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SYSTEMS∗
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Abstract. We consider conjugate-gradient like methods for solving block symmetric indefinite
linear systems that arise from saddle-point problems or, in particular, regularizations thereof. Such
methods require preconditioners that preserve certain sub-blocks from the original systems but allow
considerable flexibility for the remaining blocks. We construct a number of families of implicit factor-
izations that are capable of reproducing the required sub-blocks and (some) of the remainder. These
generalize known implicit factorizations for the unregularized case. Improved eigenvalue clustering is
possible if additionally some of the noncrucial blocks are reproduced. Numerical experiments confirm
that these implicit-factorization preconditioners can be very effective in practice.
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1. Introduction. Given a symmetric n by n matrix H, a symmetric m by m
(m ≤ n) matrix C and a full-rank m (≤ n) by n matrix A, we are interested in solving
structured linear systems of equations(

H AT

A −C

)(
x
y

)
= −

(
g
0

)
(1.1)

by iterative methods, in which preconditioners of the form

MG =

(
G AT

A −C

)
(1.2)

are used to accelerate the iteration for some suitable symmetric G. We denote the
coefficient matrix in (1.1) by MH . There is little loss of generality in assuming the
right-hand side of (1.1) has the form given rather than with the more general(

H AT

A −C

)(
x̄
ȳ

)
=

(
b
c

)
.(1.3)

For, so long as we have some mechanism for finding an initial (x0, y0) for which
Ax0 − Cy0 = c, linearity of (1.1) implies that (x̄, ȳ) = (x0 − x, y0 − y) solves (1.3)
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when b = g + Hx0 + AT y0. In particular, since we intend to use the preconditioner
(1.2), solving (

G AT

A −C

)(
x0

y0

)
=

(
0
c

)
or =

(
b
c

)
(1.4)

to find suitable (x0, y0) are distinct possibilities.
When C = 0, (1.2) is commonly known as a constraint preconditioner [35] and in

this case systems of the form (1.1) arise as stationarity (KKT) conditions for equality-
constrained optimization [40, section 18.1], in mixed finite-element approximation of
elliptic problems [6], including, in particular, problems of elasticity [41] and incom-
pressible flow [23], as well as other areas. In practice C is often positive semi-definite
(and frequently diagonal)—such systems frequently arise in interior-point and regu-
larization methods in optimization, the simulation of electronic circuits [47] and other
related areas; see [3] for an encyclopedic review of (regularized) saddle-point systems.
Although such problems may involve m by n A with m > n, this is not a restriction,
for in this case we might equally solve(

C A
AT −H

)(
y
−x

)
=

(
0
g

)
,

for which AT has more columns than rows. We place no restrictions on H, although
we recognize that in some applications H may be positive (semi-) definite.

Notation. Let I be the (appropriately dimensioned) identity matrix. Given a
symmetric matrix M with, respectively, m+, m− and m0 positive, negative and zero
eigenvalues, we denote its inertia by In(M) = (m+,m−,m0).

2. Suitable iterative methods. While it would be perfectly possible to apply
general preconditioned iterative methods like GMRES [45] or the symmetric QMR
method [25] to (1.1) with the indefinite preconditioner (1.2), the specific form of
(1.2) allows the use of the more efficient preconditioned conjugate-gradient (PCG)
method [12] instead. Use of GMRES would have the disadvantage that storage and
orthogonalization of a set of k vectors would be required at the kth iteration, so
that the work per iteration increases at each iteration. The symmetric QMR method
does not suffer from this difficulty, though it does not minimize a quantity of interest
(such as the residual) unlike GMRES and PCG. Because PCG has such a minimizing
property and requires a fixed amount of work per iteration, we shall focus on this
approach in this paper. We thus need to derive conditions for which PCG is an
appropriate method.

Suppose that C is of rank l, and that we find a decomposition

C = EDET ,(2.1)

where E is m by l and D is l by l and invertible—either a spectral decomposition or
an LDLT factorization with pivoting are suitable—but the exact form is not relevant.
In this case, on defining additional variables

z = −DET y,

we may rewrite (1.1) as⎛
⎝ H 0 AT

0 D−1 ET

A E 0

⎞
⎠

⎛
⎝ x

z
y

⎞
⎠ =

⎛
⎝ g

0
0

⎞
⎠ .(2.2)
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Noting the trailing zero block in the coefficient matrix of (2.2), we see that the required
(x, z) components of the solution lie in the nullspace of (A E).

Let the columns of the matrix

N =

(
N1

N2

)

form a basis for this null space. Then(
x
z

)
=

(
N1

N2

)
w(2.3)

for some w, and (2.2) implies

HNw = NT
1 g,(2.4)

where

HN
def
= NT

1 HN1 + NT
2 D−1N2.(2.5)

Since we would like to apply PCG to solve (2.4), our fundamental assumption is then
that

A1: the matrix HN is positive definite.

Fortunately assumption A1 is often easy to verify.
Theorem 2.1. Suppose that the coefficient matrix MH of (1.1) is nonsingular

and has mH− negative eigenvalues and that C has c− negative ones, then A1 holds
if and only if

mH− + c− = m.(2.6)

Proof. It is well known [29, Thm. 2.1] that under assumption A1 the coefficient
matrix EH of (2.2) has inertia (n + l,m, 0). The result then follows directly from
Sylvester’s law of inertia, since then In(EH) = In(D−1) + In(MH) and D−1 has as
many negative eigenvalues as C has.

