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Abstract. A trust-region SQP-filter algorithm of the type introduced by Fletcher and Leyffer
[Math. Program., 91 (2002), pp. 239–269] that decomposes the step into its normal and tangential
components allows for an approximate solution of the quadratic subproblem and incorporates the
safeguarding tests described in Fletcher, Leyffer, and Toint [On the Global Convergence of an SLP-
Filter Algorithm, Technical Report 98/13, Department of Mathematics, University of Namur, Namur,
Belgium, 1998; On the Global Convergence of a Filter-SQP Algorithm, Technical Report 00/15,
Department of Mathematics, University of Namur, Namur, Belgium, 2000] is considered. It is proved
that, under reasonable conditions and for every possible choice of the starting point, the sequence of
iterates has at least one first-order critical accumulation point.
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1. Introduction. We analyze an algorithm for solving optimization problems
where a smooth objective function is to be minimized subject to smooth nonlinear
constraints. No convexity assumption is made. More formally, we consider the prob-
lem

minimize f(x)
subject to cE(x) = 0,

cI(x) ≥ 0,
(1.1)

where f is a twice continuously differentiable real valued function of the variables
x ∈ R

n and cE(x) and cI(x) are twice continuously differentiable functions from R
n

into R
m and from R

n into R
p, respectively. Let c(x)T = (cE(x)T cI(x)T ).

The class of algorithms that we discuss belongs to the class of trust-region methods
and, more specifically, to that of filter methods introduced by Fletcher and Leyffer [18],
in which the use of a penalty function, a common feature of the large majority of the
algorithms for constrained optimization, is replaced by the introduction of a so-called
filter.

A global convergence theory for an algorithm of this class is proposed by Fletcher,
Leyffer, and Toint in [19], in which the objective function is locally approximated by a
linear function, leading, at each iteration, to the (exact) solution of a linear program.
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This algorithm therefore mixes the use of the filter with sequential linear program-
ming (SLP). This approach was generalized by the same authors in [20], where the
objective function is approximated by a quadratic model, which results in a sequential
quadratic programming (SQP) technique in which each quadratic program must be
solved globally. In this paper, we again consider approximating the objective function
by a quadratic model, but, at variance with the latter reference, the method discussed
here does not require the global solution of the associated nonconvex quadratic pro-
gramming (QP) subproblem, which is known to be a theoretically difficult process—it
is known to be NP hard (see Murty and Kabadi [26]). The algorithm analyzed here
also has a different mechanism for deciding on the compatibility of this subproblem
and allows for an approximate subproblem solution.

2. A class of trust-region SQP-filter algorithms.

2.1. An approximate SQP framework. SQP methods are iterative. At a
given iterate xk, they implicitly apply Newton’s method to solve (a local version of)
the first-order necessary optimality conditions by solving the QP subproblem QP(xk)
given by

minimize fk + 〈gk, s〉+ 1
2 〈s,Hks〉

subject to cE(xk) +AE(xk)s = 0,
cI(xk) +AI(xk)s ≥ 0,

(2.1)

where fk = f(xk), gk = g(xk)
def
= ∇xf(xk), where AE(xk) and AI(xk) are the Ja-

cobians of the constraint functions cE and cI at xk, and where Hk is a symmetric
matrix. We will not immediately be concerned about how Hk is obtained, but we will
return to this point in section 3. Assuming that a suitable matrix Hk can be found,
the solution of QP(xk) then yields a step sk. If sk = 0, then xk is first-order critical
for problem (1.1).

Unfortunately, due to the locally convergent nature of Newton’s iteration, the
step sk may not always be very good. One possible way to cope with this difficulty
is to define an appropriate merit function whose value decreases with the goodness
of sk, which is where penalty functions typically play a role. A trust-region or a
linesearch method is then applied to minimize this merit function, ensuring global
convergence under reasonable assumptions. However, as one of our objectives is to
avoid penalty functions (and the need to update the associated penalty parameter),
we instead consider a trust-region approach that will not use any penalty function.1

In such an approach, the objective function of QP(xk) is intended to be only of local
interest; that is, we restrict the step sk in the norm to ensure that xk + sk remains in
a trust-region centered at xk. In other words, we replace QP(xk) by the subproblem
TRQP(xk,∆k) given by

minimize mk(xk + s)
subject to cE(xk) +AE(xk)s = 0,

cI(xk) +AI(xk)s ≥ 0,
and ‖s‖ ≤ ∆k

(2.2)

for some (positive) value of the trust-region radius ∆k, where we have defined

mk(xk + s) = fk + 〈gk, s〉+ 1

2
〈s,Hks〉(2.3)

1Recently, Wächter and Biegler [31] have proposed a linesearch variant of the ideas described in
this paper.
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and where ‖ · ‖ denotes the Euclidean norm. This latter choice is purely for ease
of exposition. We could equally use a family of iteration-dependent norms ‖ · ‖k, so
long as we require that all members of the family are uniformly equivalent to the
Euclidean norm. The interested reader may verify that all subsequent developments
can be adapted to this more general case by introducing the constants implied by this
uniform equivalence wherever needed.

Remarkably, most early SQP algorithms assume that an exact local solution of
QP(xk) or TRQP(xk,∆k) is found, although attempts have been made by Dembo
and Tulowitzki [8] and Murray and Prieto [25] to design conditions under which
an approximate solution of the subproblem is acceptable. We revisit this issue in
what follows, and start by noting that the step sk may be viewed as the sum of two
distinct components, a normal step nk, such that xk + nk satisfies the constraints
of TRQP(xk,∆k), and a tangential step tk, whose purpose is to obtain reduction of
the objective function’s model while continuing to satisfy those constraints. This
framework is therefore similar in spirit to the composite-step SQP methods pioneered
by Vardi [30], Byrd, Schnabel, and Shultz [5], and Omojokun [27], and later developed
by several authors, including Biegler, Nocedal, and Schmid [1], El-Alem [12, 13], Byrd,
Gilbert, and Nocedal [3], Byrd, Hribar, and Nocedal [4], Bielschowsky and Gomes [2],
Liu and Yuan [23], and Lalee, Nocedal, and Plantenga [22]. More formally, we write

sk = nk + tk(2.4)

and assume that

cE(xk) +AE(xk)nk = 0, cI(xk) +AI(xk)nk ≥ 0,(2.5)

‖sk‖ ≤ ∆k,(2.6)

and

cE(xk) +AE(xk)sk = 0, cI(xk) +AI(xk)sk ≥ 0.(2.7)

Of course, this is a strong assumption, since in particular (2.5) or (2.6)/(2.7) may not
have a solution. We shall return to this possibility shortly. Given our assumption,
there are many ways to compute nk and tk. For instance, we could compute nk from

nk = Pk[xk]− xk,(2.8)

where Pk is the orthogonal projector onto the feasible set of QP(xk). In what follows,
we do not make any specific choice for nk, but we shall make the assumptions that
nk exists when the maximum violation of the nonlinear constraints at the kth iterate

θk
def
= θ(xk), where

θ(x) = max

[
0,max

i∈E
|ci(x)|,max

i∈I
−ci(x)

