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The Harwell multifrontal code MA27 is able to solve symmetric indefinite systems
of linear equations such as those that arise from least-squares and constrained
optimization algorithms, but may sometimes lead to many more arithmetic
operations being needed to factorize the matrix than is required by other
strategies. In this paper, we report on the results of our investigation of this
problem. We have concentrated on seeking new strategies that preserve the
multifrontal principle but follow the sparsity structure more closely in the case
when some of the diagonal entries are zero.

1. Introduction

WE consider the direct solution of sparse symmetric systems of linear equations in
which the coefficient matrix is indefinite because some of its diagonal entries are
zero. As an example of applications in which such linear systems arise, consider
the equality constrained least-squares problem

minimize | |JRr-6| |2 (1.1)
IER"

subject to
Cx = d, (1.2)

where B is an m x n matrix, b is a known m-vector, C is a k x n matrix, and d is a
known it-vector. It is presumed that k =s n =£ k + m. This problem is equivalent to
solving the sparse symmetric linear system

r b

(1.3)

(1-4)

© Oxford Unhwiity Preu 1991

/
0

BT CT

sider the

B
C
0

r
i.
X

=

quadratic pr

minimize \xTHx
xefl"

+ t

b
d

0

ogra

•Tx

 at R
adcliffe S

cience Library, B
odleian Library on M

ay 17, 2010 
http://im

ajna.oxfordjournals.org
D

ow
nloaded from

 

http://imajna.oxfordjournals.org


182 I. S. DUFF ET AL.

subject to the linear equality constraints (1.2), where H is an n x n symmetric
matrix. Such problems arise both in their own right and as subproblems in
constrained optimization calculations (see Gill, Murray, & Wright, 1981). Under
a suitable inertial condition, the problem of solving (1.4) subject to the
constraints (1.2) is equivalent to solving the symmetric but indefinite system of
linear equations

The present Harwell Subroutine Library code MA27 uses a multifrontal
solution technique to solve sparse symmetric linear systems (Duff & Reid, 1983).
The preliminary analysis phase chooses a tentative pivot sequence from the
sparsity pattern alone, assuming that the matrix is definite so that all the diagonal
entries are nonzero and suitable as 1 x 1 pivots. For the indefinite case, this
tentative pivot sequence is modified in the factorization phase to maintain
stability by delaying the use of a pivot if it is too small or by replacing two pivots
by a 2 x 2 block pivot (Bunch & Parlett, 1971).

The assumption that all the diagonal entries are nonzero is clearly violated in
the above examples and for such problems the fill-in during the factorization
phase of MA27 can be significantly greater than predicted by the analysis phase
(GUI, Murray, & Saunders, 1989). The aim of this study is to improve the
effectiveness of MA27 when the coefficient matrix has some zero diagonal blocks
by exploiting these blocks during the analysis and factorization phases and, in
particular, by allowing the inclusion of 2 x 2 pivots in the tentative pivot sequence
selected by the analysis phase. The use of a 2 x 2 pivot with one or both of its
diagonal entries zero may preserve a whole block of zeros, a possibility that was
not available when the diagonal entries were treated as nonzeros. In Section 2 we
briefly review the strategy followed by MA27, and in Section 3 we outline our
proposed modifications to the analysis phase. In Section 4 we discuss correspond-
ing modifications to the factorization phase and propose a new stability criterion
for 2 x 2 pivots. In Section 5 we give some theoretical results for our proposed
pivotal strategies when applied to special classes of problems, and we present
numerical results for a range of problems in Section 6. These numerical results
were obtained with an experimental code that is much easier to modify than
MA27 but runs less efficiently. Finally, in Section 7 concluding comments are
made. We will be modifying MA27 itself in the light of our conclusions.

Throughout the paper, we use the notation a,j to refer to an entry in the
current reduced matrix, and r, to denote the number of nonzero entries in
row i of the current reduced matrix. This latter quantity is known as the row
count of row i.

2. The strategy of MA27

MA27 has three distinct phases: the analysis phase chooses a tentative pivot
sequence from the sparsity pattern, the factorization phase performs a numerical
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SPARSE SYMMETRIC INDEFINITE MATRICES 183

factorization of a matrix with the same pattern using the tentative pivot sequence
as its guide, and the solve phase uses the numerical factorization to solve a set of
equations.

Efficiency is achieved during the analysis and factorization phases by the
multifrontal technique. At a typical intermediate stage, the reduced matrix is
stored as a sum of original entries and of 'generated element matrices', each
created during an earlier pivotal step. Each generated element matrix has
nonzeros in a limited number of rows and columns and is stored as a dense matrix
and an index set. When a pivot is chosen, the original entries of the pivot row and
column and the generated element matrices that involve the pivot row are added
together (a process usually called 'assembly'). If the pivot is chosen well, the
result again has nonzeros in only a small number of rows and columns and so can
be stored as a dense matrix and an index set. The pivotal operations are
performed within this 'frontal matrix' and a new generated element matrix
results. The process is particularly efficient during the analysis phase since only
the index sets need to be stored and manipulated.

During the analysis phase of MA27, a tentative pivot sequence is chosen using
the minimum degree criterion, assuming that any diagonal entry is nonzero and
suitable as a pivot. The tentative pivot sequence of 1 x 1 pivots chosen during the
analysis phase may be modified during the factorization phase to maintain
stability and 2 x 2 pivots may be used. The stability condition that l x l pivots are
required to satisfy is

kt*l > « max |ajg|, (2.1)

where u is a user-specified parameter in the range 0*Su^2- If (2.1) is not
satisfied and u >0, MA27 attempts to use a 2 x 2 pivot. For a 2 X 2 pivot the
stability condition

Qkk akk+l I I max [max (1^1, \ak+u\)]*U-1 (2.2)

is used. The limit 2 on the parameter u ensures that a full set of pivots will be
chosen. These modifications to the pivot sequence usually lead to generated
element matrices that are larger than anticipated by the analysis phase because
they contain rows and columns that were expected to have been eliminated but
are still present since stable pivots cannot be chosen for them.

3. Modifications to the analysis phsse of RflA27

In this section we shall discuss the modifications to the analysis phase of MA27
that we have considered. We first introduce some definitions and terminology.

We say that a variable is defective if the corresponding diagonal entry of the
current reduced matrix is known to be zero; otherwise we say that the variable is
nondefective. A variable that is initially defective, and becomes nondefective
because its diagonal entry fills in, is assumed to remain nondefective until it is
eliminated.
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184 I. S. DUFF ET AL.

The degree of a variable is the number of nonzero off-diagonal entries in its row
of the current reduced matrix. The degree of a 2 x 2 pivot is the number of
columns of the reduced matrix, apart from the columns of the pivot, that have an
entry in either of the pivot rows.

