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The multifrontal method in a
parallel environment
I.S. Suff, N.1. M. Gould, M. Lescrenier, and J. K. Reid

Abstract

The multifrontal solution of symmetric and positive-definite finite ele-
ment problems may be represented by an assembly tree. The leaves
correspond to the elements themselves and each interior node corre-
sponds to the substructure consisting of all the elements corresponding
to its descendants. The overall matrix may be assembled and factorized
by performing merge and elimination operations at each node. These
operations may be performed in any order, subject to the restriction that
each node must wait for the completion of all operations at its children.
This allows parallel execution of the operations at any tWo nodes that
are not such that either is a descendant of the other.

The aim of this work is to investigate ordering algorithms that pro-
duce trees that work well in a parallel environment. We show the
performance of several algorithms on a variety of finite-element prob-
lems using a model of parallel execution that takes account of the
available parallelism both between the nodes and at them.

6.1. Introduction
We consider the direct solutién of large sets of linear equations
Ax=Db 6.1)

on a computer that allows different processes to execute in parallel. We assume
that A is symmetric and positive definite and has the form

A=Y B%, (6.2)
k

where each B* is an element matrix that is positive definite and has entries
only in the rows and columns that correspond to its associated variables. Such
problems occur naturally in finite-element and partially separable program-
ming calculations (sce Griewank and Toint 1982).
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We use Gaussian climination, following a multifrontal scheme (see, for
example, Duff and Reid 1983, or Duff et al. 1986, pp. 218-21). Here the
elimination is represented by an assembly tree in which each leaf corresponds
to a finite element and each interior node corresponds to the substructure
consisting of all the elements corresponding to its descendants. Each interior
node has a generated element matrix that is obtained by adding (assembling)
the element matrices of its children and performing elimination operations for
the rows and columns corresponding to variables that are involved only in
clements that correspond to its descendants. In the case of a leaf node, an
elimination is performed for each variable that is involved only in the corre-
sponding element; this is often called ‘static condensation’.

Operations at an interior node must wait for the availability of the generated
element matrices of all the children of the node. Apart from this, the operations
may be performed in any order. Here we focus on the possibility of performing
them in parallel. We explore what speed-up is available and consider heuristic
algorithms that aim to enhance it.

It should be noted that the multifrontal technique is also applicable to the
case of assembled matrices and similar considerations of parallelism also
apply in that case. Duff {(1986) and Liu (1986) have both investigated the
parallelism inherent in the climination trees associated with multifrontal
methods on assembled matrices and Duff (1986) has proposed an algorithm
for implementing such an approach on shared-memory multiprocessors. The
method has been implemented on an eight-processor Alliant FX/8 and displays
a speed-up of about 6 (see Duff 1989).

We are not here concerned with the fine details of implementation. Our aim
is to consider the potential for parallel execution by simulating execution on
a multiprocessor. The structure of the assembly tree is clearly crucial to its
potential for parallelism. We discuss possible choices in Sections 6.2-6.5. We
consider the use of a standard minimum-degree algorithm in Section 6.2 and
the nested dissection algorithm in Section 6.3. In Section 6.4, we propose new
algorithms based on a notion of ‘similarity’ and, in Section 6.5, consider ways
of modifying the minimum-degree algorithm to produce greater potential
parallelism. We discuss the assumptions made in our simulation of parallel
execution in Section 6.6 and define some of the measures of evaluation for
work and communication in Section 6.7. We present the numerical results in
Section 6.8 and draw some conclusions from these results in Section 6.9.

6.2. The minimum-degree algorithm

The algorithm of minimum degree (Scheme 2 of Tinney and Walker 1967) has
a good reputation as a general-purpose algorithm (see George and Liu 1987,
for example). In this context, it is implemented by starting with all the leal
nodes (original elements) and finding a variable of minimum degree. The
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Fig. 6.2 The minimum-degree assembly tree for the problem of Fig. 6.1.

elements in which this variable is involved are grouped as children of a new
node. The element at the new node is generated by assembling the elements
in the group and eliminating variables not involved in other elements. The
degree of the variable is the number of variables in the assembled element
before eliminations commence. This is also termed the front size. The general
step is similar, working with the remaining variables and the remaining
eclements and generated elements.

