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Abstract We present a branch and bound algorithm for the global optimization of a twice
differentiable nonconvex objective function with a Lipschitz continuous Hessian over a com-
pact, convex set. The algorithm is based on applying cubic regularisation techniques to the
objective function within an overlapping branch and bound algorithm for convex constrained
global optimization. Unlike other branch and bound algorithms, lower bounds are obtained
via nonconvex underestimators of the function. For a numerical example, we apply the pro-
posed branch and bound algorithm to radial basis function approximations.

Keywords Global optimization - Lipschitzian optimization - Branch and bound -
Nonconvex programming
1 Introduction

In this paper, we are interested in solving the global optimization problem
min 1.1
min f(x) (1.1)

where 2 C R isacompact, convex setand f: ¢ — Risatwice-continuously differentiable
nonconvex function defined on a suitable compact set ¥ C R" containing &. Additionally,
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we assume that f has a Lipschitz continuous Hessian on %. Global optimization arises in
many application areas including predicting the structures of proteins, managing financial
portfolios, modelling chemical processes as well as managing environmental systems, to
name but a few (see Floudas and Pardalos 1999 for more application areas). While global
optimization is a challenging problem (Kreinovich and Kearfott 2005), a variety of determin-
istic and stochastic solution methods have been suggested (Androulakis et al. 1995; Horst and
Pardalos 1995; Pardalos and Romeijn 2002) and this remains a very active area of research
(see Neumaier 2004 and extensive references therein). Most of these approaches fall into
one of three categories: exact or complete methods (mostly based on branch and bound,
see Neumaier 2004), heuristic or incomplete methods (mostly based on stochastic search,
see Spall 2003) and surrogate based methods (based on replacing the objective function by
a cheap approximation, see Jones 2001). Our approach to solving the global optimization
problem (1.1) falls into the first category, it is a deterministic branch and bound algorithm
drawing on established ideas from both the local and global optimization communities. To the
best of our knowledge, it differs from other branch and bound algorithms in that it employs
nonconvex underestimators of the function to obtain the required lower bounds.

The outline of the paper is as follows. In Sect. 2 we describe in detail our proposed branch
and bound algorithm for solving the global optimization (1.1). We then go on to prove that
under suitable assumptions the proposed algorithm converges to the global minimum of (1.1)
in Sect. 3. Section 4 describes how we can efficiently calculate the necessary lower bounds
required by our branch and bound algorithm while Sect. 5 outlines a faster heuristic version
of our algorithm. Then in Sect. 6 we apply our proposed algorithm to radial basis functions
and provide numerical examples to establish performance of the algorithm in this setting.
Finally, we draw conclusions in Sect. 7.

1.1 Notation

Let g(x) := Vi f(x) and H(x) := Vi, f(x) be the gradient and Hessian of f(x), and |||
denote the ¢,-norm. For matrices the £;-norm becomes the induced (or spectral) norm, i.e.
for a matrix A

[All ;= max [[Ax]|
lxl=1
where the ||-|| on the right hand side denotes the usual vector ¢>-norm. Following convention,

let CK denote the space of k-continuously differentiable functions. Since % is compact and
fecC 2((5), there are constants L > 0 and L, > 0 for which

gl =L and [HW)| <L, (1.2)
for all x € ¥ It follows that L is an £;-norm Lipschitz constant for f(x), and thus
[f(x) = fODI=Llx =yl (1.3)
for all x, y € ¢. Furthermore, L, is a gradient Lipschitz constant for f(x), i.e.

lg(x) =gl = Lgllx — yll

for all x, y € ¥. In addition, we have assumed that f has a Lipschitz continuous Hessian,
so let L g be a Hessian Lipschitz constant for f over ¢, i.e. a constant Lz > 0 such that

1H(x) —HWI = Lulx =yl
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for all x, y € ¥, where the |-|| on the left hand side denotes the induced matrix norm. Note
that, within %, these are all global Lipschitz constants.

Now let # C € denote the n-dimensional closed ball of radius (%) > 0 centred at some
Xz € B, i.e.

Z={xeR": |x —xz| <r(®)}.

Furthermore, let L i (%) denote a local Hessian Lipschitz constant for f(x) over the ball 4.
Unlike the global Lipschitz constants, we need to be able to calculate a numerical approxi-
mation to the local Hessian Lipschitz constant for our proposed branch and bound algorithm.
We discuss how this is done in detail in an application to radial basis functions in Sect. 6.2.

2 Description of the algorithm

In an attempt to solve the global optimization problem (1.1) we develop an extension of the
canonical branch-and-bound algorithm (see e.g. Horst 1986) with bounds inspired by the
trust region subproblem (see Chapter 7 of Conn et al. 2000). Our branching comprises a
systematic covering and refinement of & by balls 4, while our bounding requires we com-
pute both lower and upper bounds on the minimum of f over each . We will return to the
branching when we define our algorithm.

To find a lower bound for the minimum of f over %, we proceed as follows. The first
order Taylor expansion with the integral form for the remainder is

fx) = flxm) + (x —x2)" g(xz)

/ - 2.1
+/(1 -0 —x2) Hxg+1(x —x3)) (x —xg)dt
0

for all x, x € A (see e.g. Cartan 1971, Thm. 5.6.1, p. 70). Notice that

1 1
/(1 —0)(x —x2)" H (x2) (x — x2)dT = (x — x)" H(x2)(x —x@)/(l —1)dt
0 0

1 T
E(x —xz) H(xz)(x —xz)

and hence
1 1
70— x) H(xz)(x — xz) — / (1—0)(x —xz) H(xz) (x —xz)dt =0 (2.2)
0

for all x,xz € 2. Adding (2.2) to the right hand side of (2.1) we deduce that for all
X, Xz € A

1
f) = flxm) +(x —xz) " gxz) + E(x —x2) H(xz)(x —xz)

1 2.3)
+ /(1 0 —xz) [H(xz +1(x —x2)) — Hxz)] (x — xz)dr.
0
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Taking the absolute value of the integral and invoking the Hessian Lipschitz continuity, we
find that for all x € #