We have chosen the term oxo pivot for a 2 X 2 pivot of the form

ro a\
Va o J '

(3.1)

which involves two defective variables i and /' for which the matrix entry
a = atl = ajt is nonzero. We use the term tile pivot for a 2 x 2 pivot of the form

(3.2)1
or

which involves a nondefective variable i and a defective variable ; for which the
matrix entry a = ay = a^ is nonzero. We use the term full pivot for a 2 x 2 pivot of
the form

r 1 (3.3)

which involves two nondefective variables i and j for which the matrix entry
a = â , = fl^ is nonzero.

Following Gill, Murray, Saunders, & Wright (1989), we say that a symmetric
2nx2n matrix T is a tiled matrix if T is of the form

T =

where Ty, 1« i , j =s n, is a 2 x 2 matrix

. . . Tln

(3.4)

(3.5)

and Ty = Tj,. We call each Ty a tile.
Gill, Murray, Saunders, and Wright (1989) report obtaining improved perfor-

mance on problems of the form (1.5) in which C is an almost square matrix, by
using their knowledge of the derivation of the problem to pair most of the
variables belonging to the matrix H with variables belonging to the zero block.
They then permute the coefficient matrix to the form

r r FT
LFT E\'

(3.6)

where T is a tiled matrix and the remaining blocks are relatively small. Gill et al.
gave the structure of the tiled matrix to the analysis phase of MA27 by treating Ty
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SPARSE SYMMETRIC INDEFINITE MATRICES 185

as a single entry that was nonzero if and only if Ty was a nonzero matrix. An
ordinary pivot sequence was constructed for the factorization phase by expanding
the data structure to consider each tile as a 2 x 2 matrix, with the additional
variables placed in arbitrary order at the end. We seek to improve the
performance of MA27 on problems of the form (1.5) without the need for any
special knowledge of the problem.

3.1 Minimum Degree Criterion for 2 x 2 Pivots

We considered extending the idea of minimum degree ordering to include 2x2
pivots. Since calculating the degree of a potential 2 x 2 pivot would be expensive,
we chose to approximate it with the larger of the degrees of the two variables
involved. This allowed us to limit the choice of pivots to 1 x 1 pivots and oxo
pivots while still implementing a minimum degree strategy. We used the following
algorithm for choosing a pivot, which is a minor modification of the existing
MA27 algorithm:

for d: = 0 step 1 until n - 1 do
begin

If there is a nondefective variable of degree d then
accept it as a 1 x 1 pivot and goto exit;

for each defective variable i of degree d do
if there is a nonzero entry (i, j) in the current reduced matrix such that
the variable / is defective and of degree « d then

accept (i, /) as a 2 x 2 pivot and goto exit
end
exit:

We refer to this strategy as the 'minimum degree' strategy. Note that this
algorithm gives preference to 1 x 1 pivots, a choice that we made on the grounds
of efficiency in pivot selection.

For unconstrained least-squares problems (matrix C in equation (1.3) has no
rows), the matrix (1.3) has no oxo pivots and nor will the reduced matrix
following a 1 X 1 pivot. The same is true for the matrix in equation (1.5) if if has
no zero diagonal entries. For such matrices, the above algorithm chooses only
l x l pivots but differs from the original MA27 minimum degree algorithm
because it chooses only nondefective variables as pivots.

We considered variations of the above minimum degree strategy, particularly
because we wished to include 2 x 2 pivots for unconstrained least-squares
problems and quadratic programming problems. We experimented with consider-
ing the variables of degree d in the order that the data structure dictates,
accepting a 1 x 1 pivot in the nondefective case and performing the search for a
2 x 2 pivot of degree d in the defective case, now allowing a tile pivot. We also
tried giving preference to 2 X 2 pivots over l x l pivots, and we considered
forcing tile and oxo pivots as long as there remained any defective variables.
These strategies were more expensive to implement than that which gives
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186 I S. DUFF ET AL.

preference to 1 X 1 pivots and did not yield a significant or consistent improve-
ment. Consequently, the detailed results of these experiments are not reported in
this paper.

3 . 2 Markowitz Cost Criteria for 2x2 Pivots

The use of the 2 x 2 pivot
r n.. n..~\

(3.7)a,,\

is mathematically equivalent to pivoting on a^ and then on atj. This property is
both helpful in understanding the behaviour of the elimination step and in
designing improvements. It makes it easy to see that if the reduced matrix has the
form

A21

oJ'
(3.8)

and we use a 2 X 2 pivot that has a diagonal entry in the zero block, the zero
block is preserved. It would therefore seem to be desirable to favour such pivots.
The minimum degree strategy, even if implemented exactly, gives little en-
couragement to such pivots. This has led us to consider the strategy of Markowitz
(1957) as an alternative way of extending the strategy of minimum degree to 2 X 2
pivots. For a 1 X 1 pivot in row i, the Markowitz cost is

( r , - l ) 2 , (3.9)

where r, is the number of nonzeros in row i. Let us treat a 2 x 2 pivot as if
performing ordinary elimination steps pivoting on aj, and then on ay. The first
pivot ajt has Markowitz cost

( f i - l X i j - l ) . (3.10)

For an oxo pivot (3.1), the first pivot step causes no fill-in to row i or column ;', so
the second pivot has the same Markowitz cost. For a tile pivot (3.2), there is no
fill-in to column /, but row i has a fill-in for each zero that corresponds to a
nonzero of row /. If Cy is the number of columns k such that att and ajk are both
nonzero, the Markowitz cost of the second pivot ay is

( r , - l ) ( r , - 2 + !>-<:<,), (3.11)

where cH satisfies the inequalities

1 =£ cH «£ min (r-j, r, - 1). (3.12)

For a full pivot, row i has a fill-in for each zero that corresponds to a nonzero of
row /, and column j has a fill-in for each zero that corresponds to a nonzero of
column i. The Markowitz cost of the second pivot is

(r,-2 + rj-Cy)2, (3.13)

where Cy satisfies the inequalities

r/, rj). (3.14)
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SPARSE SYMMETRIC INDEFINITE MATRICES 187

If we take the Markowitz cost of a 2 x 2 pivot to be the cost of the first pivot, it
is possible that a large amount of fill-in may occur when the second pivot is used,
making the pivot a poor choice. We therefore take the Markowitz cost of a 2 x 2
pivot to be the Markowitz cost of the second pivot. Restricting the pivot choice to
l x l , oxo, and tile pivots, at each stage we choose a pivot to minimize the
Markowitz cost using the following algorithm:

for r: = 1 step 1 until n do
begin

for each variable i with row count r do
begin

if variable i is nondefective then
accept it as a 1 x 1 pivot and goto exit

ebe for each variable ; for which
there is a nonzero entry (i, /') in the current reduced matrix do
begin

if the Markowitz cost =e (r - I)2 then
accept (i, /) as a 2 x 2 pivot and goto exit;

if the Markowitz cost is the smallest so far found then
store it as such

end
end
if there is a stored 2 x 2 pivot with Markowitz cost «£ r2 then

accept the 2 x 2 pivot and goto exit
end
exit:

We refer to this strategy with the Markowitz cost of a 2 x 2 pivot taken to be
the Markowitz cost of the second pivot as the 'Markowitz' strategy. By storing the
best 2 x 2 pivot and accepting it as the next pivot if it has Markowitz cost not
exceeding r2 when all variables with row count r have been considered, some
preference is given to 2 X 2 pivots. Computing the Markowitz cost of the second
pivot requires us to count the number of entries rows i and / have in common, a
process that we regarded as prohibitively expensive in Section 3.1. The amount of
work involved in this computation is reduced if we assume that the largest
possible amount of fill-in occurs (that is, clj = 1 in expression (3.11)). We refer to
this strategy as the 'Markowitz-b' strategy. Although taking the Markowitz cost of
a 2 x 2 pivot to be the cost of the first pivot can lead to a large amount of fill-in
when the second pivot is used, using the cost of the first pivot also avoids the
need to count the entries rows i and j have in common. We have therefore
experimented with this strategy, which we refer to as the 'Markowitz-1' strategy.

