0,
but other choices have been suggested by [7] for finite-element applications.

2.2 Finite Element preconditioner

If A; is positive semi-definite, [11] and [15] have suggested modifying the previous precon-
ditioner so that

A; = (D; + L)D} (D; + L)), (2.5)
where DZTF is the pseudo-inverse of D;. Then, if }-F | D; has positive diagonal entries, the
finite element preconditioner (FEP) is

Pryp— <zp: D; +zp:Li> (;:Q) B (iDl +Zp:LiT> . (2.6)

i=1 i=1

2.3 The EBE preconditioner

Element-By-Element (EBE) preconditioners were introduced by [9] and [12] and have
been successfully applied in a number of applications in engineering and physics (see, for
example, [10], and [5]).

Assuming that A is positive definite, we may rewrite A as A = Y7 | M, + > (A, —
M;) = M +>" (A; — M;), where M; = diag(A;) and M = >¥ | M,. Now, let
M = L,,L%, be the Cholesky factorization of M — of course Ly is simply a diagonal
matrix. Then,

P
A=1L, <I+ZL (A; — M;)L;; )L = Ly, <I+2Ei> Ly, (2.7)
i=1 =1
where E; = L); Y(A; — M) L ]T/IT. Using the approximation I + Y'Y | E, ~[I",(I + E;),
we obtain : )
A~ Ly [[(I+E;)L},. (2.8)
i=1



The EBE preconditioner is given by :

Pppp =Ly, (ﬁ Ll-> <1f[1 Di> (f[ LiT) LT, (2.9)

=1 i=p
where the L; and D, factors come from the LDL” factorization of the matrices I + E;.

Clearly, the efficiency of the EBE preconditioner depends on the the partitioning of the
initial matrix and on the magnitude of the off-diagonal elements of the elementary matri-
ces. As the decomposition of A is, in general, not unique, different decompositions may
significantly affect the performance of the preconditioner.

In order to solve efficiently the system of equations Prpppx = y, we exploit the decom-
position (2.9). We are free to order the elements in any way we choose and may thus
encourage parallelism by consecutively ordering non-overlapping elements so that we can
perform groups of forward and backsolve in parallel.

Remark : Combining (2.7) and the relationship

p P 1
I+ Ei~[[UI+iE)][[U+LE)), (2.10)
i=1

i=1 i=p

we obtain the two-pass element-by-element preconditioner (EBE2)

=1 i:p

Prpp =Ly, (ﬁ(I - %Ei)> (ﬁ(I - %Ei)) L. (2.11)

The main problem with the approximation (2.10) is that the terms iEf, which result
when expanding the product (2.11), are non-zero even if there is little overlap between
distinct element Hessians E; and E; (i # j). Furthermore, as a solve using EBE2 is

roughly twice as expensive as one with EBE, in practice EBE2 is less efficient than EBE.

2.4 The GS EBE preconditioner

The GS (Gauss-Seidel) EBE preconditioner is based on the same decomposition as the
EBE preconditioner. But instead of using a Crout factorization, we instead use the de-
composition

E,=L;+L! (2.12)

where L; is a strictly lower triangular matrix. The preconditioner is then

P 1
Pos =Ly [[(T+ L) [[(T+ L)LY, (2.13)

i=1 i=p



The advantage of this preconditioner is obviously that it is very easy to construct. If
A is pre-scaled to have unit diagonals, the preconditioner does not need to be explicitly
stored. The principal drawback is that it is not exact, even when there is no overlap
between element Hessians, because of the terms LZ-LZ-T which arise when approximating
I+ 30 ) Ei by [T, (I + L) [Ti_,(I + L).

2.5 Overlapping block element-by-element preconditioner

Let P;, i = 1,n be the assembled matrix whose sparsity is identical to A;, but whose
entries are those of A. P; is positive definite and thus has a Cholesky decomposition
P, = L,L;fp. The overlapping block preconditioner is

p
— 1 — 1
Py pe =D2Y (L;L") ' D>
1=1

where D is a diagonal matrix defined by
D;j = 6;;.N;,

where INN; is the number of elements sharing the variable ¢. The construction of this
preconditioner may be costly as the elements have to be assembled. However, See [8]
indicate that the preconditioner is effective, and the solution step is parallel.

