
Preprocessing of Sparse Unassembled Linear Systems for

Efficient Solution Using Element-by-element

Preconditioners1

Michel J. Daydé2, Jean-Yves L’Excellent2, and Nicholas I. M. Gould3

1 Introduction

We consider the solution of systems of linear equations of the form

Ax = b, (1)

where

A =

p∑

i=1

Ai. (2)

Each Ai ∈ ℜn×n is symmetric and has non-zeros entries only at the intersection
of ni rows and columns. It can thus be represented by a dense elementary matrix
A

e
i ∈ ℜni×ni such that Ai = CT

i Ae
i Ci, where the rows of the connectivity matrix

Ci are simply the rows of the n× n identity matrix corresponding to the variables
used in the element.
The conjugate gradient method combined with element-by-element preconditioners
has proved to be effective on linear systems that may arise from finite element and
optimization problems. Daydé, L’Excellent and Gould (1994) show that amalga-
mating elements before constructing such a preconditioner can dramatically improve
the speed and numerical behaviour of the method. The effectiveness of the precon-
ditioner depends crucially on the overlap between elements. The amalgamation
process typically reduces the overlap between elements, and it is this which leads to
improvements in performance. However amalgamation also typically increases the
amount of storage required, as zeros may be explicitly stored within amalgamated
elements. Thus there is a natural tradeoff between the improvement in the quality
of the preconditioner and the storage and effort required to use it.
Our preprocessing step consists into grouping the elements into sets, assembling the
elements within each set into a super-element, and then applying an element-by-
element technique to the super-elements instead of the original Ae

i . In this paper,
we consider this preprocessing step in detail.
Firstly, we compare the partitions obtained by the “bottom-up” amalgamation
method proposed by Daydé et al. (1994) using different thresholds, and consider
the possibility of using a sparse storage scheme for the super-elements instead of
a dense scheme. We then consider an alternative “top-down” amalgamation tech-
nique which uses global structural informations to assign the super-elements. These
techniques are compared on a variety of test problems. Further details can be found
in L’Excellent (1995).

2 Environment and test problems

We assume thatA is positive definite, and use the preconditioned conjugate gradient
method, stopping when ‖Ax− b‖ < 10−9‖b‖. In this paper, we concentrate on the

1Travel was funded by the ALLIANCE program from the British Council
2ENSEEIHT-IRIT, 2 rue Camichel, 31071 Toulouse Cedex, France
3Central Computing Department, Rutherford Appleton Laboratory, Oxfordshire, OX11 0QX,

England.

1

EBE preconditioner, first introduced by Hughes, Levit andWinget (1983) and Ortiz,
Pinsky and Taylor (1983) and successfully applied in a number of applications in
engineering and physics. It is defined by

PEBE =
√
W

p∏

i=1

Li

p∏

i=1

Di

1∏

i=p

L
T
i

√
W , (3)

whereW is the diagonal ofA, and LiDiL
T
i is an LDL

T factorization of theWinget

decompositions of each elementary matrixAi defined to be equal to I+
√
W

−1

(Ai−
W i)

√
W

−1

, where W i is the diagonal of Ai. This preconditioner has been widely
used on finite element problems. It offers considerable scope for parallelism, both
in the construction of the preconditioner and during the matrix-vector product and
solves that occur during the conjugate gradient calculations.

Min Max Mean
Problem n p element element element Degree of κ

name size size size overlap
BIGGSB1 998 1001 0 2 2.0 2.0 4.0× 105

NOBNDTOR 480 562 1 5 4.2 4.9 1.8× 102

MAT33 637 273 1 3 2.6 6.0 5.5× 101

CBRATU3D 4394 4394 5 8 7.5 7.5 3.4× 101

NET3 512 531 1 6 2.6 2.7 2.4× 109

Table 1: Summary of the characteristics of each test problem

We describe in Table 1 some of the test matrices that will be used in our exper-
iments. Other problems are described in Daydé et al. (1994). Some important
characteristics are the condition number κ, which gives an idea of the difficulty of
the problem; the sizes of the elements (larger elements often encourage faster execu-
tion rates); the degree of overlap which characterizes the structure of a problem in
terms of overlap between elements. It is defined as the average number of elements
sharing each variable and is an indicator as to how well element-by-element pre-
conditioners will behave on the problem. We now describe the two amalgamation
strategies that will be compared.