1
/(1 —D)(x —xz) [H(xz+1(x —x2)) — Hxz)] (x — xz)dt
0

1
= /(1 —D)IH (xz +t(x —x2)) — Hxz)ll|x — xz|°dt
0

1
< /(1 —DLu(@)|t(x —x)llllx — xz|*dt
0

Ly (%)

3
lx —xall”.
6

1
= /(1 —Dtdt Ly(B)|x — x5l =
0

Thus if we consider the lower cubic bounding function m : % C R" — R (as in Nesterov
and Polyak 2006)

Ly (%)

3
X—Xz| ,
¢ | I

1
my(x) = f(xz) + (x—x2z)" g(xz) + E(X_X%)TH(W(X_W -
we have that

mg(x) < f(x) 2.4
provides a non-convex under-estimator for all x € . We can therefore use

oa(AB) = )1{1;1;13 m z(x) 2.5)

as a lower bound for the global minimum of f(x) over 4. It is important to note that o (%)
can be calculated efficiently and we discuss how this is done in Sect. 4.
It is also possible to use a lower bound based on the gradient Lipschitz constant

Le(#)
2

although numerical results suggest the cubic lower bounding function detailed above almost
always provides a tighter underestimator. Nevertheless, as it is faster to compute it may be
more efficient to use this quadratic lower bound in the early stages of the branch and bound
algorithm when the cubic lower bound is rather crude.

To find an upper bound for the minimum of f over %4, we simply evaluate f at a feasible
point x;é in Z. We discuss how x;:? is calculated in Sect. 2.1. We therefore let

B(#) = f(x}) 2.6)

be the upper bound for the global minimum of f(x) over 4.

The idea behind the algorithm is to recursively partition an initial ball covering the domain
2 into sub-balls until we find a ball (or balls) of sufficiently small size containing the global
minimiser of f(x) over 2. Since we are able to obtain bounds on the minimum of f (x) over
any ball in 7, we can use them to discard balls which cannot contain the global minimum,
i.e. balls whose lower bound is greater than the smallest upper bound. The complete branch
and bound algorithm then proceeds as follows:

2
2

Fxz) + (x —x2) g(xz) — lx —
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Algorithm 2.1 Branch and bound algorithm for Hessian Lipschitz optimization

0. Initialisation:

(a) Setk =0.

(b) Let By be a ball with centre xg € 2 of sufficiently large radius to cover 9.
(c) Let Ly = {Po} be the initial list of balls.

(d) Let Uy = B(Ay) be the initial upper bound for minyc g f(x).

(e) Let Lo = a(Ay) be the initial lower bound for minycg f(x).

1. While Uy — Ly > ¢, repeat the following procedure:

(a) Remove from £ balls B € £ such that o (B) > Uy.
(b) Choose % € 4 such that «($) = Ly.

(c) Split % into 3" overlapping sub-balls B, ..., P according to our splitting rule
(see Sect. 2.2) and discard any sub-balls which lie entirely outside of 9. Let %
denote the list of remaining sub-balls and let ZLj+1 := (£ \ {#B}) U Zy.

(d) Set Ug+1 = minge %, . B(B).
(e) Set Ly := minge ¥, a(A).
(f) Setk =k —+ 1.

2. Return Uy as the estimate of the global minimum of f(x) over 9.

Note that infeasible balls, i.e. balls which lie entirely outside of 2, are discarded by the
branch and bound algorithm (see step 1c) and that the initial ball %, contains 2.

2.1 Discarding balls and feasible points

Algorithm 2.1 discards balls 2 which lie entirely outside of 7. As & is a convex set this is
easy to check since then the convex programming problem

min [|x — x>
xeR”
st.x ey

provides a feasible minimiser x% if the minimum is smaller than r(%)2. Moreover, if the
minimum of the convex program is larger than r(%)?, we know that the ball Z lies entirely
outside of 2 and can be discarded. The convex programming problem can be efficiently
solved using standard convex optimization techniques (see Boyd and Vandenberghe 2004).

2.2 Splitting rule

We split a ball Z C R” in step 1c of Algorithm 2.1 as follows. Let 2 have centre x4 and
radius r(%). Split & into 3" sub-balls of radius r(#)/2 centred at the vertices of a hyp-
ercubic tessellation around x4 of edge length r(%)/+/n. Formally, construct 3" sub-balls
A1, ..., B3 all of radius r(A) /2 centred at

—r(#) r(gzz))

x@i=x@+p,-'l( NI
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Fig. 1 An illustration of our
splitting rule in two dimensions.
The black circle is split into nine
blue circles of half radius centred
at the vertices of the square
tessellation. (Color figure online)

Hlans
Rans

Fig. 2 An illustration of the
coverings of balls at different
levels in two dimensions. Note
how the configuration and thus
the overlap between
neighbouring balls is preserved
across the different levels

fori =1,...,3". Here p}'(s1, 52, 53) is a vector in R" whose elements are the i-th permu-
tation of s1, 52, 53 taken n at a time with repetition. We illustrate this for the case n = 2 in
Fig. 1. Note that the choice of centres and radii of the sub-balls ensures that they cover the
original ball #. Furthermore, this means that at any iteration of Algorithm 2.1 we always
have a covering of closed balls of the convex set Z. One can see from Fig. 1 that neighbouring
balls in the covering intersect and thus the minimiser could exist in two of the balls. However,
our splitting rule is such that this overlapping configuration is preserved each time the balls
are split into sub-balls, creating coverings with exactly the same amount of overlap on many
different levels, see Fig. 2. In particular, this means that the minimiser can only exist in at
most two balls in each level, i.e. of the same radius.

It is possible to use instead a standard rectangular partitioning strategy (e.g. as used in
Jones et al. 1993) where a hyper-rectangle is split into a partition with at most 2n + 1
subrectangles. One can then circumscribe balls around the hyper-rectangles and apply Algo-
rithm 2.1 as before. However, while this has the seeming advantage of lowering the number
of subregions created at each step of the algorithm, as the hyper-rectangles are not in general
regular this creates a large amount of overlap between neighbouring balls making it difficult
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to discard uninteresting regions. Nonetheless, it may be possible to adapt such rectangular
partitioning strategies to our approach and this is an avenue we are currently exploring.