Under assumption A1, we may apply the PCG method to find w, and hence
recover (x, z) from (2.3). Notice that such an approach does not determine y, and
additional calculations may need to be performed to recover it if it is required.

More importantly, it has been shown [8, 11, 31, 43] that rather than computing
the iterates explicitly within the nullspace via (2.3), it is possible to perform the
iteration in the original (x, z) space so long as the preconditioner is chosen carefully.
Specifically, let G be any symmetric matrix for which

A2: the matrix

GN
def
= NT

1 GN1 + NT
2 D−1N2(2.7)

is positive definite,

which we can check using Theorem 2.1. Then the appropriate projected precondi-
tioned conjugate-gradient (PPCG) algorithm follows [31].
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Projected Preconditioned Conjugate Gradients (variant 1):
Given x = 0, z = 0 and h = 0, solve

⎛
⎝ G 0 AT

0 D−1 ET

A E 0

⎞
⎠

⎛
⎝ r

d
u

⎞
⎠ =

⎛
⎝ g

h
0

⎞
⎠ ,(2.8)

and set (p, v) = −(r, d) and σ = gT r + hT d.
Iterate until convergence:

Form Hp and D−1v.

Set α = σ/(pTHp + vTD−1v).
Update x ← x + αp,

z ← z + αv,
g ← g + αHp

and h ← h + αD−1v.
Given g and h, solve (2.8) to find r and d.
Set σnew = gT r + hT d
and β = σnew/σ.
Update σ ← σnew,

p ← −r + βp
and v ← −d + βv.

We note in passing that the algorithm above may be generalized by replacing D in
the preconditioning step (2.8) by any nonsingular T for which NT

1 GN1 + NT
2 T−1N2

is positive definite. The scalar σ gives an appropriate optimality measure [31], and a
realistic termination rule is to stop when σ is small relative to its original value.

While this method is acceptable when a decomposition (2.1) of C is known, it
is preferable to be able to work directly with C. To this end, suppose that at each
iteration

h = −ETa, v = −DET q and d = −DET t

for unknown vectors a, q and t—this is clearly the case at the start of the algorithm.
Then, letting w = Ca, it is straightforward to show that t = u + a, and that we can
replace our previous algorithm with the following equivalent one.

Projected Preconditioned Conjugate Gradients (variant 2):
Given x = 0, and a = w = 0, solve

(
G AT

A −C

)(
r
u

)
=

(
g
w

)
,(2.9)

and set p = −r, q = −u and σ = gT r.
Iterate until convergence:
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Form Hp and Cq.

Set α = σ/(pTHp + qTCq).
Update x ← x + αp,

a ← a + αq,
g ← g + αHp

and w ← w + αCq.
Given g and w, solve (2.9) to find r and u.
Set t = a + u,

σnew = gT r + tTw
and β = σnew/σ.
Update σ ← σnew,

p ← −r + βp
and q ← −t + βq.

Notice now that z no longer appears, and that the preconditioning is carried out using
the matrix MG mentioned in the introduction. Also note that although this variant
involves two more vectors than its predecessor, t is simply used as temporary storage
and may be omitted if necessary, while w may also be replaced by Ca if storage is
tight.

When C = 0, this is essentially the algorithm given by [31], but for this case the
updates for v and w are unnecessary and may be discarded. At the other extreme,
when C is nonsingular the algorithm is precisely that proposed by [30, Alg. 2.3], and
is equivalent to applying PCG to the system

(H + ATC−1A)x = g,

using a preconditioner of the form G + ATC−1A.
Which of the two variants is preferable depends on whether we have a decomposi-

tion (2.1) and whether l is small relative to m: the vectors h and v in the first variant
are of length l, while the corresponding a and q in the second are of length m. Notice
also that although the preconditioning steps in the first variant require that we solve
(2.8) this is entirely equivalent to solving (2.9), where w = −EDh, and recovering

d = D(h− ET v).

Thus our remaining task is to consider how to build suitable and effective pre-
conditioners of the form (1.2). We recall that it is the distribution of the generalized
eigenvalues λ for which

HN v̄ = λGN v̄(2.10)

that determines the convergence of the preceding PPCG algorithms, and thus we
will be particularly interested in preconditioners which cluster these eigenvalues. In
particular, if we can efficiently compute GN so that there are few distinct eigenvalues
λ in (2.10), then PPCG convergence (termination) will be rapid.

3. Eigenvalue considerations. We first consider the spectral implications of
preconditioning (1.1) by (1.2).

Theorem 3.1 (see [16, Thm. 3.1] or, in special circumstances, [4, 44]). Suppose
that MH is the coefficient matrix of (1.1). Then M−1

G MH has m unit eigenvalues,
and the remaining n eigenvalues satisfy

(H − λG)v = (λ− 1)ATw, where Av − Cw = 0.
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If C is invertible, the nonunit eigenvalues satisfy

(H + ATC−1A)v = λ(G + ATC−1A)v.(3.1)

Our goal in this section is to improve upon this result in the general case C �= 0.
For the special case in which C = 0, results are already known [18] concerning the
eigenvalues of K−1

G KH for the pair of matrices

KH =

(
H AT

A 0

)
and KG =

(
G AT

A 0

)
.