3 Bottom-up strategy: elemental amalgamation

3.1 Amalgamation algorithm

A variety of amalgamation techniques are considered in detail by Daydé et al.
(1994). Here, we only consider the most successful of these. Let Gi denote an
element, Vi denote the set of indices of variables used by the element Gi, and |Vi|
denote the cardinal of Vi. Finally, let tim(i) be the estimated time spent in a
matrix-vector product of order i for the diagonal (DIAG) preconditioner (strategy
amalg1); or in a matrix-vector product and in two triangular solves of order i for
the EBE preconditioner (strategy amalg2). The amalgamation process we have
used computes the benefit:

b(Gi,Gj) = tim(|Vi|) + tim(|Vj|)− tim(|Vi ∪ Vj|) (4)

for all pairs of elements and amalgamates the pair with the largest benefit so long
as it is lower than a threshold value. Note that tim(i) only depends on i and can
be computed once and for all. These machine-dependent costs are stored into files

2

and determined during the installation of the software. If we are only interested
in reducing the time per iteration, the best value for the threshold would be zero,
but smaller values will result in further amalgamations and, hence, possibly better
preconditioners.
When using such an algorithm, the super-elements are stored as dense matrices
and thus some zeros may be explicitly stored. The density of the super-elements
depends on the structure of the initial elements and, because of the dependence
of the amalgamation on tim(.), also on the target computer. For example, on an
ALLIANT FX/80 and using a threshold of zero, we typically obtain elements with
a density around 0.3, which is quite large for the elements to be treated as sparse.
On RISC architectures, the density of the elements obtained can be even larger,
since the amalgamation process is stopped earlier (long vectors are not required
for efficiency as on a vector processor). However, we have suggested that contin-
ued amalgamation is often beneficial to the quality of the preconditioner, and this
results in a reduction in the density of the super-elements. Thus it may well be
advantageous to use a sparse representation of the super-elements.

3.2 Experiments on amalgamation

Detailed results of amalgamation for various preconditioners can be found in Daydé
et al. (1994) and L’Excellent (1995). We show in Figure 1 the effect of amalga-
mating elements for diagonal and EBE preconditioning with a threshold equal to
0 on a range of test problems using strategies amalg1 and amalg2 respectively.
The problems are sorted by increasing condition number and large gains in execu-
tion time are obtained using amalgamation when the elements are initially small
and overlap significantly. The results are scaled so that the time for construction
and convergence are compared to those obtained using diagonal preconditioning
without amalgamation. We observe that with amalgamation, EBE is more efficient
than diagonal preconditioning as soon as the problem is sufficiently hard to solve
(problems 6 to 15). For diagonal preconditioning, the gains from amalgamation are
due to the better execution rates whereas for EBE, the gains are due both to a
better execution rate and a smaller number of iterations.

DIAG

EBE

DIAG + AMALG

EBE + AMALG

0 5 10 15
0

0.5

1

1.5

2

2.5

Problem

C
on

st
ru

ct
io

n
an

d
so

lu
tio

n
tim

es
 r

el
at

iv
e

to
 d

ia
go

na
l

Figure 1: Comparison of DIAG and EBE on ALLIANT FX/80 (results are scaled with
respect to diagonal preconditioning without amalgamation).

3

NOBNDTOR

BIGGSB1

MAT33

NET3

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Degree of overlap

Ite
ra

tio
ns

(E
B

E
)/

ite
ra

tio
ns

(D
IA

G
)

Figure 2: Number of iterations of EBE compared to DIAG, depending on the degree of
overlap obtained with different amalgamation thresholds.

