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with opportunities for novel approaches.

We hope that the five papers contained in this
volume encourage researchers working in nonlinear
optimization to branch out into some of these new
emerging areas.

Sven Leyffer and Jorge Nocedal March 10,
2003
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1. Introduction

This is an exciting time to be working in constrained
nonlinear optimization. New ideas abound. Collab-
orations and alliances are forged, rivalry is intense,
competition fierce. Why should this be? After all,
surely the importance of optimization was recognised
many decades ago. So why, now, should there be so
much activity and why did it take so long?

I believe that the answer is complicated, but cer-
tainly one of the main reasons is that, finally, we
really are starting to believe that we have the right
(theoretical and practical) tools to tackle the prob-
lems we have long been asked to solve. What was the
stimulus for this? Well, without doubt in part what
has been called the “interior-point” revolution. But
also the fight-back from the traditionalists, those
who promote earlier “active-set” approaches. And
finally, the recognition from practitioners that, yes
indeed, we can now solve sizable nonlinear program-
ming problems, so that there has been a shift away
from linear models and the thinking that lead to
these.

In this short article, I hope to explain the salient
points of both approaches, the symbiosis that has
arisen, and how both approaches have impacted on
nonlinear optimization. But I also want to look to
the future, and to see how things may develop.

2. History

2.1 Active-set methods

In the beginning, there was linear programming: as
simple an approximation to the real world as one
could possibly make, but nonetheless one of the most
important (and most studied) problems in the his-
tory of computational mathematics. As we all know,
linear programming is concerned with (say) minimiz-
ing a linear function of n unknown parameters (vari-
ables) over a feasible region described by m linear
equations and/or inequalities. A solution will (al-
most always) occur at a vertex of the feasible region,
and the archetypical active-set solution algorithm,
the Simplex method, aims to find such a solution by
moving through a sequence of objective-improving,
feasible, adjacent vertices. Thus, the search is to
determine which of the constraints “define” the so-
lution (the active ones), and which may be safely dis-
carded, and this defining characteristic extends eas-
ily to more general constrained optimization prob-
lems. Such an algorithm may explore an exponen-
tial (in terms of m − n) number of active “sets” in
the worst case, is known to depend linearly on these
parameters on the average, and in practice really
seems to behave just as its average-case performance
predicts. Thus for a problem involving, say, a mil-
lion degrees of freedom, it is reasonable to expect
a few millions iterations. While this might at first
sound impractical, it is vital to recognise that for
linear constraints the dominant cost per iteration is
usually the solution of a system of linear equations,
and that each system is a rank-one modification of
its predecessor. Thus the cost per iteration is of-
ten very small, and it is this feature that has kept
the Simplex method for linear programming compet-
itive over the past 50 years. Most commercial linear
programming systems (such as CPLEX, Xpress and
OSL) still have Simplex components (albeit with nu-
merous enhancements such as advanced crash and
pre-solve procedures, steepest edge exchange rules,
and hyper-sparsity exploiting linear solvers, etc.),
and the active-set paradigm also extends into the
nonlinear world by virtue of successful and widely-
used packages like MINOS [25] and SNOPT [14].
Our experience is that to build a successful active-
set method requires considerable care, since round-
ing errors have ample opportunities to build up and
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cause havoc over the large number of iterations that
occur, even in the linear and quadratic programming
cases.

2.2 Interior-point methods

Knowing that the Simplex method might take an
exponential number of steps started a race to find
alternatives whose worst-case complexity was poly-
nomial in m−n. The first-reported polynomial algo-
rithm, the ellipsoid method, has alas not turned out
to be effective in practice [1]. Fortunately the next
competitor, Karmarkar’s method [21], proved to be
a major advance, and started a frenetic research
feeding-frenzy on interior-point methods which has
continued to this day. Karmarkar’s genius was to
produce a nonlinear iteration that attempted to stay
well away from the boundary of the feasible re-
gion (and thus avoid the influence of the myriad
of vertices) until it approached optimality. It was
soon recognised that the method (and many of its
successors) may be interpreted as the approximate
minimization of a sequence of logarithmic barrier
functions—or, if we prefer, as following the “central
path” defined as the trajectory of such minimizers as
a function of the barrier parameter—and these per-
spectives have obvious and important consequences
for its use for nonlinear problems.