These results refer to a partitioning of A as

A = (A1 A2),(3.2)

so that its leading m by m submatrix

A3: A1 is nonsingular;

and a similar partitioning of G and H as

G =

(
G11 GT

21

G21 G22

)
and H =

(
H11 HT

21

H21 H22

)
,(3.3)

where G11 and H11 are, respectively, the leading m by m submatrices of G and H.
In practice, the partitioning of A to ensure A3 may involve column permutations,

but without loss of generality we simply assume here that any required permutations
have already been carried out. Given A3, we shall be particularly concerned with the
reduced-space basis matrix

N =

(
R
I

)
, where R = −A−1

1 A2.(3.4)

Such basis matrices play vital roles in simplex (pivoting)-type methods for linear pro-
gramming [2, 24], and more generally in active-set methods for nonlinear optimization
[27, 38, 39].

Theorem 3.2 (see [18, Thm. 2.3]). Suppose that G and H are as in (3.3), that
A3 holds and that

G22 = H22, but G11 = 0 and G21 = 0.(3.5)

Suppose furthermore that H22 is positive definite, and let

ρ
def
= min

[
rank(A2), rank(H21)

]
+ min

[
rank(A2), rank(H21) + min[rank(A2), rank(H11)]

]
.

Then K−1
G KH has at most

rank(RTHT
21 + H21R + RTH11R) + 1 ≤ min(ρ, n−m) + 1 ≤ min(2m,n−m) + 1

distinct eigenvalues.
The restriction that H22 be positive definite is not as severe as it might first seem

because the problem may be reformulated to use H22 + AT
2 ΔA2 for any symmetric
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positive definite weight matrix Δ instead [18, Thm. 2.2]—this corresponds to the
so-called augmented Lagrangian approach [33].

Theorem 3.3 (see [18, Thm. 2.4]). Suppose that G and H are as in (3.3), that
A3 holds and that

G22 = H22 and G11 = H11 but G21 = 0.(3.6)

Suppose furthermore that H22 + RTHT
11R is positive definite, and that

ν
def
= 2 min

[
rank(A2), rank(H21)

]
.

Then K−1
G KH has at most

rank(RTHT
21 + H21R) + 1 ≤ ν + 1 ≤ min(2m,n−m) + 1

distinct eigenvalues.
Theorem 3.4 (see [18, Thm. 2.5]). Suppose that G and H are as in (3.3), that

A3 holds and that

G22 = H22 and G21 = H21 but G11 = 0.(3.7)

Suppose furthermore that H22 + RTHT
21 + H21R is positive definite, and that

μ
def
= min

[
rank(A2), rank(H11)

]
.

Then K−1
G KH has at most

rank(RTH11R) + 1 ≤ μ + 1 ≤ min(m,n−m) + 1

distinct eigenvalues.
Turning to the general case of C �= 0, denote the coefficient matrices of the systems

(2.2) and (2.8) by

K̄H
def
=

⎛
⎝ H 0 AT

0 D−1 ET

A E 0

⎞
⎠ and K̄G

def
=

⎛
⎝ G 0 AT

0 D−1 ET

A E 0

⎞
⎠ ,

respectively. Recalling the definitions (2.5) and (2.7) of HN and GN , the following
result is a direct consequence of [35, Thm. 2.1].

Theorem 3.5. Suppose that N is any (n by n+ l−m) basis matrix for the null
space of (A E). Then K̄−1

G K̄H has 2m unit eigenvalues, and the remaining n+ l−m
eigenvalues are those of the generalized eigenproblem (2.10).

We may improve on Theorem 3.5 by applying Theorems 3.2–3.4 in our more
general setting. To do so, let

R̄ = −A−1
1 (A2 E),

and note that (3.2) implies the partitioning

K̄H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

H11 HT
21 0 AT

1

H21 HT
22 0 AT

2

0 0 D−1 ET

A1 A2 E 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

and K̄G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

G11 GT
21 0 AT

1

G21 GT
22 0 AT

2

0 0 D−1 ET

A1 A2 E 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

We then have the following immediate consequences.
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Corollary 3.6. Suppose that G and H are as in (3.3) and that (3.5) and A3
hold. Suppose furthermore that (

H22 0
0 D−1

)
(3.8)

is positive definite, and let

ρ̄ = min
[
η, rank(H21)

]
+ min

[
η, rank(H21) + min[η, rank(H11)]

]
,

where η = rank(A2 E). Then K̄−1
G K̄H has at most

rank(R̄THT
21 + H21R̄ + R̄TH11R̄) + 1 ≤ min(ρ̄, n + l −m) + 1 ≤ min(2m,n + l −m) + 1

distinct eigenvalues.
Corollary 3.7. Suppose that G and H are as in (3.3) and that (3.6) and A3

hold. Suppose furthermore that(
H22 0
0 D−1

)
+ R̄THT

11R̄(3.9)

is positive definite, and that

ν̄ = 2 min
[
η, rank(H21)

