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SUMMARY

One is often faced with the problem of finding the optimal location and trajectory for an oil well.
Increasingly this includes the additional complication of optimising the design of a multilateral well. We
present a new approach based on the theory of expensive function optimisation.

The key idea is to replace the underlying expensive function (ie. the simulator response) by a cheap
approximation (ie. an emulator). This enables one to apply existing optimisation techniques to the
emulator. Our approach uses a radial basis function interpolant to the simulator response as the emulator.
Note that the case of a Gaussian radial basis function is equivalent to the geostatistical method of Kriging
and radial basis functions can be interpreted as a single-layer neural network. We use a stochastic model of
the simulator response to adaptively refine the emulator and optimise it using a branch and bound global
optimisation algorithm.

To illustrate our approach we apply it numerically to finding the optimal location and trajectory of a
multilateral well in a reservoir simulation model using the industry standard ECLIPSE simulator. We
compare our results to existing approaches and show that our technique is comparable, if not superior, in
performance to these approaches.
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Introduction

The extraction of oil from the subsurface is a challenging and increasingly important problem as we be-
gin to exhaust existing easily recoverable reserves. With the oil price recently subject to great variation
there is increasing emphasis on efficient oil extraction and reservoir development. Deciding when and
where to drill new injection and production wells is an important factor in an optimal reservoir develop-
ment strategy. Unfortunately, such an optimal strategy may be far from obvious as often the reservoir
under consideration is a highly complex system. It is natural to formulate this decision problem as a
global optimisation problem on a suitable reservoir simulation model. However, in order to evaluate a
single strategy one has to run the numerical simulation model which can take a considerable amount of
time. We are therefore faced with a global optimisation problem where the underlying objective function
is expensive to evaluate.

For the purposes of this paper we are interested in finding the optimal locations and trajectories of new
injection and production wells in an existing oil reservoir. To this end, we construct a simulation model
of the oil reservoir and optimise over it to determine the best well locations and trajectories. This is not
a new approach and has been tried by Yeten et al. (2002), Badru and Kabir (2003), Emerick et al. (2009)
and Bukhamsin et al. (2010) amongst others. A frequently encountered problem with these approaches
is that typically very many simulator runs are required to achieve a good optimum and often only a local
optimum is found. Our approach seeks to remedy these shortcomings by developing a method which
tries to use as few simulator runs as possible while at the same time aiming to find the global optimum.
It may seem that this is a very ambitious goal since any global optimisation problem is NP-hard in the
general case, however we believe that our approach is the best that one can do given the limited amount
of information and time (i.e. simulator runs) available.

Before proceeding further, let us define some terminology. Let the term simulator response denote a
real-valued function with a suitable measure of simulated reservoir performance as the output and op-
timisation parameters governing well placement as input. For example, the output could be the total
oil production of the reservoir over some prescribed time period or the net present value of the project
and may include uncertainty in the reservoir geology by way of multiple realisations of the reservoir.
As the simulation model is computationally expensive to evaluate one often approximates the simulator
response by a surrogate model (often called an emulator or proxy). We use an extension of the geosta-
tistical technique of Kriging (Busby et al., 2007) but other surrogate models have also been used in the
literature, including neural networks and splines see Zubarev, 2009 and Yeten et al., 2005 for a compar-
ison. Our basic approach is as follows: Construct a surrogate approximation to the simulator response
using an initial set of simulator runs (often termed initial designs, see Yeten et al., 2005), optimise a
suitable loss function associated with the surrogate and run the simulator at the optimal parameter con-
figuration. Then construct a new surrogate incorporating the new simulator run and repeat the process
until some prescribed number of iterations or time limit is reached. The following sections deal with
constructing the surrogate, our global optimisation algorithm and the well placement problem itself. We
conclude with some numerical results of our method on a simple test case.

Surrogate Approximation

The main idea behind our method is to use an inexpensive surrogate function to approximate the under-
lying computationally expensive simulator response. The surrogate function enables us to capture the
dominant features of the simulator response surface with relatively few simulator runs. In addition, we
iteratively refine our surrogate approximation as the optimisation progresses so as better to capture the
behaviour of the simulator response near the optimum and in relatively unexplored regions.

