
Mathematical Programming Computation
https://doi.org/10.1007/s12532-018-0147-4

FULL LENGTH PAPER

QPLIB: a library of quadratic programming instances

Fabio Furini, et al. [full author details at the end of the article]

Received: 2 April 2017 / Accepted: 6 September 2018
© Springer-Verlag GmbH Germany, part of Springer Nature and The Mathematical Programming Society 2018

Abstract
This paper describes a new instance library for quadratic programming (QP), i.e., the
family of continuous and (mixed)-integer optimization problems where the objective
function and/or the constraints are quadratic. QP is a very diverse class of prob-
lems, comprising sub-classes ranging from trivial to undecidable. This diversity is
reflected in the variety of QP solution methods, ranging from entirely combinatorial
approaches to completely continuous algorithms, including many methods for which
both aspects are fundamental. Selecting a set of instances of QP that is at the same time
not overwhelmingly onerous but sufficiently challenging for the different, interested
communities is therefore important. We propose a simple taxonomy for QP instances
leading to a systematic problem selection mechanism. We then briefly survey the field
of QP, giving an overview of theory, methods and solvers. Finally, we describe how
the library was put together, and detail its final contents.

Keywords Instance library · Quadratic programming · Mixed-Integer Quadratically
Constrained Quadratic Programming · Binary quadratic programming

Mathematics Subject Classification 90C06 · 90C25

1 Introduction

Quadratic programming (QP) problems—mathematical optimization problems for
which the objective function [145], the constraints [146], or both are polynomial
function of the variables of degree two—include a notably diverse set of different

The software that was reviewed as part of this submission was given the DOI (Digital Object Identifier)
https://doi.org/10.5281/zenodo.1412045.

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s12532-
018-0147-4) contains supplementary material, which is available to authorized users.

B Fabio Furini
fabio.furini@dauphine.fr

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s12532-018-0147-4&domain=pdf
https://doi.org/10.5281/zenodo.1412045
https://doi.org/10.1007/s12532-018-0147-4
https://doi.org/10.1007/s12532-018-0147-4

F. Furini et al.

instances. This is not surprising, given the vast scope of practical applications of such
problems, and of solution methods designed to solve them [70]. Depending on the
formulation specifics, solving a QP may require primarily combinatorial techniques,
ideas rooted in nonlinear optimization principles, or a mix of the two. In this sense,
QP is a class of problems where collaboration between the communities interested in
combinatorial and in nonlinear optimization is potentially fruitful.

However, this diversity also implies that QPmeans very different things to different
researchers. This is illustrated by the fact that the class of problems that we simply
refer to here as “QP” might more accurately be called Mixed-Integer Quadratically-
ConstrainedQuadratic Programming (MIQCQP) in themost general case.Therefore, it
is perhaps not surprising that, unlike for “simpler” problems classes likeMixed-Integer
Linear Programming [84], there has been no single library devoted to all different kinds
of instances of QP. While several specialized libraries devoted to particular classes of
QP are available, each of them is either focused on a particular application (a specific
problem that can be modeled as a QP), or on QPs with specific structural properties
that make them suitable for solution by some given class of algorithmic approaches.
To the best of our knowledge, collecting a set of QP instances that is at the same
time not overwhelmingly onerous but sufficiently challenging for the many different
interested communities has not been attempted. This work constitutes a first step in
this direction.

This paper reports our steps towards collecting what we consider to be a quality
QP instance library, filtering a much larger set of currently available (or specifically
provided) instances and proposing a manageable set that still contains a meaningful
sample of possible QP types. A particularly thorny issue in this process was how
to select instances that are “interesting”. Our choice has been to take this to mean
“challenging for a significant set of solution methods”. Our filtering process has then
been in part based on the idea that, if a significant fraction of the solvers that can solve
a QP instance do so in a “short” time, then the instance is not challenging enough to
be included in the library. Conversely, if very few (maybe one) of the solvers can solve
it very efficiently by exploiting some specific structure, but most other approaches
cannot, then the instance should be deemed “interesting”. Putting this approach into
practice requires a nontrivial number of technical steps and decisions that are detailed
in the paper.We hope that our work can provide useful guidelines for other researchers
interested in constructing benchmarks for mathematical optimization problems.

A consequence of our focus is that this paper is not concerned with the performance
of the very diverse available set of QP solvers; we will not report any data comparing
them. The only reason that solvers are used (and, therefore, described) in this context
is to ensure that the library instances are nontrivial, at least for a significant fraction of
the current solution methods. Providing guidance about which solvers are most suited
to some specific class of QPs is entirely outside the scope of our work.

1.1 Motivation

Optimization problems with quadratic constraints and/or objective function (QP) have
been the subject of a considerable amount of research for almost seventy years. Part

123

QPLIB: a library of quadratic programming instances

of the rationale for this interest is that QPs are the “least-nonlinear nonlinear prob-
lems”. Hence, in particular for the convex case, tools and techniques that have been
honed during decades of research for Linear Programming (LP), typically with inte-
grality constraints (MILP), can often be extended to the quadratic case more easily
than would be required to tackle general (Mixed-Integer) Nonlinear Programming
((MI)NLP) problems. This has indeed happened over-and-over again with different
algorithmic techniques, such as interior-point methods, active-set methods, e.g., the
simplexmethod, enumerationmethods, cut-generation techniques, reformulation tech-
niques, and many others [27]. Similarly, nonconvex continuous QP is perhaps the
“simplest” class of problems that require features such as spatial enumeration tech-
niques for their solution. Hence, QPs are both a natural basis for developing general
techniques for nonconvex NLP, and a very specific class enabling the development of
specialized approaches [26,44].

In addition, QP, with continuous or integer variables, is arguably a considerably
more expressive class than (MI)LP. Quadratic expressions are found, either naturally
or after appropriate reformulations, in very many optimization problems [85]. Table
1 provides a non-exhaustive collection of applications that lead to formulations with
quadratic constraints, quadratic objective function, or both. In general, any continu-
ous function can be approximated with arbitrary accuracy (over a compact set) by a
polynomial of arbitrary degree. In turn, every polynomial can be broken down to a
system of quadratic expressions. Hence, QP is, in some sense, roughly as expressive as
MINLP. This is, in principle, true for MILP as well, but at the cost of much larger and
much more complicated formulations. Hence, for many applications QP may repre-
sent the “sweet spot” between the effectiveness, but lower expressive power, of MILP
and the higher expressive power, but much higher computational cost, of MINLP.

The structure of this paper is as follows. In Sect. 2 we review the basic notion of QP.
In particular, Sect. 2.1 sets out the notation, Sect. 2.2 proposes a new QP taxonomy
that helps discuss the (very) different QP classes, and Sect. 2.3 very briefly reviews
the QP solution methods and the solvers we have employed. Next, Sect. 3 describes
the process used to obtain the library and its results. Some conclusions are drawn in
Sect. 4, after which Appendix A provides a complete description of all the instances
of the library, while Appendix B describes a simple (QPLIB) file format that encodes
all of our examples.

While no performance issues of solvers for QP problems are considered in this
paper, we refer to the comprehensive benchmark site http://plato.asu.edu/bench.html.
Of the result on this site, three deal exclusively with QP problems, namely the (1) large
SOCP, (2) MISOCP, and the (3) MIQ(C)P benchmarks, while three others contain
partial results for such problems, namely those for (4) parallel barrier solvers on large
LP/QP problems, (5) AMPL-NLP and (6) MINLP. Benchmarks (1, 2 & 4) contain
only convex instances, while the others include nonconvex ones. Global optima are
obtained by several of the solvers in benchmarks (3 & 5), while all solvers in the latest
addition (6) compute global optima. Benchmark (6) is based on MINLPLib 2 [139], a
collection of currently 1527 instances. In order to give a first representative impression
of solver performance, care was taken there to reduce the number of instances and
allow all solvers to finish in a reasonable time. More than half of the selected instances
are QP or QCP. For details we refer to http://plato.asu.edu/ftp/minlp.html.

123

http://plato.asu.edu/bench.html
http://plato.asu.edu/ftp/minlp.html

F. Furini et al.

Table 1 Application domains of QP

Problem Discrete Contributions

Fundamental problems that can be formulated as MIQP

Quadratic assignment problem‡ � [8,100]

Max-cut � [89,120]

Maximum clique‡ � [22]

Computational chemistry & Molecular biology

Zeolites [72]

Computational geometry

Layout design � [7,30,39]

Maximizing polygon dimensions [9–13]

Packing circles‡ � [51,57,76,129]

Nesting polygons [81,119]

Cutting ellipses [82]

Finance

Portfolio optimization � [37,51,54–56,80,98,101,113,122]

Process networks

Crude oil scheduling � [93–95,106,107]

Data reconciliation � [124]

Multi-commodity flow � [130]

Quadratic network design � [51,57]

Multi-period blending � [87,88]

Natural gas networks � [74,96,97]

Pooling‡ � [4,31,36,47,102,103,112,114,125]

Open-pit mine scheduling � [20]

Reverse osmosis � [126]

Supply chain � [111]

Water networks‡ � [3,14,24,33,58,64,79,83,118,136]

Robotics

Traveling salesman problem

With neighborhoods � [59]

Telecommunications

Delay-constrained routing � [52,53]

Energy

Unit-commitment � [51,54,56,131]

Data confidentiality

Controlled Tabular Adjustment � [32]

Trust-region methods

Trust-region subproblem [2,46,65,69,73,121]

PDE-constrained optimization

Optimal control problem [115,127,128]

‡Applications with many manuscripts cite reviews and recent works

123

QPLIB: a library of quadratic programming instances

2 Quadratic programming in a nutshell

2.1 Notation

In mathematical optimization, a Quadratic Program (QP) is an optimization problem
in which either the objective function, or some of the constraints, or both, are quadratic
functions. More specifically, the problem has the form

min ormax 1
2 x

�Q0x + b0x + q0

such that cil ≤ 1
2 x

�Qi x + bi x ≤ ciu i ∈ M,

l j ≤ x j ≤ u j j ∈ N ,

and x j ∈ Z j ∈ Z,

where

– N = {1, . . . , n} is the set of (indices) of variables, andM = {1, . . . ,m} is the set
of (indices) of constraints;

– x = [x j]nj=1 is a finite vector of real variables;

– Qi for i ∈ {0} ∪ M are symmetric n × n real (Hessian) matrices: since one is
only interested in the value of quadratic forms of the type x�Qi x , symmetry can
be assumed without loss of generality by just replacing off diagonal pairs Qi

hk and
Qi

kh with their average (Qi
hk + Qi

kh)/2;
– bi , ciu , c

i
l for i ∈ {0}∪M, and q0 are, respectively, real n-vectors and real constants;

– −∞ ≤ l j ≤ u j ≤ ∞ are the (extended) real lower and upper bounds on each
variable x j for j ∈ N ;

– M = Q ∪ L where Qi = 0 for all i ∈ L (i.e., these are the linear constraints, as
opposed to the truly quadratic ones); and

– the variables in Z ⊆ M are restricted to only attain integer values.