]
,

where η = rank(A2 E). Then K̄−1
G K̄H has at most

rank(R̄THT
21 + H21R̄) + 1 ≤ ν̄ + 1 ≤ min(2m,n + l −m) + 1

distinct eigenvalues.
Corollary 3.8. Suppose that G and H are as in (3.3) and that (3.7) and A3

hold. Suppose furthermore that(
H22 0
0 D−1

)
+ R̄THT

21 + H21R̄(3.10)

is positive definite, and that

μ̄ = min
[
η, rank(H11)

]
,

where η = rank(A2 E). Then K̄−1
G K̄H has at most

rank(R̄TH11R̄) + 1 ≤ μ̄ + 1 ≤ min(m,n + l −m) + 1

distinct eigenvalues.
While the requirements that (3.8)–(3.10) be positive definite may at first seem

strong assumptions, as in the case C = 0 we can also apply a so-called augmented
Lagrangian approach for the general case C �= 0.

Theorem 3.9. The inertial requirement (2.6) holds for a given H if and only if
there exists a positive semi-definite matrix Δ̄ such that(

H 0
0 D−1

)
+

(
AT

ET

)
Δ(A E)
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is positive definite for all Δ for which Δ − Δ̄ is positive semi-definite. In particular,
if (2.6) holds, H + ATΔA and ETΔE + D−1 are positive definite for all such Δ.

Proof. This follows immediately by applying [18, Thm. 2.2] to K̄H .
Because Ax + Ez = 0 we may rewrite (2.2) as the equivalent system

⎛
⎝ H + ATΔA ATΔE AT

ETΔA ETΔE + D−1 ET

A E 0

⎞
⎠

⎛
⎝ x

z
y

⎞
⎠ =

⎛
⎝ g

0
0

⎞
⎠ .

Eliminating the variable z, we find that

(
H + ATΔA ATPT

PA −W

)(
x
y

)
= −

(
g
0

)
,

where

P = I − ΔW and W = E(ETΔE + D−1)−1ET .

Hence (
H + ATΔA AT

A −C̄

)(
x
ȳ

)
= −

(
g
0

)
,(3.11)

where

C̄ = P−1WP−T = (I − ΔW )−1W (I −WΔ)−1 and ȳ = PT y.(3.12)

Thus it follows from Theorem 3.9 that we may rewrite (2.2) so that its trailing and
leading diagonal blocks are, respectively, negative semi- and positive definite. In doing
so, any underlying structure (such as sparsity) may be compromised. For the sparse
case, if we are prepared to tolerate fill-in in these blocks, requirements (3.8)–(3.10)
then seem more reasonable.

Although (3.12) may appear complicated for general C, C̄ is diagonal whenever
C is. More generally, if E = I, C̄ = D + DΔD and we may recover y = (I + ΔD)ȳ.

4. Suitable preconditioners. It has long been common practice (at least in
optimization circles) [4, 7, 13, 26, 36, 49] to use explicit-factorization preconditioners
of the form (1.2) by specifying G and factorizing MG using a suitable symmetric,
indefinite package such as MA27 [21] or MA57 [20]. Given G, an alternative used com-
monly by the PDE community (see, for example, [1, 22, 36, 42, 44, 14, 48] and the
many references in [3]) is to use the explicit block decomposition

MG =

(
I 0

AG−1 I

)(
G 0
0 −C −AG−1AT

)(
I G−1AT

0 I

)
(4.1)

to solve (1.2) via factorizations of G and the Schur complement C +AG−1AT (or an
approximation to the latter) if these are viable. While such techniques for choosing G
have often been successful, they have usually been rather ad hoc, with little attempt
to improve upon the eigenvalue distributions beyond those suggested by Theorem 3.1.
In this section we investigate an implicit-factorization alternative.
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4.1. Implicit-factorization preconditioners. Recently Dollar and Wathen
[19] proposed a class of incomplete factorizations for saddle-point problems (C = 0),
based upon earlier work by Schilders [46]. They consider preconditioners of the form

MG = PBPT ,(4.2)

where solutions with each of the matrices P , B and PT are easily obtained. In
particular, rather than obtaining P and B from a given MG, MG is derived from
specially chosen P and B. In this section, we examine a broad class of methods of
this form.

In order for the methods we propose to be effective, we shall require that A3
holds. Since there is considerable flexibility in choosing the “basis” A1 from the rect-
angular matrix A by suitable column interchanges, A3 is often easily, and sometimes
trivially, satisfied. Even though, theoretically, there is a lot of choice, the actual
A1 that is used for practical computation can have a significant effect on the overall
effectiveness of the preconditioning strategies described in this paper. The problem
of determining the “sparsest” A1 is NP hard, [9, 10], while numerical considerations
must be given to ensure that A1 is not badly conditioned if at all possible [27]. More
generally, we do not necessarily assume that A1 is sparse or structured nor that it has
a sparse (or other) factorization, merely that there are effective ways to solve systems
involving A1 and AT

1 . For example, for many problems involving constraints aris-
ing from the discretization of partial differential equations, there are highly effective
iterative methods for such systems [5].