One disadvantage of the algorithm is that it can produce very tall and thin
trees. A good illustration of this is the use of bilinear elements on a 2 by 5
grid. Figure 6.1 describes the grid and Fig. 6.2 displays the corresponding
minimum-degree assembly tree. Such trees give little scope for exploiting
parallelism between nodes.

6.3. The nested dissection algorithm

An alternative is to use trees produced by the nested dissection algorithm,
introduced by George (1973) for regular grids. We consider here the generali-
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Fig. 6.3 The nested-dissection assembly tree for the problem of Fig. 6.1.

zation of George and Liu (1978). This uses the algorithm of Gibbs et al. (1976)
to find a set of level sets in the graph of the matrix. If the variables in the
middle level set and their edges are removed from the graph, the graph will
be split into two approximately equal halves. The variables in the middle level
set are assigned last in the pivotal order, and the subgraphs associated with
the remaining variables are now analysed separately in the same way and their
middle level sets assigned next to last in the order. The algorithm continues
until the ordering is complete.

Once the ordering has been constructed, the associated elimination tree may
be generated as for the minimum-degree algorithm. Because of the close
relationship between the graph of the matrix and the sets of elements associ-
ated with the descendants of a tree node, this will be a well-balanced tree with
successive levels of the tree having usually 1, 2, 4, 8, ... nodes until the sequence
is broken by reaching leaf nodes. The tree for the Fig. 6.1 example is shown
in Fig. 6.3.

6.4. An elimination tree based on the similarity of elements

With the aim of introducing more parallelism between nodes of elimination
trees, we have experimented with some heuristic algorithms that construct
groups of elements, cach group involving roughly the same number of vari-
ables. Each group will correspond to a frontal matrix and the matrix order
will be small if the clements are similar. We use the concept of ‘similarity’,
introduced for partially separable optimization problems by Strodiot and
Toint (1976). The similarity between an element and a group of elements is
the ratio of the number of common variables (variables that lie both in the
given clement and in at least one element of the group) to the total number
of distinct variables involved. It increases with the number of common vari-
ables and decreases with the total number of variabies.

We choose the starting element of a group arbitrarily and add elements one
by one. Each addition is chosen as the element that is most similar to the
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current group. To end a group, several stopping criteria have been tested. The
first idea was to end when the best similarity between the current group and
a remaining element fell below a threshold. We rejected this strategy since it
led to groups with very different numbers of elements. After examining several
other strategies, we finally chose to limit the maximum size of the group to a
user-provided number of elements, Once a group has been chosen, the next
group is chosen similarly from the remaining elements, continuing until all
elements are grouped.

As in the minimum-degree algorithm, we generate an element matrix for
each group by assembling the elements of the group and eliminating variables
not involved elsewhere. When all the elements are allocated to groups and the
associated assemblies and eliminations have been performed, we are left with
a new finite-element problem to which the same algorithm may be applied.
We continue until we end with only one group, which is the root of the
elimination tree.

On finite-element problems, the proposed algorithm assembles adjacent
elements and the variables internal to the assembled elements are eliminated.
The remaining nodes then define the generated element. However, we cannot
be sure that there are any internal variables (and thus eliminations) and
numerical experiments showed that this problem occurs in practical situations.
In order to avoid this drawback, we slightly modified the notion of similarity.
First of all, we defined the elemental degree of a variable as the number of
clements or generated elements which involve it. The similarity between an
clement and a group of elements may then be defined as the ratio of the number
of common variables of minimum elemental degree (amongst the variables of
the group) to the total number of variables. We decided also to end a group
as soon as at least one climination is performed in it.

Unfortunately, our experimental results (Section 6.8) showed that, although
this algorithm increased the amount of parallelism, it also increased the fill-in
and the number of operations by an unacceptable amount.