The surrogate is constructed as follows. Let {nk}]i"i | be a polynomial basis of degree d on R”, so that

M = % and let D c R” be a compact subregion of interest. Suppose that the simulator response
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f: D — Ris arealisation of a stochastic process F: D x Q — R of the form

M
Fx) = ) (@) + Z(2)
k=1

where the first term specifies the mean structure and Z denotes a Gaussian stochastic process with zero
mean and covariance
2
cov(Z(x), Z(y)) = o"R(x,y)

between Z(x) and Z(y). Here o2 denotes the process variance and

R(x,y) = ¢(llx —yl)

is the correlation between Z(x) and Z(y). We take the correlation function ¢(-) to be a radial basis
function where ||-|| = [|[W-||> is the weighted £>-norm with weight matrix W (which is usually taken to be
diagonal). Examples of radial basis functions include

rk if k is odd

Surface Spline: ¢(r) = { Hlog r £k is even

Multiquadric:  ¢(r) = GEY D4 B>0, ¢N,and

Gaussian:  ¢(r) = eXp(-)’zrz),

where 7y is a nonzero constant referred to as the shape parameter (see Wendland, 2005). Assume there
are N samples y = (y1,...,yy)! of f at the corresponding sample points xi, ..., xy. The surrogate is
taken to be the posterior mean s(x) of the stochastic process F given the response function samples y. It
can be shown (see Busby et al., 2007) that the posterior mean s(x) of F given y is

M N
s(x) == E[F(x)ly] = Z,ukﬂk(x) + Z Aje(llx = x;ll)
k=1 J=1

where p, A; are coefficients. The coefficients are determined by solving the linear interpolation system

M N
vi= Y ) + Y gl - xil, i= L. N
k=1 j=1

along with the additional conditions
N
D Amxp =0, k=1,....M
=1

which complete the system and ensure that polynomials of degree less than or equal to d are interpolated
exactly. In matrix form this gives the non-singular (provided d is sufficiently large and {xi}fi is a
unisolvent set, see Wendland, 2005) saddle-point system

o)) =(o

where R = (R(x;, x;)) and P = (7;(x;)). The posterior variance €2(x) of the stochastic process F given
the response function samples y can be used as a measure of error in the surrogate approximation. One
can show (see Sacks et al., 1989; Schonlau, 1997) that the posterior variance e(x) of F given y is

o2l 12 62
) \PT o) p
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where r(x) = (¢(|lx — x}l|)) and p(x) = (7;(x)). The process variance o2 is determined using maximum
likelihood estimation (see Busby et al., 2007) and given by

1 _
o’ = - PR (y - Pu).

Note that the geostatistical method of Kriging is simply the above approach with a Gaussian radial basis
function and diagonally weighted {;-norm. There are two main approaches one can use to find the
weights in the weight matrix W, which we will now assume to be diagonal. The first approach consists
of choosing W to maximise the likelihood of the observed data x, ..., xy and leads one to choose W to
be the maximiser of the log-likelihood function (see Busby et al., 2007)

1
W) = —E(N log o + log det(R))

which we optimise using a general purpose global optimisation algorithm (DIRECT, Jones et al., 1993).
The second approach is to use leave-one-out cross-validation (see Rippa, 1999) and leads one to choose
W to minimise the £;-norm of the cross-validation error e(W) € RY. The k-th element of the cross-
validation error e(W) is the error at the validation point xi, given by

where A;}( is the k-th diagonal element of the inverse of the interpolation matrix A = ( ﬁr g) .

We will use the decision theoretic expected improvement approach for updating the surrogate approxi-
mation as outlined in Jones et al. (1998). Define the improvement /(x) a new response function evalua-
tion at x achieves over the current smallest response function value y,,;, := minj <<y y; by

1(x) = max{0, ymin — F(x)}.