Suppose that

P =

⎛
⎝ P11 P12 AT

1

P21 P22 AT
2

P31 P32 P33

⎞
⎠ and B =

⎛
⎝ B11 BT

21 BT
31

B21 B22 BT
32

B31 B32 B33

⎞
⎠ .(4.3)

Our goal is to ensure that

(MG)31 = A1,(4.4a)

(MG)32 = A2(4.4b)

and (MG)33 = −C,(4.4c)

whenever MG = PBPT . Pragmatically, though, we are only interested in the case
where one of the three possibilities

P11 = 0, P12 = 0 and P32 = 0,(4.5a)

or P11 = 0, P12 = 0 and P21 = 0,(4.5b)

or P12 = 0, P32 = 0 and P33 = 0(4.5c)

(as well as nonsingular P31 and P22) hold, since only then will P be easily block-
invertible. Likewise, we restrict ourselves to the three general cases

B21 = 0, B31 = 0 and B32 = 0 with easily invertible B11, B22 and B33,(4.6a)

B32 = 0 and B33 = 0 with easily invertible B31 and B22, or(4.6b)

B11 = 0 and B21 = 0 with easily invertible B31 and B22,(4.6c)

so that B is block-invertible. B is also easily block-invertible if

B21 = 0 and B32 = 0 with easily invertible

(
B11 BT

31

B31 B33

)
and B22,(4.7)

and we will also consider this possibility.
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Table 4.1

Possible implicit factors for the preconditioner (1.2). We give the P and B factors and any
necessary restrictions on their entries. We also associate a family number with each class of implicit
factors. Full derivations are given in [17, Appendix A].

Family/
reference P B Conditions

1.

(
0 0 AT

1

0 P22 AT
2

P31 0 P33

) (
B11 0 0

0 B22 0

0 0 B33

)
B11 = −P−1

31 (C + P33)P−T
31

B33 = P−1
33

2.

(
0 0 AT

1

0 P22 AT
2

P31 0 P33

) (
B11 0 BT

31

0 B22 0

B31 0 0

)
P31 = B−T

31

P33 + PT
33 + P31B11P

T
31 = −C

3.

(
0 0 AT

1

P21 P22 AT
2

P31 0 −C

) (
B11 0 BT

31

0 B22 0

B31 0 0

)
B31 = P−T

31

B11 = P−1
31 CP−T

31

4.

(
0 0 AT

1

P21 P22 AT
2

P31 0 P33

) (
0 0 BT

31

0 B22 BT
32

B31 B32 0

)
P21 = −P22B

T
32B

−T
31

P31 = B−T
31

P33 + PT
33 = −C

5.

(
0 0 AT

1

P21 P22 AT
2

P31 0 P33

) (
0 0 BT

31

0 B22 BT
32

B31 B32 B33

) −C = P33 + PT
33 − P33B33P

T
33

B31 = (I −B33P
T
33)P−T

31

B32 = −B31P
T
21P

−T
22

6.

(
0 0 AT

1

0 P22 AT
2

P31 P32 P33

) (
B11 BT

21 BT
31

B21 B22 0

B31 0 0

) P31 = B−T
31

P32 = −P31B
T
21B

−1
22

P33 + PT
33

= −C − P31(B11 −BT
21B

−1
22 B21)PT

31

7.

(
0 0 AT

1

0 P22 AT
2

P31 P32 P33

) (
0 0 BT

31

0 B22 BT
32

B31 B32 B33

) P33 + PT
33 + P33(B33 −B32B

−1
22 BT

32)PT
33

= −C

P32 = −P33B32B
−1
22

P31 = (I − P32B
T
32 − P33B

T
33)B−T

31

We consider all of these possibilities in detail in [17, Appendix A], and summarize
our findings in Tables 4.1 and 4.2. We have identified eleven possible classes of easily
invertible factors that are capable of reproducing the A and C blocks of MG, a further
two which may be useful when C is diagonal, and one that is only applicable if C = 0.

Notice that aside from invertibility, there are never restrictions on P22 and B22.

4.2. Reproducing H. Having described families of preconditioners which are
capable of reproducing the required components A and C of MG, we now examine
what form the resulting G takes. In particular, we consider which submatrices of G
can be defined to completely reproduce the associated submatrix of H; we say that a
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Table 4.2

Possible implicit factors for the preconditioner (1.2) (cont.). We give the P and B factors and
any necessary restrictions on their entries. We also associate a family number with each class of
implicit factors. Full derivations are given in [17, Appendix A].

Family/
reference P B Conditions

8.

(
AT

1 0 AT
1

AT
2 P22 AT

2

−C 0 0

) (−C−1 0 0

0 B22 0

0 0 B33

)
C invertible

9.

(
P11 0 AT

1

P21 P22 AT
2

P31 0 0

) (
B11 BT

21 BT
31

B21 B22 0

B31 0 0

) B11 = −P−1
31 CP−T

31

B31 = P−T
31 −MB11

B21 = P−1
22 (P21 −AT

2 M)B11

P11 = AT
1 M for some invertible M

10.

(
P11 0 AT

1

P21 P22 AT
2

P31 0 0

) (
0 0 BT

31
0 B22 BT

32

B31 B32 B33

)
C = 0

P31 = B−T
31

11.