Due to the quadratic constraints and the integrality requirements on the variables,
this class is often referred to as Mixed-Integer Quadratically Constraint Quadratic
Program (MIQCQP). It will be sometimes useful to refer to the (sub)set B = { j ∈
Z : l j = 0, u j = 1 } ⊆ Z of the binary variables, and to R = N \Z as the set of
continuous variables. Similarly, it will be sometimes useful to distinguish the (sub)set
X = { j : l j > −∞ ∨ u j < ∞} of the box-constrained variables from U = N \X of
the unconstrained ones (in the sense that finite bounds are not explicitly provided in
the problem data, although bounds may be implied by the other constraints).

The relative flexibility offered by quadratic functions, as opposed, e.g., to linear
ones, allows several reformulation techniques to be applicable to this family of prob-
lems in order to emphasize different properties of the various components. Some of
these reformulation techniques will be commented later on; here we remark that, for
instance, integrality requirements, in particular in the form of binary variables could
always be “hidden” by introducing (nonconvex) quadratic constraints utilizing the
celebrated relationship x j ∈ {0, 1} ⇐⇒ x2j = x j . Therefore, when discussing these
problems, some effort has to be made to distinguish between features that come from

123

F. Furini et al.

the original model, and those that can be introduced by reformulation techniques in
order to extract (and algorithmically exploit) specific properties.

2.2 Classification

Despite the apparent simplicity of the Sect. 2.1 definition, quadratic programming
instances can be of several rather different “types” in practice, depending on fine
details of the data. In particular, many algorithmic approaches can only be applied to
QPwhen the problem data has specific properties. A taxonomy of QP instances should
thus strive to identify a set of properties that an instance should have in order to apply
the most relevant computational methods. However, the sheer number of different
existing approaches, and the fact that new ones are frequently proposed, makes it hard
to provide a taxonomy that is both simple and covers all possible special cases. This
is why, in this paper, we propose an approach that aims at finding a good balance
between simplicity and coverage of the main families of computational methods.

2.2.1 Taxonomy

Our taxonomy is based on a three-fields code of the form “OVC”, where O indicates
the type of objective function considered, V records the types of variables, and C
designates the types of constraints imposed on the variables. The fields can be given
the following values:

– objective function: (L)inear, (D)iagonal convex (if minimization) or concave (if
maximization) quadratic, (C)onvex (if minimization) or (C)oncave (if maximiza-
tion) quadratic, (Q)uadratic (all other cases);

– variables: (C)ontinuous only, (B)inary only, (M)ixed binary and continuous,
(I)nteger (including binary) only, (G)eneral (all other cases);

– constraints: (N)one, (B)ox, (L)inear, (D)iagonal convex quadratic, (C)onvex
quadratic, nonconvex (Q)uadratic. Note that (positive or negative) definiteness
of Qi is a sufficient, but not in general necessary, condition for convexity. As
detailed in Sect. 3.3, in our taxonomy we mark the constraints “C” based on the
sufficient condition alone, the rationale of this choice being discussed in Sect.
2.2.2. Quadratic constraints with both finite bounds cannot ever be convex (unless
Qi = 0, i.e., they are not “truly” quadratic constraints).

The ordering in the preceding lists is relevant; in general, problems become “harder”
when going from left to right. More specifically, for the O and C fields the order
is that of strict containment between problem classes: for instance, linear objective
functions are strictly a special case of diagonal convex quadratic ones (by allowing
the diagonal elements all to be zero), the latter are a strict subset of general convex
quadratic objectives (by allowing the off-diagonal elements all to be zero), and these are
strictly subsets of general nonconvex quadratic ones (since these permit any symmetric
Hessian includingpositive semidefinite ones). The onlyfield forwhich the containment
relationship is not a total order is V, for which only the partial orderings

C ⊂ M ⊂ G, B ⊂ M ⊂ G, and B ⊂ I ⊂ G

123

QPLIB: a library of quadratic programming instances

hold. The following discussion repeatedly exploits this ordering by assuming that,
unless otherwise mentioned, when a method can be applied to a given problem, it
can also be applied to all simpler problems where the value of each field is arbitrarily
replaced with a value denoting a less-general class.

The wildcard “*” will be used below to indicate any possible choice, and lists of
the form “{X, Y, Z}” will indicate that the value of the given field can freely attain any
of the specified values.

2.2.2 Examples and reformulations

Wenowgive a general discussion about the different problem classes that our proposed
taxonomy defines. For simplicity, this section assumes minimization problems. Some
problem classes are actually “too simple” to make sense in our context. For instance,
D*B problems have only diagonal quadratic (hence separable) objective function and
bound constraints; as such, they read

min
{∑

j∈N
(1
2Q

0
j x

2
j + b0j x j

) : l j ≤ x j ≤ u j j ∈ N , x j ∈ Z j ∈ Z
}
.

Hence, their solution only requires the independentminimization of a convex quadratic
univariate function in each single variable x j over a box constraint and possibly inte-
grality requirements, which can be attained trivially in O(1) operations (per variable)
by closed-form formulæ, projection and rounding arguments. A fortiori, the even sim-
pler cases L*B, D*N and L*N (the latter unbounded unless b0 = 0) will not be
discussed here. Similarly, CCN are immediately solved by linear algebra techniques,
and therefore are of no interest in this context. At the other end of the spectrum, in
general QP is a hard problem. Actually, LIQ—linear objective function and quadratic
constraints in integer variables with no finite bounds, i.e.,

min
{
b0x : 1

2 x
�Qi x + bi x ≤ ci i ∈ M , x j ∈ Z j ∈ N

}
,

is not only NP-hard, but undecidable [78]. Hence so are the “harder” {C,Q}IQ.
It is important to note that the relationships between the different classes can be

somehowblurred because reformulation techniquesmay allowone tomove an instance
from one class to another. We already mentioned that x2 = x ⇐⇒ x ∈ {0, 1}, and
in general *M*—instances with only binary and continuous variables—can be recast
as *CQ; here nonconvex quadratic constraints take the place of binary variables. More
generally, this is also true for *G* as long as U = ∅, as bounded general integer
variables can be represented by binary ones. Hence, the nonconvexity due to binary
variables can always be expressed bymeans of (nonconvex) quadratic constraints. The
converse is also true: when only binary variables are present, all quadratic constraints
can be converted into convex ones [17,18].

Another relevant reformulation trick concerns the fact that, as soon as quadratic
constraints are allowed, then there is no loss of generality in assuming a linear objective
function. Indeed, any Q** (C*C) problem can always be rewritten as

123

F. Furini et al.

min x0

− ∞ ≤ 1
2 x

�Q0x + b0x ≤ x0

cil ≤ 1
2 x

�Qi x + bi x ≤ ciu i ∈ M
l j ≤ x j ≤ u j j ∈ N
x j ∈ Z j ∈ Z

i.e., a L*Q (L*C) problem. Hence, it is clear that quadratic constraints are, in a well-
defined sense, the most general situation (cf. also the result above about hardness of
LIQ).

When a Qi is positive semidefinite (PSD), i.e., the corresponding constraint/
objective function is convex, general Hessians are in fact equivalent to diagonal ones.
In particular, since every PSD matrix can be factorized as Qi = Li (Li)�, e.g., by
the (incomplete) Cholesky factorization, the term 1

2 x
�Qi x ≡ 1

2

∑
j∈N zi 2j where

zi � = x�Li . Hence, onemight maintain that D** problems need not be distinguished
from C** ones. However in reality, this is only true for “complicated” constraints but
not for “simple” ones, because the above reformulation technique introduces additional
linear constraints, Li �x − zi = 0. Indeed, while C*L (and, a fortiori, C*{C,Q}) can
always be brought to D*L (D*{C,Q}), using the above technique C*B becomes D*L,
whichmaybe significantly different fromD*B. In practice, a diagonal convex objective
function under linear constraints is found in many applications (e.g., [51,54,56,57]),
so that it still makes sense to distinguish the D*L case where the objective function is
“naturally” separable from that where separability is artificially introduced.

Furthermore, as previously remarked, a not (positive or negative) definite Qi

does not necessarily correspond to a nonconvex feasible region. For instance, it is
well-known that Second-Order Cone Programs have convex feasible regions; when
represented in terms of quadratic constraints, however, they correspond to Qi with one
negative eigenvalue. In our taxonomy we still consider the corresponding instances as
**Q ones, with no attempt to detect the different special structures that actually cor-
respond to convex feasible regions. Although this may lead to classify as “potentially
nonconvex” some instances that are in fact convex, our choice is justified by the fact
that not all QP solvers are capable of detecting and exploiting these structures, which
means that the instance can actually be treated as a nonconvex one even if it is not.

One of the nontrivial choices in our library is that we made no effort to reformulate
the instances, and inserted them in the library in the very same form as they have been
provided to us by the original contributors. The rationale of this choice is that refor-
mulation techniques, like the ones discussed here and others, are typically motivated
by the fact that they make the instance easier to solve for one specific class of solvers.
This being a bias that we do not want to add we have chosen to keep the instances
in their “natural” form, this being the one in which the original contributor initially
wrote them.

2.2.3 QP classes

The proposed taxonomy can then be used to describe the main classes of QP according
to the type of algorithms that can be applied for their solution:

123

QPLIB: a library of quadratic programming instances

– Linear Programs LCL and Mixed-Integer Linear Programs LGL have been sub-
ject of an enormous amount of research and have their well-established instance
libraries [84], so they will not be explicitly addressed here.

– Convex Continuous Quadratic Programs CCC can be solved in polynomial time
by Interior-Point techniques [147]; the simplerCCL can also be solved bymeans of
“simplex-like” techniques, usually referred to as active-set methods [40]. Actually,
a slightly larger class of problems can be solved with Interior-Point methods: those
that can be represented by Second-Order Cone Programs.Whenwritten as QPs the
corresponding Qi may not be positive semidefinite, but nonetheless such problems
can be efficiently solved. Of course, just as for LCL, these problems may still
require considerable computational effort when the size of the instance grows. In
this sense, like in the linear case, there is a significant distinction between solvers
that need all the data of QP to work, and those that are “matrix-free”, i.e., only
require the application of simple operations (typically, matrix-vector products)
with the problem data. When building our instance library we never exploited
such characteristics, since they are not amenable to standard modeling tools, but
this may be relevant for the solution of very-large-scale CIC.