3.3 Modifying the amalgamation threshold

As the threshold decreases, so do the degree of overlap of the structure obtained
by amalgamation and, thus, the number of iterations, as can be seen in Figure 2,
where we report the ratio between the number of EBE iterations and the number
of iterations of the diagonal preconditioner for the problems BIGGSB1, MAT33,
NET3 and NOBNDTOR.
We now consider the test problem NET3 to study the behaviour of EBE precondi-
tioning in terms of number of iterations and its performance using different amalga-
mation thresholds. Some results, obtained on a SPARC-10 RISC workstation, are
presented in Table 2 (dense storage columns). In this table, the average density is
defined to be the ratio

d =

∑p

i=1
nzi∑p

i=1
s2i

, (5)

where p is the number of elements, nzi is the number of non-zero entries in the
element i, and si is the size of the i

th element. Const. time refers to the construction
time of the preconditioner. Here, the time spent in the solves (Time solves) only
refers to the solution steps on the preconditioner and excludes the time of matrix-
vector products and other cg-related operations (such as dot products). This is
simply so that we can compare the results of Table 2 for the dense storage scheme
with those in the next section where we consider sparse storage. As matrix-vector
products and dot-products are performed in the same way in both cases — using
the dense initial elements, the construction time and the time spent in the solves
are the more meaningful parameters to be compared. Note that the best choice of
an amalgamation threshold depends on the total time to obtain the solution which
is not reported here.
The fact that the convergence occurs in one iteration while there are still 8 elements
in the last line of the table is because there are 7 small independent elements in this
problem. In this case, the method is a direct solver. For such a small ill-conditioned
problem, we observe that the decrease in the number of iterations is large enough to
compensate for both the increase of the cost per iteration and for the construction
time.

4

Dense storage Sparse storage
Minimum degree Natural ordering

Average Average # Const. Time # Const. Time Const. Time
Threshold elts elt size density its time solves its time solves time solves

0.01 465 2.7 1.00 684 0.01 3.58 675 0.14 6.49 0.12 6.49
0.0 104 7.0 0.51 243 0.02 0.76 231 0.07 1.29 0.06 1.29

-0.00004 52 11.9 0.34 187 0.02 0.75 183 0.07 0.87 0.05 1.02
-0.00012 39 15.1 0.26 142 0.02 0.63 138 0.06 0.63 0.06 0.79
-0.0002 29 19.6 0.19 123 0.02 0.69 122 0.06 0.54 0.07 0.76
-0.001 19 28.7 0.11 87 0.04 0.71 84 0.06 0.36 0.08 0.64
-0.004 13 40.9 0.06 57 0.07 0.87 58 0.06 0.23 0.16 0.63
-0.02 9 57.6 0.02 17 0.22 0.65 16 0.06 0.08 0.77 0.41

-1000.0 8 64.0 0.01 1 0.66 0.14 1 0.07 0.02 2.35 0.06

Table 2: Results of amalgamation obtained for the problem NET3 using different
thresholds on a SPARC-10 workstation using dense and sparse kernels in the the
factorizations and triangular solves.

We show in Table 3 the impact of varying the amalgamation threshold on the
MFlops rate and the speed-up on a vector multiprocessor : the ALLIANT FX/80.
Sol. time is the time for converging to the solution. Amalgamation improves vector-
ization while parallelization is less efficient because of the decrease in the number of
elements. We have not included the MFlops rate when the threshold is -0.02 since
our estimate is inaccurate, as some anticipated operations within the ALLIANT
BLAS on the zero elements stored within the super-elements are not actually per-
formed.