3 Proof of convergence

In this section we will prove that, under suitable assumptions, Algorithm 2.1 converges in
a finite number of iterations to within a tolerance ¢ > 0 of the global minimum of f(x).
Our proof is based on the convergence proof of the canonical box-based bound constrained
branch and bound algorithm in Balakrishnan et al. (1991). First we state and prove a pair of
Lemmata before giving the main convergence theorem.

Lemma 3.1 The bounds o and B given above in (2.5) and (2.6), respectively satisfy

(Cl) a(#) < minyesz f(x) < f(H) VB CR
(C2) Ve > 038> 05 VB CR", r(#B) <8 = B(B) —a(B) <¢

Proof (Cl) Recall that o (%) = minyeg m 4(x) and B(%) = f(x;ra). From (2.4) we have
that

inm_, < mi 3.1

%m@m_%ﬂm 3.1
and clearly

min F) = flxg)

Thus we see that the bounds satisfy condition (C1).
(C2) Let & > 0 be arbitrary. For clarity of exposition define for all Z C R",

X p 1= arg )rcrél% mg(x).
Note that x  may not be unique but this does not matter. Then r (%) < § means that
x5 — xall < 5. (3.2)
Consider
B(B) — a(B) = | f(x3) —my(x )l
<|fGh) — faa) + lIxg —xzllgxa)l
+ %ux;g —xz 1 H(xz)]| + %an;g —xz’
< LlxZ —xzl +llxz — xzllgxa)|

l - 2 Ly _ 3
t3llxg = xal 1 Hxa)| + —~lxg — xal

1 5 Ly
<Li+|gkxa)d+ EIIH(x,@)IIS + ?8
L Ly
<2L5+ L824 2253
< +5 8+~

where the first inequality follows directly from the triangle and Cauchy—Schwarz
inequalities, the second from (1.3), the third from (3.2) and the fourth from (1.2). It
therefore suffices to choose § sufficiently small such that

Ly

L
2L8 4+ 8824 2153 <
+ > + 6 <eg
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so we simply need to pick § < min{e/6L, /2¢/3L,, 3/2¢/L g}, i.e. such that each
of the three terms on the left of the bounding equation for ¢ is less than or equal

to /3.
]

Our second Lemma shows that Algorithm 2.1 eventually creates a ball of arbitrarily small
radius.

Lemma 3.2 Fork e N

‘ 2 < r (%)
%né@kr(- ) < 2 T(logznk)/2T

and thus for any § > 0 there exists K € N such that

min r(A) < 4.
3363[(

Proof Firstly recall that our splitting rule splits each ball into 3" sub-balls. We start at itera-
tion k = 0 with our initial covering ball %y of radius r(%y). We split %y into 3" sub-balls
of radius r(%p)/2 at iteration k = 1. Assuming a worst-case scenario, each of these 3"
sub-balls has to be split into 3" subsub-balls of radius r(%y)/4 before we can consider any

of the subsub-balls for splitting. Following this argument through inductively, we deduce that
for k € N it takes at most

m
k=> 3" (3.3)
j=1
iterations to reduce the radius of the smallest ball in the covering to less than or equal to
B
rido) (3.4)
2m

We can bound (3.3) by
k < m(3n)m—l < (3n)2n1

which when combined with (3.4) gives the required bound. The second part of the Lemma
then follows trivially. m}

Theorem 3.1 Algorithm 2.1 converges in a finite number of iterations to within a tolerance
& > 0 of the global minimum of f(x) over 9. Formally, for any ¢ > O there exists M, € N
such that

Uy, — Ly, <¢
and Uy, is within a tolerance ¢ of the global minimum of f(x) over 2.

Proof Let % .= arg minge ¢, r(%) and let @, € £y, be the ball which for some M} < k
we split to obtain %. Note that %, may not be unique but this does not matter. Let ¢ > 0 be
arbitrary. Then there exists 6 > 0 such that for any # C R"

r(#) <26 = B(HB)—a(H) <¢ (3.5)
by condition (C2) of Lemma 3.1. Choose K € N sufficiently large such that
r(%g) <6
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which is possible by Lemma 3.2. Then «7x must have r(«7x) < 28 as we split it to obtain
By and thus from (3.5) we have that

B(k) —aldk) < e. (3.6)

Now, as .o/ was split at iteration M, it must have satisfied a (/) = Ly, . Hence we get
that

Umgy — Ly < B(@k) — Ly < ¢ (3.7)

since Uy, < B(eZk) by definition and using (3.6). We therefore have an upper bound Mg
on the number of branch and bound iterations.

It remains to show that Uy, is within a tolerance ¢ of the global minimum of f(x) over
2. Assume condition (C1) of Lemma 3.1 holds and suppose that the global minimum /* of
f(x) over Z is attained at x* € . First, we show that x* is contained in a ball in L), .
To see this, observe that for all k € N, .%; is a partition of the bounding ball %, with balls
which cannot possibly contain x* removed, that is to say balls % which have lower bound

a(B) > Uy

ie. a(H) > f(x;,;) for a feasible point x;; € 9. As x* is contained in a ball in £y, it
follows that Ly, <[* and thus

UMK_I*SUMK _LMK <¢

by (3.7). O

4 Computing the lower bound

We have mentioned earlier in Sect. 2 that we use lower bounds based on globally minimising
the cubic bounding function m (x) over balls Z C R”", in a similar vein to Nesterov and
Polyak (2006). In this subsection we will show how we can efficiently globally minimise
m 4 (x) over any closed ball # centred at x4, i.e.

minimise m (x) = f(xz) + (x —x2)" g(xz) + %(x —x2)" H(x)(x — x2)

 Lu®
6
subject to |[x —xgz| < A

3
x —xzl

for some A > 0. For clarity of exposition, we rewrite the above minimisation problem in the
equivalent form

1 o
minimise m~(x) := f 4+ xT g+ 5xTHx - §||x||3

subject to ||x|| < A

where o := Ly (#4)/2, we have shifted x by x4, and we have dropped the explicit depen-
dence on & from the notation. It is clear that the global minimum of the above problem will
occur either on the boundary or in the interior of the A-ball. We solve for these two cases in
turn, starting with the case where the minimum lies on the boundary.
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4.1 Finding a minimiser on the A-ball boundary

For the bounding function m ™~ (x) we have the following global optimality result (cf. Theorem
7.2.1 in Conn et al. 2000 and Theorem 3.1 in Cartis et al. 2009).