– Nonconvex Continuous Quadratic Programs QCQ are generally NP-hard, even
if the constraints are very specific (QCB) and only a single eigenvalue of Q0

is negative [75]. They therefore require enumerative techniques, such as spatial
Branch-and-Bound [15,50], to be solved to optimality. Of course, local approaches
are available that are able to efficiently provide saddle points (hopefully, local
optima) of the CQC, but providing global guarantees about the quality of the
obtained solutions is challenging. In our library we have specifically focused on
exact solution of the instances.

– Convex Integer Quadratic Programs CGC are, in general,NP-hard, and therefore
require enumerative techniques to be solved. However, convexity of the objective
function and constraints implies that efficient techniques (see CCC) can be used
at least to solve continuous relaxations. The general view is that CGC are not, all
other things being equal, substantially more difficult than LGL to solve, especially
if the objective function and/or the constraints have specific properties (e.g.,DGL,
CGL). Often, integer variables are in fact binary ones, so several CGC models are
C{B,M}C ones. In practice, binary variables are considered to lead to somewhat
easier problems than general integer ones (cf. the cited result about hardness of
unbounded integer quadratic programs) and several algorithmic techniques have
been specifically developed for this special case. However, the general approaches
for CBC are basically the same as for CGC, so there is seldom the need to distin-
guish between the two classes as far as solvability is concerned, although matters
can be different regarding actual solution cost. Programs with only binary vari-
ables (CBC) can be easier than mixed-binary or integer ones (C{M,I}C) because
some techniques are specifically known for the binary-only case, cf. the next point
[18]. Absence of continuous variables, even in the presence of integer ones (CIC),
can also lead to specific techniques [17].

– Nonconvex Binary Quadratic Programs QB{B,N,L} are NP-hard. However, the
special nature of binary variables combined with quadratic forms allows for quite
specific techniques to be developed, one of which is the reformulation of the prob-

123

F. Furini et al.

lem as a LBL. Also, many well-known combinatorial problems can be naturally
reformulated as problems of this class, and therefore a considerable number of
results have been obtained by exploiting specific properties of the set of constraints
[100,120].

– Nonconvex Integer Quadratic Programs QGQ is the most general, and therefore
is the most difficult, class. Due to the lack of convexity even when integrality
requirements are removed, solution methods must typically combine several algo-
rithmic ideas, such as enumeration (distinguishing the role of integral variables
from that of continuous ones involved in nonconvex terms) and techniques that
allow the efficient computation of bounds (e.g., outer approximation, semidefinite
programming relaxation, …). As in the convex case, QBQ, QMQ, and QIQ can
benefit from more specific properties of the variables [25,38].

This description is deliberately coarse; each of these classes can be subdivided into sev-
eral others on the grounds ofmore detailed information about structures present in their
constraints/objective function. These can have a significant algorithmic impact, and
therefore can be of interest to researchers. Common structures are, e.g., network flows
[51,52,130] or knapsack-type linear constraints [51,57], and semi-continuous vari-
ables [52,53,57], or the fact that a nonconvex quadratic objective function/constraint
can be reformulated as a second-order cone (hence, convex) one [53,56,57]. It would
be very hard to collect a comprehensive list of all types of structures that might be of
interest to any individual researcher, since these are as varied as the different possible
approaches for specialized sub-classes of QP. For this reason we do not attempt such
a more refined classification, and limit ourselves to the coarser one described in this
section.

2.3 Solutionmethods and solvers

This section provides a quick overview of existing solution methods for QP, restricting
ourselves to these implemented by the specific solvers considered in this paper (see
Sect. 2.3.1). For each approach, we briefly describe the formulation they address
according to the Sect. 2.2 classification. Many solvers implement more than one
algorithm, which the user can choose at runtime. Moreover, algorithms are typically
implemented in different ways within different solvers, so that the same conceptual
algorithm can sometimes yield different results or performance measures on the same
instances.

Solution methods for QP can be broadly organized in four categories [110]: incom-
plete, asymptotically complete, complete, and rigorous.

– Incomplete methods are only able to identify solutions, often locally optimal
according to a suitable notion, and may even fail to find one even when one
exists; in particular, they are typically unable to determine that an instance has no
solution.

– Asymptotically completemethods can find a globally optimal solution with proba-
bility one in infinite time, but they cannot prove that a given instance is infeasible
(see Sect. 2.3.3 below).

123

QPLIB: a library of quadratic programming instances

– Complete methods find an approximate globally optimal solution within a pre-
scribed optimality tolerance within finite time, or prove that none such exists (but
see Sect. 2.3.4 below); they are often referred to as exact methods in the compu-
tational optimization community.

– Rigorous methods find globally optimal solutions within given tolerances even in
the presence of rounding errors, except for “near-degenerate cases”. Since none
of the solvers we are using can be classified as rigorous, we limit ourselves to
declaring solvers complete.

We refer the interested reader to [16] and [92] for further details on the solution
methods.

2.3.1 Solvers

When compiling QPLIB, we have worked with the QP solvers in the GAMS dis-
tribution.1 Table 2 provides a list of these solvers, together with a classification of
their algorithm, and references. For more details on the solvers, we refer to the given
references, solver manuals, and the survey [28]. In the table, we mark a pair (solver,
problem) with “I” if the solver accepts the problem as input but it is an incomplete
solver for the problem, with “A” if it is asymptotically complete, with “C” if it is
complete, and leave it blank if the solver won’t accept the provided problem. When
a solver implements several algorithms, we have chosen, for each problem class, the
algorithm that potentially provides the “strongest” results (“C”> “A”> “I”> blank).

2.3.2 Incomplete methods

Incomplete methods are usually realized as local search algorithms, asymptotically
complete methods are usually realized by meta-heuristic methods such as multi-start
or simulated annealing, and complete methods for NP-hard problems such as QP
are typically realized as implicit exhaustive exploration algorithms. However, these
three categories may exhibit some overlap. For example, any deterministic method
for solving QCQ locally is incomplete in general, but becomes complete for CCC,
since any local optimum of a convex QP is also global. Therefore, when we state that
a given algorithm is incomplete or (asymptotically) complete we mean that it is so the
largest problem class that the solver naturally targets, although it may be complete on
specific sub-classes. For example, interior point algorithms naturally target NLPs and
are incomplete on NLPs, and therefore on QCQ, but become complete for CCC. In
general, all complete methods for a problem class P must be complete for any problem
class Q ⊆ P , while a complete method for P might be incomplete for a class R ⊃ P .

The Table 2 solvers which implement incomplete methods for NLPs (a problem
class containingQCQ) areCONOPT, Ipopt,MINOS, SNOPT, andKnitro. Note that
all these solvers tackle the more general class of NLP, while we use them only for the
considerably more restricted QP class. Aside from solvers provided by GAMS, there
are a number of other, specialized, incomplete QP solvers, such as CQP [66], DQP

1 https://www.gams.com.

123

https://www.gams.com

F. Furini et al.

Table 2 Families of QP problems that can be tackled by each solver

CGL QGL CGC QGQ CCC QCQ

AlphaECP [143,144] C I C I C I

ANTIGONE [104,105] C C C C C C

BARON [133–135] C C C C C C

BONMIN [23] C I C I C I

CONOPT [41,42] C I

Couenne [15] C C C C C C

Cplex [19,77] C C C C

DICOPT [45,86,141] C I C I C I

Gurobi [123] C C C

Ipopt [142] C I

Knitro [29] C I C I C A

Lindo API [99] C C C C C C

LGO [116,117] A A

MINOS [108,109] C I

MOSEK [5,6] C C C

MsNlp [91,137] C A

OQNLP [91,137] A A A A C A

SBB [43] C I C I C I

SCIP [1,140] C C C C C C

SNOPT [61,62] C I

Xpress-Optimizer [48] C C C

[68] and OOQP [60] for convex problems, and BQPD [49], QPA [71] and QPB [34],
QPC [67], SQIC [63] for nonconvex ones.

2.3.3 Asymptotically complete methods

An asymptotically complete method reaches a global minimum with certainty or at
least with probability one if allowed to run indefinitely long, but has no means to
know when a global minimizer has been found (see [110]). Most often, these methods
are meta-heuristics, involving an element of random choice, which exploit a given
(heuristic) local search procedure.

The solvers in Table 2 which implement asymptotically complete methods are
OQNLP andKnitro (which apply toQGQ) as well asMsNlp and certain sub-solvers
of LGO (which apply to QCQ).

2.3.4 Complete methods

Complete methods are often referred to as exact in a large part of the mathematical
optimization community. This term has to be used with care, as it implicitly makes
assumptions on the underlying computational model that may not be acceptable in all

123

QPLIB: a library of quadratic programming instances

cases. For example, the decision version ofQCL is known to be in the complexity class
NP [138], whereas the same is not known about LCQ, even with zero objective. On
the other hand, there exists a method for deciding feasibility of systems of polynomial
equations and inequalities [132], including the solution of LCQ with zero objective
function.

To explain this apparent contradiction, we remark that the two statements refer to
different computational models: the former is based on the Turing Machine (TM),
whereas the latter is based on a computational model that allows operations on real
numbers, e.g., the Real RAM (RRAM) machine [21]. Due to the potentially infinite
nature of exact real arithmetic computations, exact computations on the RRAM nec-
essarily end up being approximate on the TM. Analogously, a complete method may
reasonably be called “exact” on a RRAM; however, the computers we use in practice
are more akin to TMs than RRAMs, and therefore calling exact a solver that employs
floating point computations is, technically speaking, stretching the meaning of the
word. However, because the term is well understood in the computational optimiza-
tion community, in the following we shall loosen the distinction between complete
and exact methods, with either properties intended to mean “complete” in the sense
of [110].