For a 1 x 1 pivot the Markowitz cost (3.9) bounds the fill-in that may occur in
the reduced matrix during the pivot step. This motivated us to consider defining
the cost of a 2 x 2 pivot to be the most fill-in that can occur in the reduced matrix
during the pivot step. Calculating this cost requires the number of entries rows i
and j have in common to be counted for both oxo and tile pivots so it is at least as
expensive to implement as our Markowitz strategy. Our numerical experiments
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188 I. S. DUFF ET AL.

suggest that for some problems using this strategy can give a small improvement
in the results compared with those obtained using our Markowitz strategy but for
other problems our Markowitz strategy gave better results. The additional
expense for oxo pivots leads us to prefer our Markowitz strategy. Results of the
experiments using the fill-in cost are not presented in this paper.

3.3 Avoiding Exact Cancellation

It is possible for numerical dependencies to lead to pivots chosen during the
analysis phase never being acceptable during the factorization phase. For
example, suppose the leading submatrix has the sparsity pattern

x x x x
x 0 0 0
x 0 0 x
x 0 x 0

(3.15)

and suppose the analysis phase chooses the (1,1) entry as a 1 x 1 pivot. The
generated element matrix will be full and the analysis phase can then choose
variables 2, 3, and 4 as successive l x l pivots. In the factorization phase,
choosing an and «22 as successive l x l pivots is equivalent to using variables 1
and 2 together as a tile pivot, so a33 and 044 remain zero (or have small values
because of round-off) and cannot be used as l x l pivots. We can avoid such an
occurrence for a 1 x 1 pivot by ensuring that the analysis phase never chooses one
that was initially defective. This requires allowing the inclusion of full 2 x 2 pivots
in the analysis phase. Our experience has been that this strategy leads to poorer
results, and we conclude that numerical cancellation is not a serious problem.
This is confirmed by the results we obtained when numerical values were used for
selecting the pivot sequence (see Section 4.3 and Table 6.1).

3.4 Storing the Generated Element Matrices

When a 1 x 1 pivot is selected, the new generated element matrix will be full
and all the variables associated with its rows will become nondefective. It is
this property that leads to the efficiency of storing the generated element matrices
as full submatrices in the definite case. In the indefinite case, a 2 X 2 pivot with
a zero diagonal entry in row 1 produces no fill in the square block of rows and
columns corresponding to the zeros of row i. We therefore propose to modify
MA27 to hold generated element matrices of the forms

[A, A21
U j o J ' (3.16)

and
r n 4,1

(3.17)

Note that the present MA27 form of generated element matrices is the special
case of (3.16) that occurs when the zero block is null. A tile pivot leads directly to
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SPARSE SYMMETRIC INDEFINITE MATRICES 189

a generated element matrix of the form (3.16). An oxo pivot leads to a generated
element matrix of the form

Aj A2 A3

Aj 0 A4

AJ Aj O j

(3.18)

which can be represented as the sum of a matrix of the form (3.16) for the first
block row and column and a matrix of the form (3.17) for the remainder.

This form of storage leads to a slightly more complicated assembly process, but
the cost during the analysis phase remains linear in the lengths of the lists. If the
leading block of a generated element matrix (3.16) involves a later pivot row, the
generated element matrix can be absorbed without any loss of efficiency into the
new generated element matrix for that pivot. However, if the trailing block of a
generated element matrix (3.16) or a generated element matrix (3.17) involves a
later pivot row, it may be impossible to absorb the old generated element matrix
without increasing the size of the new generated element matrix. Instead,
therefore, we simply remove the pivot row and column (or rows and columns)
from the old generated element matrix and keep the rest. Having found the new
generated element matrix, we check whether any of these outstanding old
element matrices can in fact be absorbed.

4. Modtfcations to the factorization phase of MA27

The analysis phase of the current MA27 code assumes that all the variables are
nondefective and the tentative pivot sequence contains only l x l pivots. At each
stage of the factorization phase, if a pivot is unacceptable for stability reasons, a
search is made for a suitable partner for use as a 2 x 2 pivot (details are given by
Duff & Reid, 1983). We found that, for some problems, if we pass to the existing
factorization phase the tentative pivot sequence obtained using our modified
analysis phase without labelling the 2 x 2 pivots, considerable modifications were
often made to the pivot sequence and the advantage of having incorporated 2 x 2
pivots within that sequence was largely lost. We therefore need to modify the
data passed to the factorization phase to include the 2 x 2 pivots chosen by the
analysis phase. During the analysis phase we flag the first entry in a potential
2 x 2 pivot and place its partner next in the pivot sequence. When we encounter a
flagged entry in the factorization phase, the flagged entry and the entry
immediately following it are tested for use as a 2 x 2 pivot. If this 2 x 2 pivot is
unsuitable, we consider the first variable associated with the rejected pivot as if it
were an unflagged entry.

Another change that we plan for the factorization phase is to work with
generated element matrices of the forms (3.16) and (3.17) as for the analysis
phase. Now there will be a substantial storage gain from not storing the zero
blocks explicitly.

In addition to these changes, we have modified the stability test for 2 x 2
pivots, and we have introduced an additional test for tentative pivots based on the
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190 I. S. DUFF ET AL.

Markowitz costs. These modifications are discussed in Sections 4.1 and 4.2.
Another possibility is to use the numerical values when selecting the pivot
sequence, that is to combine the analysis and factorization phases. We consider
this in Section 4.3.

4.1 A New Stability Condition

We have found that the stability test (2.2) for 2 x 2 pivots can be too restrictive.
It is based on ensuring that the modification

* ak,k+\ " r ' r <*ki ~\ , . ^

i,* a*+i,t+iJ La*+i,yJ

satisfies the inequality

\bn\ =e M-1 max \a,,\ (fi* + n,,k+1), (4.2)

where fiy is 0 or 1 according to whether atj is zero or not. By using the infinity
norm in (4.1) we find the inequality

° 1 1 max (Kl + |a*+w|), (4.3)

from which inequality (4.2) may be deduced if condition (2.2) holds.
This use of norms can lead to unnecessary rejection of pivots. If we replace

(4.3) by the inequality

where the modulus notation for a matrix refers to taking the moduli of all its
elements, we can replace (2.2) by the less stringent condition

If «** a*,*+i I *
max \akj\

max \ak+hJ\
[:-."]•

and thereby ensure that (4.2) holds.
A pivot which has Markowitz cost zero causes no change to the reduced matrix

and needs no test for stability. Hence the stability conditions (2.1) and (4.5) for
l x l and 2 x 2 pivots respectively are only employed if the Markowitz cost of a
potential pivot exceeds zero.

