Comput Optim Appl (2008) 40: 1-12
DOI 10.1007/s10589-007-9073-5

How good are projection methods for convex feasibility
problems?

Nicholas I.M. Gould

Received: 21 September 2006 / Revised: 4 January 2007 / Published online: 23 October 2007
© Springer Science+Business Media, LLC 2007

Abstract We consider simple projection methods for solving convex feasibility
problems. Both successive and sequential methods are considered, and heuristics
to improve these are suggested. Unfortunately, particularly given the large literature
which might make one think otherwise, numerical tests indicate that in general none
of the variants considered are especially effective or competitive with more sophisti-
cated alternatives.
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1 Introduction

One of the basic tasks in computational science is to find a point satisfying a given
set of equations and/or inequalities. In general this may be a very hard problem, but
fortunately for many realistic examples, the solution set of feasible points is con-
vex. Over the years, a number of simple methods have been proposed for such prob-
lems, in which a sequence of projections into simpler regions defined by subsets of
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the required equations/inequalities are combined in appropriate ways. Many of these
methods have strong convergence guarantees [2, 6, 9], and their simplicity makes
them appear most appealing for large-scale computation. However, despite the large
number of theoretical papers devoted to generalizations and convergence issues, there
appears to have been little effort to investigate how they really perform in practice.
In this paper, we attempt to do so in perhaps the most favourable circumstances, for
which the feasible region is defined as the intersection of two convex sets and for
which individual projections may be easily computed but for which the joint projec-
tion may not.

The particular case we investigate is the linear-feasibility problem. Here we wish
to find a point x € R” satisfying

Ax=b and (1.1a)

xh<x <x*, (1.1b)

where A is m (< n) by n and, for simplicity, of full rank, and any/all of the bounds
x! and x* may be infinite. Given an initial point xo, many of the methods described
in the literature aim to find the x which is “closest” to x( in a well-defined sense; in
the methods we will consider here, closest will be measured in terms of minimizing
llx — xoll2.

The problem (1.1) is important both in its own right, and as a way of means to
solving other optimization problems—for example, the solution set for the linear-
programming problem (in standard form),

minimize ¢/ x subjectto Ax =b and x >0
xeR"
may be expressed as
A 0 0 X b
0 AT 1 y|l=|c and (;)zO,
' —p" 0/ \z 0

where the unknowns y and z are Lagrange multipliers and dual variables respectively.

The paper is organised as follows. Sequential and successive projection methods
are reviewed in Sect. 2.1, and suggestions on how they might be accelerated for the
special problem (1.1) are proposed in Sect. 3. The results of numerical experiments
are reported in Sect. 4, and conclusions drawn in Sect. 5.

2 Projection methods

We now examine the basic classes of projection methods that have been proposed.

We consider the general problem for which C;, i € S def {1, ..., s}, are closed, con-

. . def . .. .
vex sets, and we wish to find a point x € C = (Nies Ci. For simplicity, we restrict

ourselves to finite-dimensional spaces, but note that much of what we say can be
generalized to Hilbert space [1-3].
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2.1 Simple projections

We denote the (orthogonal) projection P;(x) of x onto C; as

P;(x) = argmin F(y, x), 2.2)
veCi

where F(y,x) = %H y — x||%. This is an important special case of a very gen-
eral framework in which F(y,x) = f(y) — f(x) — (Vy f(x),y — x) for a given
inner product (-, -), where the differentiable f is a so-called Bregman function
[9, Sect. 2.1]. Our fundamental assumption will be that we are able to solve (2.2)
at some acceptable cost for eachi € S.

For the system (1.1) of most interest to us, if we let

Cl=Cs ¥ (x|x' <x<x"} and (2.32)

Co=Ca ™ (x| Ax =), (2.3b)
then

Pi(x) = Pp(x) ¥ mid(x!, x, x), 2.4)

. . . def
the component-wise median of the vectors x!, x and x*, while Py(x) = Pa(x) =

p(x), where (p(x), g(x)) satisfy the linear system

I AT px)\ _ (x
(2 %)) -0) @

Certainly (2.4) is trivial, while in many cases (2.5) may be solved by a suitable fac-
torization. More generally, given finite collections of sets {83 j}‘;": , and {£; }f’z | for

which Uij =./\/'d§f{1,...,n} and | J; £; =/\/ld§f{1,...,m},wemightchoose

Cj:{x|xf§xi§x;‘ foralli e Bj}, j=1,...s5, and (2.6a)

Copsi=lxlalx=b; foralljel;}), i=1...s. (2.6b)

J

In this case

mid(xf, x;,x}') forieB;
X

(Pj(x))iz{ l forigél')’j} forj=1,...5 2.7)

and Py, 4 (x) = p;(x), where (p;(x), g; (x)) satisfy the linear system

I Ap pi<x>>_< x )
<A£i 0 )<Qi(x) - bﬁi (2.3)

and Az, and b, denote the rows of A and entries of b indexed by £;,fori =1,...5.
In the extreme case B; ={j}, j=1,...n,and £; ={i}, i =1,...m, all the projec-
tions are onto spaces, or segments of spaces, of dimension one and thus trivial to
compute.
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2.2 Successive projection methods

Armed with suitable ways to apply projections, perhaps the simplest way to try to
find a point in C is to project successively onto the sets C;. In particular, we have the
following scheme.