Nearly all of the complete solvers in Table 2 that address NP-hard problems
(i.e., those in QGQ�CCC) are based on Branch-and-Bound (BB) [90]. When the BB
algorithm is allowed to branch on coordinate directions corresponding to continuous
variables, it is called spatial BB (sBB) [15,35]. BB algorithms require exponential
time in the worst case, and their exponential behavior unfortunately often shows up in
practice. They can also be used heuristically (forsaking their completeness guarantee)
in a number of ways, e.g., by terminating them early. The following solvers from Table
2 implement complete BB algorithms for QGQ or some subclasses:

– ANTIGONE, BARON, Couenne, Lindo API, and SCIP for QGQ;
– Cplex for QGL and CGC;
– Gurobi and Xpress-Optimizer for QBC;
– BONMIN, Gurobi, Knitro, MOSEK, SBB, and Xpress-Optimizer for CGC.

We remark that the solvers BONMIN, Knitro, and SBB from the latter category
can be used as incomplete solvers for QGQ. We also note that LGO implements an
incomplete BB algorithm for QCQ by using bounds obtained from sampling.

Cutting plane approaches construct and iteratively improve aMILP (LIL) relaxation
of the problem [45,144]. The cutting planes for theMILP are generated by linearization
(first-order Taylor approximation) of the nonlinearities. If the latter are convex, the
MILP provides a valid lower bound for the problem.Additionally, incompletemethods
can be used to provide local solutions. Therefore, these methods are complete onCGC
if a complete method is used to solve the MILP. The latter is typically based on BB,
which is therefore a crucial technique also for this class of approaches. Solvers in Table
2 that implement complete cutting plane methods forCGC areAlphaECP,BONMIN
(in the algorithmic mode B-OA), and DICOPT.

123

F. Furini et al.

3 Library construction

This section presents all the steps we performed to build the new instance library. In
Sect. 3.1, we describe the set of gathered instances, and in Sect. 3.2 we present the
features used to classify the instances. We describe the selection process used to filter
the instances, and graphically present the main features of the selected instances in
Sect. 3.3, while in Sect. 3.4we provide information on how to access the test collection.

3.1 Instance collection

This section describes the procedure we adopted to gather the instances. In January
2014, we issued an online call for instances using main international mailing lists of
the mathematical optimization and numerical analysis communities, reaching in this
way a large set of possibly interested researchers and practitioners. The call remained
open for ten months, during which we received a large number of contributions of
different nature. The instances we gathered come both from theoretical studies as well
as from real-world applications.

In addition to these spontaneous contributions, we analyzed existing generic
instance libraries available containing QP instances. The libraries from which we
gathered instances are

– the BARON library http://www.minlp.com/nlp-and-minlp-test-problems;
– the CUTEst library https://ccpforge.cse.rl.ac.uk/gf/project/cutest;
– the GAMS Performance libraries http://www.gamsworld.org/performance/
performlib.htm;

– the MacMINLP library https://wiki.mcs.anl.gov/leyffer/index.php/MacMINLP;
– the Maros-Mészáros library http://www.doc.ic.ac.uk/~im/00README.QP;
– the MINLPLib library http://www.gamsworld.org/minlp/minlplib.htm;
– the POLIP library http://polip.zib.de/pipformat.php.

Other quadratic instances were found in online libraries devoted to specific QP
problems as Max-Cut, Quadratic Assignment, Portfolio Optimization, and several
others. In addition, we mention that other generic libraries exist, e.g., Conic library
CBLIB (http://cblib.zib.de) and MIPLIB 2010 (http://miplib.zib.de/), to mention just
a few.

At the end of this process, we had gathered more than eight thousand instances.
Three quarters of them contained discrete variables, while the remainder contained
only continuous variables. Inmoredetail,wegathered≈ 1800QuadraticBinaryLinear
(QBL) instances, ≈ 2000 Quadratic Continuous Quadratic (QCQ) instances, and ≈
2500Quadratic General Quadratic (QGQ) instances.We also received≈ 1000Convex
General Convex (CGC) instances. We obtained relatively fewer Quadratic Binary
Quadratic (QBQ), Convex Continuous Convex (CCC) and Convex Mixed Convex
(CMC) instances, (≈ 150, ≈ 200, and ≈ 200 instances, respectively). Finally, we
found only 17 Quadratic Mixed Linear (QML) instances. In the call for instances, no
specific format requirements were imposed for the submissions.

123

http://www.minlp.com/nlp-and-minlp-test-problems
https://ccpforge.cse.rl.ac.uk/gf/project/cutest
http://www.gamsworld.org/performance/performlib.htm
http://www.gamsworld.org/performance/performlib.htm
https://wiki.mcs.anl.gov/leyffer/index.php/MacMINLP
http://www.doc.ic.ac.uk/~im/00README.QP
http://www.gamsworld.org/minlp/minlplib.htm
http://polip.zib.de/pipformat.php
http://cblib.zib.de
http://miplib.zib.de/

QPLIB: a library of quadratic programming instances

To evaluate the instances we decided, for practical reasons, we use GAMS as
commonplatform for all our final selection computations. For this reason,we translated
all the instances we received into the GAMS format (.gms).

For each instance in this large starting set, we collected important characteristics
which allowed us to classify the instances into the QP categories described in Sect. 2.
As far as the variable types are concerned, we collected the following information:

– the number of binary variables;
– the number of integer variables; and
– the number of continuous variables.

If at least one binary or integer variable is present, then the instance is categorized as
discrete, otherwise it is categorized as continuous. As far as the objective function is
concerned, we gathered the following information:

– the percentage of positive and negative eigenvalues of the Hessian Q0; and
– the density of the Hessian Q0 (number of nonzero entries divided by the total
number of entries).

The number of positive (i.e., larger than 10−12) and negative (i.e., smaller than
−10−12) eigenvalues of Q0 allowed us to identify the objective function type, as
in presence of at least one negative (positive) eigenvalue the objective function is
nonconvex (nonconcave). Finally, as far as the constraint types are concerned, we
collected the following information:

– the number of linear constraints,
– the number of quadratic constraints,
– the number of convex constraints, and
– the number of variable bounds (for non-binary variables).

A constraint is considered quadratic if it contains at least one nonzero in a quadratic
term (if present). Among the quadratic constraints, the ones whose Hessians have only
non-negative eigenvalues (when ciu < ∞) and non-positive eigenvalues (when cil >−∞) are classified as convex constraints; thus, a quadratic constraint with two sided,
finite bounds is nonconvex. Note that this might occasionally lead us to classify some
instances that have conic constraints as nonconvex ones, although their feasible region
is in fact convex—fortunately, only some solvers are capable of properly exploiting
this property. All this information allowed us to analyse the gathered instances and to
perform the filters described in the next paragraph.

3.2 Instance selection

We chose instances based on the following four goals:

1. to represent as far as possible all the different categories of QP problems;
2. to gather “challenging” instances, i.e., ones which can not be easily solved by

state-of-the-art solvers;
3. to include, for each of the categories, a set of well-diversified instances; and
4. to obtain a set of instances which is neither too small, so as to preserve statistical

relevance, nor too large so as to being computationally manageable.

123

F. Furini et al.

Table 3 Instance filter steps Starting set ≈ 8500 instances
⇓ ⇓

≈ 6000 discr. inst. ≈ 2500 cont. inst.
First filter ⇓ ⇓

≈ 3000 discr. inst. ≈ 1000 cont. inst.
Second filter ⇓ ⇓

319 discr. inst. 134 cont. inst.

To achieve such goals, we performed the following two filters, applied in a cascade:

– First Instance Filter.
The first filter was designed to drastically reduce the number of instances by
eliminating the “easy” ones. An empirical measure for the hardness of an instance
is the CPU time needed by a complete solver (cf. Sect. 2.3) to solve it to global
optimality. Accordingly, for each of the gathered instances we ran the complete
solvers in GAMS, whose number depends on the category of the instance under
consideration, cf. Table 2.Thanks to these extensive preliminary tests,wediscarded
all instances that are solved by at least 30% of the complete solvers within a time
limit of 30 seconds.

– Second Instance Filter.
The goal of the second filter was to eliminate “similar” instances. We carefully
analyzed the instances one by one, eliminating all but a few of those with very
similar size and coming from the same donor. The instances discarded by this
second filter are instances of the same specific problem, e.g., we gathered many
MaxCutProblem instances andwekept in the library only a representative small set
of them. The selected representative instances are the larger and computationally
harder ones. Finally, in order to only keep computationally challenging instances
we ran a complete solver forQGQwith a time limit of 120 seconds; all the instances
which have been solved to proven optimality within this time limit were discarded.

In Table 3 we summarize the two filter steps, which allowed us to identify the final set
of 319 discrete instances and 134 continuous instances.

3.3 Analysis of the final set of instances

We now analyze the features of the instances selected to be part of the library. Table 4
provides a global overview. The instances have been divided in continuous vs discrete
and convex vs nonconvex, forming in this way, a classification of 4 macro categories.
As previously mentioned, an instance is classified discrete if it contains at least one
binary or integer variable, and continuous otherwise. On the other hand, an instance
is classified as nonconvex if the objective function is nonconvex (if minimization) or
nonconcave (if maximization) and/or at least one of the constraints is nonconvex, and
convex otherwise.

The detailed characteristics of the instances are presented in Table 5 for discrete
instances (*{B,M,I,G}*) and in Table 6 for continuous ones (*C*). For each category,
the tables report the corresponding number of instances in column “#”. It can be

123

QPLIB: a library of quadratic programming instances

Table 4 Macro classification of
the final set of instances

Variables Convexity #

Continuous Convex 32

Continuous Nonconvex 102

Discrete Convex 31

Discrete Nonconvex 288

Total 453

Table 5 Classification of the
final set of discrete instances

Obj. fun. Variables Constraints #

Linear Binary Quadratic 9

Mixed Convex 14

Quadratic 134

Integer Quadratic 2

General Quadratic 3

Convex (if min) Binary Linear 5

or Mixed Linear 12

Concave (if max) Quadratic 6

Quadratic Binary None 23

Linear 91

Quadratic 5

Mixed Linear 11

Quadratic 1

Integer Linear 2

General Quadratic 1

Total 319

seen that the final set well respects the original distribution of the gathered instances
among the different categories. Indeed, the discrete categories LMQ andQBL are well
represented by 134 and 91 instances, respectively. Similarly, the continuous categories
LCQ and QCQ are well represented by 52 and 30 instances, respectively. Moreover,
the library actually covers the large majority of all possible categories of instances.