Theorem 4.1 Any x* is a global minimiser of m™ (x) over R" subject to | x|| = A if and
only if it satisfies the system of equations

(H+ MW —ocA)Dx* = —g 4.1

where H + (A* — o A) I is positive semidefinite for some Lagrange multiplier \* and || x*|| =
A.If H+ (A* — 0 A)1 is positive definite, x* is unique.

Proof First we rewrite the constraint ||x|| = A as %llx > — %Az = 0. Now, let x* be a global
minimiser of m ™~ (x) over R” subject to the constraint. We have from the first order necessary
optimality conditions (see Section 3.2.2 of Conn et al. 2000) that x* satisfies

(H+ QA —o|x*|DDHx* = —g. 4.2)

where 1* is the corresponding Lagrange multiplier. We have by assumption that || x*|| = A
and substituting this into (4.2) gives the required system (4.1). Now, suppose u™ is a feasible
point, i.e. that ||u*| = A. We have that

1 1
m= ) —m~(x*) = g" W —x*) + E(u*)THu* - E(x*)THx* + Z (I )? = 1))

3
1 1
=gl (" —x*) + 5(u"‘)THu* - 5(x*)THx* (4.3)
where the last equality follows from the fact that ||x*|| = ||u*|| = A. But (4.2) gives that
gl —x*) =@ —uHTHx* + 0 —o A)(x* —u*) x*. (4.4)

Also, the fact that ||x*|| = |lu™|| = A implies that
1 1 1
()C* _ u*)Tx* — 5(x*)Tx* + E(“*)T”‘* _ (u*)Tx* — 5(”[* _ x*)T(u* _ x*). (45)
Combining (4.3) with (4.4) and (4.5), we find that
1 1
m~ () —m~(x*) = E(A* — oA —x)T (- x*) + 5(u*)THu*
1
_ E(x*)THx* + (x*)THx* _ (u*)THx*
1
= E(u* —xHT(H + 0 — o A) (" — x¥). (4.6)

We also have from the second order necessary optimality conditions (see Section 3.2.2 of
Conn et al. 2000) that

H+ O — ol DT — —2—x*(e)T

is positive semidefinite on the null-space of the constraint gradient x*, i.e. that

W7 (H FOF — oA — %x*(x*)r) V=0 4.7
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for all v for which v7x* = 0, where we have used the fact that ||x*|| = A. In this case it
immediately follows from (4.7) that

VI(HA+ O oM v=0

for all v for which vTx* = 0. It thus remains to consider vectors v for which v7x* = 0.
Since v and x* are not orthogonal, the line x* + «v intersects the constraint ||x|| = A at
two points, x* and u*. Let v* = u* — x* and note that v* is parallel to v. As x* is a global
minimiser we have that m~ (u*) > m~ (x*) and thus we have from (4.6) that

0<m™ ") —m (x*) = %(u* —xHT(H 4+ W = o)D) W* —x¥)

- %(”*)T(H + O —oA)DHv* (4.8)

from which we deduce that
VI(HA+ O —oM))v=0
for all v for which v” x* # 0. In summary, we have shown that
VI HA+ O oM v=0

for any vector, which is the same as saying that H + (A* —o A) I must be positive semidefinite.
Conversely, if H+(A*—o A)I is positive definite, %(u* —xT(H+OF =0 A)D) (w*—x*) >
0 for any u* # x* and therefore (4.8) shows that m ™~ (u*) > m™ (x*) whenever u* is feasible.
Thus x* is the unique global minimiser. O

The global minimiser can be efficiently found by applying a safeguarded version of Newton’s
method as detailed in Section 2.1 of Gould et al. (2010) to the scalar equation
x(M)]| = A,
lx @)l 49)
where (H + (A — o A)Dx(X) = —g,

and this is the approach we take (see Fig. 3).

Note that since H is of low dimension it is more efficient to find the spectral decomposi-
tion H = QAQT, and then to solve an equivalent problem to (4.9) in transformed variables
y = 0T x for which the Hessian, A, is diagonal.

4.2 Finding a minimiser in the A-ball interior

If, by contrast, the solution we seek lies in the interior of %, we have the following result:

Theorem 4.2 The lower bounding function m™ (x) can only have finite global minimisers if
H is positive semidefinite. In this case, any x* is a global minimiser of m~ (x) over R" if and
only if it satisfies the system of equations

(H+o*Dx* = —g (4.10)
where w* = —o ||x*|| and H 4+ w*I is positive semidefinite.

Proof For the first part, suppose H is not positive semidefinite and consider x = au for any
eigenvector u of H corresponding to a negative eigenvalue. Then clearly m~ (x) — —oo
as o — oo and so the function m™ (x) is unbounded below. The second part of the proof is
analogous to the proof of the first part of Theorem 3.1 in Cartis et al. (2009). O
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(A
A
L IH + (A= oA)D) ]|
|
|
|
|
|
|
|
|
|
Al—
X Y
0 =M\ +0A
Fig. 3 Solutions to the system (4.1) are the intersections of the two curves
Note that in this case w* = —o||x*|| and so there can only be a solution for @ < 0. Assuming

H is positive semidefinite, let A; denote the smallest eigenvalue of H and note thatif A} = 0
there can only be a trivial solution to the system (4.10) when x = 0 and g = 0. When A > 0
there will be at most two possible solutions to the system (4.10) which, once again, can be
found using Newton’s method with suitable starting points (i.e. Algorithm 6.1 in Cartis et al.
2009). Numerical results suggest that in this case the solution closest to zero is always the best
local minimiser in the A-ball interior, and this is indeed the case as we show in Theorem 4.3
below. Figure 4 illustrates this typical case when there are two possible solutions. (Note that
there may be no solutions and an example of this is the case where the straight line lies under
the curve in Fig. 4.) We have the following theorem (based on Theorem 3 from Griewank
1981) which shows that whenever m ™~ (x) has a finite global minimiser over R", the global
minimiser is unique.