(
0 0 AT

1

P21 P22 AT
2

P31 0 −C

) (
B11 0 BT

31

0 B22 0

B31 0 B33

)
C invertible

PT
31 = B−1

11 BT
31C

B33 = (B31P
T
31 − I)C−1

12.

(
0 0 AT

1

P21 P22 AT
2

P31 0 −C

) (
B11 0 BT

31

0 B22 0

B31 0 B33

)
B11 = P−1

31 CP−T
31

B31 = P−T
31 , where

B33C = 0

13.

(
0 0 AT

1

0 P22 AT
2

P31 0 P33

) (
B11 0 BT

31

0 B22 0

B31 0 B33

) P31 = (I − P33B33)B−T
31

B11 = P−1
31

(
P33B33P

T
33

−C − P33 − PT
33

)
P−T

31

14.

(
P11 0 AT

1

P21 P22 AT
2

P31 0 0

) (
B11 0 BT

31

0 B22 0

B31 0 B33

) B11 = −P−1
31 CP−T

31

B31 = P−T
31 −MB11

P11 = AT
1 M

P21 = AT
2 M for some invertible M

component Gij , i, j ∈ {1, 2}, is complete if it is possible to choose it so that Gij = Hij .
We give the details in [17, Appendix B], and summarize our findings for each of the
14 families from section 4.1 in Table 4.3.

Some of the submatrices in the factors P and B can be arbitrarily chosen without
changing the completeness of the family. We shall call these “free blocks.” For
example, consider family 2 from Table 4.1. The matrix G produced by this family
always satisfies G11 = 0, G21 = 0, and G22 = P22B22P

T
22. Hence, P22 can be defined as

any nonsingular matrix of suitable dimension, and BT
22 can be subsequently chosen so

that G22 = H22. The simplest choice for P22 is the identity matrix. We observe that
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Table 4.3

Blocks of G for the families of preconditioners given in Tables 4.1 and 4.2. The superscript
1 indicates that the value of G21 is dependent on the choice of G11. If Gij , i, j ∈ {1, 2}, is a zero
matrix, then a superscript 2 is used. The superscript 3 means that G21 is dependent on the choice
of G11 when C = 0, but complete otherwise, while the superscript 4 indicates that G11 is only
guaranteed to be complete when C = 0.

Completeness Conditions Feasible
Family G11 G21 G22 on C to use Comments

1. � ×1 � any C �

2. ×2 ×2 � any C �

3. ×2 � � any C �

Simplest choice of free blocks is
4. ×2 ×2 � any C �

the same as that for family 2.

5. � ×1 � any C C = 0

Simplest choice of free blocks is
6. ×2 ×2 � any C �

the same as that for family 2.
If C = 0 using simplest choice of

7. � �3 � any C C = 0 free blocks, then same as that for
family 5 with C = 0.

8. � ×1 � nonsingular �

9. � � � any C C = 0

Generalization of factorization
10. � � � C = 0 �

suggested by Schilders [19, 46];
See also [37].

11. � � � nonsingular �

C = 0 gives example of family 10.
12. �4 � � any C diagonal C

C nonsingular gives family 3.

13. � ×1 � any C �

14. � ×1 � any C �
C = 0 gives example of family 10.

the choice of the remaining submatrices in P and B will not affect the completeness
of the factorization, and are only required to satisfy the conditions given in Table 4.1.
The simplest choices for these submatrices will be P31 = I, and B11 = 0, giving
P33 = − 1

2C, and B31 = I. Using these simple choices we obtain:

P =

⎛
⎝ 0 0 AT

1

0 I AT
2

I 0 − 1
2C

⎞
⎠ and B =

⎛
⎝ 0 0 I

0 B22 0
I 0 0

⎞
⎠ .

The simplest choice of the free blocks may result in some of the families having the
same factors as other families. This is indicated in the “comments” column of the
table. Table 4.3 also gives the conditions that C must satisfy to use the family, and
whether the family is feasible to use, i.e., are the conditions on the blocks given in
Tables 4.1 and 4.2 easily satisfied?

Table 4.4 gives some guidance towards which families from Tables 4.1 and 4.2
should be used in the various cases of G given in section 3. We also suggest simple
choices for the free blocks. In our view, although Table 4.3 indicates that it is theoret-
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Table 4.4

Guidance towards which family to use to generate the various choices of G given in section 3.

Sub-blocks of G Conditions on C Family Free block choices

G22 = H22, G11 = 0, G21 = 0 any C 2 P22 = I, P31 = I, B11 = 0

G22 = H22, G11 = H11, G21 = 0 C = 0 10 B21 = 0, P22 = I, P31 = I

G22 = H22, G11 = H11, G21 = 0 C nonsingular 11 P22 = I, P31 = I

G22 = H22, G21 = H21, G11 = 0 any C 3 P22 = I, P31 = I

ically possible to reproduce all of H using, e.g., family 9, in practice this is unviable
because structure, such as sparsity, could be severely compromised.