The current state for linear (and many convex)
problems is primal-dual variants (in which, as the
name suggest, duality plays a strong role and pri-
mal and dual variables are treated equally) whose
worst-case behaviour to achieve a close-to optimal
solution varies like O(

√
m − n) in theory and signif-

icantly better (perhaps O(log(m − n))?) in practice
[26, 38]. All of the major commercial systems con-
tain interior-point solvers (again with a large num-
ber of enhancements). It is interesting to note that
although such methods require considerably fewer
iterations than their active-set rivals, the cost per
iteration is significantly higher—there is, in general,
no rank-one update for the crucial linear systems—
so that there is still fierce and healthy competition
between the two competing ideologies. Certainly,
active-set interior-point hybrids are now popular and
successful. It remains to be seen that, if in the long
term as problem sizes grow, the superior complexity
bounds for interior-point methods proves decisive,

but I believe this will be the case.

3. Where are we now?

Thus far, all seems perfect. But how do these ideas
extend into the nonlinear, nonconvex world?

3.1 The trouble with SQP . . .

Extending active-set methods would at a first glance
appear to be easy, simply replacing the solution over
the whole feasible set by that over a sequence of ac-
tive sets in which the inactive inequalities are dis-
carded. However, the resulting subproblems are still
nonlinear, and thus in principle will each require
an infinite iteration. Early attempts to “truncate”
such subproblems suffered from a nasty phenomenon
known as zig-zagging in which constraints continu-
ally entered and left the active set.

A more successful idea is to replace the general
problem by a sequence of “simple”, tractable approx-
imations. For instance, one might replace the objec-
tive and constraints by linear approximations (the
so-called Successive Linear Programming or SLP ap-
proach [11]) or perhaps the objective by a quadratic
approximation (the Successive Quadratic Program-
ming or SQP approach [2, 19]). The advantage here
is that the subproblem (a linear or quadratic pro-
gram) is significantly easier to solve than the non-
linear approximation of the previous paragraph. In-
deed if the quadratic approximation is convex (or
a linear approximation used), we have polynomial-
time subproblem-solution methods at our disposal.
Having solved the subproblem, we can use its solu-
tion as the next trial iterate, and we might embed
such a scheme within a linesearch, a trust-region or
a filter globalization scheme. But caution is needed
here, since there are a number of potential pitfalls.

Firstly, it is well known that the globaliza-
tion scheme may interfere catastrophically with the
SLP/SQP step (the Maratos effect) and avoiding ac-
tion may result in extra computation [2, 19].

Secondly, to obtain fast ultimate convergence,
it is usually vitally important to use some 2nd
derivative information/approximation (and thus ul-
timately some form of SQP iteration). If we are
“lucky” enough to have (and use) exact 2nd deriva-
tives, the resulting nonconvex QP may have a num-



4 SIAG/OPT Views-and-News

ber of local minimizers, some of which may not be
consistent with our overall globalization scheme (the
SQP step may be “uphill”). Although many active-
set QP solvers can ensure that the step is downhill,
I do not currently know how to guarantee this for
interior-point QP solvers. If we must resort to “ap-
proximate” (say secant-approximation) 2nd deriva-
tives, it is known that requirements of sparsity and
positive-definiteness together conflict with stability
[28], so we may be restricted to dense updates, and
thus problems with few degrees of freedom—it is
worth noticing that all of the successful SQP and
SQP-like methods we are aware of (such as MINOS,
SNOPT and filterSQP[10]) rely on having relatively
few degrees of freedom.

Thirdly, if there is one lesson we should have
learned from large-scale unconstrained minimiza-
tion, it is to aim to solve the subproblem as
inaccurately as possible consistent with overall
convergence—the truncated Newton approach [8],
along with its practical manifestation via the lin-
ear (preconditioned) conjugate-gradient method, is
one of the key ideas to have evolved in the uncon-
strained case during the 20th century. So it is clearly
desirable to truncate the LP/QP solution process.
But how? We are aware of almost no work in this
area (but see [24] for an exception), and it is of vital
practical importance. Again, it would seem easier to
stop “early” with an active-set QP solver than with
an interior-point one.