We note that, in the case of a tile pivot (ak+lk+1 = 0), the two parts of the new
stability condition (4.5) are exactly those which result from applying the l x l
pivot stability test (2.1) to the successive off-diagonal pivots ak+l k and akk+1.

We found that the old stability test (2.2) sometimes rejected a tile pivot chosen
during the analysis phase and then used its two diagonal entries as successive
l x l pivots. This can be very unsatisfactory from a sparsity point of view because
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SPARSE SYMMETRIC INDEFINITE MATRICES 191

it results in a full generated element matrix. The new test is less likely to split a
2 x 2 pivot into two successive l x l pivots, although it can still happen, as is
illustrated by the matrix

"3
1
1

1
0
1

1
1
0

(4.6)

with u = $. Here, with k = l, the left-hand side of inequality (4.5) is

so the tile is rejected. The first l x l pivot results in the reduced matrix

and it is seen that the second l x l pivot is also accepted.
When a 2 x 2 pivot is advantageous from a sparsity point of view, we avoid

splitting it into two l x l pivots by accepting a 2 x 2 pivot that fails to satisfy the
stability condition (4.5) if its two diagonal entries are acceptable as successive
l x l pivots. Note that to implement this, it is necessary to flag the 2 x 2 pivots
passed from the analyse phase to the factorization phase, as we discussed at the
beginning of Section 4. We experimented with not passing flags to our new
factorization phase. For many of our test problems, if the flags were not
employed, there was little deterioration in the results (omitting the flags never
improved the results), but for some problems there was a significant increase in
the cost of the factorization.

4.2 A Test on the Markowitz Cost

With the Markowitz, Markowitz-1, or Markowitz-b strategy in use in the analysis
phase, early 2 x 2 pivots may be chosen with only one row having a small number
of entries. For example, a tile pivot (i, j) that has only a single entry in row j will
have zero Markowitz cost for any number of entries in row i. During the
factorization phase, any such pivot may become very undesirable from a sparsity
point of view if changes in the pivot sequence have increased the number of
entries in the short row.

We need some mechanism for recognizing this situation. We have chosen to
add the expected Markowitz cost of each pivot (the cost found during the analysis
phase) to the data passed from the analysis phase to the factorization phase.
During the factorization phase we then delay any pivot whose actual Markowitz
cost exceeds l | times its expected Markowitz cost and, additionally, is greater
than a prescribed threshold, until its Markowitz cost is less than or equal to l j
times the expected Markowitz cost of the latest candidate pivot. The threshold is
taken to be k1, for some k, so that any stable l x l pivot with not more than k
off-diagonal entries in its row is accepted. We have experimented with various
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192 I. S. DUFF ET AL.

values of k. With k = 2, we found that too many desirable pivots were rejected,
and with it 5= 4 we accept oxo and tile pivots which cause a significant amount of
fill-in. We therefore chose k = 3. The factor of \\ permits us to accept pivots
whose actual Markowitz costs are a limited amount larger than was predicted.
Our numerical experiments suggest that the results are not very sensitive to this
choice of \\, but we found that for some of our test problems using a factor as
large as 2 did lead to a significant increase in the cost of the factorization.

Towards the end of the elimination, it is possible that the test on the Markowitz
cost of a potential pivot prevents the selection of any pivot and at this point we
cease to test the Markowitz cost of the pivots.

4.3 Analysis using Numerical Values

For unsymmetric problems, it is usual to use numerical values when choosing
the pivot sequence. We would be reluctant to switch to this strategy here because
it would mean the loss of an analysis phase that is much faster and requires much
less storage than the corresponding factorization phase. We have included it in
this study because of concern over numerical dependencies leading to pivots,
chosen during the analysis phase, never being acceptable during the factorization
phase, a possibility discussed in Section 3.3. By using numerical values when
choosing pivots, we avoid all such problems.

We will refer to the strategy of using numerical values when selecting pivots
following the Markowitz strategy as 'numerical'. This strategy will employ the
new stability test (Section 4.1) and the Markowitz cost test (Section 4.2). Note
that we may need full 2 x 2 pivots if both diagonal entries are too small for use as
l x l pivots. The Markowitz cost of such a pivot was discussed in Section 3.2.

5. Theoretical results

In this section we present theoretical results for some special classes of problems.

THEOREM 5.1 For a2nx2n tiled matrix T with diagonal tiles

the Markowitz and Markowitz-1 analysis strategies choose n tile pivots.

Proof. Since the diagonal tiles are all of the form (5.1), the matrix has no oxo
pivots and nor will the reduced matrix following a 1 x 1 pivot or a tile pivot. It is
therefore sufficient to show that tile pivots are selected in preference to 1 x 1
pivots.

We begin by showing that the first pivot chosen in the analysis phase using
either the Markowitz strategy or the Markowitz-1 strategy is a tile pivot. Let a
nondefective variable with the smallest row count be k. Since variable k is
nondefective, variable k +1 is defective and, since T is a tiled matrix with
nonzero diagonal tiles, rk+l satisfies

rk+l<rk. (5.2)
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SPARSE SYMMETRIC INDEFINITE MATRICES 193

Let tij, 1 as i,j =s In, denote the 1 x 1 entries in T. For any nondefective variable
/ such that tk+u is nonzero, the tile pivot (/, k + 1) has Markowitz cost

{rk+l - l)(r, -2 + rk+1 - ck+lil), (5.3)
where

^^ck+li,^min(rk+1, r,-\) (5.4)

(see (3.11)). Since T is a tiled matrix, ck+lk = rk+l. It follows that rt is minimized
and ck+ll is maximized when / = k, and that the best tile pivot has cost

(rk+l-\){rk-2). (5.5)

Comparing (3.9) (with i = fc) with (5.5), we deduce that the best tile pivot has
smaller Markowitz cost than the best l x l pivot, and a tile pivot is chosen as the
first pivot.

If the Markowitz-1 strategy is used, the tile (I, k + 1) has cost

(rk+1-l)(r,-l) (5.6)

(see (3.10)). This is minimized if r, = rk, and we again deduce that the first pivot is
a tile pivot.

If a tile pivot is used, the reduced matrix after the first stage of the elimination
is a tiled matrix with nonzero diagonal tiles. The result follows by induction. •

In Theorem 5.1, if the Markowitz strategy is employed, a tile pivot (/, k +1)
can have the same cost as the pivot (k, k + l) only if rows k and / have the same
sparsity pattern. Therefore, interchanging rows k and / has no effect on the
sparsity pattern and it is as if the n tile pivots chosen in the analysis phase are all
of the form (k, k + 1). This is not true if the Markowitz-1 strategy is used. In this
case there may exist a nondefective variable l^k such that the tile pivots
(/, k +1) and (k, k + l) have the same cost while rows k and / have different
patterns. Interchanging rows k and / then increases the number of nonzero tiles,
so using the pivot (/, k + l) may cause more fill-in than the pivot (k, k + 1).