Theorem 4.3 For any pair of potential finite global minimisers u*, v* of the lower bounding

Sfunction m™ (x) over R" given by Theorem 4.2 with |\u*|| < ||v*||, the corresponding lower
bounding function values satisfy

m™ (W) —m~(u*) = % (l* ]l = u*1)* = 0.

In particular this means that when there are two possible solutions to the system (4.10) (as
in Fig. 4), the solution x* with smaller norm ||x*|| is the global minimiser of m™~ (x) over R".

Proof First of all consider a general potential finite global minimiser x* of m™(x). As it is
a potential finite global minimiser it must satisfy (4.10). Multiplying (4.10) on the left by
(x*)T and dividing by two gives

1 1 1
E(x*)THx* = —Eng* - Ew*(x*)Tx* 4.11)
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Fig. 4 Solutions to the system Hm(w) ||
(4.10) for m~ (x) are the 4
intersections of the two curves .
I +wn) ]
w o
U I
|
|
|
|
|
|
|
|
|
W - L
-\ 0
where w* = —o ||x*||. From the definition of m ™~ (x) we have that

1 o
m-(x*) = f+g"x*+ 5<x*>THx* - §||x*||3

1 1
= frelx——glx" — sof () X — %nx*n3 by (4.11)

2 2
1
= 4+ 38"% + S = S
1 o
= [+ ¢+ )P (4.12)
2 6
where the third equality follows from the fact that * = —o ||lx*| and (x*)” x* = ||x*||%. Now,

assume u™*, v* are potential finite global minimisers of m ™ (x). We have from Theorem 4.2
that

(H+o"Du*=—g=(H+ B IHv* (4.13)
where
of = —a|lut|| = —o|v*| = B*. (4.14)

Multiplying (4.13) by (v*)7 and (u*)T we obtain

_gTv* _ (v*)THu* + a*(v*)Tu*

—gTM* — (u*)THv* + ﬁ*(u*)Tv*
so that (since H is symmetric)

gl " —u) = (B — oM)W v = (B — o) u||v¥]l = —o (¥l = lu* ) llu* | o*]|

(4.15)
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where we have used the Cauchy—Schwarz inequality (multiplied by 8* —«* which is negative
by (4.14)). We now have from (4.12) that

1
m= () —m~ @) = 3T (" —u*) + %(Hv*n3 R

o o
> = (™I = D e o) + g(nv*n3 —u*1?) by (4.15)
(e
= g(—3||v*||2||u*|| + 3l [P0+ o) — )
(e} 3
=& (W' = Jw*1)” = 0

which completes the proof. O

5 A faster heuristic algorithm

It is not always necessary or desirable to find the global minimum to a high degree of accu-
racy. With this in mind we present a faster heuristic version of the Lipschitz based branch and
bound algorithm which has no theoretical convergence guarantees but still exhibits reasonable
performance.

The main drawback with regards to performance of the existing algorithm is the splitting

of each ball into 3" sub-balls since the number of sub-balls grows rapidly as n (the dimen-
sion of the problem) increases. Rather than using overlapping balls, for the heuristic version
of the algorithm we split each ball into a dense lattice of non-overlapping sub-balls. The
maximum number of same-size balls one can pack around a central ball without overlap is
given by the kissing number « (Conway and Sloane 1999). Optimal kissing numbers and the
corresponding lattices we use which give rise to them are known up to 9 dimensions (see
Conway and Sloane 1999, for details). Running the algorithm with this splitting rule means
that each ball is only split into « + 1 sub-balls, considerably less than 3" (cf. Table 1).
The disadvantage is that it leaves holes in the domain we are trying to optimize over and so
convergence to the global optimum is not guaranteed. However, by running a local solver
from the global minimum proposed by the algorithm, we will always find a local minimum
which is often a good candidate for being the global optimum (and which can be used as an
upper bound in the original slower version of Algorithm 2.1 if desired). Figure 5 illustrates
this heuristic splitting rule using the hexagonal lattice which is known to be the optimal lattice
in two dimensions.

6 Application to radial basis functions

Inrecent years radial basis function (RBF) interpolation has become a popular and well estab-
lished approximation method for real valued functions, particularly in higher dimensions (see
Wendland 2005). This approach is also known as intrinsic random function Kriging in the
geostatistical literature (as proposed by Matheron, see Chiles and Delfiner 1999) and Gauss-
ian process regression in Bayesian statistics (an early reference is O’Hagan 1978). Under
these synonyms RBF interpolation has been applied to the design and analysis of computer
experiments (Santner et al. 2003), machine learning (Rasmussen and Williams 2006) and
engineering design (Forrester et al. 2008) to name but a few. The RBF interpolant can also be
viewed as a neural network (see Chapter 5 of Bishop 1996). One of the main advantages of
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Table 1 The optimal kissing

n
number plus one (k + 1) " k+1 3
compared against 3" for the first 1 3
9 dimensions
2 7
3 13 27
4 25 81
5 41 243
6 73 729
7 127 2187
8 241 6561
9 273 19683

Fig. 5 An illustration of our
heuristic splitting rule in two
dimensions. The black circle is
split into seven blue circles
arranged in a hexagonal lattice.
(Color figure online)

using RBFs to approximate an underlying real valued function is that one can cheaply obtain
derivatives of the RBF of any order. In particular, this allows us to easily obtain the Hessian
Lipschitz constant over any ball in R” and thus apply our Lipschitz based branch and bound
algorithm, Algorithm 2.1 from Sect. 2. Note that this is an entirely new approach, distinct
from the canonical Lipschitz branch and bound algorithm (as described in e.g. Section 5.3
of Pardalos et al. 1995). With this in mind we will apply the proposed branch and bound
algorithm to the special case where the objective function f(x) is a radial basis function
approximation to some real valued function. Of course, the real motivation behind using
RBFs is to use the global minimizer of the RBF approximation to infer something about
the original problem, i.e. the global minimum of the underlying real valued function that is
approximated (see Farmer et al. 2010, for an example application).