The next sample point is then chosen to maximise the expected improvement with respect to the posterior
distribution Fly. It can be shown (see Jones et al., 1998) that the expected improvement is given by

E[1(x0)] = e(x) [2(0)D(z(x)) + ¢(z(x))]

where ® and ¢ are the cumulative distribution function and probability density function respectively of

the standard normal distribution and
Z(x) — Ymin — s(x)

e(x)
In order to maximise the expected improvement using our preferred optimisation algorithm we require
bounds on the posterior mean s(x) and posterior variance €%(x). We will discuss how these bounds are
obtained in the next section along with our choice of global optimisation algorithm.

Global Optimisation

As part of the solution to the general problem it is necessary to solve the ancillary global optimisation
problem
in /
mig 9

where [: D c R" — R is a specially constructed objective function (referred to in the decision theory
literature as a loss function, see Berger, 1985) and D is a n-dimensional rectangle (or box). We present
the canonical branch and bound algorithm (Horst, 1986) with bounds from Jones et al. (1998) and
Gutmann (2001). Before describing the algorithm in detail we first need some notation. Let 8 ¢ D
denote an n-dimensional box and let xg be the centre of B unless 8 has been locally searched, in which
case it is the feasible point found by a constrained local search procedure (see step le in the algorithm
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below). Define a(8B), 5(B) to be lower and upper bounds respectively on the global minimum of /(x), i.e.
a(B), B(B) satisfy
a(B) < miél I(x) < B(B).
X€E.

Suitable choices for these bounds will be discussed below. We then follow the branch and bound algo-
rithmic framework set out in Balakrishnan et al. (1991):

Branch and Bound Algorithm

0. Initialisation:
(a) Setk =0and s = 0.
(b) Let Ly be the initial list of boxes and set Ly = {D}.
(c) Let Ly = a(D) be the initial lower bound for min,ep I(x).
(d) Let Uy = B(D) be the initial upper bound for min g I(x).
1. While Uy — Ly > &, repeat the following procedure:
(a) Remove from Ly boxes B € L such that a(B) > Uy.
(b) Choose B € L} such that a(B) = Ly.
(c) Bisect B along its longest edge into By and By;. Set Ly = Ly U {By, By} and remove B
Sfrom L.
(d) If any boxes have been discarded set s = 0, otherwise set s = s + 1.

(e) If s > 2 run an approximate constrained local search algorithm on all previously unsearched
boxes B in L1, update xg to be the minimiser found by the local search and set s = 0.

(f) Set Ly, = ming€£k+l G’(B)
(g) Set Uysy = minges,,, B(B).
(h) Setk =k+ 1.

The idea behind the algorithm is to recursively partition the domain D into sub-boxes until a box of
sufficiently small size containing the global minimum of /(x) over D is found. Since it is possible to
obtain bounds on the minimum of /(x) over any box in D, they can be used to discard boxes which
cannot contain the global minimum, i.e. boxes whose lower bound is greater than the smallest upper
bound. The algorithm is accelerated by running constrained local searches on suitable boxes to obtain
more accurate upper bounds. This is achieved through the use of a heuristic from Pedamallu et al. (2008)
which suggests running local searches on all previously unsearched boxes if no boxes are discarded
after two successive iterations of the algorithm. We use a conjugate gradient based active set method by
Hager and Zhang (2006) for the local searches but in principle one can use any constrained local search
algorithm.

For our particular example we let /(x) be the negative expected improvement

1(x) = —e(x) [z2(0)D(z(x)) + ¢(z(x))]

but note that many other choices of loss function are possible (see Jones, 2001; Sasena, 2002). Define
the upper bound S(8B) to be [ evaluated at xg i.e.

B(B) = l(xp).

To obtain a lower bound on /(x) it suffices to obtain a lower bound on s(x) and an upper bound on e(x).
For the surrogate

M N
s() = D () + ) Ajellx = x1)
k=1 j=1
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we find a lower bound p($8) for the minimum of the polynomial term over a box B using interval
arithmetic (Neumaier, 2004) or polynomial optimisation (Lasserre, 2001) and bound each radial basis
function term over B using quadratic functions (as in Jones et al., 1998)

2 2
aj+bjllx — x;lI” < @(lx — xjll) < Aj + Bjllx — x|

for which details are given in Gutmann (2001). Now we can define the lower bound a;(8B) for the global
minimum of s(x) over a box 8 as

N N
: 2 2
@y(B) = p(B) +ming > Aj(aj +bjllx— i)+ > A4+ Bjll—xjP)
A =1
/1j>0 /1j<0
Note that the minimum above is easy to obtain as the sum can be rewritten in terms of one dimensional
quadratic functions and thus minimised componentwise. We now turn our attention to e(x) which is
defined as

e*(x) = 0 [p(0) — L(&(x))]

where
R P

— T -1 —
L(‘f)_é‘:A é:’ A_(PT 0

), E(x) = (r(x) p(x)’.