The similarity tree for the Fig. 6.1 example is shown in Fig. 6.4. Here we
end a group as soon as it contains 2 elements.

1 2 3
Fig. 6.4 The similarity assembly tree for the problem of Fig. 6.1.
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6.5. Variants of the minimum-degree algorithm

We therefore returned to the minimum-degree algorithm with the intent of
removing its main disadvantage, the production of tall and thin trees. We have
introduced a variant which aims to retain the sparsity benefits of minimum-
degree while generating an assembly tree with better potential for parallelism.
The algorithm works in distinct stages corresponding to levels of the assembly
tree. Within a stage, we first choose a variable of minimum degree and
assemble the elements in which it lies. Each successive variable is chosen to
minimize the degree among candidates not associated with elements already
assembled in the stage. We could continue the stage only as long as the chosen
variable minimizes the degree of all variables, which would yield a minimum-
degree algorithm. However, this often results in very few nodes being generated
in a stage, contrary to our aim of having plenty for the sake of parallelism.
We have therefore chosen to continue until a threshold for the degree is
reached, choosing the threshold to be a fixed factor times the greater of the
threshold of the previous stage and the minimum degree at the start of the
stage. A larger factor (for example, 1.5) can give an undesirably large increase
in the total number of operations, but a small factor (for example, 1.1) can

Fig. 6.6 The min. deg. 1.5 assembly tree for the problem of Fig. 6.1.
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benefit parallelism without much increase in the total number of operations
(see Section 6.8).

The trees for the Fig. 6.1 example when this algorithm is applied with two
values for the factor are shown in Figs. 6.5 and 6.6. Notice that Fig. 6.5 has 6
tree levels, whereas Fig. 6.2 has 8 levels. This tree is obtained with factors 1.0,
1.1, and 1.2, and the associated Gaussian elimination involves 172 operations
(divides and multiply—add pairs). With the factor 1.5, the number of tree levels
is reduced to S, but the number of operations increases to 201.

6.6. The parallel environment

Large problems give rise to nodes with large element matrices and it will be
worthwhile to exploit parallelism at the nodes as well as between the nodes.
Most authors (see, for example, George et al. 1986) suggest assigning blocks
of rows (or columns) to processors and treating each row operation as indi-
visible. This also has the merit of allowing good vectorization on vector
hardware. We have chosen to aim for all blocks to have roughly the same
number of elements, this number being set externally by a parameter s that
can be tuned.

Each element matrix is symmetric and we assume that only the upper-
triangular part is stored. Our algorithm for dividing it into block rows is to
make each block except the last have the property that deleting the last row
or adding another row beyond it would make the number of entries in the
block further from s. Note that if the frontal matrix has s or fewer entries, we
have a single block and treat all the assembly and elimination operations at
the node as a single task.

When the element matrix has b > 1 blocks, we treat any set of assembly or
elimination operations on a block of rows as a task. Assembly operations are
not needed at leaf nodes. At a node that is not a leaf, the matrix is assembled
as b separate tasks. Assuming that each element matrix is held by rows in
pivotal order, each task need only access those parts of the matrices of the
children that it needs.

Elimination operations at a node must wait for the assembly to be complete.
The elimination operations for the first pivot are then performed on the first
block. Next b tasks are spawned, to perform operations for the second pivot
on the first block and the operations for the first pivot on the rest. Once these
are all complete, we spawn another b tasks for the third pivot on the first block
and the second pivot on the other blocks. This continues until all the elimina-
tions have been completed. Also, if the number of eliminations exceeds the
number of rows in the first block, the early blocks will not be involved in the
later pivotal steps so the number of tasks spawned will be reduced.

Once the elimination operations at a node have been completed, a check is
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made to see if its parent now has element matrices for all its children. If so,
the assembly task (or tasks) for the parent node is spawned.

The tasks within the nodes all compete for processors on the basis of a
queue of work. When a processor is available, the first task ready for execution
is commenced. When a task is spawned, it joins the queue at the end.