Finally, we would ultimately expect that the ac-
tive sets for our LP/QP subproblems will settle down
as we approach the solution to the overall prob-
lem [27]. This suggests that we should be exploit-
ing a priori information about candidate active sets
to warm start subsequent subproblem solves. This
would seem to be one area in which active-set meth-
ods have a clear edge, since the ability to warm start
interior-point methods is in its infancy—there has
been some work in the LP case [15, 40], but to our
knowledge none for QPs. In practice, by contrast,
we have observed that it is still sometimes faster
(especially in the degenerate case) to “cold-start”
an interior-point QP than “warm start” active set
QP code, simply because even slightly incorrect ac-
tive set predictions can have dramatic undesirable
consequences for active-set methods [20].

We have currently suspended development of

the large-scale SQP method that we had intended
including in GALAHAD [18] despite having pro-
duced both effective active-set and interior-point
QP solvers. Our experience has been that with-
out QP truncation, the cost of the QP solution
so dominates that other non-SQP approaches (such
as IPOPT [33], KNITRO [4] and LOQO [32]), in
which truncation is possible, have made significant
progress even before our QP code had solved its first
subproblem!—see also [23] for further evidence that
interior-point methods appear to scale better than
SQP ones. We are more enthusiastic about an SLP-
QP approach we are currently developing [3], since
LP truncation is in principle easier and since the QP
phase is restricted to a problem with equality con-
straints for which a truncated conjugate-gradient it-
eration is possible.

3.2 Whither interior-point methods . . . ?

As I mentioned above, we produced two (noncon-
vex) quadratic programming packages for GALA-

HAD. Considerable numerical experience has indi-
cated to us that the interior-point version, QPB is
almost always vastly superior for large problems [7].
Since we have now all but given up our SQP de-
velopments, we have now turned to what we con-
sider to be the other possibility, namely to solve gen-
eral constrained optimization problems by sequen-
tial barrier-function minimization, using the lessons
learned when designing and evaluating QPB.

We were warned as children that barrier-function
methods are beastly because of the effects the barrier
has close to the boundary. It later turned out that
these fears were almost groundless, and that actually
observed inefficiencies were to a large degree due to
using the wrong dual variable updates following a
reduction in the barrier parameter [36]. Without
doubt, the problem does become very poorly con-
ditioned near the solution, but this itself does not
cause failure since even search direction calculations
that might result in large numerical errors do not,
because all such errors are confined to uninteresting
subspaces [16, 37, 39]. But being prematurely close
to the boundary certainly is bad in that it can be
painfully slow to escape. For example, if we wish to
minimize −x for x ∈ [0, 1] and start with x0 very
close to zero, the Newton barrier correction (with
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modest barrier parameter) results in a new point
x1 ≈ 2x0. Thus an initial point x0 = 2−40 ≈ 10−12

will take roughly 40 iterations to move to the centre
of the feasible region. The lesson here is, I believe, to
stay away from the boundary unless there are good
reasons to get close (such as if a particular constraint
is active at optimality). I strongly believe that it
pays to stay close to “the” central path since this
avoids as best as possible premature contact with
the boundary, although since different scalings re-
sult in different central paths, it is far from obvious
which path is actually the one to follow!

An important question if we are to use an interior-
point approach is how we should handle equality
constraints. To a certain extent, I suggest this de-
pends on quite what sort of constraints they are.
If they (or some of them) are linear, I believe that
it often pays to use a “phase-1” procedure to find
a “well-centred” feasible point for these constraints,
and thereafter to ensure that they remain satisfied
on all subsequent iterations. The reasoning is sim-
ply that dealing with a nonlinear objective is tricky
enough without having to cope with non-convexity
in subspaces that the constraints rule out—we cer-
tainly have seen the advantages even in the “simple”
case of nonconvex quadratic programming of using
feasible rather than infeasible interior point meth-
ods.

Nonlinear equality constraints are altogether more
tricky, and it is in this area that the most signifi-
cant differences between competing modern interior
point methods occur. Some methods (like IPOPT,
KNITRO, LOQO and INTOPT [22]) prefer to treat
them explicitly by gradually moving towards feasibil-
ity but balancing the requirements of optimality us-
ing a penalty function or filter. Others like [29] and
the method we are developing for GALAHAD replace
equalities by one-sided inequalities (which are then
handled using interior-point technology) and other-
sided penalization. At this stage I do not think we
know which of this approaches is best, but it is likely
that actually there is very little difference.