We now report some graphs that help in illustrating the main features of the
instances. In Fig. 1 (left) we plot the number of variables (horizontal axis) versus the
number of constraints (vertical axis), both in logarithmic scale. Continuous instances
are marked with “+” and discrete ones with “×”. Box constraints are not counted as
constraints. The figure shows that the library contains a quite diverse set of instances
in terms of number of variables and constraints. The record on the maximal number
of variables and constraints (both ≈ 1, 000, 000) is set by the instances QPLIB_8547
and QPLIB_9008. Figure 1 (right) plots the number of nonzero elements in the gra-
dient of the objective function and the Jacobian and the number of these nonzeros
corresponding to nonlinear variables, that is, it counts the appearances of variables in
objectives and constraints and how often such an appearance is in a quadratic term.

123

F. Furini et al.

Table 6 Classification of the
final set of continuous instances

Obj. fun. Constraints #

Linear Convex 13

Quadratic 52

Convex (if min) Box 3

or Linear 16

Concave (if max) Quadratic 11

Quadratic Linear 6

Convex 3

Quadratic 30

Total 134

Fig. 1 Distribution of number of variables and constraints of QPLIB instances (left). Number of (nonlinear)
nonzeros of QPLIB instances (right)

Figure 2 describes how discrete and continuous variables are distributed within the
instances. The instances are sorted accordingly to the total number of variables. For
each instance we report the total number of variables with a “+”, and the total number
of discrete variables (binary or general integer) with a “×”. The pictures clearly show
that instanceswith different percentages of integer and continuous variables are present
in the library, and that these differences are well distributed across the whole spectrum
of variable sizes.

Similarly, Fig. 3 (left) describes how the number of linear and quadratic constraints
are distributed within the instances. The instances are sorted accordingly to the total
number of constraints. For each instance we report the total number of constraints with
a “+” and the total number of quadratic constraints with a “×”. Also in this case, dif-
ferent percentages of linear and quadratic constraints are present and well-distributed
across the spectrumof constraint sizes, althoughbothmedium- and large-size instances
show a prevalence of lower percentages of quadratic constraints. In particular, from
Fig. 3 (left) we learn that while the maximum number of linear constraints exceeds
1,000,000, the maximum number of quadratic constraints tops up at 140,000. This
is, however, reasonable, considering how quadratic constraints can, in general, be
expected to be much more computationally challenging than linear ones, especially if
nonconvex.

123

QPLIB: a library of quadratic programming instances

Fig. 2 Number of variables of QPLIB instances

Fig. 3 Number of constraints, quadratic constraints, and nonconvex quadratic constraints of QPLIB
instances

Figure 3 (right) shows the instances with at least one quadratic constraint sorted
according to the number of quadratic constraints (vertical axis). For each instance we
report the total number of constraints with a “+” and the total number of nonconvex
quadratic constraints with a “×”. It can be seen that the majority of instances only
have nonconvex constraints.

On the theme of nonconvexity, Fig. 4 (left) focuses on the instances with a quadratic
objective function, ordered by percentage of “problematic” eigenvalues in the Hessian
Q0 (vertical axis), by which we mean eigenvalues below −10−12 in case of a mini-
mization problem and eigenvalues above 10−12 in case of a maximization problem.
The instances aremostly clustered around two values. About 25%of the instances have
a convex (if minimization) or concave (if maximization) objective function, i.e., they
have 0% of “problematic” eigenvalues. Among the others, a vast majority has around

123

F. Furini et al.

Fig. 4 “Problematic” eigenvalues (left) and density (right) of the Hessian Q0 for QPLIB instances with a
quadratic objective function

50% of “problematic” eigenvalues. However, instances with high or low percentages
of “problematic” eigenvalues are present, too.

Similarly, Fig. 4 (right) shows the instances with a quadratic objective function
sorted according to the density of the Hessian Q0 (vertical axis). The majority of the
instances have either a very low or a rather high density: indeed, about 30% of the
instances have density smaller than 5%, and about 30% of the instances have density
larger than 50%. However, also intermediate values are present.

Additional details on the instance features can be found in Appendix A.

3.4 Website

The QPLIB instances are publicly accessible at the website http://qplib.zib.de, which
was created by extending scripts and tools initially developed for MINLPLib2 [139].
We provide all instances in GAMS (.gms), AMPL (.mod), CPLEX (.lp) [77], and
QPLIB (.qplib) formats. The latter is a new format specifically for QP instances.
In comparison to more high level formats such as .gms and .lp, the new format
offers three main advantages: it is easier to read by a stand-alone parser, it typically
produces smaller files, and it permits the inclusion of two-sided inequalities without
needless repetition of data. See Appendix B for more details.

Beyond the instances, the website provides a rich set of metadata for each instance:
the three letter problem classification (as described in Sect. 3.3), the contributor of the
instance, basic properties such as the number of variables and constraints of different
types, the sense and convexity/concavity of the objective function, and information
on the nonzero structure of the problem. In addition, we display a visualization of the
sparsity patterns of the Jacobian and the Hessian matrix of the Lagrangian function,
if the instance size allows. In the plots of the Jacobian nonzero pattern, the linear and
nonlinear entries are distinguished by color. Figure 5 shows an example for instance
QPLIB_2967. Finally, feasible solution points are provided for most instances.

The entire set of instances can be explored in a searchable and sortable table of
selected instance features: problem classification, convexity of the continuous relax-
ation, number of (all, binary, integer) variables, (all, quadratic) constraints, nonzeros,

123

http://qplib.zib.de

QPLIB: a library of quadratic programming instances

Fig. 5 Example for the sparsity
pattern of the Jacobian of the
constraint functions (left) and of
the upper-right triangle of the
Hessian of the Lagrangian
function (right) for instance
QPLIB_2967. The gradient of
the objective function is
displayed as the first row of the
Jacobian matrix. Non-constant
entries are shown in red

problematic eigenvalues in Q0, and density of Q0. Finally, a statistics page displays
diagrams on the composition of the library according to different criteria: the num-
ber of instances according to problem type, variable and constraint types, convexity,
problem size, and density. A file containing the relevant metadata for each instance
can be downloaded in comma-separated-values (csv) format, so that researchers can
easily compile their own subset of instances according to these statistics.

The complete library can be downloaded as one archive, which contains the website
for offline browsing and exploration. In the future, we plan to extend the website by
references to the literature.

4 Final remarks

This paper described the first comprehensive library of instances for quadratic pro-
gramming (QP). Since QP comprises different and “varied” categories of problems,
we proposed a classification and we briefly discussed the main classes of solution
methods for QP. We then described the steps of the adopted process used to filter the
gathered instances in order to build the new library. Our design goals were to build a
library which is computationally challenging and as broad as possible, i.e., it repre-
sents the largest possible categories of QP problems, while remaining of manageable
size. We also proposed a stand-alone QP format that is intended for the convenient
exchange and use of our QP instances.

We want to stress once again that we intentionally avoided to perform a com-
putational comparison of the performances of different solution methods or solver
implementations. Our goal was instead to provide a broad test bed of instances for
researchers and practitioners in the field. This new library will hopefully serve as a
point of reference to inspire and test new ideas and algorithms for QP problems.

123

F. Furini et al.

Finally, we want to emphasize that this QP collection can only be a snapshot of
the types of problems that researchers and practitioners have worked on in the past.
With the growing interest in this area, we hope that new applications and instances
will become available and that the library can be extended dynamically in the future.

Acknowledgements We are grateful to all the donors who provided instances for the library. We gratefully
acknowledge the financial support of the GaspardMonge Program for Optimization and operations research
(PGMO) and the logistic support of GAMS for having provided us with a license for their software. Finally,
wewould like to acknowledge the financial and networking support by the COSTAction TD1207. Thework
of the fifth and twelfth author was supported by the Research Campus MODAL Mathematical Optimiza-
tion and Data Analysis Laboratories funded by the Federal Ministry of Education and Research (BMBF
Grant 05M14ZAM). The work of the sixth author was supported by the EPSRC grant EP/M025179/1. All
responsibility for the content of this publication is assumed by the authors.

References

1. Achterberg, T.: SCIP: solving constraint integer programs. Math. Prog. Comput. 1(1), 1–41 (2009)
2. Adachi, S., Iwata, S., Nakatsukasa, Y., Takeda, A.: Solving the trust-region subproblem by a gener-

alized eigenvalue problem. SIAM J. Optim. 27(1), 269–291 (2017)
3. Ahmetović, E., Grossmann, I.E.: Global superstructure optimization for the design of integrated

process water networks. AIChE J. 57(2), 434–457 (2011)
4. Alfaki, M., Haugland, D.: A multi-commodity flow formulation for the generalized pooling problem.

J. Global Optim. 56(3), 917–937 (2013)
5. Andersen, E., Roos, C., Terlaky, T.: On implementing a primal-dual interior-point method for conic

quadratic optimization. Math. Prog. 95(2), 249–277 (2003)
6. Andersen, E.D., Andersen, K.D.: The Mosek interior point optimizer for linear programming: an

implementation of the homogeneous algorithm. In: Frenk, H., Roos, K., Terlaky, T., Zhang, S. (eds.)
High Performance Optimization, pp. 197–232. Springer, Boston (2000)

7. Anjos, M.F., Liers, F.: Global approaches for facility layout and VLSI floorplanning. In: Anjos, M.F.,
Lasserre, J.B. (eds.) Handbook on Semidefinite, Conic and Polynomial Optimization, International
Series in Operations Research and Management Science, vol. 166, pp. 849–877. Springer, Boston
(2012)

8. Anstreicher, K.M.: Recent advances in the solution of quadratic assignment problems. Math. Prog.
97(1–2), 27–42 (2003)

9. Audet, C., Guillou, A., Hansen, P., Messine, F., Perron, S.: The small hexagon and heptagon with
maximum sum of distances between vertices. J. Global Optim. 49(3), 467–480 (2011)

10. Audet, C., Hansen, P., Messine, F.: The small octagon with longest perimeter. J. Comb. Theory Ser.
A 114(1), 135–150 (2007)

11. Audet, C., Hansen, P., Messine, F.: Simple polygons of maximum perimeter contained in a unit disk.
Discrete Comput. Geom. 41(2), 208–215 (2009)

12. Audet, C., Hansen, P., Messine, F., Xiong, J.: The largest small octagon. J. Comb. Theory Ser. A
98(1), 46–59 (2002)

13. Audet, C., Ninin, J.: Maximal perimeter, diameter and area of equilateral unit-width convex polygons.
J. Global Optim. 56(3), 1007–1016 (2013)

14. Bagajewicz, M.: A review of recent design procedures for water networks in refineries and process
plants. Comput. Chem. Eng. 24(9–10), 2093–2113 (2000)

15. Belotti, P., Lee, J., Liberti, L., Margot, F., Wächter, A.: Branching and bounds tightening techniques
for non-convex MINLP. Optim. Methods Softw. 24(4–5), 597–634 (2009)