We note that Theorem 5.1 does not hold if pivots are selected using the
Markowitz-b strategy. For the Markowitz-b strategy, the best possible tile pivot
(/, k + l) with r, = rk has cost (see (3.11))

(rk+1-l)(rk-3 + rk+l). (5.7)

In this case it is possible that a l x l pivot has a smaller Markowitz cost. For
example, suppose k = 1 and

In this example rk = r t + 1 + 1, the tile pivot (k, k + l) has cost

2(r t + 1 - 1 ) 2 , (5.9)

and the best l x l pivot has cost

r | + i - (5.10)
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194 I. S. DUFF ET AL.

For rk+i ss 4 the inequality 2(rk+l - I)2 > r2
k+l holds, and a 1 x 1 pivot is chosen as

the first pivot in preference to the best tile pivot. A 1 x 1 pivot destroys the tiled
structure.

THEOREM 5.2 Let B be an mxn (m^n) matrix of rank n and let H be a
symmetric mxm matrix with nonzero diagonal entries. Let the sparsity pattern of
each row of H contain the sparsity pattern of at least one row of BT. If either the
Markowitz strategy or the Markowitz-1 strategy is applied to the matrix with
sparsity pattern

then in the analysis phase n tile pivots are chosen.

Proof. Let the nondefective variable with the smallest row count be k. Assuming
the A:th row of B has at least one nonzero entry, the number of entries in the fcth
row of H does not exceed rk — \. Since row koiH contains the sparsity pattern of
row i, say, of BT, row i of BJ has row count ri+m satisfying r/+m =e rk — 1, and if
(BT)ij is nonzero, (H)^ is nonzero. We deduce from (3.11) that, if the Markowitz
strategy is used, the tile pivot {k, i + m) has cost

( r / + m - 1 ) ^ - 2 ) . (5.12)

If the Markowitz-1 strategy is used, the tile pivot (k, i + m) has cost (see (3.10))

l). (5.13)

Comparing (3.9) (with i = k) with (5.12) and (5.13), we deduce that the tile pivot
{k, i + m) has a smaller Markowitz cost than the best l x l pivot, and a tile pivot
is therefore chosen as the first pivot.

A tile pivot preserves the zero block and the reduced matrix after the first stage
of the elimination process is of the form

or (5.14)

where Hx has nonzero diagonal entries and each row of Ht contains the sparsity
pattern of at least one row of B\. By induction we continue to choose tile pivots
until all the defective variables have been selected. A 1 x 1 pivot can only be
chosen before n tile pivots have been selected if, at some stage / of the elimination
process, the reduced matrix Bt has a row, say row r, of all zeros. The reduced
matrix H, has nonzero diagonal entries, therefore variable r is nondefective and
may be used as a 1 x 1 pivot. Since row r has no entries in Bh this pivot preserves
the zero block. •

COROLLARY 5.2 Let B be an mx n matrix of rank n with no null rows. If the
m X m matrix H has the same sparsity pattern as BBJ and the Markowitz or
Markowitz-1 strategy is applied to the matrix (5.11), then in the analysis phase n
tile pivots are chosen.
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We observe that if m = n, Theorem 5.2 may be deduced from Theorem 5.1.
For if m = n, there exists a permutation P such that

' ( 5 1 5 )

is a tiled matrix. The permutation P is found by permuting the rows of BT to place
nonzeros on the diagonal, and then pairing the rows of H with the rows of the
permuted matrix Br. Since hu is nonzero for all i, 1*sj as n, T has nonzero
diagonal tiles.

THEOREM 5.3 For nonsingular matrices of the form

0 B2

B] Bl 0
(5.16)

where Bx is an (m — k) X n matrix (1 =e k*£n), B2 is a k xn matrix with
Bt = [Dk 0], and Dk is a kx k diagonal matrix with nonzero diagonal entries (see
Section 6), the Markowitz, Markowitz-b, and Markowitz-l analysis strategies
choose exactly k oxo pivots, all with Markowitz cost zero.

Proof. The defective variables m—k + 1, 1 « / ^ k , each have row count 1. For
each /, 1 =£ I =£ k, the 2 x 2 pivot (m — k +1, m + /) is an oxo pivot with Markowitz
cost zero. If row i of Bt has no nonzero entries, variable i is a 1 x 1 pivot with
Markowitz cost zero. A pivot with Markowitz cost zero preserves the sparsity
structure, and we therefore eventually choose k oxo pivots associated with the
defective variables m — k + 1, m — k + 2,..., m. •

6. Numerical experiments

In this section we describe the results of testing the proposed modifications
to MA27 on a variety of problems. All the results were obtained using our
experimental code. The data for the problems was taken from the extensive set of
linear programming test problems available from Netlib (Dongarra & Grosse,
1987) as collected by Gay (1985). All computation was performed on the IBM
3084Q at Harwell.

Each problem was constructed to be of the form

e" * ] •
where Bisanmxn matrix (m s= n) that is a permutation of a Netlib matrix. With
the given Netlib data, we scaled the rows and columns of the matrix (6.1) using
the scheme of Curtis & Reid (1972), implemented as subroutine MC19 in the
Harwell Subroutine Library. The results presented in the tables of this section are
representative of all the problems we tried.

We report in detail the results for four classes of problems:
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1 % I. S. DUFF ET AL.

Problems of this type arise from the solution of unconstrained least-
squares problems (C null in equation (1.3)).

M m% 1

(ii) 0 B2 , (6.2)
_B\ Bj 0 _

where B2 is an n X n submatrix of B of full rank. Our motivation for
considering problems of this type is equality constrained least-squares
problems (see Section 1) and Karmarkar's interior point linear program-
ming algorithm (Karmarkar 1984). The matrix (6.2) is a limiting form of
those which occur during the implementation of Karmarkar's algorithm,

(iii) As (ii) with B2 a k X n (k «£ n) submatrix of B such that

B2 = [Dk 0], (6.3)

where Dk is a k x k diagonal matrix. Matrices of this type arise in
constrained least-distance problems for which there is a mixture of equality
and inequality constraints.

(iv) H has the sparsity pattern of BBr, and the values of the nonzero entries in
the matrix (6.1) are obtained using subroutine FA01 from the Harwell
Subroutine Library, which generates uniformly distributed pseudo-random
numbers in the range [—1,1]. Problems of this structure were proposed to
us by Gill, Murray, & Saunders (1989).