6.1 Introduction to radial basis functions

First of all, let us give a brief introduction to radial basis function interpolation. We begin

by defining the weighted ¢;-norm | - ||, := ||W- |2 with diagonal weight matrix W, and
suppose we have N samples y = (y1,..., yny)? of some real valued function we wish
to approximate at the corresponding sample points xi,...,xy € 2. An RBF approxima-

tion f : 2 C R" — R is then constructed as a linear combination of basis functions ¢(-)
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composed with a weighted £,-norm, together with an additional polynomial term to guarantee
uniqueness:

M N
FO) =D () + D xjedlx — xjl,) ©6.1)

k=1 j=1

where {7y (x)},l{"’= | is a basis for IT}, the space of polynomials in R" of degree less than d,
with the notation [Ty = {0}. Typical choices of the basis function ¢(-) are

. rP if p is odd

the spline ¢ (r) = [ rPlogr if piseven’

the multiquadric ~ ¢(r) = rr+yHf B>0, B¢N; (6.2)

the inverse multiquadric ¢ (r) = (r2 + yz)_ﬂ B > 0; and
the Gaussian  ¢(r) = exp(—y2r2 ,

where y is a nonzero constant referred to as the shape parameter (see, for example, Chapters
6,7, 8 of Wendland 2005). Note that spline type RBFs are not C2 if p = 1 nor C unless p
is greater than two. As we use a weighted norm, we often let y = 1 for the Gaussian basis
function. The coefficients jix, A ; are determined by solving the linear interpolation system

M N
Vi =D ) + D Al —xjll,), i=1,...,N
k=1 j=1

along with the additional conditions

N
D hjmix)) =0, k=1,....M
j=1

which complete the system and ensure that polynomials of degree less than d are interpolated
exactly. In matrix form this gives the non-singular (provided {x; }1N= | is a I1)j-unisolvent set,
see Wendland 2005) symmetric saddle-point system

(500

where P; ;j = m;(x;) is a polynomial basis matrix and R is the correlation matrix given by

Rij = e(lxi —xjl,).

There are two main approaches often used in the literature to find the weights in the weight
matrix W, which we will now assume to be diagonal. The first approach consists of choosing
W to maximise the likelihood of the observed data x1, ..., xy and leads one to choose W to
be the maximiser of the log-likelihood function (see Busby et al. 2007)

1
(W) == (N log 0% + log det(R))
which we optimise using a general purpose global optimisation algorithm (DIRECT, Jones

et al. 1993). The second approach is to use leave-one-out cross-validation (see Rippa 1999)
and leads one to choose W to minimise the £>-norm of the cross-validation error (W) € RV .
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The k-th element of the cross-validation error e(W) is the error at the validation point xy,
given by
Ak
W) =—
Apk

where A, ,l{ is the k-th diagonal element of the inverse of the interpolation matrix A =
R P
pTo)-

6.2 Calculating the Lipschitz constant

We now proceed to calculating a suitable Hessian Lipschitz constant for our proposed branch
and bound algorithm in the special case where the objective function f(x) is a radial basis
function approximation (6.1). We start by introducing tensors. A third order tensor T is
a generalisation of a matrix to three indices, that is to say a 3-dimensional array. As with
matrices T;, j x denotes the i, j, k-th component (i.e. element in the array) of the tensor 7.
Recall that the matrix Frobenius norm can be defined as

m n
2 . 2
lAIF =2 2 A%
i=1 j=1
and this can be extended to a third order tensor 7" as
m n o
2 . 2
LD IDIP I
i=1 j=1k=1
Similarly, we can define the induced £>-norm for tensors by

[71l2 == max [[Tx]2
lell2=1

where ||7x||; denotes the usual induced matrix norm. We are now in a position to prove the
following Lemma.

Lemma 6.1 Let T be a third order tensor. Then ||T |2 < | T || F.
Proof We have that

||T||2 = HIT‘I‘aX ||Tx||2 < Hn‘l‘ax ||Tx||F as ||All2 < ||A||r for matrices

2
e, 3 (S e
Z Z (Z(a, j)kxk) where the vector g; ; is such that (a; j)x = T; j x

m n

< max ZZHai, j||%||x||% by the Cauchy—Schwarz inequality
Ixlb=1 &

m n m n o
=D Dlaijlz =221, =TI

i=1 j=1 i=1 j=1k=1

HXHz

Htz—l

[}
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Let T(x) := Vyxx f(x) denote the third order derivative tensor of the RBF approximation
f(x) to some real valued function. We have from Taylor’s theorem that for any x, y € #

1

IHx)—H)2 < /T(y+t(x—y)) (x—y)dt 5OrgfglllT(y+f(x—y))||2||x—yllz
0 2 -

where ||7T(-)|2 denotes the tensor £>-norm defined above. Thus the Hessian H(x) :=
Vix f(x) is Lipschitz continuous on a ball 8 C R” if there exists a £>-norm Lipschitz
constant Ly (%) > 0 such that for all x € A

1T 2 = L ().

It suffices to find an upper bound 7 (%) on T (x) over % and we can then use Lemma 6.1 to
calculate an upper bound L g (%) on the optimal Hessian Lipschitz constant as

m n o 1/2
1Tl < IT@la < lt@lr= (DD D x| =Lu®.

i=1 j=1k=1

Thus it remains to determine the upper bound for the RBF approximation f (x). The approx-
imation f(x) has the form (6.1)

M N
) =D meme(x) + > rjedllx = x;ll,)

=1 j=1

with associated third order derivative tensor 7 (x) given by

M N
T() =D Ve () + O A Varrg(Ix = xj11,).
k=1 j=1

To calculate the upper bound t (%), it therefore suffices to calculate upper and lower bounds
on the tensors Vi, g (x) and Vi@ (flx — x;1l,,) over # depending on the signs of the coef-
ficients A, j. For example, for the cubic spline RBF ¢(r) = r3 we have V. mr(x) = 0
as the polynomial term is linear and

(vxxx‘p(”x —Xj “W))a,b,c

—3w(xa —xj,)°  wiwi(xg — x;,)
a\Xa 3ja a®a\ta Ja ifa=b=rc
b =il =il

=3wi(xe —x; Jw, (xg — X ) 3wawg(xe —xj.)