]
(2.9)

is sufficiently small, and that nk is then reasonably scaled with respect to the values
of the constraints. In other words, we assume that

nk exists and ‖nk‖ ≤ κuscθk whenever θk ≤ δn(2.10)

for some constants κusc > 0 and δn > 0. This assumption is also used by Dennis,
El-Alem, and Maciel [9] and Dennis and Vicente [11] in the context of problems only
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involving equality constraints. We can interpret it in terms of the constraint functions
themselves and the geometry of the boundary of the feasible set. For instance, if we
define the linearized feasible set at x by

L(x) def
= {v ∈ R

n | cE(x) +AE(x)(v − x) = 0, cI(x) +AI(x)(v − x) ≥ 0}

and assume that, at every limit point x∗ of the sequence of iterates, the relative
interior of the linearized constraints ri{L(x∗)} is nonempty and that the active set
settles, in that A(xki) = A(x∗) for sufficiently large ki with limi xki = x∗, we know,
by applying a continuity argument, that the feasible set of QP(xk) is nonempty for
such a k, which implies that Pk is well defined and that a normal step nk of the form
(2.8) exists. Furthermore, if the singular values of the Jacobian of constraints active
at x∗, AA(x∗)(x∗), are nonzero, those of AA(x∗)(xk) must be bounded away from zero
by continuity in a neighborhood of x∗. Since only the constraints active at x∗ can be
active in a sufficiently small neighborhood of this limit point, this in turn guarantees
that (2.10) holds for the normal step

−ATA(x∗)(xk)
[
AA(x∗)(xk)A

T
A(x∗)(xk)

]−1
cA(x∗)(xk)

for all k sufficiently large, provided that the sequence of iterates remains bounded,
because this latter assumption ensures that xk must be arbitrarily close to a least one
limit point of the sequence {xk} for such k. Thus we see that (2.10) does not impose
conditions on the constraints or the normal step itself that are unduly restrictive.

Having defined the normal step, we are in position to use it if it falls within the
trust-region, that is, if ‖nk‖ ≤ ∆k. In this case, we write

xN

k = xk + nk(2.11)

and observe that nk satisfies the constraints of TRQP(xk,∆k) and thus also of QP(xk).
It is crucial to note, at this stage, that such an nk may fail to exist because the
constraints of QP(xk) may be incompatible, in which case Pk is undefined, or because
all feasible points for QP (xk) may lie outside the trust-region.

Let us continue to consider the case where this problem does not arise, and a
normal step nk has been found with ‖nk‖ ≤ ∆k. We then have to find a tangential
step tk, starting from xN

k and satisfying (2.6) and (2.7), with the aim of decreasing the
value of the objective function. As always in trust-region methods, this is achieved by
computing a step that produces a sufficient decrease in mk, which is to say that we
wish mk(x

N

k)−mk(xk + sk) to be “sufficiently large.” Of course, this is only possible
if the maximum size of tk is not too small, which is to say that xN

k is not too close to
the trust-region boundary. We formalize this supposition by replacing our condition
that ‖nk‖ ≤ ∆k with the stronger requirement that

‖nk‖ ≤ κ∆∆k min[1, κµ∆
µ
k ](2.12)

for some κ∆ ∈ (0, 1], some κµ > 0, and some µ ∈ (0, 1). If condition (2.12) does
not hold, we assume that the computation of tk is unlikely to produce a satisfactory
decrease in mk, and proceed just as if the feasible set of TRQP(xk,∆k) were empty. If
nk can be computed and (2.12) holds, we shall say that TRQP(xk,∆k) is compatible.
In this case at least a sufficient model decrease seems possible, which we state in the
form of a familiar Cauchy-point condition. In order to formalize what we mean, we
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recall that the feasible set of QP(xk) is convex, and we can therefore introduce the
measure

χk =

∣∣∣∣∣∣∣∣∣∣
min

AE(xk)t=0

cI(xk)+AI(xk)(nk+t)≥0
‖t‖≤1

〈gk +Hknk, t〉

∣∣∣∣∣∣∣∣∣∣
(2.13)

(see Conn et al. [6]), which we will use to deduce first-order criticality for our problem
(see Lemma 3.2). Note that this function is zero if the origin is a first-order critical
point of the “tangential” problem

minimize 〈gk +Hknk, t〉+ 1
2 〈Hkt, t〉

subject to AE(xk)t = 0,
cI(xk) +AI(xk)(nk + t) ≥ 0,

(2.14)

which is, up to the constant term 1
2 〈nk, Hknk〉, equivalent to QP(xk) with s = nk+ t.

Our sufficient decrease condition is then to require that, whenever TRQP(xk,∆k) is
compatible,

mk(x
N

k)−mk(x
N

k + tk) ≥ κtmdχk min

[
χk
βk
,∆k

]
(2.15)

for some constant κtmd > 0, where βk = 1 + ‖Hk‖. We know from Toint [29] and
Conn et al. [6] that this condition holds if the model reduction exceeds that which
would be obtained at the generalized Cauchy point, that is, the point resulting from
a backtracking curvilinear search along the projected gradient path from xN

k , that is,

xk(α) = Pk[x
N

k − α∇xmk(x
N

k)].

This technique therefore provides an implementable algorithm for computing a step
that satisfies (2.15) (see Gould, Hribar, and Nocedal [21] for an example in the case
where c(x) = cE(x), or Toint [29] and Moré and Toraldo [24] for the case of bound
constraints), but, of course, reduction of mk beyond that imposed by (2.15) is often
possible and desirable if fast convergence is sought. Also note that the minimization
problem of the right-hand side of (2.13) would reduce to a linear programming problem
if we had chosen to use a polyhedral norm in its definition at iteration k.

Let us now return to the case where TRQP(xk,∆k) is not compatible, that is,
when the feasible set determined by the constraints of QP(xk) is empty, or the freedom
left to reduce mk within the trust-region is too small in the sense that (2.12) fails. In
this situation, solving TRQP(xk,∆k) is most likely pointless, and we must consider an
alternative. We base this on the intuitive observation that, if θ(xk) is sufficiently small
and the true nonlinear constraints are locally compatible, the linearized constraints
should also be compatible, since they approximate the nonlinear constraints (locally)
correctly. Furthermore, the feasible region for the linearized constraints should then
be close enough to xk for there to be some room to reduce mk, at least if ∆k is
large enough. If the nonlinear constraints are locally incompatible, we have to find
a neighborhood where this is not the case, since the problem (1.1) does not make
sense in the current one. We thus rely on a restoration procedure, whose aim is to
produce a new point xk + rk for which TRQP(xk + rk,∆k+1) is compatible for some
∆k+1 > 0—we will actually need another condition which we will discuss shortly.
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The idea of the restoration procedure is to (approximately) solve

min
x∈R

n
θ(x),(2.16)

perhaps starting from xk, the current iterate. This is a nonsmooth problem, but we
know that there exist methods, possibly of trust-region type (such as that suggested
by Yuan [32]), which can be successfully applied to solve it. Thus we will not describe
the restoration procedure in detail. Note that we have chosen here to reduce the
infinity norm of the constraint violation, but we could equally well consider other
norms, such as �1 or �2, in which case the methods of Fletcher and Leyffer [17] or
of El-Hallabi and Tapia [14] and Dennis, El-Alem, and Williamson [10], respectively,
can be considered. Of course, this technique only guarantees convergence to a first-
order critical point of the chosen measure of constraint violation, which means that,
in fact, the restoration procedure may fail as this critical point may not be feasible
for the constraints of (1.1). However, even in this case, the result of the procedure
is of interest because it typically produces a local minimizer of θ(x), or of whatever
other measure of constraint violation we choose for the restoration, yielding a point
of locally least infeasibility.