16. Best, M.J.: Quadratic Programming with Computer Programs. Advances in Applied Mathematics,
vol. 1. Chapman and Hall, London (2017)

17. Billionnet, A., Elloumi, S., Lambert, A.: An efficient compact quadratic convex reformulation for
general integer quadratic programs. Comput. Optim. Appl. 54(1), 141–162 (2013)

123

QPLIB: a library of quadratic programming instances

18. Billionnet, A., Elloumi, S., Plateau, M.: Improving the performance of standard solvers for quadratic
0–1 programs by a tight convex reformulation: the QCRmethod. Discrete Appl. Math. 157(6), 1185–
1197 (2009)

19. Bixby, E.R., Fenelon, M., Gu, Z., Rothberg, E., Wunderling, R.: MIP: theory and practice–closing the
gap. In: Powell, M.J.D., Scholtes, S. (eds.) System Modelling and Optimization: Methods, Theory
and Applications. 19th IFIP TC7 Conference on System Modelling and Optimization July 12–16,
1999, Cambridge, UK, pp. 19–49. Springer, Boston (2000)

20. Bley, A., Gleixner, A.M., Koch, T., Vigerske, S.: ComparingMIQCP solvers to a specialised algorithm
for mine production scheduling. In: Bock, H.G., Hoang, X.P., Rannacher, R., Schlöder, J.P. (eds.)
Modeling, Simulation and Optimization of Complex Processes, pp. 25–39. Springer, Berlin (2012)

21. Blum, L., Shub, M., Smale, S.: On a theory of computation and complexity over the real numbers:
NP-completeness, recursive functions, and universal machines. Bull. Am. Math. Soc. 21(1), 1–46
(1989)

22. Bomze, I.M., Budinich, M., Pardalos, P.M., Pelillo, M.: The maximum clique problem. In: Du, D.Z.,
Pardalos, P.M. (eds.) Handbook of Combinatorial Optimization, pp. 1–74. Springer, Boston (1999)

23. Bonami, P., Biegler, L.T., Conn, A.R., Cornuéjols, G., Grossmann, I.E., Laird, C.D., Lee, J., Lodi, A.,
Margot, F., Sawaya, N., Wächter, A.: An algorithmic framework for convex mixed integer nonlinear
programs. Discrete Optim. 5(2), 186–204 (2008)

24. Bragalli, C., D’Ambrosio, C., Lee, J., Lodi, A., Toth, P.: On the optimal design of water distribution
networks: a practical MINLP approach. Optim. Eng. 13(2), 219–246 (2012)

25. Buchheim, C., Wiegele, A.: Semidefinite relaxations for non-convex quadratic mixed-integer pro-
gramming. Math. Program. 141(1), 435–452 (2013)

26. Burer, S.: Copositive programming. In: Anjos, F.M., Lasserre, B.J. (eds.) Handbook on Semidefinite,
Conic and Polynomial Optimization, pp. 201–218. Springer, Boston (2012)

27. Burer, S., Saxena, A.: The MILP road to MIQCP. In: Lee, J., Leyffer, S. (eds.) Mixed Integer Non-
linear Programming, The IMA Volumes in Mathematics and its Applications, vol. 154, pp. 373–405.
Springer, Boston (2012)

28. Bussieck, M.R., Vigerske, S.: MINLP solver software. In: C, J.J., et al. (eds.) Wiley Encyclopedia of
Operations Research and Management Science. Wiley, London (2010)

29. Byrd, R.H., Nocedal, J., Waltz, R.: KNITRO: an integrated package for nonlinear optimization. In:
di Pillo, G., Roma, M. (eds.) Large-Scale Nonlinear Optimization, Nonconvex Optimization and Its
Applications. Springer, Boston (2006)

30. Castillo, I., Westerlund, J., Emet, S., Westerlund, T.: Optimization of block layout design problems
with unequal areas: a comparison of MILP and MINLP optimization methods. Comput. Chem. Eng.
30(1), 54–69 (2005)

31. Castillo, P.A.C., Mahalec, V., Kelly, J.D.: Inventory pinch algorithm for gasoline blend planning.
AIChE J. 59(10), 3748–3766 (2013)

32. Castro, J., Frangioni, A., Gentile, C.: Perspective reformulations of the CTA Problem with L2 dis-
tances. Oper. Res. 62(4), 891–909 (2014)

33. Castro, P.M., Teles, J.P.: Comparison of global optimization algorithms for the design of water-using
networks. Comput. Chem. Eng. 52, 249–261 (2013)

34. Conn, A.R., Gould, N.I.M., Orban, D., Toint, P.L.: A primal-dual trust-region algorithm for non-
convex nonlinear programming. Math. Program. 87(2), 215–249 (2000)

35. Dakin, R.: A tree search algorithm for mixed programming problems. Comput. J. 8(3), 250–255
(1965)

36. D’Ambrosio, C., Linderoth, J., Luedtke, J.: Valid inequalities for the pooling problemwith binary vari-
ables. In: Günlük, O., Woeginger, G.J. (eds.) Integer Programming and Combinatoral Optimization.
Lecture Notes in Computer Science, vol. 6655, pp. 117–129. Springer, Berlin (2011)

37. Deng, Z., Bai, Y., Fang, S.C., Tian, Y., Xing, W.: A branch-and-cut approach to portfolio selection
with marginal risk control in a linear conic programming framework. J. Syst. Sci. Syst. Eng. 22(4),
385–400 (2013)

38. Dong,H.:Relaxing nonconvex quadratic functions bymultiple adaptive diagonal perturbations. SIAM
J. Optim. 26(3), 1962–1985 (2016)

39. Dorneich, M.C., Sahinidis, N.V.: Global optimization algorithms for chip layout and compaction.
Eng. Optim. 25(2), 131–154 (1995)

40. Dostál, Z.: Optimal Quadratic Programming Algorithms: With Applications to Variational Inequali-
ties. Springer, Heidelberg (2009)

123

F. Furini et al.

41. Drud, A.: CONOPT: a GRG code for large sparse dynamic nonlinear optimization problems. Math.
Program. 31(2), 153–191 (1985)

42. Drud, A.S.: CONOPT: a large-scale GRG code. INFORMS J. Comput. 6(2), 207–216 (1994)
43. Drud, A.S.: SBB.ARKIConsulting andDevelopment A/S (2017). https://www.gams.com/25.0/docs/

S_SBB.html. Accessed Sept 2017
44. Dür, M.: Copositive programming: a survey. In: Diehl, M., Glineur, F., Jarlebring, E., Michiels, W.

(eds.) Recent Advances in Optimization and its Applications in Engineering: The 14th Belgian-
French-German Conference on Optimization, pp. 3–20. Springer, Berlin (2010)

45. Duran, M.A., Grossmann, I.E.: An outer-approximation algorithm for a class of mixed-integer non-
linear programs. Math. Program. 36(3), 307–339 (1986)

46. Erway, J.B., Gill, P.E.: A subspace minimization method for the trust-region step. SIAM J. Optim.
20(3), 1439–1461 (2010)

47. Faria, D.C., Bagajewicz, M.J.: A new approach for global optimization of a class of MINLP problems
with applications to water management and pooling problems. AIChE J. 58(8), 2320–2335 (2012)

48. FICO:Xpress optimization suite (2017). http://www.fico.com/en/products/fico-xpress-optimization-
suite. Accessed Sept 2017

49. Fletcher, R.: Stable reduced Hessian updates for indefinite quadratic programming. Math. Program.
87(2), 251–264 (2000)

50. Floudas, C.,Visweswaran,V.:Aglobal optimization algorithm (GOP) for certain classes of nonconvex
NLPs-I. Theory Comput. Chem. Eng. 14(12), 1397–1417 (1990)

51. Frangioni, A., Furini, F., Gentile, C.: Approximated perspective relaxations: a project and lift
approach. Comput. Optim. Appl. 63(3), 705–735 (2016)

52. Frangioni, A., Galli, L., Scutellà, M.: Delay-constrained shortest paths: approximation algorithms
and second-order cone models. J. Optim. Theory Appl. 164(3), 1051–1077 (2015)

53. Frangioni, A., Galli, L., Stea, G.: Delay-constrained routing problems: accurate scheduling models
and admission control. Comput. Oper. Res. 81, 67–77 (2017)

54. Frangioni, A., Gentile, C.: Perspective cuts for a class of convex 0–1 mixed integer programs. Math.
Program. 106(2), 225–236 (2006)

55. Frangioni, A., Gentile, C.: SDP diagonalizations and perspective cuts for a class of nonseparable
MIQP. Oper. Res. Lett. 35(2), 181–185 (2007)

56. Frangioni, A., Gentile, C.: A computational comparison of reformulations of the perspective relax-
ation: SOCP vs cutting planes. Oper. Res. Lett. 37(3), 206–210 (2009)

57. Frangioni, A., Gentile, C., Grande, E., Pacifici, A.: Projected perspective reformulations with appli-
cations in design problems. Oper. Res. 59(5), 1225–1232 (2011)

58. Geissler, B., Morsi, A., Schewe, L.: A new algorithm for MINLP applied to gas transport energy cost
minimization. In: Jünger, M., Reinelt, G. (eds.) Facets of Combinatorial Optimization, pp. 321–353.
Springer, Berlin (2013)

59. Gentilini, I., Margot, F., Shimada, K.: The travelling salesman problemwith neighbourhoods:MINLP
solution. Optim. Methods Softw. 28(2), 364–378 (2013)

60. Gertz, E.M., Wright, S.J.: Object-oriented software for quadratic programming. ACM Trans. Math.
Softw. 29(1), 58–81 (2003)

61. Gill, P.E., Murray, W., Saunders, M.A.: SNOPT: an SQP algorithm for large-scale constrained opti-
mization. SIAM J. Optim. 12(4), 979–1006 (2002)

62. Gill, P.E., Murray, W., Saunders, M.A.: SNOPT: an SQP algorithm for large-scale constrained opti-
mization. SIAM Rev. 47(1), 99–131 (2005)

63. Gill, P.E., Wong, E.: Methods for convex and general quadratic programming. Math. Program. Com-
put. 7(1), 71–112 (2015)

64. Gleixner, A.M., Held, H., Huang, W., Vigerske, S.: Towards globally optimal operation of water
supply networks. Numer. Algebra Control Optim. 2(4), 695–711 (2012)