Average Overlap # Amalg. Const. Sol. Speed-up
Threshold elts elt size degree. its time(s) time(s) time(s) MFlops 8 procs
No amalg. 538 2.6 2.71 694 - 0.18 173.53 0.1 5.5

0.1 465 2.7 2.48 687 0.38 0.17 148.48 0.1 5.4
0.0 32 17.9 1.12 135 1.23 0.16 7.83 1.1 3.5

-0.00004 31 18.4 1.11 131 1.23 0.16 7.61 1.1 3.4
-0.00008 29 19.5 1.10 123 1.24 0.17 7.22 1.2 2.9
-0.00012 28 20.2 1.10 120 1.24 0.17 7.01 1.2 2.9
-0.00016 27 20.9 1.10 117 1.25 0.17 6.87 1.2 3.5
-0.0004 23 23.9 1.08 91 1.27 0.19 5.47 1.4 3.1
-0.0006 21 26.0 1.07 87 1.28 0.21 5.37 1.5 2.7
-0.002 17 31.6 1.05 66 1.32 0.26 4.47 1.9 2.2
-0.004 14 38.0 1.04 54 1.38 0.33 4.27 2.3 1.9
-0.01 10 52.0 1.02 25 1.84 1.05 4.60 5.1 1.1
-0.02 8 64.0 1.00 1 2.43 2.21 0.61 - 1.1

Table 3: Effect of varying the amalgamation threshold on ALLIANT FX/80 for the
problem NET3.

3.4 Use of sparse storage

In the results of the previous section, we observe that the density of the super-
elements decreases as the amalgamation process proceeds. It thus seems natural
to use a sparse storage for these elements when the threshold value and thus the
element density becomes sufficiently small. In Table 2, we report the construction
time and the time spent in the solves of the EBE preconditioner with a sparse
storage of the super-elements for the test problem NET3. The factorization of the
Winget decomposition of each super-element is obtained using the sparse, symmetric

5

solver MA27 from the Harwell Subroutine Library (1995). We compare two different
orderings for the elimination of the variables: the minimum degree ordering and the
natural order of the elements. Except for very small and dense elementary matrices,
it appears that minimum degree is always better.
The density of the elements decreases with the threshold. We observe that sparse
storage becomes more efficient than dense storage for threshold values smaller than
-0.00012, which corresponds to a density smaller than 0.26. This is especially true
for the triangular systems for which there is less overhead using sparse storage
than for the factorization. Of course, for this particular problem (small and ill-
conditioned, with little fill-in during the factorization), a direct method making use
of the sparsity of the matrix would be the best choice.
We now consider in Table 4 a larger, but better conditioned problem, CBRATU3D
(κ = 3.4 × 101). This problem is of order 4394, initially with 4394 elements, that
arises from a 3D problem and for which there is significant fill-in during sparse
factorization. As before, we compare the construction time of the preconditioner and
the time spent in the solves using different threshold values for the amalgamation
on ALLIANT FX/80 and SUN SPARC-10. The fact that the density is not equal
to 1.0 for the initial problem is due to the presence of zeros in the original elements.

Sparse storage Dense storage
Average Average # Const. Time # Const. Time

Computer Threshold elts elt size density its time solves its time solves
ALLIANT FX/80 No amalg. 4394 7.5 0.69 - - - 20 5.8 69.2

0.1 4394 7.5 0.69 20 35.0 38.4 20 5.8 69.2
0.0 713 27.9 0.28 21 26.7 25.2 21 7.7 29.4

-0.00004 547 33.8 0.25 21 27.6 24.3 21 8.3 28.1
-0.00016 489 36.6 0.24 21 27.8 23.8 20 8.7 26.4
-0.0006 319 49.2 0.19 20 29.1 21.0 20 10.4 25.6
-0.002 179 75.5 0.14 19 31.4 18.6 20 13.9 26.2
-0.005 106 111.7 0.11 19 34.2 17.8 19 19.7 27.1
-0.1 25 338.6 0.03 17 52.9 16.1 18 71.3 68.8

SPARC-10 No amalg. 4394 7.5 0.69 - - - 20 0.6 2.9
0.1 4394 7.5 0.69 20 2.8 5.0 20 0.6 2.9
0.00 4253 7.7 0.68 20 2.7 4.9 21 0.7 3.1