There is no easy way to circumvent this drawback, as it is known that finding a
feasible point or proving that no such point exists is a global optimization problem
and can be as difficult as the optimization problem (1.1) itself. We therefore accept
two possible outcomes of the restoration procedure: either the procedure fails in that
it does not produce a sequence of iterates converging to feasibility, or a point xk + rk
is produced such that θ(xk + rk) is as small as we wish. We will shortly see that this
is all we need.

2.2. The notion of a filter. Having computed a step sk = nk + tk (or rk), we
still need to decide whether the trial point xk + sk (or xk + rk) is any better than
xk as an approximate solution to our original problem (1.1). We shall use a concept
borrowed from multicriteria optimization. We say that a point x1 dominates a point
x2 whenever

θ(x1) ≤ θ(x2) and f(x1) ≤ f(x2).

Thus, if iterate xk dominates iterate xj , the latter is of no real interest to us since xk
is at least as good as xj on account of both feasibility and optimality. All we need to
do now is to remember iterates that are not dominated by any other iterates using a
structure called a filter. A filter is a list F of pairs of the form (θi, fi) such that either

θi < θj or fi < fj

for i �= j. We thus aim to accept a new iterate xi only if it is not dominated by
any other iterate in the filter. In the vocabulary of multicriteria optimization, this
amounts to building elements of the efficient frontier associated with the bicriteria
problem of reducing infeasibility and the objective function value.

Figure 2.1 illustrates the concept of a filter by showing the pairs (θk, fk) as black
dots in the (θ, f)-space. Each such pair is called the (θ, f)-pair associated with xk.
The lines radiating from each (θ, f)-pair indicate that any iterate whose associated
(θ, f)-pair occurs above and to the right of that of a given filter point is dominated
by this (θ, f)-pair.

While the idea of not accepting dominated trial points is simple and elegant,
it needs to be refined a little in order to provide an efficient algorithmic tool. In



CONVERGENCE OF A TRUST-REGION SQP-FILTER METHOD 641

✻

0

f(x)

✲
θ(x)

�

�

�

�

Fig. 2.1. A filter with four pairs.

particular, we do not wish to accept xk+sk if its (θ, f)-pair is arbitrarily close to that
of xk or that of a point already in the filter. Thus we set a small “margin” around
the border of the dominated part of the (θ, f)-space in which we shall also reject trial
points. Formally, we say that a point x is acceptable for the filter if and only if

θ(x) ≤ (1− γθ)θj or f(x) ≤ fj − γθθj for all (θj , fj) ∈ F(2.17)

for some γθ ∈ (0, 1). In Figure 2.1, the set of acceptable points corresponds to the set
of (θ, f)-pairs below the thin line. We also say that x is “acceptable for the filter and
xk” if (2.17) holds with F replaced by F ∪ (θk, fk). We thus consider moving from
xk to xk + sk only if xk + sk is acceptable for the filter and xk.

As the algorithm progresses, we may want to add a (θ, f)-pair to the filter. If an
iterate xk is acceptable for F , we do this by adding the pair (θk, fk) to the filter and
by removing from it every other pair (θj , fj) such that both

θj ≥ θk and fj − γθθj ≥ fk − γθθk.(2.18)

Only entries whose envelope is dominated by a new entry are thus removed from
the filter. As a consequence, the margin of the filter never decreases, and it can be
shown that, for all infinite subsequences of points added to the filter, lim θki = 0 (see
Lemma 3.3). We also refer to this operation as “adding xk to the filter,” although,
strictly speaking, it is the (θ, f)-pair which is added.

We conclude this section by noting that, if a point xk is in the filter or is acceptable
for the filter, then any other point x such that

θ(x) ≤ (1− γθ)θk and f(x) ≤ fk − γθθk
is also acceptable for the filter and xk.
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2.3. An SQP-filter algorithm. We have now discussed the main ingredients of
the class of algorithms we wish to consider, and we are now ready to define it formally
as Algorithm 2.1 below. A flowchart of the algorithm is given as an appendix; see
Figure A.1.

Algorithm 2.1: SQP-Filter Algorithm.

Step 0: Initialization. Let an initial point x0, an initial trust-region radius
∆0 > 0, and an initial symmetric matrix H0 be given, as well as constants
0 < γ0 < γ1 ≤ 1 ≤ γ2, 0 < η1 ≤ η2 < 1, γθ ∈ (0, 1), κθ ∈ (0, 1),
κ∆ ∈ (0, 1], κµ > 0, µ ∈ (0, 1), ψ > 1/(1+µ), and κtmd ∈ (0, 1]. Compute
f(x0) and c(x0). Set F = ∅ and k = 0.

Step 1: Test for optimality. If θk = χk = 0, stop.
Step 2: Ensure compatibility. Attempt to compute a step nk. If TRQP

(xk,∆k) is compatible, go to Step 3. Otherwise, include xk in the fil-
ter and compute a restoration step rk for which TRQP(xk + rk,∆k+1) is
compatible for some ∆k+1 > 0, and xk+ rk is acceptable for the filter. If
this proves impossible, stop. Otherwise, define xk+1 = xk + rk and go to
Step 7.

Step 3: Determine a trial step. Compute a step tk and set sk = nk + tk.
Step 4: Tests to accept the trial step.

• Evaluate c(xk + sk) and f(xk + sk).
• If xk + sk is not acceptable for the filter and xk, set xk+1 = xk,

choose ∆k+1 ∈ [γ0∆k, γ1∆k], set nk+1 = nk, increment k by one,
and go to Step 2.
• If

mk(xk)−mk(xk + sk) ≥ κθθψk(2.19)

and

ρk
def
=

f(xk)− f(xk + sk)

mk(xk)−mk(xk + sk)
< η1,(2.20)

again set xk+1 = xk, choose ∆k+1 ∈ [γ0∆k, γ1∆k], set nk+1 = nk,
increment k by one, and go to Step 2.

Step 5: Test to include the current iterate in the filter. If (2.19) fails,
include xk in the filter F .

Step 6: Move to the new iterate. Set xk+1 = xk+ sk and choose ∆k+1 such
that

∆k+1 ∈ [∆k, γ2∆k] if ρk ≥ η2 and (2.19) holds.

Step 7: Update the Hessian approximation. Determine Hk+1. Increment
k by one and go to Step 1.

As in Fletcher and Leyffer [18, 17], one may choose ψ = 2. (Note that the choice
ψ = 1 is always possible because µ > 0.) Reasonable values for the constants might
then be

γ0 = 0.1, γ1 = 0.5, γ2 = 2, η1 = 0.01, η2 = 0.9,
γθ = 10−4, κ∆ = 0.7, κµ = 100, µ = 0.01, κθ = 10−4, and κtmd = 0.01,

but it is too early to know if these are even close to the best possible choices.
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Observe first that, by construction, every iterate xk must be acceptable for the
filter at the beginning of iteration k, irrespective of the possibility that it might be
added to the filter later. Also note that the restoration step rk cannot be zero, that
is, restoration cannot simply entail enlarging the trust-region radius to ensure (2.12),
even if nk exists. This is because xk is added to the filter before rk is computed,
and xk + rk must be acceptable for the filter which now contains xk. Also note
that the restoration procedure cannot be applied on two successive iterations, since
the iterate xk + rk produced by the first of these iterations leads to a compatible
TRQP(xk+1,∆k+1) and is acceptable for the filter.