5. Numerical examples. In this section we examine how effective implicit-
factorization preconditioners might be when compared with explicit-factorization ones.
We consider problems generated using the complete set of quadratic programming ex-
amples from the CUTEr [32] test set used in our previous experiments for the C = 0
case [18]. All inequality constraints are converted to equations by adding slack vari-
ables, and a suitable “barrier” penalty term is added to the diagonal of the Hessian
for each bounded or slack variable to simulate systems that might arise during an
iteration of an interior-point method for such problems; in each of the test problems
the value 1.1 is used—this sort of value would correspond to an intermediate stage
of the outer (optimization) iteration. The resulting equality-constrained quadratic
programs are then of the form

minimize
x∈IRn

gTx + 1
2x

THx subject to Ax = 0.(5.1)

Given this data H and A, two illustrative choices of diagonal C are considered, namely,

cii = 1 for 1 ≤ i ≤ m,(5.2)

and

cii =

{
0 for 1 ≤ i ≤

⌈
m
2

⌉
1 for

⌈
m
2

⌉
+ 1 ≤ i ≤ m;

(5.3)

in practice such C may be thought of as regularization terms for some or all on the
constraints in (5.1). Our aim is thus to solve for the primal variables x in the system
(1.1) using a suitably preconditioned PPCG iteration.

Rather than present large tables of data (these can be found in [17, Appendix
C]), here we use performance profiles [15] to illustrate our results. To explain the
idea, let P represent the set of preconditioners that we wish to compare. Suppose
that the run of PPCG using a given preconditioner i ∈ P reports the total CPU time
tij ≥ 0 when executed on example j from the test set T . For all problems j ∈ T , we
want to compare the performance of algorithm i with the performance of the fastest
algorithm in the set P. For j ∈ T , let tMIN

j = min{tij ; i ∈ P}. Then for α ≥ 1 and
each i ∈ P we define

k(tij , t
MIN

j , α) =

{
1 if tij ≤ αtMIN

j

0 otherwise.
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The performance profile [15] of algorithm i is then given by the function

pi(α) =

∑
j∈T k(tij , t

MIN
j , α)

|T | , α ≥ 1.

Thus pi(1) gives the fraction of the examples for which algorithm i is the most effective
(according to the statistic tij), pi(2) gives the fraction for which algorithm i is within
a factor of 2 of the best, and limα→∞ pi(α) gives the fraction for which the algorithm
succeeded.

We consider two explicit factorization preconditioners, one using exact factors
(G = H), and the other using a simple projection (G = I). A Matlab interface to the
HSL [34] package MA57 [20] (version 2.2.1) is used to factorize MG and subsequently
solve (1.4); as we have already mentioned, in some cases it would have been both
possible and preferable to use instead the explicit block decomposition (4.1) when
G = I (or for easily invertible H), and interpretation of the results we present should
keep this in mind. Three implicit factorizations of the form (4.2) with factors (4.3)
are also considered. The first is from family 1 (Table 4.1), and aims for simplicity by
choosing P31 = I, P33 = I = B33 and B22 = I = P22, and this leads B11 = −(C + I);
such a choice does not necessarily reproduce any of H, but is inexpensive to use. The
remaining implicit factorizations are from family 2 (Table 4.1). The former (marked
(a) in the following figures) selects G22 = H22 while the latter (marked (b) in the
figures) chooses G22 = I; for simplicity we chose P31 = I = B31, B11 = 0, P22 = I
and P33 = − 1

2C (see section 4.2), and thus we merely require that B22 = H22 for case
(a) and B22 = I for case (b)—we use MA57 to factorize H22 in the former case.

Given A, a suitable basis matrix A1 is found by finding a sparse LU factorization
of AT using the built-in Matlab function lu. An attempt to correctly identify the
rank is controlled by tight threshold column pivoting, in which any pivot may not
be smaller than a factor τ = 2 of the largest entry in its (uneliminated) column
[27, 28]. The rank is estimated as the number of pivots, ρ(A), completed before the
remaining uneliminated submatrix is judged to be numerically zero, and the indices of
the ρ(A) pivotal rows and columns of A define A1—if ρ(A) < m, the remaining rows
of A are judged to be dependent, and are discarded. Although such a strategy may
not be as robust as, say, a singular-value decomposition or a QR factorization with
pivoting, both our and others’ experience [27] indicate it to be remarkably reliable
and successful in practice. Having found A1, the factors are discarded, and a fresh
LU decomposition of A1, with a looser threshold column pivoting factor τ = 100, is
computed using lu in order to try to encourage sparse factors.

All of our experiments were performed using a dual processor Intel Xeon 3.2GHz
Workstation with hyperthreading and 2 Gbytes of RAM. Our codes were written and
executed in Matlab 7.0 Service Pack 1.

In Figures 5.1–5.2, (see the tables in [17, Appendix C] for the raw data), we
compare our five preconditioning strategies for (approximately) solving the problem
(1.1) when C is given by (5.2) using the PPCG scheme (variant 2) described in
section 2. We consider both low and high(er) accuracy solutions. For the former, we
terminate as soon as the residual σ has been reduced more than 10−2 from its original
value, while the latter requires a 10−8 reduction; these are intended to simulate the
levels of accuracy that might be required within a nonlinear equation or optimization
solver in early (global) and later (asymptotic) phases of the solution process.