-0.00004 1751 15.3 0.41 22 2.4 4.7 22 0.8 3.7
-0.00008 788 27.0 0.27 20 2.6 4.0 20 1.2 4.2
-0.00016 723 28.7 0.26 20 2.6 3.8 20 1.2 4.3
-0.0002 705 29.1 0.26 20 2.6 3.8 20 1.3 4.5
-0.0004 363 46.8 0.19 20 2.8 3.7 20 1.9 5.6
-0.0006 307 53.0 0.18 20 2.8 3.7 20 2.1 6.0
-0.001 248 61.9 0.16 20 3.1 3.8 19 2.2 6.0
-0.002 162 83.6 0.13 19 3.2 3.6 19 3.2 7.0
-0.005 77 146.6 0.08 19 3.8 3.9 19 7.3 9.9

Table 4: Comparison of sparse and dense storage using different amalgama-
tion thresholds on SUN SPARC-10 and ALLIANT FX/80 for the test problem
CBRATU3D.

On SPARC-10, the sparse storage is seen to be better when the density of the
elements falls below 0.2. However, since the problem is well conditioned, the amal-
gamation is not very effective here, and the best solution time is obtained with
dense computations. Notice that the different roundoff properties of the sparse and
dense variants sometimes results in slight variations in the numbers of iterations
performed.
If we consider a vector computer, such as the ALLIANT FX/80, amalgamation is
useful with dense super-element storage. But again, there is a significant overhead
in using sparse elements since the number of iterations is initially small and not

6

significantly reduced by amalgamation, and because of the large amount of fill-in
during the factorizations. Therefore, in this case, it is seen to be preferable to use
long vectors rather than sparse elements. This would not be true if the the ratio
of convergence to construction time was larger, or if the number of iterations had
been reduced more significantly as the number of elements decreased.

3.5 Conclusion

When solving a well conditioned problem, sparse elements do not appear to be very
useful. For an ill-conditioned problem, amalgamation often reduces the number of
iterations. Sparse elements can then be effective provided sufficient amalgamation
occurs. We believe that the main use of sparse super-elements is those large-scale
ill-conditioned problems for which direct factorization gives rise to significant fill-
in. We note that the criteria used in amalgamation strategies presupposes a dense
storage scheme will be used. If the super-elements are treated as sparse matrices,
other techniques may be suitable. We now consider this possibility.

4 Top-down strategy: use of graph partitioning

techniques

If the super-elements are considered to be sparse, we have little reason to use an
amalgamation strategy which is based on the times or numbers of operations of
dense linear algebra kernels, such as that proposed in the previous section. That
strategy is based on local criteria. In this section, we investigate a global strategy
in which we partition the whole connectivity graph of the elements rather than
amalgamate elements locally. If the problem arises from the discretization of a
physical problem, it is often better to use the physical properties of the domain to
determine a first partition of the graph. If such information is not available, there
are automatic graph partitioning algorithms that aim at partitioning the graph into
a desired number of approximately equal-sized portions.
Our objectives remain to minimize the size of the overlap between elements — this
improves the convergence of the EBE-based method; and limit the costs of factor-
ization and solution on the elements. A compromise has to be reached between
these two factors in order to obtain an optimal strategy. As this compromise de-
pends on many parameters, such as the structure of the problem, its conditioning,
and the time to construct the preconditioner relative to the time for convergence,
we perform experiments to investigate these issues.

4.1 Choice of a graph partitioning algorithm

The vertices of the connectivity graph we are considering here are the elements.
An edge exists between two vertices (elements) if they share at least one variable.
Given our stated objectives in the previous section, the criterion used to partition
the graph should depend on the number of variables shared between the partitions,
and should also aim to balance the cost of the subsequent sparse factorizations. For
example it is often less expensive to factorize two matrices of dimension roughly
m/2 than one matrix of dimension roughly m and a second of low dimension.
Furthermore, this also gives a good balance for a parallel implementation.
For this preliminary study, we have used the graph partitioning package metis

(see Karypis and Kumar, 1995). Many strategies are available within the pack-
age that aim at partitioning a graph into k partitions. We almost always use
the provided default options which are: coarsening phase using sorted heavy edge
matching, uncoarsening phase using combination of boundary greedy and boundary