For the restoration procedure in Step 2 to succeed, we have to evaluate whether
TRQP(xk+rk,∆k+1) is compatible for a suitable value of ∆k+1. This requires that a
suitable normal step be computed which successfully passes the test (2.12). Of course,
once this is achieved, this normal step may be reused at iteration k+1. Thus we shall
require that the normal step calculated to verify compatibility of TRQP(xk+rk,∆k+1)
should actually be used as nk+1.

As it stands, the algorithm is not specific about how to choose ∆k+1 during
a restoration iteration. On one hand, there is an advantage to choosing a large
∆k+1, since this allows a large step and, one hopes, good progress. On the other
hand, it may be unwise to choose it to be too large, as this may possibly result in
a large number of unsuccessful iterations, during which the radius is reduced, before
the algorithm can make any progress. A possible choice might be to restart from
the radius obtained during the restoration iteration itself, if it uses a trust-region
method. Reasonable alternatives would be to use the average radius observed during
past successful iterations, or to apply the internal doubling strategy of Byrd, Schnabel,
and Shultz [5] to increase the new radius, or even to consider the technique described
by Sartenaer [28]. However, we recognize that numerical experience with the algorithm
is too limited at this stage to make definite recommendations.

The role of condition (2.19) may be interpreted as follows. If this condition fails,
then one may think that the constraint violation is significant and that one should
aim to improve on this situation in the future by inserting the current point into the
filter. Fletcher, Leyffer, and Toint [19] use the term of “θ-step” in such circumstances
to indicate that the main preoccupation is to improve feasibility. On the other hand,
if condition (2.19) holds, then the reduction in the objective function predicted by the
model is more significant than the current constraint violation, and it is thus appealing
to let the algorithm behave as if it were unconstrained. Fletcher and Leyffer [18] use
the term “f -step” to denote the step generated, in order to reflect the dominant role
of the objective function f . In this case, it is important that the predicted decrease
in the model be realized by the actual decrease in the function, which is why we also
require that (2.20) not hold. In particular, if the iterate xk is feasible, then (2.10)
implies that xk = xN

k , and we obtain that

κθθ
ψ
k = 0 ≤ mk(x

N

k)−mk(xk + sk) = mk(xk)−mk(xk + sk).(2.21)

As a consequence, the filter mechanism is irrelevant if all iterates are feasible, and
the algorithm reduces to a classical unconstrained trust-region method. Another
consequence of (2.21) is that no feasible iterate is ever included in the filter, which
is crucial in allowing finite termination of the restoration procedure. Indeed, if the
restoration procedure is required at iteration k of the filter algorithm and produces a
sequence of points {xk,j} converging to feasibility, there must be an iterate xk,j for
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which

θk,j
def
= θ(xk,j) ≤ min

[
(1− γθ)θmin

k ,
κ∆

κusc

∆k+1 min[1, κµ∆
µ
k+1]

]

for any given ∆k+1 > 0, where

θmin

k = min
i∈Z, i≤k

θi > 0

and

Z = {k | xk is added to the filter}.
Moreover, θk,j must eventually be small enough to ensure, using our assumption on
the normal step, the existence of a normal step nk,j from xk,j . In other words, the
restoration iteration must eventually find an iterate xk,j which is acceptable for the
filter and for which the normal step exists and satisfies (2.12), i.e., an iterate xj which
is both acceptable and compatible. As a consequence, the restoration procedure will
terminate in a finite number of steps, and the filter algorithm may then proceed. Note
that the restoration step may not terminate in a finite number of iterations if we do
not assume the existence of the normal step when the constraint violation is small
enough, even if this violation converges to zero (see Fletcher, Leyffer, and Toint [19],
for an example).

Notice also that (2.19) ensures that the denominator of ρk in (2.20) will be strictly
positive whenever θk is. If θk = 0, then xk = xN

k , and the denominator of (2.20) will
be strictly positive unless xk is a first-order critical point because of (2.15).

The reader may have observed that Step 6 allows a relatively wide choice of the
new trust-region radius ∆k+1. While the stated conditions appear to be sufficient
for the theory developed below, one must obviously be more specific in practice. For
instance, one may wish to distinguish, at this point in the algorithm, the cases where
(2.19) fails or holds. If (2.19) fails, the main effect of the current iteration is not
to reduce the model (which makes the value of ρk essentially irrelevant), but rather
to reduce the constraint violation (which is taken care of by inserting the current
iterate into the filter at Step 5). In this case, Step 6 imposes no further restriction on
∆k+1. In practice, it may be reasonable not to reduce the trust-region radius, because
this might cause too small steps towards feasibility or an unnecessary restoration
phase. However, there is no compelling reason to increase the radius either, given
the compatibility of TRQP(xk,∆k). A reasonable strategy might then be to choose
∆k+1 = ∆k. If, on the other hand, (2.19) holds, the emphasis of the iteration is then
on reducing the objective function, a case akin to unconstrained minimization. Thus
a more detailed rule of the type

∆k+1 ∈
{

[γ1∆k, γ2∆k] if ρk ∈ [η1, η2),
[∆k, γ2∆k] if ρk ≥ η2

seems reasonable in these circumstances.
Finally, we recognize that (2.15) may be difficult to verify in practice, since it

may be expensive to compute xN

k and Pk when the dimension of the problem is large.

3. Convergence to first-order critical points. We now prove that our algo-
rithm generates a globally convergent sequence of iterates. In the following analysis,
we concentrate on the case in which the restoration iteration always succeeds. If this
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is not the case, then it usually follows that the restoration phase has converged to an
approximate solution of the feasibility problem (2.16) and we can conclude that (1.1)
is locally inconsistent. For the purpose of our analysis, we shall consider

S = {k | xk+1 = xk + sk},

the set of (indices of) successful iterations, and

R = {k | nk does not satisfy (2.10) or ‖nk‖ > κ∆∆k min[1, κµ∆
µ
k ]},

the set of restoration iterations. In order to obtain our global convergence result, we
will use the following assumptions.

AS1. f and the constraint functions cE and cI are twice continuously differen-
tiable.

AS2. There exists κumh > 1 such that

‖Hk‖ ≤ κumh − 1 for all k.

AS3. The iterates {xk} remain in a closed, bounded domain X ⊂ R
n.

If, for example, Hk is chosen as the Hessian of the Lagrangian function

�(x, y) = f(x) + 〈yE , cE(x)〉+ 〈yI , cI(x)〉

at xk, in that

Hk = ∇xxf(xk) +
∑
i∈E∪I

[yk]i∇xxci(xk),(3.1)

where [yk]i denotes the ith component of the vector of Lagrange multipliers yTk =
(yTE,k yTI,k), then we see from AS1 and AS3 that AS2 is satisfied when these multipliers
remain bounded. The same is true if the Hessian matrices in (3.1) are replaced by
bounded approximations.