We are concerned only with the potential for parallel execution and not
with the fine details of the implementation. We assume that we have a
multiprocessor on which the cost of an elementary step of Gaussian elimina-
tion (a division or a multiply—add pair) is 7, the cost of the assembly of an
entry of a child element matrix into its parent element matrix is «, and the
cost of creating or spawning a multiprocessor task is o.

This model is directly applicable to a shared-memory computer, but it also
gives a good approximation for the performance on a distributed-memory
computer if @ and o are chosen appropriately. For the latter, many assemblies
require data from another processor, so « should include the cost of data
transfer. On the other hand, most eliminations require only the pivot row to
be transferred and this is applied to several non-pivot rows, so we do not need
to modify 7. Many of the tasks require data from one other processor, so the
value of ¢ should allow for the start-up cost of a data transfer from another
processor.

6.7. Operation counts

On a serial processor, the number of elimination operations (divides and
multiply—add pairs) at a node whose front size is f and whose order following
the eliminations at the node is g is

S =D +8/6 —g(g — 1)(g + 4)/6, (6.3)

and a measure of the total work for elimination can be obtained by summing
these quantities over all the nodes. We do this in all our computational
experiments.

In the assembly operation that follows these eliminations, all the entries of
the reduced matrix are summed into the matrix of the parent node, so the
number of assembly operations is

glg + 1)/2, (6.4)

and we sum these over all the nodes to measure the total assembly work.
For a parallel implementation, we assume that a fixed number of processors

p is available, take a specified value for the parameter s (the number of entries

that we aim to have in each block row) and values for the parameters 7, o, and
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o (the costs of an elimination operation, an assembly operation, and spawning
a task, respectively) and then model the whole assembly and elimination
process, reporting the total cost for comparison with the corresponding serial
figure.

6.8. Experimental results

We have conducted experiments on nine test problems, all supplied to John
Reid for experiments in connection with his TREESOLV package (Reid 1984)
and now included in the set of sparse problems collected by Duff et al. (1989).
Their properties are summarized in Table 6.1. The first four were supplied by
A. J. Donovan of C.E.G.B., London, the next four by P. S. Jensen of Lockheed
Palo Alto Research Laboratory, and the last by T. A. Manteuffel of Sandia
Laboratories.

We chose values for the parameters o, y, and ¢ based on our knowledge of
commonly used machines, and then conducted experiments on the sensitivity
of our model to these parameters. On many machines (for example, IBM 3084
and CRAY 2), accessing entries from store costs about the same as an addition
which is in turn similar to a multiplication. Thus, for our initial experiments
we choose o = 1 and y = 2. Our choice of ¢ is based on the overhead of a
subroutine call which we estimate to be about 100 times that of our basic
operation.

Table 6.1 Details of test problems.

No. of No. of Max. Description
variables elements element
size
2919 128 60 Three-dimensional cylinder with flange.
3024 551 16 Two-dimensional reactor core section.
3306 791 12 Framework problem, essentially in two
dimensions.
2802 108 60 Turbine blade.
1074 323 24 A toros with protusions, representing a gyro.
700 324 18 A porch structure.
2232 944 12 A tower with short legs.
3491 684 24 A cylindrical cone attached at its base to
crossed beams.
5976 784 20 A cylindrical shell with irregularities,

reduced by grouping three variables at
each point into one.
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We compare the following algorithms:

(1) minimum degree;

(2) nested dissection, using the implementation in SPARSPAK (Chu et al.
1984),

(3) the two algorithms based on element similarity described in Section 6.4;
and

(4) the variant of minimum degree described in Section 6.5, with thresholds
1.0,1.1, 1.2, and 1.5.

With« = 1 and y = 2, the costs without multiprocessing are shown in Table
6.2. The best algorithm (from the cost point of view) on each problem is
labelled with * and those within 10 per cent of the best are labelled with #.
Clearly, as one would expect, the minimum-degree algorithm preserves the
sparsity well and is best or near to best on all problems.