The key idea here is to underestimate L(£) by a convex relaxation C(¢). Following Jones et al. (1998)
and Gutmann (2001), define an upper bound S.(8B) for e(x) over B as

BB = max o [¢(0) - CO]'"

where
C(&) = L&) — Apin(€ = DT (€ — u)

is the convex relaxation of L(£). Here A,,;, denotes the smallest eigenvalue of A~!and

lj:{‘p(\/%) forj=1,...,N

Pi(B) forj=N+1,....N+M
o o( Ji®) forj=1...N
: pi(B) forj=N+1,....,N+M

where pé.(B), p?(B) are lower and upper bounds on the minimum of the polynomial basis terms 7;_,
over B found using interval arithmetic or polynomial optimisation and ri.(B), r;?(B) are exact lower and
upper bounds for the minimum of ||x — x j||2 over B as in Gutmann (2001). Note that C(£) is convex as
its Hessian, given by 2(A~' = A,,;,1), is positive semidefinite and it clearly underestimates L(£). Thus we
have relaxed the problem to a convex quadratic programming problem which can be solved efficiently;
we use an implementation of the algorithm by Goldfarb and Idnani (1983). Combining the lower bound
a5(B) and upper bound S.(B) gives the lower bound a(B) as

a(B) = Be(B) [{(B)DL(B)) + p({(B))]

where
Ymin — & 5(B)

B =" ®
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Well Placement

For the purposes of this paper we consider arbitrary multilateral wells with up to n laterals on a Cartesian
simulation grid. The aim is to find optimal completion locations and trajectories for these wells. For
simplicity, we assume the main wellbore is completed along a single continuous section of the well and
any laterals are completed along their entire length. We parameterise the wells similarly to Yeten et al.
(2002) in continuous grid coordinates, i.e. if a point has coordinates (1.5,2.5,3.5) it is in the centre of
the (1,2, 3) grid block. Let iy denote the grid coordinates of the mainbore completion heel and ¢ of the
mainbore completion toe. Also, let /; € [0, 1] denote the relative position of the i-th lateral heel on the
mainbore and #; denote the grid coordinates of the i-th lateral toe. The coordinates of the i-th lateral heel
can then be calculated as h; = hg + [;(typ — ho). This parameterisation is illustrated in Figure 1 below.

Denote the input parameters by x = (ho, fo, 1,1, ..., 1y, 1) and let f be the simulator response to these
i
¥ I ho
U
151
[
To

Figure 1: Parameterisation of a multilateral well with a single lateral off the mainbore in continuous
grid coordinates i, j, k.

parameters. The optimisation problem then becomes
min f(x
xeD f( )

i.e. minimise the simulator response over a suitably defined rectangular coordinate range O. As the sim-
ulator response is an expensive function we approximate it using a surrogate function s(x) and associated
error e(x) as described in the previous section on Surrogate Approximation. We iteratively improve the
surrogate approximation by adding the optimiser of the associated loss function as described in the
previous section on Global Optimisation. Our complete framework is as follows:

Well Placement Optimisation Framework

0. Initialisation:

(a) Sett=0andletT be a prescribed number of total iterations.
(b) Let f: D CcR" — R be the simulator response on a rectangular domain D.

(c) Let Xo C D denote an initial set of points where f has been sampled.
1. While t < T, repeat the following procedure:

(a) Construct a surrogate approximation s; to the simulator response [ at X; along with the
corresponding error e;.

(b) Construct the corresponding loss function l,(x) = —e(x)[z;(x)D(z;(x)) + ¢(z:(x))], where
2(X) = [Ymin — $:(X)]/€:(x).