2.6 Incomplete Cholesky element-by-element preconditioner

We have designed an incomplete Cholesky preconditioner acting on elementary matrices.
It is similar to a standard incomplete Cholesky without fill-in. The rank 1 updates are
written directly into the elements and the preconditioner is assembled column-by-column.
To allow fill-in in the factorization, merging some elements (c.f. Section 5) can be useful.
A simple ordering — very close to minimum degree — is chosen : the variables belonging
to a small number of elements are eliminated first. For each pivot, the pivot column is
assembled, and the rank one update is matched into the elements containing at least one
variable from the pivot column. As we might encounter small or negative pivots, the
diagonals may need to be boosted during the factorization to prevent large growth. The
advantage of this preconditioner is to keep the elemental structure of the matrix while
computing the incomplete factorization. However our implementation is not optimal and
it is often not competitive with the traditional incomplete Cholesky preconditioner where
the matrix is assembled.

3 Experiments with Element-by-Element preconditioners

A number of the preconditioners described in Section 2 are known to work well in practice
when applied to classes of problems arising from partial differential equations. In this



section, we aim to investigate whether these preconditioners are effective in the more
general context of systems which arise from partially separable optimization applications.
Although our experiments are still preliminary, they do lead to interesting conclusions and
are helpful in deciding future directions of research.

We report in Table 3.1 the results of applying some of the element-by-element precondi-
tioners to optimization problems issued from the CUTE collection (see [1]) or to problems
issued from the Harwell-Boeing collection(see [2]). Further experiments are reported in
[4].

Problem Precondi- | Time to calculate | Number of Time for
name tioner the preconditioner | iterations | convergence
NOBNDTOR NONE 0 68 0.28
DIAG 0 68 0.28
EBE 0.03 35 0.58
EBE2 0.02 33 1.05
GSEBE 0.01 67 0.61
OVBC 0.06 45 0.79
EMF 0.03 36 0.23
FEP 0.02 34 0.22
1C 0.05 23 0.41
CEGB2802 NONE 0.0 121 7.39
DIAG 0.01 35 2.19
EBE 0.88 12 1.85
EBE2 0.82 11 2.65
GSEBE 0.14 17 2.54
OVBC 2.21 16 2.40
EMF 2.11 56 10.9
FEP 1.86 32 6.30
1C 8.43 9 4.54

Table 3.1: Comparison of different preconditioners on two test problems : NOBNDTOR,
562 variables, 480 elements and CEGB2802, 2694 variables, 108 elements, times reported
for a SUN Sparc 10

3.1 Conclusions on the use of element-by-element preconditioners

The results of the previous sections are reinforced by [4] and indicate that element-by-
element preconditioners are effective, in terms of the numbers of iterations required and
the clustering of eigenvalues of the preconditioned Hessian, particularly if the overlap
between blocks is small. EBE seems to be the best of our block preconditioners and it
does not require any assembly of the matrix. EMF and FEP do not require an assembly
of the matrix either but the resulting triangular incomplete factors need to be partially
assembled, which can make each solve rather costly.

A disadvantage of EBE2 and GS EBE is that the terms 1E? and L;L! may give rise
to poor approximations even when there is little overlap between elements. If there is
significant overlap, the efficiency of EBE2 and GS EBE is close to that observed for EBE.
As GS EBE is the easiest preconditioner to construct, it may be beneficial to use GS EBE



when we do not need much accuracy in the solution of our system, as, for example, is
common in the early stages of optimization calculations. However in more general cases,
we prefer EBE.

In our experiments, which are not all represented here, except for ill-conditioned problems,
EBE is not significantly more efficient than diagonal preconditioning. We believe that this
is for two reasons. The first is because of the structure of the elements. When there is lower
overlap, EBE appears much more efficient than diagonal preconditioning. Amalgamating
elements may reduce the number of iterations by decreasing the degree of overlap in the
new partition. The second is that vectorization here is not as efficient as it could be. If
we knew a priori that all blocs have the same size, it would be possible to vectorize the
solve more efficiently, as was reported in previous experiments by, for example, [5].

4 Generalizing the EBE preconditioner

Let A satisfy (1.1). In Section 2.3, we considered the classical EBE preconditioner

Prpp =Ly, <ﬁ LZ-) (ﬁDZ) ﬁLiT LT, (4.1)

=1 i=p
where M % A(A) = L, L%, M; = A(A), B; € L7} (A — M;)L; and the Winget
decomposition, W;, had a factorization

W, Yr1+E,=L,D,LT. (4.2)

In this section, we consider a generalization of M with the intention of including more
than simply the diagonal of A.

Let M7 be a symmetric n; by n; matrix, for each 1 <7 < p,

such that the composite matrix,

P
M =) M, (4.3)
i=1
is positive definite, and where

Then we observe that the descriptions of the EBE preconditioner given in Section 2.3 do
not depend on M being the diagonal of A. We may thus think of using (4.1) with a
non-diagonal M. However, a restriction on the choice of M has to be made, since we
want to have the same structure for the matrices A; and E;. A general matrix M —
indeed even a band matrix — may introduce fill-in, complicate the required data structures
and increase storage and computational overheads. For simplicity in this section, we only
consider matrices M for which no fill-in occurs.