Since the largest front size is over 600, we take s to be 650 or more so that
we can run all the problems. The figure of 650 for s fits well with our estimate
for ¢ of 100, because it means that the overheads of task initiation do not
dominate.

The total parallel costs with four processors available, and s = 650, 0 =1,
y = 2, and ¢ = 100 are shown in Table 6.3. The minimum-degree algorithm
is always the best or within 10 per cent of the best and there seems to be little
justification for using another algorithm. The speed-ups (ratios of figures in
Tables 6.2 and 6.3) are shown in Table 6.4, and it can be seen that the
processors are almost always being used efficiently. We note that a number
of shared-memory computers, including the CRAY X-MP48 and CRAY 2,
have four processors.

We take 32 processors as an indicative higher-end number for a shared-
memory computer, and the figures shown in Tables 6.5 and 6.6 correspond
to those in Tables 6.3 and 6.4, using the same values of the parameters other
than the number of processors p. It is now not so easy to choose a ‘best buy’.
The minimum-degree algorithm suffers sometimes from poor parallelization
and its variants are needed to recover this. However, either it or a variant is
always within 10 per cent of the best. The nested dissection algorithm is best
on two problems and within 10 per cent of the best on another, which
represents a performance on these problems that is comparable with any single
one of the minimum degree variants. The similarity algorithms are never best
or within 10 per cent of the best. Notice, however, that those algorithms
obtained the best speed-ups (for which they were designed), leading then to a
better use of parallel processors. Unfortunately, their costs in sequential mode
are so high that even with such good speed-ups, they do not compete with the
variants of the minimum degree algorithm,
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Table 6.7 Cost in parallel mode and speed-up with 32 processors for the min.
deg. 1.0 algorithm on the first problem (x = 1,y = 2,0 = 500).

s 350 650 1000 2000 5000 10000 50000
Cost 4.00 3.40 3.34 392 6.82 11.87 26.38
Speed-up 15.67 18.46 18.76 15.95 9.19 5.28 2.38

Table 6.8 Cost in parallel mode and speed-up with 32 processors for the
fourth problem for various ¢ (s = max(650,0), 0 =1,y = 2).
*best # within 10%,

Cost Speed-up
g 10 100 1000 10 100 1000
Min. degree 2.07 2.21 4.23 13.56 12.67 6.62
Min. deg. 1.0 1.88 2.01 373 15.52 14.49 7.83
Min. deg. 1.1 1.66 1.78 312 21.35 19.91 11.36
Min. deg. 1.2 1.47 # 1.58# 2.55 26.21 24.30 15.10
Min. deg. 1.5 1.66 1.79 2.74 28.28 26.29 17.15
Nested diss. 1.34% 1.44* 2.23* 28.43 26.43 17.10
Similarity 1 2.28 244 3.69 27.74 2592 17.14
Similarity 2 2.28 244 3.69 27.74 25.92 17.14

Of course, depending on the computer, the appropriate values for the
parameters will vary. We have therefore run a number of our tests with
different values to assess the sensitivity.

Different values of the parameter 7 were tested. The choice of y = 1 instead
of y = 2, for instance, approximately halves the cost of the different algorithms
since the elimination operations are dominant. There was little effect on the
speed-ups, so that the conclusions of this section still hold for other values
of y.

We then tuned the parameter s. Table 6.7 shows the evolution with s of the
cost in parallel mode (and the related speed-up) of the minimum-degree 1.0
algorithm, run on the first problem with 32 processors.

We noticed that for all the algorithms, the speed-ups are sensitive to the
value of 5. A very large s causes each node of the elimination tree to be regarded
as atomic (no parallelism inside the nodes), and too little parallelism is
achieved. Small values of s must be used to increase the parallelism inside the
nodes, allowing speed-ups nearly equal to the number of processors. Nonethe-
less, we must ensure that s is greater than the maximum front size and is not
too small with respect to g, the cost of spawning a task.

Table 6.8 presents numerical experiments with different values of o for the



The multifrontal method 109

fourth problem using 32 processors. An increase of the cost of spawing a task
means a reduction of parallelism for all the algorithms.