A first immediate consequence of AS1–AS3 is that there exists a constant κubh > 1
such that, for all k,

|f(xk + sk)−mk(xk + sk)| ≤ κubh∆
2
k.(3.2)

A proof of this property, based on Taylor expansion, may be found, for instance, in
Toint [29]. A second important consequence of our assumptions is that AS1 and AS3
together directly ensure that, for all k,

fmin ≤ f(xk) and 0 ≤ θk ≤ θmax(3.3)

for some constants fmin and θmax > 0. Thus the part of the (θ, f)-space in which the
(θ, f)-pairs associated with the filter iterates lie is restricted to the rectangle

A0 = [0, θmax]× [fmin,∞].

We also note the following simple consequence of (2.10) and AS3.
Lemma 3.1. Suppose that Algorithm 2.1 is applied to problem (1.1). Suppose also

that (2.10) and AS3 hold and that

θk ≤ δn.
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Then there exists a constant κlsc > 0 independent of k such that

κlscθk ≤ ‖nk‖.(3.4)

Proof. First define

Vk def
= {j ∈ E | θk = |cj(xk)|}

⋃
{j ∈ I | θk = −cj(xk)},

which is the subset of most-violated constraints. From the definitions of θk in (2.9)
and of the normal step in (2.5) we obtain, using the Cauchy–Schwarz inequality, that

θk ≤ |〈∇xcj(xk), nk〉| ≤ ‖∇xcj(xk)‖ ‖nk‖(3.5)

for all j ∈ Vk. But AS3 ensures that there exists a constant κlsc > 0 such that

max
j∈E∪I

max
x∈X
‖∇xcj(x)‖ def

=
1

κlsc

.

We then obtain the desired conclusion by substituting this bound into (3.5).
Our assumptions and the definition of χk in (2.13) ensure that θk and χk can be

used (together) to measure criticality for problem (1.1).
Lemma 3.2. Suppose that Algorithm 2.1 is applied to problem (1.1) and that finite

termination does not occur. Suppose also that AS1 and AS3 hold, and that there exists
a subsequence {ki} such that, for any i, ki �∈ R with

lim
i→∞

χki = 0 and lim
i→∞

θki = 0.(3.6)

Then every limit point of the subsequence {xki} is a first-order critical point for prob-
lem (1.1).

Proof. Consider x∗, a limit point of the sequence {xki}, whose existence is ensured
by AS3, and assume that {k�} ⊆ {ki} is the index set of a subsequence such that {xk�}
converges to x∗. The fact that k� �∈ R implies that nk� satisfies (2.10) for sufficiently
large � and converges to zero, because {θk�} converges to zero and the second part of
this condition. As a consequence, we deduce from (2.11) that {xN

k�
} also converges to

x∗. Since the minimization problem occurring in the definition of χk� (in (2.13)) is
convex, we then obtain from classical perturbation theory (see, for instance, Fiacco
[15, pp. 14–17], AS1, and the first part of (3.6) that∣∣∣∣∣∣∣∣∣∣

min
AE(x∗)t=0

cI(x∗)+AI(x∗)t≥0
‖t‖≤1

〈g∗, t〉

∣∣∣∣∣∣∣∣∣∣
= 0.

This in turn guarantees that x∗ is first-order critical for problem (1.1).
We start our analysis by examining what happens when an infinite number of

iterates (that is, their (θ, f)-pairs) are added to the filter.
Lemma 3.3. Suppose that Algorithm 2.1 is applied to problem (1.1) and that finite

termination does not occur. Suppose that AS1 and AS3 hold and that |Z| =∞. Then

lim
k→∞
k∈Z

θk = 0.
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Proof. Suppose, for the purpose of obtaining a contradiction, that there exists an
infinite subsequence {ki} ⊆ Z such that

θki ≥ ε(3.7)

for all i and for some ε > 0. At each iteration ki, the (θ, f)-pair associated with xki ,
that is (θki , fki), is added to the filter. This means that no other (θ, f)-pair can be
added to the filter at a later stage within the square

[θki − γθε, θki ]× [fki − γθε, fki ]

or with the intersection of this square with A0. Note that this holds, even if (θki , fki)
is later removed from the filter, since the rule for removing entries, (2.18), ensures
that the envelope never shrinks. Now observe that the area of each of these squares
is γ2

θ ε
2. As a consequence, the set A0 ∩ {(θ, f)|f ≤ κf} is completely covered by at

most a finite number of such squares, for any choice of κf ≥ fmin. Since the pairs
(θki , fki) keep on being added to the filter, this implies that fki tends to infinity when
i tends to infinity. Let us assume, without loss of generality, that fki+1 ≥ fki for all i
sufficiently large. But (2.17) and (3.7) then imply that

θki+1 ≤ (1− γθ)θki ≤ θki − γθε,

and therefore that θki converges to zero, which contradicts (3.7). Hence this latter
assumption is imposssible and the conclusion follows.

We next examine the size of the constraint violation before and after an iteration
where restoration did not occur.

Lemma 3.4. Suppose that Algorithm 2.1 is applied to problem (1.1) and that finite
termination does not occur. Suppose also that AS1 and AS3 hold, that k �∈ R, and
that nk satisfies (3.4). Then

θk ≤ κubt∆
1+µ
k(3.8)

and

θ(xk + sk) ≤ κubt∆
2
k(3.9)

for some constant κubt ≥ 0.
Proof. Since k �∈ R, we have from (3.4) and (2.12) that

κlscθk ≤ ‖nk‖ ≤ κ∆κµ∆
1+µ
k ,(3.10)

which gives (3.8). Now, the ith constraint function at xk + sk can be expressed as

ci(xk + sk) = ci(xk) + 〈ei, Aksk〉+ 1

2
〈sk,∇xxci(ξk)sk〉

for i ∈ E ∪ I, where we have used AS1 and the mean-value theorem and where ξk
belongs to the segment [xk, xk + sk]. Using AS3, we may bound the Hessian of the
constraint functions, and we obtain from (2.7), the Cauchy–Schwarz inequality, and
(2.6) that

|ci(xk + sk)| ≤ 1

2
max
x∈X
‖∇xxci(x)‖ ‖sk‖2 ≤ κ1∆

2
k
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if i ∈ E , or

−ci(xk + sk) ≤ 1

2
max
x∈X
‖∇xxci(x)‖ ‖sk‖2 ≤ κ1∆

2
k

if i ∈ I, where we have defined

κ1
def
=

1

2
max
i∈E∪I

max
x∈X
‖∇xxci(x)‖.

This gives the desired bound with

κubt = max[κ1, κ∆κµ/κlsc].

We next assess the model decrease when the trust-region radius is sufficiently
small.

Lemma 3.5. Suppose that Algorithm 2.1 is applied to problem (1.1) and that finite
termination does not occur. Suppose also that AS1–AS3, (2.12), and (2.15) hold, that
k �∈ R, that

χk ≥ ε(3.11)

for some ε > 0, and that

∆k ≤ min

[
ε

κumh

,

(
2

κubg

κumhκ∆κµ

) 1
1+µ

,

(
κtmdε

4κubgκ∆κµ

) 1
µ

]
def
= δm,(3.12)

where κubg

def
= maxx∈X ‖∇xf(x)‖. Then

mk(xk)−mk(xk + sk) ≥ 1

2
κtmdε∆k.