7

Kernighan-Lin, and bisection using graph growing partition followed by boundary
Kernighan-Lin.
As we have already seen, it is preferable from the point of building an effective
preconditioner that the number of shared variables between the partitions be small.
However, metis minimizes the number of edges cut, trying to keep approximately
the same number of vertices in each partition. For certain problems, we have tried
using differing weights for the edges and the vertices of the graph (see L’Excellent,
1995), but this seems only useful for problems with a very irregular structure. For
the test problems described in this paper, the use of equal node and edge weights
make the preprocessing faster and gives partitions of sufficient quality.
The construction of the preconditioner requires the LDL

T factorization of the
Winget decomposition of sparse super-elements. The ideal solver should accept in
entry dense symmetric unassembled elements (see mussels, Amestoy, Daydé, Duff,
L’Excellent, Gould, Reid and Scott, 1994). However, as this software is not yet
available, we use the multifrontal code MA27 from the Harwell Subroutine Library
(1995). A first phase consists into finding an ordering of the variables so that
the fill-in is kept to a minimum along the factorization. We always use minimum
degree, which is the default option of MA27, since it gives the best results. The
solution routines of MA27 were modified so that lower triangular, diagonal, and
upper triangular systems can be solved separately. MA27 accepts the matrix in
the Harwell-Boeing format (i, j, value) and values corresponding to a same position
(i, j) are summed, which avoids the assembly of the super-elements before the call.
The other subroutines are provided in the parebe package (see Daydé, L’Excellent
and Gould, 1995). All the factorizations can be performed in parallel, but we do not
exploit this in the current implementation. If the number of elements is sufficiently
large, a colouring can be applied to parallelize the solve. Note that one of the
advantage of using a graph partitioning algorithm is that the number of colours is
often small. Matrix-vector products are performed element-wise using the initial
elements. The time for a matrix-vector product does not depend on the number of
partitions, but is not optimal here since the initial elements are used. Some gain
could be expected by using amalgamation techniques within partitions.

4.2 Experiments

In the experiments #elts is the number of partitions. The elements are always
treated as sparse. A value of 1 means a direct method (1 iteration). For a value equal
to the initial number of elements p, the initial structure is used and the elements
are treated as sparse. For these two special values, no use of metis is made. min
size, max size, and avg size are respectively the minimum, the maximum and the
average sizes of the super-elements obtained. deg ovl is the degree of overlap of
the new structure, that is the average number of elements containing each variable.
var 1el is the number of variables contained by only 1 super-element. var 2el is
the number of variables contained by exactly 2 super-elements. #its is the number
of iterations required by the method to obtain a residual norm lower than 10−9.
time prec is the time to compute the preconditioner, that is the sum of the times
for determining the Winget decompositions, and for performing the symbolic and
numerical factorizations for all elements. time sol is the time spent in the solution
of the preconditioned system at each iteration.
It is difficult to define a good criterion to measure the quality of an elementary
decomposition. In order to compare the partitions obtained by different partitioning
techniques, we study the degree of overlap (deg ovl) as a function of the number
of elements (#elts) for the test problem CBRATU3D. This is illustrated in the
Figure 3. The amalgamation algorithm is as defined in section 2 and uses an
absolute criterion based on the time per iteration (estimates are performed on an

8

HP/715). The graph is partitioned using metis with default options and unit vertex
and edge weights. Observe that the curves are very close, which indicates that the
graph partitioning technique performs as well as amalgamation when considering
the degree of overlap.

Amalgamation
Partitionnement de graphe

10
0

10
1

10
2

10
3

10
4

1

2

3

4

5

6

7

8

Nb el

de
g

ov
l

Figure 3: Degree of overlap as a function of the number of elements obtained with amal-
gamation and graph partitioning for the test problem CBRATU3D.

METIS

METIS weights

Amalgamation

10
0

10
1

10
2

10
3

10
4

0

2

4

6

8

10

12

14

16

Number of elements

S
ec

on
ds

Figure 4: Time for symbolic amalgamation and graph partitioning using metis as a
function of the number of elements obtained on the HP/715 for CBRATU3D.