The relative performance is not greatly affected, but the minimum-degree
and minimum-degree 1.0 algorithms, with their tall and thin trees, deteriorate
more than the others as ¢ increases. From previous experiments, we know
that s must be chosen dependent on g, which is why we choose, for our
experiments, s = max(650, o). Large values of ¢ would represent the context
of distributed memory machines, since this parameter could include the costs
of initialization of data transfers between the processors.

Finally, we varied the number of processors to analyse the efficiency of our
algorithms. Tables 6.9 and 6.10 present the costs and speed-ups of the different
algorithms for p ranging from 4 to 256.

We notice that the minimum-degree algorithm takes less advantage of large
p, which indicates that much more parallelism is needed for a greater number
of processors. The variants of the minimum-degree algorithm seem better and,

Table 6.9 Costs in parallel mode (in millions of units) for the cylinder problem
(s = 650,a = 1,7 = 2,0 = 100). *best # within 10%,

p 4 8 16 32 64 128 256

Min. degree 17.63 # 9.12# 487# 283# 188 1.1 1.69
Min. deg. 1.0 17.25* 8.86* 4.68*  2.61* 1.67* 1.39# 1.38#
Min. deg. 1.1 17.48# 9.03 # 482# 276#% 178# 152 1.50

Min. deg. 1.2 20.50 10.46 544 297 1.82#  1.38* 1.33*
Min. deg. 1.5 39.33 20.08 10.42 5.63 3.30 2.23 1.84
Nested diss. 24.40 12.50 6.55 3.60 2.18 1.53 1.40#
Similarity 1 30.80 15.65 8.06 4.28 244 1.63 1.38 #
Similarity 2 3548 18.00 9.24 4.89 2.78 1.81 1.47

Table 6.10 Speed-up for the cylinder problem (s = 650,a = 1,y = 2,0 = 100).
4 4 8 16 32 64 128 256

Min. degree 3.62 6.99 13.09 22.56 33.97 3741 37.81
Min. deg. 1.0 3.63 7.07 13.41 24.01 37.57 44.99 45.57
Min. deg. 1.1 3.62 7.00 13.11 22.88 35.51 41.56 42.04
Min. deg. 1.2 3.65 7.16 13.76 25.21 41.18 54.24 56.37
Min. deg. 1.5 3.65 7.14 13.78 2548 43.51 64.47 77.85
Nested diss. 3.64 7.11 13.58 24.67 40.75 58.10 63.47
Similarity 1 3.67 7.22 14.01 26.38 46.24 69.34 82.04
Similarity 2 3.68 7.25 14.11 26.68 46.90 72.13 88.78
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from all our experiments, minimum-degree 1.0 and minimum-degree 1.2 seem
to be good candidates.

The efficiency, which is often defined as the ratio of the speed-up to the
number of processors, gives us an idea of the effective use (or not) of the
available processors. We sec that the above algorithms lead to efficiencies
higher than 0.5 for 32 or 64 processors, which shows that the multifrontal
methods are well suited for shared-memory machines with such a number of
processors. The low efficiency for 256 processors, however, seems to prove
that the algorithms are not well adapted for distributed memory machines
with very large numbers of processors unless the problem size is greater than
that of any of our tests.

6.9. Conclusions

Our numerical experiments show that on shared-memory machines with only
four processors, there is little justification for using an algorithm other than
minimum degree.

However, for shared-memory machines with a greater number of processors
(up to 128 for instance), the minimum-degree algorithm does not provide
enough parallelism for an effective use of the available computational units.
We observe that variants of the minimum-degree algorithm, like minimum-
degree 1.0 or minimum-degree 1.2, are better in this context.

Finally, it seems difficult using this current approach to implement an
efficient multifrontal method for machines with a much greater number of
processors (more than 128 for instance) since, up to now, we do not have at
our disposal an algorithm that generates a sufficient number of tasks which
can be executed in parallel. Indeed it is likely that the problem would have to
be considerably larger than those we have tested for high-level parallelism to
be useful.
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