In addition to the above classes of test problems, we have tested our proposed
modifications to MA27 on a small number of tiled matrices. For 2n x 2/i tiled
matrices we found that the Markowitz and Markowitz-1 strategies chose n tile
pivots (as predicted by Theorem 5.1), and although the Markowitz-b strategy did
not always choose all the pivots to be tiles, for the tiled matrices we considered,
the predicted cost of the factorization phase using the Markowitz-b strategy did
not exceed that of the Markowitz strategy by more than 12 per cent. The
Markowitz-b strategy gave results which compared very favourably with those
obtained using the original MA27 strategy and the minimum degree strategy.

In Table 6.1 a comparison of the different strategies we have considered for the
analysis phase of MA27 is presented. We used the default value 0.1 for the
relative threshold parameter u. The predicted number of flops is the number of
flops the analysis phase predicts will be required by the factorization phase, and
the actual number of flops is the number of flops actually used by the
factorization phase. For the numerical strategy (Section 4.3), the predicted
number of flops is equivalent to the actual number of flops. Results for FFFFF800
are not included in class (iv) since this problem was prohibitively large for our
experimental code. It may be seen that for problems belonging to classes (ii) and
(iii), the Markowitz strategies are far more successful than the original and
minimum degree strategies. Furthermore, in the factorization phase, little gain is
lost through pivoting for stability and the results for the Markowitz and
Markowitz-b strategies differ from those of the numerical strategy by less than 12
per cent. For the Karmarkar problems (class (ii)) with data Capri, FFFFF800,
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TABLE 6.1
A comparison of the proposed strategies for the analysis phase of MA27

Problem
No. rows in B(m)
No. cols in B(n)
Least-squares problem (i)
No. nonzeros
Predicted flops

Actual flops

Original
Min. degree
Markowitz
Markowitz-b
Markowitz-1
Original
Min. degree
Markowitz
Markowitz-b
Markowitz-1
Numerical

Karanrkar problems (U)
No. nonzeros
Predicted flops

Actual flops

Original
Min. degree
Markowitz
Markowitz-b
Markowitz-1
Original
Min. degree
Markowitz
Markowitz-b
Markowitz-1
Numerical

Least-dbtaftce problems (iH)
No. twnzeros
Predicted flops

Actual flops

ProMens (W)
No. nonzeros
Predicted flops

Actual flops

Original
Min. degree
Markowitz
Markowitz-b
Markowitz-1
Original
Min. degree
Markowitz
Markowitz-b
Markowitz-1
Numerical

Original
Min. degree
Markowitz
Markowitz-b
Markowitz-1
Original
Min. degree
Markowitz
Markowitz-b
Markowitz-1
Numerical

Capri
466
271

2330
136381
148720
87022
87003
99745

199130
178704
108530
108522
127181
97807

2059
136381
174608

2330
2330
2330

462532
167441

2330
2330
2330
2330

2190
136381
156035
35355
35355
35245

246713
167038
37844
37844
37776
34269

7201
309195
371352
199205
200041
198010
825582
722132
401356
426404
429570
341710

Sharelb
253
117

1432
34658
26040
33244
33244
33264
36540
26216
33804
33804
38278
33599

1315
34658
39127

3644
3718
3700

95851
41423

5764
6476
8375
5781

1387
34658
22439

9632
9632
10315
48862
22413
10556
10556
11271
10025

4788
116728
128324
113939
114986
113919
172504
194411
149491
146888
152483
146158

FFFFF800
1028
524

7429
1433091
962303
601059
600799

1160955
2483074
1423918
884798
884393

1861678
848905

6905
1433091
766100

7429
7429
7429

5530512
1351778

7429
7429
7429
7429

7247
1433091
711888
139289
139376
144171

2849355
740922
164501
164579
175644
160440

82920

E226
472
223

3240
196208
173032
189033
189033
203775
226655
202355
221700
221700
237054
197407

3017
196208
183255

3240
3240
3240

633861
154177

3240
3240
3240
3240

3050
196208
129388
11557
11557
12053

440361
99113
11582
11582
12181
11547

17839
1509463
1546434
1404884
1410030
1405420
1894308
1786313
2025084
1918331
2026426
1667520

Beaconfd
295
173

3703
158850
207900

95623
95623
95597

365065
228090
145822
145822
145822
128390

3530
158850
119741

3703
3703
3703

383227
106786

3703
3703
3703
3703

3633
158850
132468
31990
31990
31990

387451
121234
43077
43077
43077
39310

19096
1812501
2396527

482549
482711
482549

3228859
2487538
757254
740454
757254
650552
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198 I. S. DUFF ET AL.

E226, and Beaconfd the Markowitz strategies chose optimal pivot sequences, that
is, pivot sequences in which the expected Markowitz cost of each pivot is zero.
Since a pivot with zero expected Markowitz cost is not tested for stability in the
new factorization phase, the actual number of flops was equal to the predicted
number of flops for these problems. The comparison between the different
strategies is less clear cut for classes (i) and (iv), but for class (i) good gains using
the Markowitz and Markowitz-b strategies are observed for Capri, FFFFF800,
and Beaconfd, and for class (iv) there are substantial gains for Capri and
Beaconfd. The use of a numerical analysis phase gives improvements of less than
20 per cent compared with the Markowitz strategy. For ah" the problems
considered, except E226 in class (iv), the Markowitz and Markowitz-b strategies
give improvements over the original strategy.

In a recent paper, George & Liu (1989) discuss the effects of tie-breaking on
the minimum degree ordering algorithm. For a 180 x 180 grid problem, George &
Liu report that when MA27 was employed with ten different random initial
orderings there was a difference of approximately 30 per cent in terms of the
factorization operation counts between the best and worst orderings. We have
performed some experiments on our test problems by randomly permuting the
rows and columns of the test matrices before passing them to our experimental
codes for the analysis and factorization phases. For the problems tried, we found
that the predicted and actual flop counts were not very sensitive to the order in
which the data was presented. Typically, the flop counts varied by less than 10 per
cent. For the Karmarkar problems with Capri, FFFFF800, E226, and Beaconfd
data, the optimality of the pivot sequences chosen using the Markowitz strategies
was not dependent on the order of the input data.

The actual flops for the original strategy are those of the present factorization
phase of MA27. If the expected Markowitz costs of the pivots chosen using the
original strategy are passed to the new factorization phase, some improvement
occurs because of the new stability test (4.5), the Markowitz cost test, and the
new storage scheme for the generated element matrices, but the original strategy
still compares unfavourably with those of Sections 3.1 and 3.2.

For the problems in Table 6.1 the matrix B in (6.1) is of order mx.n with
m » n. For class (i) and (iv) problems if m » n and the tentative pivot sequence
is selected using the Markowitz, Markowitz-1, or Markowitz-b strategy, the
sequence will in general contain few tile pivots. We anticipate that these strategies
will give a more significant improvement over the minimum degree strategy for
these problems when B is almost square since the zero block is then proportion-
ally larger. Moreover, BT is more likely to contain rows with a single nonzero,
which may be used to form tile pivots with Markowitz cost zero. We have
therefore constructed almost square matrices B by deleting rows of B to leave a
full rank submatrix of order n* x n with n* = n. The results of applying the
different strategies to class (i) and (iv) problems with B almost square are given in
Table 6.2.