Proof. We first note that, by (2.15), AS2, (3.11), and (3.12),

mk(x
N

k)−mk(xk + sk) ≥ κtmdχk min

[
χk
κumh

,∆k

]
≥ κtmdε∆k.(3.13)

Now

mk(x
N

k) = mk(xk) + 〈gk, nk〉+ 1

2
〈nk, Hknk〉,

and therefore, using the Cauchy–Schwarz inequality, AS2, (2.12), and (3.12),

|mk(xk)−mk(x
N

k)| ≤ ‖nk‖ ‖gk‖+ 1
2‖Hk‖ ‖nk‖2

≤ κubg‖nk‖+ 1
2κumh‖nk‖2

≤ κubgκ∆κµ∆
1+µ
k + 1

2κumhκ
2
∆κ

2
µ∆

2(1+µ)
k

≤ 2κubgκ∆κµ∆
1+µ
k

≤ 1
2κtmdε∆k.

We thus conclude from this last inequality and (3.13) that the desired conclusion
holds.

We continue our analysis by showing, as the reader has grown to expect, that
iterations have to be very successful when the trust-region radius is sufficiently small.
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Lemma 3.6. Suppose that Algorithm 2.1 is applied to problem (1.1) and that finite
termination does not occur. Suppose also that AS1–AS3, (2.15), and (3.11) hold, that
k �∈ R, and that

∆k ≤ min

[
δm,

(1− η2)κtmdε

2κubh

]
def
= δρ.(3.14)

Then

ρk ≥ η2.
Proof. Using the definition of ρk in (2.20), (3.2), Lemma 3.5, and (3.14), we find

that

|ρk − 1| = |f(xk + sk)−mk(xk + sk)|
|mk(xk)−mk(xk + sk)| ≤

κubh∆
2
k

1
2κtmdε∆k

≤ 1− η2,

from which the conclusion immediately follows.
Note that this proof could easily be extended if the definition of ρk in (2.20) were

altered to be of the form

ρk
def
=

f(xk)− f(xk + sk) + Θk

mk(xk)−mk(xk + sk)
,(3.15)

provided that Θk is bounded above by a multiple of ∆2
k. We will comment in section 4

why such a modification might be of interest (see also section 10.4.3 of Conn, Gould,
and Toint [7]).

Now, we also show that the test (2.19) will always be satisfied when the trust-
region radius is sufficiently small.

Lemma 3.7. Suppose that Algorithm 2.1 is applied to problem (1.1) and that finite
termination does not occur. Suppose also that AS1–AS3, (2.12), (2.15), and (3.11)
hold, that k �∈ R, that nk satisfies (3.4), and that

∆k ≤ min

[
δm,

(
κtmdε

2κθκ
ψ
ubt

) 1
ψ(1+µ)−1

]
def
= δf .(3.16)

Then

mk(xk)−mk(xk + sk) ≥ κθθψk .
Proof. This directly results from the inequalities

κθθ
ψ
k ≤ κθκψubt∆

ψ(1+µ)
k ≤ 1

2
κtmdε∆k ≤ mk(xk)−mk(xk + sk),

where we have successively used Lemma 3.4, (3.16), and Lemma 3.5.
We may also guarantee a decrease in the objective function, large enough to ensure

that the trial point is acceptable with respect to the (θ, f)-pair associated with xk, so
long as the constraint violation is itself sufficiently small.

Lemma 3.8. Suppose that Algorithm 2.1 is applied to problem (1.1) and that finite
termination does not occur. Suppose also that AS1–AS3, (2.15), (3.11), and (3.14)
hold, that k �∈ R, that nk satisfies (3.4), and that

θk ≤ κ−
1
µ

ubt

(
η2κtmdε

2γθ

) 1+µ
µ

def
= δθ.(3.17)



650 FLETCHER, GOULD, LEYFFER, TOINT, AND WÄCHTER

Then

f(xk + sk) ≤ f(xk)− γθθk.
Proof. Applying Lemmas 3.4–3.6—which is possible because of (3.11), (3.14),

k �∈ R, and the fact that nk satisfies (3.4)—and (3.17), we obtain that

f(xk)− f(xk + sk) ≥ η2[mk(xk)−mk(xk + sk)]
≥ 1

2η2κtmdε∆k

≥ 1
2η2κtmdε

(
θk
κubt

) 1
1+µ

≥ γθθk,

and the desired inequality follows.
We now establish that if the trust-region radius and the constraint violation are

both small at a noncritical iterate xk, TRQP(xk,∆k) must be compatible.
Lemma 3.9. Suppose that Algorithm 2.1 is applied to problem (1.1) and that finite

termination does not occur. Suppose also that AS1–AS3, (2.10), and (3.11) hold, that
(2.15) holds for k /∈ R, and that

∆k ≤ min

[
γ0δρ,

(
1

κµ

) 1
µ

,

(
γ2
0(1− γθ)κ∆κµ

κuscκubt

) 1
1−µ

]
def
= δR.(3.18)

Suppose furthermore that k > 0 and that

θk ≤ min[δθ, δn].(3.19)

Then k �∈ R.
Proof. Because θk ≤ δn, we know from (2.10) and Lemma 3.1 that nk satisfies

(2.10) and (3.4). Moreover, since θk ≤ δθ, we have that (3.17) also holds. Assume,
for the purpose of deriving a contradiction, that k ∈ R, that is,

‖nk‖ > κ∆κµ∆
1+µ
k ,(3.20)

where we have used (2.12) and the fact that κµ∆
µ
k ≤ 1 because of (3.18). In this

case, the mechanism of the algorithm then ensures that k− 1 �∈ R. Now assume that
iteration k−1 is unsuccessful. Because of Lemmas 3.6 and 3.8, which hold at iteration
k − 1 �∈ R because of (3.18), the fact that θk = θk−1, (2.10), and (3.17), we obtain
that

ρk−1 ≥ η2 and f(xk−1 + sk−1) ≤ f(xk−1)− γθθk−1.(3.21)

Hence, given that xk−1 is acceptable for the filter at the beginning of iteration k− 1,
if this iteration is unsuccessful, it must be because xk−1 + sk−1 is not acceptable for
the filter and xk−1, which in turn can happen only if

θ(xk−1 + sk−1) > (1− γθ)θk−1 = (1− γθ)θk
because of (3.21) (see the last paragraph of section 2.2). But Lemma 3.4 and the
mechanism of the algorithm then imply that

(1− γθ)θk ≤ κubt∆
2
k−1 ≤

κubt

γ2
0

∆2
k.
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Combining this last bound with (3.20) and (2.10), we deduce that

κ∆κµ∆
1+µ
k < ‖nk‖ ≤ κuscθk ≤ κuscκubt

γ2
0(1− γθ)

∆2
k

and hence that

∆1−µ
k >

γ2
0(1− γθ)κ∆κµ

κuscκubt

.