65. Gould, N.I.M., Lucidi, S., Roma, M., Toint, P.L.: Solving the trust-region subproblem using the
Lanczos method. SIAM J. Optim. 9(2), 504–525 (1999)

66. Gould, N.I.M., Orban, D., Robinson, D.P.: Trajectory-following methods for large-scale degenerate
convex quadratic programming. Math. Program. Comput. 5(2), 113–142 (2013)

67. Gould, N.I.M., Orban, D., Toint, P.L.: GALAHAD, a library of thread-safe Fortran 90 packages for
large-scale nonlinear optimization. ACM Trans. Math. Softw. 29(4), 353–372 (2003)

68. Gould, N.I.M., Robinson, D.P.: A dual gradient-projection method for large-scale strictly convex
quadratic problems. Comput. Optim. Appl. 67(1), 1–38 (2017)

123

https://www.gams.com/25.0/docs/S_SBB.html
https://www.gams.com/25.0/docs/S_SBB.html
http://www.fico.com/en/products/fico-xpress-optimization-suite
http://www.fico.com/en/products/fico-xpress-optimization-suite

QPLIB: a library of quadratic programming instances

69. Gould, N.I.M., Robinson, D.P., Thorne, H.S.: On solving trust-region and other regularised subprob-
lems in optimization. Math. Program. Comput. 2(1), 21–57 (2010)

70. Gould, N.I.M., Toint, PhL: A Quadratic Programming Bibliography. Numerical Analysis Group
Internal Report 2000-1. Rutherford Appleton Laboratory, Chilton (2000)

71. Gould, N.I.M., Toint, P.L.: An iterative working-set method for large-scale non-convex quadratic
programming. Appl. Numer. Math. 43(1–2), 109–128 (2002)

72. Gounaris, C.E., First, E.L., Floudas, C.A.: Estimation of diffusion anisotropy in microporous crys-
talline materials and optimization of crystal orientation in membranes. J. Chem. Phys. 139(12),
124,703 (2013)

73. Hager, W.W.: Minimizing a quadratic over a sphere. SIAM J. Optim. 12(1), 188–208 (2001)
74. Hasan, M.M.F., Karimi, I.A., Avison, C.M.: Preliminary synthesis of fuel gas networks to conserve

energy and preserve the environment. Ind. Eng. Chem. Res. 50(12), 7414–7427 (2011)
75. Hemmecke, R., Köppe, M., Lee, J., Weismantel, R.: Nonlinear integer programming. In: Jünger, M.,

Liebling, M.T., Naddef, D., Nemhauser, L.G., Pulleyblank, R.W., Reinelt, G., Rinaldi, G., Wolsey,
A.L. (eds.) 50Years of Integer Programming 1958–2008: From theEarlyYears to the State-of-the-Art,
pp. 561–618. Springer, Berlin (2010)

76. Hifi, M., M’Hallah, R.: A literature review on circle and sphere packing problems: models and
methodologies. Adv. Oper. Res. 2009, 22 (2009)

77. IBM ILOG: CPLEX Optimization Studio, 12.7.0 edn. (2016). http://www.ibm.com/support/
knowledgecenter/SSSA5P

78. Jeroslow, R.: There cannot be any algorithm for integer programming with quadratic constraints.
Oper. Res. 21(1), 221–224 (1973)

79. Jeżowski, J.: Review of water network design methods with literature annotations. Ind. Eng. Chem.
Res. 49(10), 4475–4516 (2010)

80. Kallrath, J.: Exact computation of global minima of a nonconvex portfolio optimization problem. In:
Floudas, C.A., Pardalos, P.M. (eds.) Frontiers inGlobalOptimization, pp. 237–254.KluwerAcademic
Publishers, Alphen aan den Rijn (2003)

81. Kallrath, J.: Cutting circles and polygons from area-minimizing rectangles. J. Global Optim. 43(2–3),
299–328 (2009)

82. Kallrath, J., Rebennack, S.: Cutting ellipses from area-minimizing rectangles. J. Global Optim. 59(2–
3), 405–437 (2014)

83. Khor, C.S., Chachuat, B., Shah, N.: Fixed-flowrate total water network synthesis under uncertainty
with risk management. J. Clean. Prod. 77, 79–93 (2014)

84. Koch, T., Achterberg, T., Andersen, E., Bastert, O., Berthold, T., Bixby, R.E., Danna, E., Gamrath, G.,
Gleixner, A.M., Heinz, S., Lodi, A., Mittelmann, H., Ralphs, T., Salvagnin, D., Steffy, D.E., Wolter,
K.: MIPLIB 2010. Math. Program. Comput. 3(2), 103–163 (2011)

85. Kochenberger, G., Hao, J.K., Glover, F., Lewis, M., Lü, Z., Wang, H., Wang, Y.: The unconstrained
binary quadratic programming problem: a survey. J. Comb. Optim. 28(1), 58–81 (2014)

86. Kocis, G.R., Grossmann, I.E.: Computational experience with DICOPT solving MINLP problems in
process systems engineering. Comput. Chem. Eng. 13(3), 307–315 (1989)

87. Kolodziej, S.P., Castro, P.M., Grossmann, I.E.: Global optimization of bilinear programs with a
multiparametric disaggregation technique. J. Global Optim. 57(4), 1039–1063 (2013)

88. Kolodziej, S.P., Grossmann, I.E., Furman, K.C., Sawaya, N.W.: A discretization-based approach for
the optimization of the multiperiod blend scheduling problem. Comput. Chem. Eng. 53, 122–142
(2013)

89. Krislock, N., Malick, J., Roupin, F.: BiqCrunch: a semidefinite branch-and-bound method for solving
binary quadratic problem. ACM Trans. Math. Softw. 43(4), 32:1–32:23 (2017)

90. Land, A., Doig, A.: An automatic method of solving discrete programming problems. Econometrica
28(3), 497–520 (1960)

91. Lasdon, L., Plummer, J., Ugray, Z., Bussieck, M.: Improved Filters and Randomized Drivers for
Multi-start Global Optimization. McCombs Research Paper Series IROM-06-06. McCombs School
of Business, Austin (2006)

92. Lee, G., Tam, N., Yen, N.: Quadratic Programming and Affine Variational Inequalities: A Qualitative
Study. Nonconvex Optimization and Its Applications. Springer, Boston (2006)

93. Li, J., Li, A., Karimi, I.A., Srinivasan, R.: Improving the robustness and efficiency of crude scheduling
algorithms. AIChE J. 53(10), 2659–2680 (2007)

123

http://www.ibm.com/support/knowledgecenter/SSSA5P
http://www.ibm.com/support/knowledgecenter/SSSA5P

F. Furini et al.

94. Li, J., Misener, R., Floudas, C.A.: Continuous-time modeling and global optimization approach for
scheduling of crude oil operations. AIChE J. 58(1), 205–226 (2012)

95. Li, J., Misener, R., Floudas, C.A.: Scheduling of crude oil operations under demand uncertainty: a
robust optimization framework coupled with global optimization. AIChE J. 58(8), 2373–2396 (2012)

96. Li, X., Armagan, E., Tomasgard, A., Barton, P.I.: Stochastic pooling problem for natural gas produc-
tion network design and operation under uncertainty. AIChE J. 57(8), 2120–2135 (2011)

97. Li, X., Tomasgard, A., Barton, P.I.: Decomposition strategy for the stochastic pooling problem. J.
Global Optim. 54(4), 765–790 (2012)

98. Lin, X., Floudas, C.A., Kallrath, J.: Global solution approach for a nonconvex MINLP problem in
product portfolio optimization. J. Global Optim. 32(3), 417–431 (2005)

99. Lin, Y., Schrage, L.: The global solver in the LINDO API. Optim. Methods Softw. 24(4–5), 657–668
(2009)

100. Loiola, E.M., de Abreu, N.M.M., Boaventura-Netto, P.O., Hahn, P., Querido, T.: A survey for the
quadratic assignment problem. Eur. J. Oper. Res. 176(2), 657–690 (2007)

101. Maranas, C.D., Androulakis, I.P., Floudas, C.A., Berger, A.J., Mulvey, J.M.: Solving long-term finan-
cial planning problems via global optimization. J. Econ. Dyn. Control 21(8–9), 1405–1425 (1997)

102. Misener, R., Floudas, C.A.: Advances for the pooling problem: modeling, global optimization, and
computational studies. Appl. Comput. Math. 8(1), 3–22 (2009)

103. Misener, R., Floudas, C.A.: Global optimization of large-scale pooling problems: quadratically con-
strained MINLP models. Ind. Eng. Chem. Res. 49(11), 5424–5438 (2010)

104. Misener, R., Floudas, C.A.: GloMIQO: global mixed-integer quadratic optimizer. J. Global Optim.
57(1), 3–50 (2013)

105. Misener, R., Floudas, C.A.: ANTIGONE: algorithms for continuous/integer global optimization of
nonlinear equations. J. Global Optim. 59(2–3), 503–526 (2014)

106. Mouret, S., Grossmann, I.E., Pestiaux, P.: A novel priority-slot based continuous-time formulation
for crude-oil scheduling problem. Ind. Eng. Chem. Res. 48(18), 8515–8528 (2009)

107. Mouret, S., Grossmann, I.E., Pestiaux, P.: A new Lagrangian decomposition approach applied to the
integration of refinery planning and crude-oil scheduling. Comput. Chem. Eng. 35(12), 2750–2766
(2011)

108. Murtagh, B.A., Saunders,M.A.: Large-scale linearly constrained optimization.Math. Program. 14(1),
41–72 (1978)

109. Murtagh, B.A., Saunders, M.A.: A projected Lagrangian algorithm and its implementation for sparse
nonlinear constraints. In: Buckley, A.G., Goffin, J.L. (eds.) Algorithms for ConstrainedMinimization
of Smooth Nonlinear Functions, Mathematic Programming Studies, vol. 16, pp. 84–117. Springer,
Berlin (1982)

110. Neumaier, A.: Complete search in continuous global optimization and constraint satisfaction. Acta
Numer. 13, 271–369 (2004)

111. Nyberg, A., Grossmann, I.E., Westerlund, T.: The optimal design of a three-echelon supply chain
with inventories under uncertainty (2012). http://www.minlp.org/library/problem/index.php?i=157.
Accessed Sept 2017

112. Papageorgiou, D.J., Toriello, A., Nemhauser, G.L., Savelsbergh, M.W.P.: Fixed-charge transportation
with product blending. Transp. Sci. 46(2), 281–295 (2012)