Tables 6.1 and 6.2 suggest that, of the Markowitz strategies discussed in
Section 3.2, selecting the pivots on the basis of the Markowitz cost of the second
pivot in a 2 x 2 pivot gives the most efficient factorization. However, for most
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TABLE 6.2
A comparison of the proposed strategies for the analysis phase of MA27 applied to

'almost' square problems (u = 0.1)

Problem
No. cob (n)
LeMt-oqparet problean (I)
No. rows (n*)
No. nonzero*
Predicted Sops

Actual flops

ProNem (W)
No. rows (n*)
No. nonzeros
Predicted flops

Actual flops

Original
Min. degree
Markowitz
Markowitz-b
Markowitz-1
Original
Min. degree
Markowitz
Markowitz-b
Markowitz-1
Numerical

Original
Min. degree
Markowitz
Markowitz-b
Markowitz-1
Original
Min. degree
Markowitz
Markowitz-b
Markowitz-1
Numerical

Capri
271

280
1419

40763
49071

ITT?
1777
1777

126036
77061

1777
1777
1777
1777

280
3291

85980
122154

3802
3802
3802

599210
194606

3802
3802
3802
3802

Sharelb
117

118
579

4496
5560
1685
1715
1682
9538
5502
1814
17%
1887
2411

127
1164
9642

12172
6551
7264
6592

23288
18119
8840
9586
9229
8297

FFFFF800
524

567
2811

79144
101301

17674
17742
17226

279874
130160
25952
26100
28672
23571

542
9682

804595
1024847

29295
29462
29481

6396947
1876333

84764
100480
100743
101250

E226
223

225
989

1163
12847

1248
1248
1248

22035
16162

1248
1248
1248
1248

233
2091

26639
35243

2741
2745
2741

154712
44612

2823
2785
2823
2811

Beaconfd
173

181
1698

123044
187239

1895
1895
1895

196302
205364

1895
1895
1895
1895

174
5360

211157
325421

5539
5539
5539

703723
147801

5539
5539
5539
5539

problems using the upper bound on the Markowitz cost of the second pivot yields
results which are comparable with those where the exact Markowitz cost is
computed and, since the exact Markowitz cost is expensive to compute (involving
a merge of the two pivotal rows), we will adopt the Markowitz-b strategy which
uses this upper bound.

The choice of the relative pivot threshold u and the scaling of the rows and
columns of the matrix can have a profound effect on the measure of agreement
between the predicted and actual numbers of floating-point operations. A small
value of u such as 0.01 is sometimes used despite the attendant risk of numerical
instability (Gill, Murray, & Saunders, 1989). This has motivated us to consider
using smaller values for u, in particular, u = 0.01. In Table 6.3(a) we report the
results of experiments with the original MA27 strategy using u = 0.01. In
addition, we consider taking the pattern of the matrix B and generating the values
of the nonzero entries using subroutine FA01 from the Harwell Subroutine
Library. We refer to the resulting problems as the random test problems. In
Table 6.3(b) we report the results corresponding to those in Table 6.3(a) using
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TABLE 6.3
(a) Results using the original MA27 strategy, (b) Results using the Markowitz-b strategy

(a)
Problem
No. rows (m)
No. cols (n)
Least-squares problems (I)
No. nonzeros
Predicted flops
Actual flops

Karmarkar problems
No. nonzeros
Predicted flops
Actual flops

u = 0.1, scaled B
u =0.01, scaled B
u =0.1, random B

(il)

u=0.1 , scaled B
u =0.01, scaled B
u = 0.1, random B

Least-dbtancc problems (HI)
No. nonzeros
Predicted flops
Actual flops

(b)
Problem
No. rows (m)
No. cols (n)

u = 0.1, scaled B
u =0.01, scaled B
u =0.1, random B

Least-sqaares problem (i)
No. nonzeros
Predicted flops
Actual flops

Karmarkar problems
No. nonzeros
Predicted flops
Actual flops

Least-dMaitce proble
No. nonzeros
Predicted flops
Actual flops

u = 0.1, scaled B
u =0.01, scaled B
u =0.1, random B

(H)

u=0.1 , scaled B
u=0.01, scaled B
u =0.1, random B

ns(tti)

u = 0.1, scaled B
u =•» 0.01, scaled B
u = 0.1, random B

Capri
466
271

2330
136381
199130
167534
211216

2059
136381
462532
270547
464378

2190
136381
246713
198375
227484

Capri
466
271

2330
87003

108530
88351

114840

2059
2330
2330
2330
2330

2190
35355
37844
35355
41606

Share lb
253
117

1432
34658
36540
36379
36258

1315
34658
95851
75919

109948

1387
34658
48862
43579
44380

Sharelb
253
117

1432
33244
33804
33699
33895

1315
3718
6476
3714
4105

1387
9632

10556
9632
9784

E226
472
223

3240
196208
226655
197572
201835

3017
196208
633861
349879
482372

3050
196208
440361
265825
320398

E226
472
223

3240
189033
221700
189167
208526

3017
3240
3240
3240
3240

3050
11557
11582
11581
11647

Beaconfd
295
173

3703
158850
365065
211638
205907

3530
158850
383227
202237
354140

3633
158850
387451
221094
231228

Beaconfd
295
173

3703
95623

145822
98893

107284

3530
3703
3703
3703
3703

3633
31990
43077
32680
33630
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the Markowitz-b strategy to select the tentative pivot sequence and employing the
proposed modifications to the factorization phase. The results for FFFFF800 are
omitted from these tables (and from subsequent tables) since this problem was
significantly larger and was too expensive to run using our experimental code.
Additionally, from the experiments we did run on this problem, it appeared to
provide no new information. We also omit results for class (iv) since these
problems were also expensive to run using our experimental code, and they
appeared to behave in a similar manner to the class (i) problems (see Tables 6.1
and 6.2).

Tables 6.3(a) and (b) demonstrate that it is difficult to advise the user on how
accurate the predicted cost returned by the symbolic analysis phase is likely to be.
The reliability of the predicted cost depends upon the number of zero diagonal
entries in the matrix, the values of the nonzero entries, and the value of the
relative pivot threshold u. The results using the original MA27 strategy confirm
the findings of Gill, Murray, & Saunders (1989) that for problems with some zero
diagonal entries a smaller value of u can yield a substantial reduction in the
factorization cost. If the problem is well scaled, the Markowitz-b strategy which
takes into consideration the zeros on the diagonal is generally less sensitive to the
value of u than the original strategy. This is particularly true if the tentative pivot
sequence contains a large number of 2 x 2 pivots with Markowitz cost zero.
However, for the Karmarkar problem with Sharelb data, we found that the
number of arithmetic operations needed by the factorization phase was more than
1.7 times the number anticipated by the analysis phase. For the Markowitz-b
strategy with u = 0.01 we found that for all our test problems the predicted cost
was a good estimate of the actual cost. If the problem is not scaled, the
discrepancy between the predicted and actual cost can be considerable. For
example, for the least-squares problem Beaconfd with u = 0.1, if MC19 was not
employed we found that, for the Markowitz-b strategy, the actual number of flops
rose from 145822 to 298057.