We see that if low accuracy solutions suffice, the implicit factorizations appear
to be significantly more effective at reducing the residual than their explicit counter-
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Fig. 5.1. Performance profile, p(α): CPU time (seconds) to reduce relative residual by 10−2,
when C is given by (5.2).
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Fig. 5.2. Performance profile, p(α): CPU time (seconds) to reduce relative residual by 10−8,
when C is given by (5.2).

parts. In particular, the implicit factorization from family 1 seems to be the most
effective. Of interest is that for family 2, the cost of applying the more accurate
implicit factorization that reproduces H22 generally does not pay off relative to the
cost of the cheaper implicit factorizations. For higher accuracy solutions, the leading
implicit factorization still slightly outperforms the explicit factors, although now the
remaining implicit factorizations are less effective.
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Fig. 5.3. Performance profile, p(α): CPU time (seconds) to reduce relative residual by 10−2,
when C is given by (5.3).
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Fig. 5.4. Performance profile, p(α): CPU time (seconds) to reduce relative residual by 10−8,
when C is given by (5.3).

Figures 5.3–5.4 (see [17] for tables of the raw data) repeat the experiments when
C is given by (5.3). Once again the implicit factorizations seem very effective, with a
shift now to favor those from family 2, most especially the less sophisticated of these.

6. Comments and conclusions. In this paper we have considered conjugate-
gradient like methods for block symmetric indefinite linear systems that arise from
regularized saddle-point problems. Such methods require preconditioners that pre-
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serve certain sub-blocks from the original systems but allow considerable flexibility
for the remaining “noncrucial” blocks. To this end, we have constructed fourteen
families of implicit factorizations that are capable of reproducing the required sub-
blocks and (some) of the remainder. These generalize known implicit factorizations
[18, 19] for the C = 0 case. Improved eigenvalue clustering is possible if additionally
some of the “noncrucial” blocks are reproduced. We have shown numerically that
these implicit-factorization preconditioners can be effective. However, further work is
needed to see how these preconditioners compare against special-purpose ones based
on (4.1) rather than generic ones using factors of (1.2).

A number of important issues remain. Firstly, we have made no effort to find
the best preconditioner(s) from amongst our families, and indeed in most cases have
not even tried them in practice. As always with preconditioning, there is a delicate
balance between improving clustering of eigenvalues and the cost of doing so, especially
since in many applications low accuracy estimates of the solution suffice. We expect
promising candidates to emerge in due course, but feel it is beyond the scope of this
paper to indicate more than that this is a promising approach.

Secondly, and as we pointed out in [18], the choice of the matrix A1 is crucial,
and considerations of both its stability and sparsity (or other structure), and of its
effect on which of the “noncrucial” blocks may be reproduced, are vital. We have
precisely defined the algorithm that we have used to select A1 in the computations
presented in this paper, but though this strategy seems to work reasonably across
the wide range of test set problems we have computed, we make no claim to its
relative quality. The most stringent practical requirement for computation with the
preconditioners described in this paper is that there is an effective way to solve linear
systems involving A1.

Thirdly (and possibly related to the point above), when experimenting with fam-
ily 3 (Table 4.1), we found that some very badly conditioned preconditioners were
generated. Specifically, our aim had been to reproduce G21 = H21, and for simplicity
we had chosen P31 = I = B31 and B22 = I = P22, and this leads to P21 = H21A

−1
1 .

Note that we did not try to impose additionally that G22 = H22 as this would have
lead to nontrivial B22. Also notice that we did not need to form P21, merely to operate
with it (and its transpose) on given vectors. On examining the relevant spectrum for
some small badly conditioned examples, the preconditioner appeared to have worsened
rather than improved the range of the eigenvalues for these computations. Whether
this is a consequence of requiring two solves with A1 (and its transpose) when applying
the preconditioner rather than the single solve required when not trying to reproduce
H21, and whether the same would be true for other families trying to do the same is
simply conjecture at this stage. However, it is certainly a cautionary warning.
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[36] L. Lukšan and J. Vlček, Indefinitely preconditioned inexact Newton method for large sparse
equality constrained nonlinear programming problems, Numer. Linear Algebra Appl., 5
(1998), pp. 219–247.

[37] M. Mihajlovic and D. Silvester, A black-box multigrid preconditioner for the biharmonic
equation, BIT, 44 (2004), pp. 151–163.

[38] B. A. Murtagh and M. A. Saunders, Large-scale linearly constrained optimization, Math.
Prog., 14 (1978), pp. 41–72.

[39] B. A. Murtagh and M. A. Saunders, A projected Lagrangian algorithm and its implementa-
tion for sparse non-linear constraints, Math. Programming Stud., 16 (1982), pp. 84–117.

[40] J. Nocedal and S. J. Wright, Numerical Optimization, Springer Series in Operations Re-
search, Springer, New York, 1999.

[41] L. A. Pavarino, Preconditioned mixed spectral finite-element methods for elasticity and Stokes
problems, SIAM J. Sci. Comput., 19 (1998), pp. 1941–1957.

[42] I. Perugia and V. Simoncini, Block-diagonal and indefinite symmetric preconditioners for
mixed finite element formulations, Numer. Linear Algebra Appl., 7 (2000), pp. 585–616.

[43] B. T. Polyak, The conjugate gradient method in extremal problems, U.S.S.R. Comput. Math.
Math. Phys., 9 (1969), pp. 94–112.
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