To date, the generalized EBE preconditioner has only been tested on matrices with regular
patterns : block diagonal matrices where the overlap appears only between two consecutive
elements. M is defined to be the overlapping parts of the elements. Table 4.2 gives a
comparison between EBE and GEN EBE for a problem for which the logarithms of the
eigenvalues in each element are randomly chosen between —1 and 1. There are 50 elements,
each of dimension 10. We allow the overlap to vary and report on the effect of this in the
table. For these matrices, we observe that GEN EBE appears to be more effective as the
overlap increases, but unfortunately is still less efficient than EBE.

Preconditioner
Overlap | Order | None | Diagonal | EBE | GEN EBE
0 500 || 102/1.7 | 116/2.0 | 1/0.20 | 1/0.20

451 || 111/1.8 | 100/1.6 | 19/1.3 | 19/2.6
402 || 102/1.7 | 86/1.4 | 20/1.3 | 18/2.5
353 || 96/1.5 | 70/1.2 | 20/1.2 | 17/2.3
304 || 84/1.3 | 59/0.97 |17/0.99 | 15/2.1
255 || 59/0.96 | 50/0.83 | 18/0.99 | 12/1.7

U W N =

Table 4.2: Comparison of EBE and GEN EBE on a well conditioned problem (number of
iterations / time to converge)

5 Importance of element amalgamation

Clearly, the efficiency EBE preconditioners depends on the the partitioning of the initial
matrix and on the magnitude of the off-diagonal elements of the elementary matrices.
As the decomposition of A is, in general, not unique, different decompositions may sig-
nificantly affect the performance of the preconditioner. In order to improve both the
computational performance and the numerical convergence of the method, we amalga-
mate two elements into a group if their overlap is large. The main difficulty is to define
a suitable heuristic to control this amalgamation process. Two strategies were consid-
ered : amall is an amalgamation heuristic that aims at minimizing the time spent in
matrix-vector products; amal2 is another amalgamation heuristic well suited for the EBE
preconditioner since it tries to minimize the time spent both in the matrix-vector products
and in the forward-backward solution. In Table 5.3 we report the number of iterations,
the time and the speed-up per iteration, and the solution time (in seconds), of a diagonal
preconditioner and the EBE preconditioner on the Alliant FX /80 using our two amalgama-
tion heuristics. The matrix NET3 is of order 512 and has 538 elements, while the second
one, CBRATU3D, is of order 4394 and has 4394 elements. Also these results demon-
strate the very good potential of element-by-element preconditioners for parallelization by
considering the speed-ups achieved.



Time and speed-up Time for
Iterations per iteration solution
Problem Preconditioner seq | par || seq 8 procs seq | 8 procs
NET3 Diagonal | initial 1561 0.04 3.72 57.3 15.4
amall 1595 0.01 2.77 23.8 2.9
EBE initial | 628 | 696 | 0.14 4.90 88.1 19.9
amal2 | 140 | 137 || 0.04 3.35 5.18 1.5
CBRATU3D | Diagonal | initial 53 0.59 4.50 31.9 7.1
amall 53 0.50 4.57 27.3 6.0
EBE initial | 24 | 25 | 1.95 5.74 48.8 8.8
amal2 | 19 | 19 | 1.28 4.94 25.7 5.2

Table 5.3: Performance summary of the diagonal and the EBE preconditioners
on the Alliant FX/80.

6 Conclusion

We have shown that element-by-element preconditioners may be extremely effective for
sparse structured systems of linear equations which arise in partial differential equations
and partially separable nonlinear optimization applications. Furthermore, they seem to
offer great possibilities of vectorization/parallelization on multiprocessor architectures.
We believe that further study, on real problems with less regular matrix structures, will
inevitably lead to a better understanding of the classes of problems for which each of the
preconditioners we have considered is particularly appropriate.

We have demonstrated that element preprocessing is crucially important. It is clear that
this preprocessing should be applied to amalgamate elements prior to the formation of the
preconditioner, and so that a suitable colouring is found for subsequent parallel execution.
This is a difficult task as many criteria need to be taken into account. This preprocessing
may well be quite costly, but we expect there to be longer-term payoffs. At a certain level
of amalgamation, it may well be important to exploit the sparsity within the amalgamated
elements.

These element-by-element preconditioners will shortly be publically available under anony-
mous ftp within a package called PAREBE. We aim to implement these preconditioning
techniques in the LANCELOT package for large scale optimization problems, profiting
of the preprocessing to optimize other parts of the algorithm such as the matrix-vector
products and linear solvers.
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