The effect of using the new stability test (4.5) is demonstrated in Table 6.4. The
Markowitz-b strategy is used to select the tentative pivot sequence and the default
value u = 0.1 is employed. It may be seen that for some problems the new
stability test can give a worthwhile gain, and for all the test problems the new
stability test gave results which were at least as good as those achieved with the
old stability test. For problems Capri, E226, and Beaconfd in class (ii) where the
pivotal sequence is optimal, the stability test is not applied since all the pivots
have Markowitz cost zero.

In Table 6.5 we illustrate the effects of testing the Markowitz cost of a potential
pivot. The recommended strategy passes the expected Markowitz costs to the
factorization phase; the Markowitz cost of a potential pivot is then tested against
the expected cost, as discussed in Section 4.2. In addition, any pivot with
Markowitz cost zero is not tested for stability. This strategy is compared with not
passing the expected Markowitz costs to the factorization phase, but still testing
for a Markowitz cost of zero, and with performing no test on the Markowitz cost
of potential pivots during the factorization phase. It may be seen that for most of
the test problems it is important to pass the expected Markowitz costs to the
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TABLE 6.4
A comparison of the new and old stability tests (Markowitz-b pivotal strategy with u = 0.1

is used)

Problem
No. rows (m)
.No. cols (n)
Least-sqaares problems (1)
No. nonzeros
Predicted flops
Actual flops New stability test

Old stability test
Karmarkar problems (H)
No. nonzeros
Predicted flops
Actual flops New stability test

Old stability test
Least-distaace problems (IS)
No. nonzeros
Predicted flops
Actual flops New stability test

Old stability test

Capri
466
271

2330
87003

108522
109868

2059
2330
2330
2330

2190
35355
37844
37844

Snarelb
253
117

1432
33244
33804
33804

1315
3718
6476

10041

1387
9632

10556
10556

E226
472
223

3240
189033
221700
222058

3017
3240
3240
3240

3050
11557
11582
11582

Beaconfd
295
173

3703
95623

145822
158405

3530
3703
3703
3703

3633
31990
43077
44848

TABLE 6.5
The effect of testing the Markowitz cost of potential pivots (Markowitz-b pivotal strategy

with u = 0.1 is used)

Problem
No. rows (m)
No. cols (n)
Least squares problems (i)
No. nonzeros
Predicted flops
Actual flops Recommended strategy

Test for zero Markowitz cost
No Markowitz cost test

Karmarkar problems (li)
No. nonzeros
Predicted flops
Actual flops Recommended strategy

Test for zero Markowitz cost
No Markowitz cost test

Least-distance problems (Hi)
No. nonzeros
Predicted flops
Actual flops Recommended strategy

Test for zero Markowitz cost
No Markowitz cost test

Capri
466
271

2330
87003

108522
162714
162714

2059
2330
2330
2330

374084

2190
35355
37844
37844
38007

Share lb
253
117

1432
33244
33804
33804
33804

1315
3718
6476

29580
47179

1387
9632

10556
10556
10556

E226
472
223

3240
189033
221700
240458
241253

3017
3240
3240
3240

2167494

3050
11557
11582
11582

574364

Beaconfd
295
173

3703
95623

145822
202944
317657

3530
3703
3703
3703

134028

3633
31990
43077
57296

1137893
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TABLE 6.6
A comparison of the original and new storage schemes for the generated element matrices

{Markowitz-b pivotal strategy and u = 0.1)

Problem
No. rows (m)
No. cols (n)
Least-aquares proMetaa (i)
No. nonzeros
New storage scheme

Original storage scheme

Kanaaikar probtetm (H)
No. nonzeros
New storage scheme

Original storage scheme

Least-dbtaace probleau (Hi)
No. nonzeros
New storage scheme

Original storage scheme

Predicted flops
Actual flops
Predicted flops
Actual flops

Predicted flops
Actual flops
Predicted flops
Actual flops

Predicted flops
Actual flops
Predicted flops
Actual flops

Capri
466
271

2330
87003

108522
204995
239138

2059
2330
2330

481044
896758

2190
35355
37844

968217
1204350

Sharelb
253
117

1432
33244
33804
33594
34154

1315
3718
6476

42706
52842

1387
9632

10556
43544
47754

E226
472
223

3240
189033
221700
199209
225426

3017
3240
3240

307035
444555

3050
11557
11582

775318
785233

Beaconfd
295
173

3703
95623

145822
91297

125072

3530
3703
3703

635379
555759

3633
31990
43077

606296
659184

factorization phase and to test for a Markowitz cost of zero. For the class (ii)
problems with Capri, E226, and Beaconfd data for which the Markowitz-b
strategy chooses optimal pivot sequences, the number of flops required by the
numerical factorization increases dramatically if no test is made for a Markowitz
cost of zero.

All the results for the Markowitz strategies presented in Tables 6.1-6.5 have
employed the new storage scheme for the generated element matrices discussed
in Section 3.4. In Table 6.6 we consider what happens if the original storage
scheme in which the generated element matrices are stored as full matrices is used
with the Markowitz-b strategy. It may be seen that for many of the test problems,
particularly those in classes (ii) and (iii), if the original storage scheme is used
there is a sharp deterioration in the results.

7. Coadnioas

Our numerical experiments indicate that, in general, the proposed modifications
to MA27 yield worthwhile gains compared with the MA27 strategy when applied
to matrices with some zero diagonal entries. Extending the minimum degree
ordering to include 2 x 2 pivots does give some improvement over the original
MA27 strategy but larger gains are obtained if the pivots are selected using the
Markowitz criterion. The gains were found to be particularly significant for the
Karmarkar and least-distance test problems (classes (ii) and (iii)). For the
unconstrained least-squares problems (class (i)) and the class (iv) problems the
improvements in the performance using a Markowitz strategy in place of a
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minimum degree strategy were considerable if the matrix B was almost square.
Of the Markowitz strategies discussed in Section 3.2, our numerical experiments
suggest that selecting the pivot sequence on the basis of the Markowitz cost of the
second pivot in a 2 x 2 pivot gives the best results. However, for most problems
using an upper bound on the Markowitz cost of the second pivot yields results
which are comparable with those where the exact Markowitz cost is computed
and, since the exact Markowitz cost is expensive to compute, we will adopt the
Markowitz-b strategy which uses this upper bound.

We propose therefore to modify the analysis phase of MA27 to use generated
element matrices of the form (3.16) and (3.17), to employ the Markowitz-b
pivoting strategy (Section 3.2), to provide the factorization phase with the
expected Markowitz costs of the pivots, and to indicate which pivots are intended
2 x 2 pivots. The factorization phase will be modified to accept the new data, use
generated element matrices of the form (3.16) and (3.17), use the new stability
test (Section 4.1), and delay pivots whose Markowitz costs are much larger than
anticipated. We believe that these changes will avoid the present poor perfor-
mance of MA27 on problems with zero diagonal entries.
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