(c¢) Optimise l;(x) using the prescribed branch and bound algorithm to obtain a minimiser x;
and evaluate the simulator response at x;.

(d) Set Xl+1 = X[ U {Xt}.

(e) Sett=1t+1

The algorithm stops after a prescribed number of iterations 7', but it is of course possible to use other
stopping criteria (see Sasena, 2002) with perhaps the most obvious being to stop after a certain amount
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of elapsed time. It is assumed that the domain D of the simulator response is rectangular so that we
can dispense with the complexity that arises when one has to incorporate constraints into a branch and
bound algorithm (see Pedamallu et al., 2008). The initial set of points X is typically chosen to be space
filling, see Yeten et al. (2005) and Koehler and Owen (1996) for further details on this. As mentioned
previously, it is possible to use other loss functions (such as /; = s;) and we refer the interested reader to
Jones (2001) and Sasena (2002) for examples.

Numerical Example

We will now demonstrate the effectiveness of our well placement optimisation framework by means
of a simple numerical example. Consider the case of finding the optimal location and trajectory of a
single multilateral oil producing well in a synthetic reservoir simulation model. We will use the Snark
simulation model, pictured in Figure 2, which consists of a 24 X 25 x 12 corner point simulation grid
representing 12 geological layers with three faults and an analytical aquifer at the southern end of the
model. The simulation will be performed using the industry standard ECLIPSE simulator from Schlum-
berger. The aim is to find the optimal mainbore completion along with up to three laterals. We will

Figure 2: A top-down view of the Snark simulation model showing the initial oil saturation ranging
Jfrom 0% (purple) to 80% (red) as indicated by the colourmap in the top left-hand corner.

compare two different methods for achieving this aim, our surrogate based optimisation framework and
a direct approach using genetic algorithms (c.f. Yeten et al., 2002). Let the simulator response f be the
negative total oil production from the simulation model over a four year period. Note that we do not
consider other reservoir performance factors here as our primary focus is on the optimisation problem.
We will start with a maximin latin hypercube sample (see Koehler and Owen, 1996) of 20 initial well
configurations and we limit ourselves to 200 simulator runs. For our optimisation framework we will
use the cubic spline radial basis function ¢(r) = r* with a diagonally weighted £,-norm and linear poly-
nomial term, as it is numerically more stable than Kriging using the Gaussian radial basis function (see
Section 12.2 of Wendland, 2005). Note that the linear polynomial term in the surrogate can be trivially
optimised componentwise over a box, so in this case there is no need to use interval arithmetic or poly-
nomial optimisation. We use our own MATLAB based implementation of the optimisation framework
and the genetic algorithm provided by MATLAB with default settings. The simulated oil production of
the best well found after a given number of simulator runs by our framework and the genetic algorithm is
shown in Figure 3. One can see that even for this simple example our framework finds a multilateral well
with consistently better oil production after a given number of simulator runs than the genetic algorithm.
The trajectory of the optimal well as found by our optimisation framework is shown in Figure 4. This is
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essentially a horizontal well which maximises contact with areas of high oil saturation and is the type of
optimal well one would expect given our choice of simulation model.

x 10 QOil Production of the Best Well
99r

9.6

9.5

9.4

Total Oil Production (STB)

93

921

e Well Placement Framework
Genetic Algorithm
1 1

91 1 1 1 1 1 1 J
20 40 60 80 100 120 140 160 180 200

Number of Simulator Runs

Figure 3: Simulated oil production of the best multilateral well found after the given number of simula-
tor runs by our framework and the genetic algorithm.

Figure 4: The optimal well trajectory as found by our optimisation framework pictured on a vertical
slice through the model. The colours depict the initial oil saturation ranging from 0% (purple) to 80%
(red) as indicated by the colourmap in the top left-hand corner.

Conclusions

We have presented a new approach to the multilateral well placement problem based on the theory of
expensive function optimisation. Our approach consists of a general surrogate-based framework for the
optimisation of a number of injection and production wells with multiple laterals along with a branch
and bound global optimisation algorithm. We have tested our method on a simple reservoir simulation
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model and results indicate that our approach is comparable, if not superior, to that of genetic algorithms
used in previous studies.
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