_ c e Jc ll3a Ja + ac ¢ Je ifega=b#c

=l ,, il

=3wy(xg — xj )wy(xp — Xj )ws(xe — xj ) ;
a\ra Ja’"'b 3“7 c e Je otherwise.

llx —x;lly,

It is trivial to find upper and lower bounds on wg (xa —x;j,)/llx — xjll,,over the smallest box
containing % which we can substitute into the above to obtain bounds on Vi@ (llx — x;ll,,).
A similar approach can be used for other radial basis functions (6.2) with interval arithmetic
techniques for higher order polynomial terms.
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Fig. 6 Contours of the RBF approximation f(x, y) to the camel function. The black circles denote the over-
lapping closed balls % used by the branch and bound algorithm. Note that they cluster at the global minimum
of f(x, y) which is denoted by a red circle. (Color figure online)

6.3 Numerical examples

To begin with let us look at an illustrative two dimensional example. Consider the problem
of finding the global minimum of a cubic spline RBF approximation f (x, y) to the Dixon—
Szegd six hump camel back function at thirty scattered points in [—2, 2] x [—1.25, 1.25].
We will use Algorithm 2.1 with overlapping balls and local Lipschitz constants from Sect. 2.
The optimal solution as found in 220 iterations of Step 1 of the algorithm with a tolerance of
4 % 1079 is shown in Fig. 6. This took about 20 s of cpu time for a Matlab implementation
on an AMD Phenom II X4 955 processor machine and used 3, 014 evaluations of f.

Compare this with the heuristic version using a lattice of balls from Sect. 5. In this case,
the optimal solution as found in 134 iterations of Step 1 of the algorithm with a tolerance of
6 x 1079 is shown in Fig. 7. This took about 10 s of cpu time and used 1, 686 evaluations
of f, considerably less. Notice how the alternate splitting rule is more efficient at filling the
available space (albeit with gaps).

For a more interesting example, we will now compare the performance of the two branch
and bound algorithm variants for dimensions from 2 to 5. In addition, we will also compare
our algorithms to the canonical Lipschitz branch and bound algorithm (see Section 5.3 of
Pardalos et al. 1995). This is simply the canonical branch and bound algorithm (see e.g. Horst
1986) with the lower bound

a(B) = f(xz) — L(#) max|lx — xz|l (6.4)

xeB
where x g is the midpoint of % and L (%) an upper bound on the optimal Lipschitz constant
over 4, calculated by bounding the norm of the gradient over 4 similarly to how we calculate

Ly (%) in Sect. 6.2. For this example, the objective function f : [—4,4]" C R" — R will
be a cubic spline radial basis function approximation to the sum of sine functions given by

n
s(x) = z sin xy
k=1
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Fig.7 Contours of the RBF approximation f (x, y) to the camel function. The black circles denote the hexag-
onal lattice of balls Z used by the branch and bound algorithm. Note that they cluster at the global minimum
of f(x, y) which is denoted by a red circle. (Color figure online)

at 10n maximin Latin hypercube sample points in [—4, 4]". The approximation typically has
a number of local minima with one global minimum as one can see in Fig. 8 for dimension
n = 2. Table 2 shows the run time in seconds of a Matlab implementation of each branch
and bound algorithm for dimensions n from 2 to 5. The number of evaluations of the radial
basis function approximation f is given in Table 3. The algorithm was stopped if it verifiably
found the global minimum to within a tolerance of 1072, i.e. Uy — Ly < 1072, If this was
not possible in 3,000 s (50 min) we give the tolerance reached by the algorithm instead. The
experiments were performed on an AMD Phenom II X4 955 processor machine with 4 GB of
RAM running Matlab R2011a and the NAG toolbox for Matlab, Mark 22.4 which provided
the local optimization solvers. As one can see from the results, the canonical Lipschitz branch
and bound algorithm shows the worst performance and takes considerably more iterations
than all the other algorithms. This is because the lower bounding function (6.4) used in the
algorithm only makes use of the function Lipschitz constant and is therefore quite crude.
The other algorithms use much tighter bounds which explains their superior performance
in lower dimensions. As the dimension increases, the need to split 3" balls at each iteration
hampers the performance of our Lipschitz algorithm, however, the heuristic version (which
splits considerably fewer balls at each iteration) consistently outperforms the overlapping
balls algorithm. Nonetheless, one must concede that the tolerance returned by the heuristic
algorithm is often that of a global minimum on a subset of [—4, 4]", particularly in higher
dimensions. While the inability of the algorithms to complete in higher dimensions may
seem disappointing one must bear in mind that these are research implementations written in
object oriented Matlab which is very slow. Moreover, our Lipschitz algorithm can be trivially
parallelised as the bounds on each ball can be computed independently which should lead to
a significant speedup on modern multiprocessor hardware.

Let us now compare the our proposed branch and bound algorithm with overlapping balls
and its heuristic counterpart subject to convex constraints. As in the previous example, the
objective function f : [—4,4]" C R" — R will be a cubic spline radial basis function
approximation to the sum of sine functions, this time with the elliptical constraint
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Fig. 8 Contours of the radial basis function approximation (left) to the sum of sines function (right) on
[—4, 4] x [—4, 4]. As one can see the approximation is particularly accurate for this example

Table 2 Run times of the different branch and bound algorithms on a radial basis function approximation to
the sum of sines function for dimensions from 2 to 5

2 3 4 5

Canonical Lipschitz (L 7) 101 s 4x10'3 1x10%2 2x10%3
Algorithm 2.1 (L) 3s 5425 2x1012 2x1032
Heuristic Algorithm 2.1 (L ) 2s 56s 2,390 s 2x1012

The best results for each dimension are denoted in bold
4 The tolerance reached is given instead if the algorithm did not complete in 50 min

Table 3 Number of evaluations of a radial basis function approximation to the sum of sines function for
dimensions from 2 to 5 for the different branch and bound algorithms