Since this last inequality contradicts (3.18), our assumption that iteration k − 1 is
unsuccessful must be false. Thus iteration k−1 is successful and θk = θ(xk−1+sk−1).
We then obtain from (3.20), (2.10), and (3.9) that

κ∆κµ∆
1+µ
k < ‖nk‖ ≤ κuscθk ≤ κuscκubt∆

2
k−1 ≤

κuscκubt

γ2
0

∆2
k,

which is again impossible because of (3.18) and because (1 − γθ) < 1. Hence our
initial assumption (3.20) must be false, which yields the desired conclusion.

We now distinguish two mutually exclusive cases. For the first, we consider what
happens if there is an infinite subsequence of iterates belonging to the filter.

Lemma 3.10. Suppose that Algorithm 2.1 is applied to problem (1.1) and that
finite termination does not occur. Suppose also that AS1–AS3, (2.10) hold, and (2.15)
holds for k /∈ R. Suppose furthermore that |Z| =∞. Then there exists a subsequence
{kj} ⊆ Z such that

lim
j→∞

θkj = 0(3.22)

and

lim
j→∞

χkj = 0.(3.23)

Proof. Let {ki} be any infinite subsequence of Z. We observe that (3.22) follows
from Lemma 3.3. Suppose now that

χki ≥ ε2 > 0(3.24)

for all i and some ε2 > 0. Suppose furthermore that there exists ε3 > 0 such that, for
all i ≥ i0,

∆ki ≥ ε3.(3.25)

Observe first that (3.22) and (2.10) ensure that

lim
i→∞

‖nki‖ = 0.(3.26)

Thus (3.25) ensures that (2.12) holds for sufficiently large i and thus ki �∈ R for such
i. Now, as we noted in the proof of Lemma 3.5,

|mki(xki)−mki(x
N

ki)| ≤ κubg‖nki‖+
1

2
κumh‖nki‖2,

which in turn, with (3.26), yields that

lim
i→∞

[mki(xki)−mki(x
N

ki)] = 0.(3.27)
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We also deduce from (2.15) and AS2 that

mki(x
N

ki)−mki(xki + ski) ≥ κtmdε2 min

[
ε2
κumh

, ε3

]
def
= δ > 0.(3.28)

We now decompose the model decrease in its normal and tangential components, that
is,

mki(xki)−mki(xki + ski) = mki(xki)−mki(x
N

ki) +mki(x
N

ki)−mki(xki + ski).

Substituting (3.27) and (3.28) into this decomposition, we find that

lim inf
i→∞

[mki(xki)−mki(xki + ski)] ≥ δ > 0.(3.29)

We now observe that, because xki is added to the filter at iteration ki, we know from
the mechanism of the algorithm that either iteration ki ∈ R or (2.19) must fail. Since
we have already shown that ki �∈ R, (2.19) must fail for i sufficiently large, that is,

mki(xki)−mki(xki + ski) < κθθ
ψ
ki
.(3.30)

Combining this bound with (3.29), we find that θki is bounded away from zero for
i sufficiently large, which is impossible in view of (3.22). We therefore deduce that
(3.25) cannot hold and obtain that there is a subsequence {k�} ⊆ {ki} for which

lim
�→∞

∆k� = 0.

We now restrict our attention to the tail of this subsequence, that is, to the set of
indices k� > 0 that are large enough to ensure that (3.16), (3.17), and (3.18) hold,
which is possible by definition of the subsequence and because of (3.22). For these
indices, we may therefore apply Lemma 3.9 and deduce that iteration k� �∈ R for �
sufficiently large. Hence, as above, (3.30) must hold for � sufficiently large. However,
we may also apply Lemma 3.7, which contradicts (3.30), and therefore (3.24) cannot
hold, yielding the desired result.

Thus, if an infinite subsequence of iterates is added to the filter, Lemma 3.2
ensures that there exists a limit point which is a first-order critical point. Our re-
maining analysis then naturally concentrates on the possibility that there may be no
such infinite subsequence. In this case, no further iterates are added to the filter for k
sufficiently large. In particular, this means that the number of restoration iterations,
|R|, must be finite. In what follows, we assume that k0 ≥ 0 is the last iteration for
which xk0−1 is added to the filter.

Lemma 3.11. Suppose that Algorithm 2.1 is applied to problem (1.1), that finite
termination does not occur, and that |Z| <∞. Suppose also that AS1–AS3 and (2.10)
hold and that (2.15) holds for k /∈ R. Then we have that

lim
k→∞

θk = 0.(3.31)

Furthermore, nk satisfies (3.4) for all k ≥ k0 sufficiently large.
Proof. Consider any successful iterate with k ≥ k0. Since xk is not added to the

filter, it follows from the mechanism of the algorithm that ρk ≥ η1 holds and thus
that

f(xk)− f(xk+1) ≥ η1[mk(xk)−mk(xk + sk)] ≥ η1κθθψk ≥ 0.(3.32)
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Thus the objective function does not increase for all successful iterations with k ≥ k0.
But AS1 and AS3 imply (3.3), and therefore we must have, from the first part of this
statement, that

lim
k∈S
k→∞

f(xk)− f(xk+1) = 0.(3.33)

The limit (3.31) then immediately follows from (3.32) and the fact that θj = θk for
all unsuccessful iterations j that immediately follow the successful iteration k, if any.
The last conclusion then results from (2.10) and Lemma 3.1.

We now show that the trust-region radius cannot become arbitrarily small if the
(asymptotically feasible) iterates stay away from first-order critical points.

Lemma 3.12. Suppose that Algorithm 2.1 is applied to problem (1.1), that finite
termination does not occur, and that |Z| <∞. Suppose also that AS1–AS3 hold and
(2.15) holds for k /∈ R. Suppose furthermore that (3.11) hold for all k ≥ k0. Then
there exists a ∆min > 0 such that

∆k ≥ ∆min

for all k.
Proof. Suppose that k1 ≥ k0 is chosen sufficiently large to ensure that (3.19) holds

and that nk satisfies (2.10) for all k ≥ k1, which is possible because of Lemma 3.11.
Suppose also, for the purpose of obtaining a contradiction, that iteration j is the first
iteration following iteration k1 for which

∆j ≤ γ0 min


δρ,

√
(1− γθ)θF

κubt

,∆k1


 def

= γ0δs,(3.34)

where

θF def
= min

i∈Z
θi

is the smallest constraint violation appearing in the filter. Note also that the inequality
∆j ≤ γ0∆k1 , which is implied by (3.34), ensures that j ≥ k1 + 1 and hence that
j− 1 ≥ k1 and thus that j− 1 �∈ R. Then the mechanism of the algorithm and (3.34)
imply that

∆j−1 ≤ 1

γ0
∆j ≤ δs,(3.35)

and Lemma 3.6, which is applicable because (3.34) and (3.35) together imply (3.14)
with k replaced by j − 1, then ensures that

ρj−1 ≥ η2.(3.36)

Furthermore, since nj−1 satisfies (2.10), Lemma 3.1 implies that we can apply Lemma 3.4.
This, together with (3.34) and (3.35), gives that

θ(xj−1 + sj−1) ≤ κubt∆
2
j−1 ≤ (1− γθ)θF.(3.37)

We may also apply Lemma 3.8 because (3.34) and (3.35) ensure that (3.14) holds and
because (3.17) also holds for j − 1 ≥ k1. Hence we deduce that

f(xj−1 + sj−1) ≤ f(xj−1)− γθθj−1.
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This last relation and (3.37) ensure that xj−1 + sj−1 is acceptable for the filter and
xj−1. Combining this conclusion with (3.36) and the mechanism of the algorithm, we
obtain that ∆j ≥ ∆j−1. As a consequence, and since (2.19) also holds at iteration
j−1, iteration j cannot be the first iteration following k1 for which (3.34) holds. This
contradiction shows that ∆k ≥ γ0δs for all k > k1, and the desired result follows if
we define

∆min = min[∆0, . . . ,∆k1 , γ0δs].