There are two important side issues here, though.
Firstly, if we really believe we have good methods for
handling equations, is it better to treat inequalities
by converting them to equations using slack vari-
ables and then simply treat the slack variables using
interior-point methods? From a linear-algebraic per-

spective there is little difference, but there seem to
be ardent devotees of both schools of thought [6], so
I do not really believe we have exhausted or settled
this question. Secondly, if we plan to use equality
constraints explicitly, it is vital that there is some co-
herence between the search direction employed and
the merit function used to ensure their ultimate sat-
isfaction. Several cautionary examples [5, 34] attest
to the pitfalls that may befall the unwary.

The asymptotic behaviour of interior-point meth-
ods is relatively well understood even in the non-
convex case, at least under non-degeneracy assump-
tions: the barrier parameter may be reduced at a su-
perlinear rate so that the overall iteration converges
superlinearly for primal-dual methods [17] and 2-
step superlinearly for primal-only methods [9], al-
though the latter requires some care when reducing
the barrier parameter. Some progress has been made
in the degenerate case, but we do not currently have
as complete an understanding as in the linear pro-
gramming case where degeneracy does not hinder
convergence to a well-defined point in the centre of
the face of optimally active constraints. In prac-
tice, asymptotic convergence behaviour appears to
behave just as one would hope from the linear pro-
gramming experience.

So what are the outstanding issues? The effects of
constraint scaling, and just how one might re-scale
to improve convergence are not well understood.
Just as importantly, since as we have hinted we re-
ally wish to truncate the calculation of the Newton-
barrier search direction, we need to discover how to
precondition the conjugate-gradient scheme that we
will undoubtedly use; it is already clear that any pre-
conditioner has to reflect the dominant barrier terms
in the Hessian matrix of the barrier function, but
just how much more is needed is unknown. Finally,
another area where there is room for improvement
is in extrapolation for better points on the central
path. This has proved to be most useful in the lin-
ear programming case, but things are certainly more
complicated for nonlinear problems because of pos-
sible bizarre behaviour [13] of the central path (mul-
tiplicity, bifurcation, and even non-existence).
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4. Conclusions

I hope I have persuaded the reader that these are in-
deed exciting times in nonlinear optimization. With
interior-point and (to some extent) active set ap-
proaches we now have a realistic chance of solv-
ing very large nonlinear programming problems.
Of course there are difficulties, but the ingenuity
and vigour with which the research community is
currently addressing such challenges makes me ex-
tremely optimistic about future progress. Even in
the last few months we have heard of a number of
new and interesting proposals [12, 29, 35, 30, 31],
and we eagerly await to see how these complement
the already large corpus of algorithms and software.
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”PDE Constrained Optimization” and ”Optimiza-
tion of PDEs” were the themes of several conferences
in the past two years, that took place in Santa Fe,
New Mexico, the Weierstrass Institute in Berlin, the
University of Heidelberg, and at the Mathematical
Research Institute in Oberwolfach, Germany. This
field also played an important role at a recent work-
shop at the IMA in Minneapolis during the optimiza-
tion year. Since there is so much interest in this field,
the question arises: Is this a hot new area or is there
already some tradition in this field? The answer is:
both is true.

Back in the seventies ...

Back in the early 70s, when the author was a starting
Ph.D. student at the Technical University of Darm-
stadt, Germany, we had a seminar on a new topic.
No longer optimization in finite dimensions or with
ordinary differential equations but instead ”Opti-
mal Control of Partial Differential Equations”. The
standard applications in those days were the con-
trol of the heat equation or the wave equation, that
still serve as work horses in standard test examples
for numerical methods. Hence already decades ago,
there was research performed in the area of optimiza-
tion of PDEs. Actually, there were also text books
and conference proceedings available that dealt with
the subject of optimal control of PDEs, like e.g.
the books by Butkovski [2] and Lions [4] published
around 1970 and later the proceedings by Ray and
Lainiotis [5].