2 3 4 5
Canonical Lipschitz (L r) 51308 334876 596512 890341
Algorithm 2.1 (Lg) 898 52736 33864 18490
Heuristic Algorithm 2.1 (L ) 538 7036 96789 50921

cx)=xTCx—-1<0

where C is a matrix with 1/2 on the diagonal and 1/4 elsewhere. This time the global mini-
mum of the constrained surrogate typically lies on the boundary as one can see in Fig. 9. It
is our intention to test the convergence of the algorithms on the boundary, for if the global
minimum were to lie in the interior, performance would be comparable to the bound con-
strained example above. Table 4 shows the run time in seconds of a Matlab implementation
of each constrained branch and bound algorithm for dimensions n from 2 to 5. The number
of evaluations of the radial basis function approximation f is given in Table 5. The testing
methodology and hardware is the same as in the previous experiments. The speed advan-
tage of the heuristic Lipschitz algorithm is evident, once again it consistently outperforms
the algorithm using balls for dimensions greater than 2. Even so, the results are worse than
in the bound constrained example above (except for n = 4). This is because the boundary
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Fig. 9 Contours of the radial
basis function approximation to

15
the sum of sines function on
[—4, 4] x [—4, 4] with the 1
elliptical constraint region
denoted in black 0.5
0
t {-0s
(((l
N\ -1
-1.5

Table4 Run times of the different convex constrained branch and bound algorithms on a radial basis function
approximation to the sum of sines function for dimensions from 2 to 5

2 3 4 5
Algorithm 2.1 (L) 2s 8x1072a 1x1002 2x1012
Heuristic Algorithm 2.1 (L ) 3s 1,069 s 405 s 2,443 s

The best results for each dimension are denoted in bold
4 The tolerance reached is given instead if the algorithm did not complete in 50 min

Table 5 Number of evaluations of a radial basis function approximation to the sum of sines function for
dimensions from 2 to 5 for the different branch and bound algorithms

2 3 4 5
Algorithm 2.1 (L) 570 66082 34798 13746
Heuristic Algorithm 2.1 (L g) 727 32192 20811 58269

contains a large region where the function takes similar values and the algorithms expend a
significant effort searching this region for the global minimiser. However, in such situations
a constrained local search algorithm can easily locate the global minimum once the branch
and bound algorithm has located its basin of attraction.

Finally, let us consider the performance of Algorithm 2.1 and its heuristic counterpart on
RBF approximations to the extended Dixon—Szegd test set (see Dixon and Szeg6 1978) which
is widely used in the global optimization literature (see e.g. Huyer and Neumaier 2008). The
test set consists of nine functions with dimensions » ranging from two to six all defined on
rectangular domains. Table 6 gives a brief overview of the test functions and Table 7 gives
results for the algorithms on RBF approximations to the test functions. The number of evalu-
ations of the radial basis function approximation f is given in Table 8. These approximations
interpolate each test function at 10n Halton samples (Halton 1960). The testing methodology
and hardware is the same as for the previous examples and we once again compare against
the canonical Lipschitz branch and bound algorithm.
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Table 6 The dimension n, number of local and global minima and domain Z for each of the Dixon—-Szeg6
test functions

n Local minima Global minima 9
Branin 2 3 3 [—5,10] x [0, 15]
Six-hump Camel 2 6 2 [—3,3] x [-2,2]
Goldstein-Price 2 4 1 [—2,2]?
Shubert 2 760 18 [—10, 1012
Hartman 3 3 4 1 [0, 113
Shekel 5 4 1 [0, 101
Shekel 7 4 7 1 [0, 101*
Shekel 10 4 10 1 [0, 101*
Hartman 6 6 4 1 [0, 11°

Table 7 Run times of the two variants of Algorithm 2.1 and the canonical Lipschitz algorithm on a radial
basis function approximation to functions from the Dixon—-Szeg? test set

RBF approx. to: Algorithm 2.1 (L) Heuristic Algorithm 2.1 (L) Canonical Lipschitz (L r)
Branin 5s 3s 63s

Six-hump Camel 7s 3s 5x10722
Goldstein-Price 135 12s 4x1032

Shubert 12 10s 2x10%4

Hartman 3 271's 39s 5x 1002

Shekel 5 3x10~1a 1,080 s 2x 1002

Shekel 7 4x10712 671s 4x1008

Shekel 10 5%x1071a 682s 4x1002

Hartman 6 6x1022 5x1012 1x10%2

The best results for each dimension are denoted in bold
4 The tolerance reached is given instead if the algorithm did not complete in 50 min

7 Conclusions

We have presented an entirely new algorithm for the minimisation of a twice differentiable
nonconvex objective function with a Lipschitz continuous Hessian over a compact, convex
set. The algorithm is based on the canonical branch and bound global optimization algorithm
with bounds inspired by the trust region subproblem from local optimization. Numerical
results suggest that the proposed algorithm outperforms existing Lipschitz based approaches
in the literature when applied to a radial basis function approximation and one would expect
good performance in other settings where a Hessian Lipschitz constant is available. One main
advantage of the proposed algorithm is that it is naturally parallelisable, especially in higher
dimensions, and we are currently looking into a large-scale parallel implementation. The
algorithm as presented here is, however, more conceptual since the paper is aimed at estab-
lishing ideas and exploring methods rather than providing a practical algorithm for day to
day use. We are currently working on a more sophisticated implementation that will explore
more practical approaches and other relevant ideas including the use of parallelism in more
detail.

@ Springer



J Glob Optim

Table 8 Number of evaluations of a radial basis function approximation to functions from the Dixon—-Szegd
test set for the two variants of Algorithm 2.1 and the canonical Lipschitz algorithm

RBF approx. to: Algorithm 2.1 (Lg) Heuristic algorithm 2.1 (L g) Canonical Lipschitz (L )
Branin 1246 909 32108
Six-hump Camel 1750 880 266412
Goldstein-Price 3396 3151 252655
Shubert 3278 2663 293122
Hartman 3 29516 4926 277710
Shekel 5 22340 36720 526955
Shekel 7 41894 23731 528336
Shekel 10 47568 24458 523643
Hartman 6 20794 24527 547412
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