We may now analyze the convergence of χk itself.
Lemma 3.13. Suppose that Algorithm 2.1 is applied to problem (1.1), that finite

termination does not occur, and that |Z| < ∞. Suppose also that AS1–AS3, (2.10)
hold, and (2.15) holds for k /∈ R. Then

lim inf
k→∞

χk = 0.(3.38)

Proof. We start by observing that Lemma 3.11 implies that the second conclusion
of (2.10) holds for k sufficiently large. Moreover, as in Lemma 3.11, we obtain (3.32)
and therefore (3.33) for each k ∈ S, k ≥ k0. Suppose now, for the purpose of obtaining
a contradiction, that (3.11) holds, and notice that

mk(xk)−mk(xk + sk) = mk(xk)−mk(x
N

k) +mk(x
N

k)−mk(xk + sk).(3.39)

Moreover, note, as in Lemma 3.5, that

|mk(xk)−mk(x
N

k)| ≤ κubg‖nk‖+ κumh‖nk‖2,
which in turn yields that

lim
k→∞

[mk(xk)−mk(x
N

k)] = 0

because of Lemma 3.11 and the second conclusion of (2.10). This limit, together with
(3.32), (3.33), and (3.39), then gives that

lim
k→∞
k∈S

[mk(x
N

k)−mk(xk + sk)] = 0.(3.40)

But (2.15), (3.11), AS2, and Lemma 3.12 together imply that for all k ≥ k0

mk(x
N

k)−mk(xk + sk) ≥ κtmdχk min
[
χk
βk
,∆k

]
≥ κtmdεmin

[
ε

κumh
,∆min

]
,

(3.41)

immediately giving a contradiction with (3.40). Hence (3.11) cannot hold and the
desired result follows.

We may summarize all of the above in our main global convergence result.
Theorem 3.14. Suppose that Algorithm 2.1 is applied to problem (1.1) and

that finite termination does not occur. Suppose also that AS1, (2.10), AS3, and AS2
hold, and that (2.15) holds for k /∈ R. Let {xk} be the sequence of iterates produced
by the algorithm. Then either the restoration procedure terminates unsuccessfully by
converging to an infeasible first-order critical point of problem (2.16), or there is a
subsequence {kj} for which

lim
j→∞

xkj = x∗
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and x∗ is a first-order critical point for problem (1.1).
Proof. Suppose that the restoration iteration always terminates successfully.

From AS3, Lemmas 3.10, 3.11, and 3.13, we obtain that, for some subsequence {kj},
lim
j→∞

θkj = lim
j→∞

χkj = 0.(3.42)

The conclusion then follows from Lemma 3.2.
Can we dispense with AS3 to obtain this result? First, this assumption en-

sures that the objective remains bounded below and the constraint violation remains
bounded above (see (3.3)). This is crucial for the rest of the analysis because the
convergence of the iterates to feasibility depends on this fact. Thus, if AS3 does not
hold, we have to verify that (3.3) holds for other reasons. The second part of this
statement may be ensured quite simply by initializing the filter to (θmax,−∞), for
some θmax > θ0, in Step 0 of the algorithm. This has the effect of putting an upper
bound on the infeasibility of all iterates, which may be useful in practice. However,
this does not prevent the objective function from being unbounded below in

C(θmax) = {x ∈ R
n | θ(x) ≤ θmax},

and we cannot exclude the possibility that a sequence of infeasible iterates might both
continue to improve the value of the objective function and satisfy (2.19). If C(θmax)
is bounded, AS3 is most certainly satisfied. If this is not the case, we could assume
that

fmin ≤ f(x) and 0 ≤ θ(x) ≤ θmax for x ∈ C(θmax)(3.43)

for some value of fmin and simply monitor that the values f(xk) are
reasonable—in view of the problem being solved—as the algorithm proceeds. To
summarize, we may replace AS1 and AS3 by the following assumption.

AS4. The functions f and c are twice continuously differentiable on an open
set containing C(θmax), their first and second derivatives are uniformly bounded on
C(θmax), and (3.43) holds.

The reader should note that AS4 no longer ensures the existence of a limit point,
but only that (3.42) holds for some subsequence {kj}. Furthermore, the comments
following the statement of (2.10) no longer apply if limit points at infinity are allowed.

4. Conclusion and perspectives. We have introduced a trust-region SQP-
filter algorithm for general nonlinear programming and have shown this algorithm to
be globally convergent to first-order critical points. The proposed algorithm differs
from that discussed by Fletcher and Leyffer [18], notably because it uses a decomposi-
tion of the step in its normal and tangential components and imposes some restrictions
on the length of the former. However, preliminary numerical experiments indicate that
its practical performance is similar to that reported in [18]. Since the performance
of the latter is excellent, the theory developed in this paper provides the reassurance
that filter algorithms also have reasonable convergence properties, which then makes
these methods very attractive.

We are aware, however, that the convergence study is not complete, as we have
not discussed local convergence properties. As it is possible to exhibit examples where
the SQP step increases both the objective function and the constraint violation,2 it is

2Such an example is provided by Figure 9.3.1 in Fletcher [16], taking the case β = 1
4
. Any

feasible point close to the origin illustrates the effect.
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very likely that such a study will have to introduce second-order corrections (see [16,
section 14.4]) to ensure that the Maratos effect does not take place and that a fast
(quadratic) rate of convergence can be achieved. Moreover, convergence to second-
order critical points also remains, for now, an open question. In this context, the
alternative definition of ρk presented in (3.15) is also likely to play a role if we choose
Hk according to (3.1). In this case, we might choose

Θk =
∑
i∈E∪I

[yk]i〈sk,∇xxci(xk)sk〉

in order to ensure that the denominator of the fraction defining ρk is a correct model of
its numerator not only up to first-order, but also up to second-order. These questions
are the subject of ongoing work.
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Appendix.

initialization (k = 0)

❄
attempt to compute nk

❄
TRQP(xk,∆k) compatible?

❄
n

❄
y

add xk to the filter compute tk

❄ ❄
compute rk and ∆k+1 xk + sk acceptable?

❄

❄
y

❄

n

ρk < η1 and

mk(xk) −mk(xk + sk) ≥ κθθ
ψ
k

?
✲

y

❄
n

mk(xk) −mk(xk + sk) ≥ κθθ
ψ
k

?

❄

y
❄
n

add xk to the filter

❄
xk+1 = xk + skxk+1 = xk + rk xk+1 = xk

❄

❄ ❄

increase ∆k → ∆k+1
reduce ∆k

→ ∆k+1

❄ ❄
compute Hk+1 and increment k by one

✲

Fig. A.1. Flowchart of Algorithm 2.1.
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