While the resulting partitions are not necessarily better than those obtained with
amalgamation, the computation of the partitions with metis is often much faster
than the use of an amalgamation algorithm, as is shown in Figure 4. Clearly, the
amalgamation scheme is cheaper when a large number of elements are required,
while the opposite is true for the partitioning algorithm. For reasonable numbers
of partitions, the time of metis is always smaller. While these times are only given
for the test problem CBRATU3D, for which the preprocessing step is quite costly,
similar effects were observed on the other large problems.
We now study the behaviour of the method described above for different numbers

9

of partitions. We use a recursive algorithm that aims to partition the graph into 2k

portions, but note that metis also allows more general partitions. From Section 2,
we already know that the use of sparse elements is not very effective if the problem
is well conditioned. We have also observed that for ill-conditioned problems of small
size or with low fill-in, direct methods can be the most efficient alternative. Thus,
we now consider harder problems, such as 3D finite element problems, where a
direct solver is too costly.
Table 5 gives convergence results for the CBRATU3D test problem with different
numbers of partitions on the ALLIANT FX/80 and on the HP/715. In Tables 5–6,
the last column (“Total”) represents the total time for the solution of the linear
system. The run 4394∗ in the last row of the tables indicates the results for the
initial, unamalgamated problem using dense elements. As we have already observed
for this very well conditioned problem, the number of iterations does not decrease
significantly with the number of partitions. Thus, the initial decomposition with
dense kernels remains the best compromise. For such a problem, we can use a large
number of partitions, but when considering the two last lines of the table which
compare using the p initial elements with a sparse or dense representation, we see
that our code would benefit from switching to a dense-storage mode for elements
with many nonzeros.
We now consider a problem with the same structure, but the numerical values are
modified so that the convergence is harder. The eigenvalues in each element are
randomly chosen in the range [10−9, 109]. The results for this example are given in
Table 6. A direct method is still too costly and the EBE preconditioner applied to
the initial matrix requires too many iterations. However, now the combination of
sparse super-elements with graph partitioning gives much better results. The best
compromise is obtained for 32 partitions, but there are benefits for a larger range
of number of partitions, specifically from 8 to 256 on the ALLIANT and from 16 to
512 on the HP.

ALLIANT FX/80 HP/715
min max avg deg var var # time time # time time
elts size size size ovl 1el 2el its prec sol Total its prec sol Total
1 4394 4394 4394.0 1.00 4394 0 1 1737.9 5.8 1745.0 1 280.2 1.6 282.0
2 2534 2536 2535.0 1.15 3718 676 12 516.5 23.3 547.9 12 80.7 5.7 87.3
4 1436 1446 1440.0 1.31 3134 1160 14 191.7 18.8 219.9 14 27.4 4.1 32.5
8 790 820 805.0 1.47 2648 1476 15 123.1 17.2 150.3 15 15.5 3.5 20.0
16 430 531 480.4 1.75 1772 2020 15 60.7 13.8 84.6 15 6.1 2.3 9.5
64 127 203 164.9 2.40 666 1781 16 35.6 13.5 59.8 16 2.8 1.7 5.6

512 24 48 37.9 4.41 0 72 21 26.3 24.4 64.5 21 2.0 2.4 5.8
1024 11 34 22.6 5.27 0 14 22 26.1 29.1 69.6 22 2.0 2.8 6.4
4394 5 8 7.5 7.54 0 0 20 34.7 38.8 86.6 20 2.8 3.9 8.0
4394

∗
5 8 7.5 7.54 0 0 20 5.66 26.6 45.6 20 0.4 3.1 4.9

Table 5: Results for the test problem CBRATU3D on ALLIANT FX/80 and on
HP/715.