113. Parpas, P., Rustem, B.: Global optimization of the scenario generation and portfolio selection prob-
lems. In: Gavrilova, M., Gervasi, O., Kumar, V., Tan, C., Taniar, D., Laganá, A., Mun, Y., Choo, H.
(eds.) Computational Science and Its Applications-ICCSA 2006. Lecture Notes in Computer Science,
vol. 3982, pp. 908–917. Springer, Berlin (2006)

114. Pham, V., Laird, C., El-Halwagi, M.: Convex hull discretization approach to the global optimization
of pooling problems. Ind. Eng. Chem. Res. 48(4), 1973–1979 (2009)

115. Pillo, G.D., Grippo, L., Lampariello, F.: A class of structured quasi-newton algorithms for optimal
control problems. IFAC Proc. Vol. 16(8), 101–107 (1983). 4th IFAC Workshop on Applications of
Nonlinear Programming to Optimization and Control, San Francisco, CA, USA, 20-21 June 1983

116. Pintér, J.D.: LGO: a program system for continuous and Lipschitz global optimization. In: Bomze,
I.M., Csendes, T., Horst, R., Pardalos, P.M. (eds.) Developments inGlobal Optimization, pp. 183–197.
Springer, Boston (1997)

117. Pintér, J.D.: Amodel development system for global optimization. In: De Leone, R., Murli, A., Parda-
los, P.M., Toraldo, G. (eds.) High Performance Algorithms and Software in Nonlinear Optimization,
pp. 301–314. Springer, Boston (1998)

123

http://www.minlp.org/library/problem/index.php?i=157

QPLIB: a library of quadratic programming instances

118. Ponce-Ortega, J.M., El-Halwagi, M.M., Jiménez-Gutiérrez, A.: Global optimization for the synthesis
of property-based recycle and reuse networks including environmental constraints. Comput. Chem.
Eng. 34(3), 318–330 (2010)

119. Rebennack, S., Kallrath, J., Pardalos, P.M.: Column enumeration based decomposition techniques
for a class of non-convex MINLP problems. J. Global Optim. 43(2–3), 277–297 (2009)

120. Rendl, F., Rinaldi, G., Wiegele, A.: Solving max-cut to optimality by intersecting semidefinite and
polyhedral relaxations. Math. Program. 121(2), 307–335 (2008)

121. Rendl, F., Wolkowicz, H.: A semidefinite framework for trust region subproblems with applications
to large scale minimization. Math. Program. 77(1), 273–299 (1997)

122. Rios, L.M., Sahinidis, N.V.: Portfolio optimization for wealth-dependent risk preferences. Ann. Oper.
Res. 177(1), 63–90 (2010)

123. Rothberg, E.: Solving quadratically-constrained models using Gurobi (2012). http://www.gurobi.
com/resources/seminars-and-videos/gurobi-quadratic-constraints-webinar. Accessed Sept 2017

124. Ruiz, J.P., Grossmann, I.E.: Exploiting vector space properties to strengthen the relaxation of bilinear
programs arising in the global optimization of process network. Optim. Lett. 5(1), 1–11 (2011)

125. Ruiz,M.,Briant,O.,Clochard, J.M., Penz,B.: Large-scale standard pooling problemswith constrained
pools and fixed demands. J. Global Optim. 56(3), 939–956 (2013)

126. Saif, Y., Elkamel, A., Pritzker, M.: Global optimization of reverse osmosis network for wastewater
treatment and minimization. Ind. Eng. Chem. Res. 47(9), 3060–3070 (2008)

127. Schittkowski, K.: Numerical solution of a time-optimal parabolic boundary-value control problem.
J. Optim. Theory Appl. 27(2), 271–290 (1979)

128. Stojanovic, S.: Optimal damping control and nonlinear elliptic systems. SIAM J. Control Optim.
29(3), 594–608 (1991)

129. Szabó, P.G., Markót, C.M., Csendes, T.: Global optimization in geometry: circle packing into the
square. In: Audet, C., Hansen, P., Savard, G. (eds.) Essays and Surveys in Global Optimization, pp.
233–265. Springer, New York (2005)

130. Tadayon, B., Smith, J.C.: Algorithms for an integer multicommodity network flow problemwith node
reliability considerations. J. Optim. Theory Appl. 161(2), 506–532 (2013)

131. Tahanan, M., van Ackooij, W., Frangioni, A., Lacalandra, F.: Large-scale unit commitment under
uncertainty. 4OR 13(2), 115–171 (2015)

132. Tarski, A.: A decision method for elementary algebra and geometry. Technical Reports R-109, Rand
Corporation (1951)

133. Tawarmalani, M., Sahinidis, N.V.: Convexification and Global Optimization in Continuous and
Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications, Noncon-
vex Optimization and Its Applications, vol. 65. Kluwer Academic Publishers, Alphen aan den Rijn
(2002)

134. Tawarmalani, M., Sahinidis, N.V.: Global optimization of mixed-integer nonlinear programs: a the-
oretical and computational study. Math. Program. 99(3), 563–591 (2004)

135. Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global optimization.
Math. Program. 103(2), 225–249 (2005)

136. Teles, J.P., Castro, P.M., Matos, H.A.: Global optimization of water networks design using multipara-
metric disaggregation. Comput. Chem. Eng. 40, 132–147 (2012)

137. Ugray, Z., Lasdon, L., Plummer, J., Glover, F., Kelly, J., Martí, R.: Scatter search and local NLP
solvers: a multistart framework for global optimization. Informs J. Comput. 19(3), 328–340 (2007)

138. Vavasis, S.: Quadratic programming is in NP. Inf. Process. Lett. 36, 73–77 (1990)
139. Vigerske, S.: MINLPLib 2. In: L.G. Casado, I. García, E.M.T. Hendrix (eds.) Proceedings of the

XII Global Optimization Workshop MAGO 2014, pp. 137–140 (2014). http://www.gamsworld.org/
minlp/minlplib2

140. Vigerske, S.,Gleixner,A.: SCIP: global optimization ofmixed-integer nonlinear programs in a branch-
and-cut framework. Optim. Methods Softw. 33(3), 563–593 (2018)

141. Viswanathan, J., Grossmann, I.E.: A combined penalty function and outer-approximation method for
MINLP optimization. Comput. Chem. Eng. 14(7), 769–782 (1990)

142. Wächter, A., Biegler, L.T.: On the implementation of a primal-dual interior point filter line search
algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006)

143. Westerlund, T., Lundquist, K.: Alpha-ECP, version 5.04. an interactive MINLP-solver based on
the extended cutting plane method. Technical Reports 01-178-A. Process Design Laboratory, Åbo
Akademi University, Åbo, Finland (2003)

123

http://www.gurobi.com/resources/seminars-and-videos/gurobi-quadratic-constraints-webinar
http://www.gurobi.com/resources/seminars-and-videos/gurobi-quadratic-constraints-webinar
http://www.gamsworld.org/minlp/minlplib2
http://www.gamsworld.org/minlp/minlplib2

F. Furini et al.

144. Westerlund, T., Pörn, R.: Solving pseudo-convex mixed integer optimization problems by cutting
plane techniques. Optim. Eng. 3(3), 253–280 (2002)

145. Wikipedia: Quadratic programming (2016). https://en.wikipedia.org/wiki/Quadratic_programming.
Accessed Sept 2017

146. Wikipedia: Quadratically constrained quadratic program (2016). https://en.wikipedia.org/wiki/
Quadratically_constrained_quadratic_program. Accessed Sept 2017

147. Wright, S.: Primal-Dual Interior-Point Method. SIAM, Philadelphia (1997)

Affiliations

Fabio Furini1 · Emiliano Traversi2 · Pietro Belotti3 · Antonio Frangioni4 ·
Ambros Gleixner5 · Nick Gould6 · Leo Liberti7 · Andrea Lodi8 ·
Ruth Misener9 · Hans Mittelmann10 · Nikolaos V. Sahinidis11 ·
Stefan Vigerske12 · Angelika Wiegele13

Emiliano Traversi
emiliano.traversi@lipn.fr

Pietro Belotti
pietrobelotti@fico.com

Antonio Frangioni
frangio@di.unipi.it

Ambros Gleixner
gleixner@zib.de

Nick Gould
nick.gould@stfc.ac.uk

Leo Liberti
liberti@lix.polytechnique.fr

Andrea Lodi
andrea.lodi@polymtl.ca

Ruth Misener
r.misener@imperial.ac.uk

Hans Mittelmann
mittelmann@asu.edu

Nikolaos V. Sahinidis
sahinidis@cmu.edu

Stefan Vigerske
svigerske@gams.com

Angelika Wiegele
angelika.wiegele@aau.at

1 LAMSADE, Université Paris Dauphine, 75775 Paris, France

2 LIPN, Université de Paris 13, 93430 Villetaneuse, France

3 Xpress-Optimizer Team, FICO, Birmingham, UK

4 Dipartimento di Informatica, Università di Pisa, Largo B. Pontecorvo 2, 56127 Pisa, Italy

5 Department of Mathematical Optimization, Zuse Institute Berlin, Takustr. 7, 14195 Berlin,
Germany

123

https://en.wikipedia.org/wiki/Quadratic_programming
https://en.wikipedia.org/wiki/Quadratically_constrained_quadratic_program
https://en.wikipedia.org/wiki/Quadratically_constrained_quadratic_program

QPLIB: a library of quadratic programming instances

6 STFC-Rutherford Appleton Laboratory, Chilton, Oxfordshire OX11 0QX, England

7 CNRS LIX, École Polytechnique, 91128 Palaiseau, France

8 CERC, École Polytechnique de Montreal, Montreal, Canada

9 Department of Computing, Imperial College London, London, UK

10 School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ
85287-1804, USA

11 Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA

12 GAMS Software GmbH, c/o Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany

13 Institut für Mathematik, Alpen-Adria-Universität Klagenfurt, 9020 Klagenfurt am Wörthersee,
Austria

123

	QPLIB: a library of quadratic programming instances
	Abstract
	1 Introduction
	1.1 Motivation

	2 Quadratic programming in a nutshell
	2.1 Notation
	2.2 Classification
	2.2.1 Taxonomy
	2.2.2 Examples and reformulations
	2.2.3 QP classes

	2.3 Solution methods and solvers
	2.3.1 Solvers
	2.3.2 Incomplete methods
	2.3.3 Asymptotically complete methods
	2.3.4 Complete methods

	3 Library construction
	3.1 Instance collection
	3.2 Instance selection
	3.3 Analysis of the final set of instances
	3.4 Website

	4 Final remarks
	Acknowledgements
	References