5 Conclusion

We believe that these preliminary results indicate that the amalgamation methods
considered here hold promise, especially for large, ill-conditioned problems for which
direct methods are inappropriate and simple element-by-element preconditioners
ineffective. However, we must be cautious as our proposals are merely heuristics,
and believe that further experimentation is necessary to assess the full potential of

10

ALLIANT FX/80 HP/715
min max avg deg var var # time time # time time
elts size size size ovl 1el 2el its prec sol Total its prec sol Total
1 4394 4394 4394.0 1.00 4394 0 1 1738.8 5.83 1745.9 1 281.9 1.5 283.6
2 2534 2536 2535.0 1.15 3718 676 141 517.3 255.5 861.5 141 80.96 62.8 152.9
4 1436 1446 1440.0 1.31 3134 1160 167 192.3 210.8 508.4 166 27.49 46.4 84.6
8 790 820 805.0 1.47 2648 1476 155 124.0 168.4 390.2 155 15.6 33.8 59.4
16 430 531 480.4 1.749 1772 2020 172 60.8 150.2 319.3 173 6.16 25.3 42.6
32 232 337 283.9 2.07 1096 2093 185 41.7 148.2 306.2 185 3.70 21.0 36.5

64 127 203 164.9 2.40 666 1781 209 34.9 167.3 333.4 209 2.88 20.7 37.1
512 24 48 37.9 4.41 0 72 249 26.3 276.9 459.6 249 2.02 27.0 45.0
1024 11 34 22.6 5.27 0 14 253 26.3 321.8 507.7 253 2.06 31.2 49.6
4394 5 8 7.54 7.54 0 0 230 34.9 426.4 605.6 231 2.66 42.8 60.6
4394∗ 5 8 7.54 7.54 0 0 230 5.72 298.6 450.4 231 0.44 34.3 49.3

Table 6: Modified ill-conditioned problem CBRATU3D on ALLIANT FX/80 and
HP/715.

the methods.
The technique can also be applied to other element-by-element preconditioners or to
block methods. For example, the assembly of some super-elements would decrease
the cost of the solution step for the GS EBE preconditioner (see Hughes et al., 1983,
and Ortiz et al., 1983).

References

Amestoy, P. R., Daydé, M. J., Duff, I. S., L’Excellent, J.-Y., Gould, N. I. M.,
Reid, J. K. and Scott, J. A. (1994), Mussels – a multifrontal sparse symmetric
element-input linear solver, Technical report, Rutherford Appleton Laboratory,
Chilton, Oxfordshire, England. Working note.

Daydé, M. J., L’Excellent, J.-Y. and Gould, N. I. M. (1994), On the use of element-
by-element preconditioners to solve large scale partially separable optimiza-
tion problems, Technical Report RT/APO/94/4, ENSEEIHT-IRIT, Toulouse,
France. submitted to the SIAM J. Sci. Comput.

Daydé, M. J., L’Excellent, J.-Y. and Gould, N. I. M. (1995), User’s guide to
PAREBE : parallel element-by-element preconditioners for the conjugate gra-
dient algorithm, Technical report, ENSEEIHT-IRIT, Toulouse, France. To
appear.

Harwell Subroutine Library (1995), A catalogue of subroutines (release 12), AEA
Technology, Harwell, Oxfordshire, England.

Hughes, T. J. R., Levit, I. and Winget, J. (1983), ‘An element-by-element solution
algorithm for problems of structural and solid mechanics’, Comput. Methods
Appl. Mech. Eng. 36, 241–254.

Karypis, G. and Kumar, V. (1995), METIS : Unstructured graph partitionning
and sparse matrix ordering system, version 2.0, Technical report, University of
Minnesota, Department of Computer Science, Minneapolis.

L’Excellent, J.-Y. (1995), Utilisation de préconditionneurs élément-par-élément
pour la résolution de problèmes d’optimisation de grande taille, PhD thesis,
ENSEEIHT-INPT.

11

Ortiz, M., Pinsky, P. M. and Taylor, R. L. (1983), ‘Unconditionally stable element-
by-element algorithms for dynamic problems’, Comput. Methods Appl. Mech.
Eng. 36, 223–239.

12