Algorithm 2.1: Successive projection.

Given xg and € € (0, 1), for k =0, 1, ... until convergence, set

Xkl = (1 — o) xp + o Py (X))

where j (k) = kmods + 1, for some o > €.

This method is sometimes known as cyclic or alternating projection. The simplest
case, when o = 1, was first analysed for the case where {C;};cs are affine subspaces
by von Neumann [31] (when s = 2) and Halperin [20] (for s > 2); in this case the
algorithm converges to the (orthogonal) projection P (xgp) of xo onto C when C # .
Subsequently, the convergence for more general sets has been addressed, and in par-
ticular for polyhedral C; (which includes the descriptions of (1.1) given in Sect. 2.1),
convergence to a point within C # ¢ at a globally linear rate has been established
[3, Theorem 5.6.3]. For affine subspaces C; with non-empty mutual intersection, the
linear convergence factor is the “cosine of the angles between the subspaces”, [3, The-
orem 5.7.8], and one might anticipate that a similar factor involving projections onto
“active” constraints would hold in the polyhedral case. [11]. If the projection P (x)
is required in the non-affine case, it may be necessary to add recursively-computed
outward normals before applying each projection onto non-affine C;—this is Dyk-
stra’s algorithm [15] (see also [21]), and when C; = {x | al.T Xx > b;}, this is equivalent
to Hildreth’s method [22].

The extension to non-unit o is due to Gubin, Polyak and Raik [19]. Convergence
for general o € [€, 2 — €] has been established for special classes of C; [9, Sect. 5.2].
Generalisations in which j (k) need only be ¢ infinitely often for each £ € S, but
not necessarily cyclically so, have also been suggested. For the very special case
for which we simply wish to find a solution to Ax = b, and C; = {x|a,.Tx = b;},
i =1,...,m, the above algorithm is that of Kaczmarz [26] when o = 1.

2.3 Simultaneous projection methods

Rather than successively projecting the current iterate onto individual constraint sets
is to project simultaneously onto all of the sets, and then form a strictly convex sum
of these projections. We summarize this as follows.

The advantage here is that convergence is ensured even when C = ¢, and in the
latter case xj converges to the point for which

> il Pitx) = xl13
ieS
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How good are projection methods for convex feasibility problems? 5

is minimized. The method may actually be interpreted in the simultaneous projection
framework within an appropriate product space when a; = 1 [29], and thus conver-
gence ensured using known results. In particular, for the case of affine sets, this is
Cimmino’s method [10]. Convergence for any ay € [€,2 — €] has been established
for various classes of C; [27, 30].

Algorithm 2.2: Simultaneous projection.

Given xg, and € € (0, 1), choose

A >0,ieS, forwhich Z)‘i =1.
ieS

For k=0, 1, ... until convergence, set

Xppr = (1 — )k +ax ) hi Pi(xk)
ieS

for some o > €.

If the projection P (xg) is required, as for the successive projection case it may be
necessary to add recursively-computed outward normals before applying each pro-
jection onto non-affine C; [24, 25].

3 Stepsize choice for the linear-feasibility problem
We now return to the linear-feasibility problem (1.1), and consider the methods pro-

posed in Sect. 2 for the bi-projection case for which C; =Cp and C, =Cy4 as in (2.3).
In this case, it is convenient to rewrite Algorithm 2.1 as follows.

Algorithm 3.1: Successive bi-projection.

Given xg and € € (0, 1), for k =0, 1, ... until convergence, set
xer1 = (1 —a)xf +ap Pa(xd), 3.1
where
o = =) + o P,

for some a,?, af > €.

While, as we have indicated, it is usual to pick the stepsizes oz;?, oz,f € [€,2 — €], there
is some evidence to suggest that larger stepsizes may be beneficial [29]. In particular,
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6 N.LLM. Gould

Bauschke and Kruk [5] present numerical results that suggest picking oe,? =1 and
af =2 is better than other !, & € [0, 2], along with an accompanying proof of
convergence for this case. More recently, Bauschke, Combettes and Kruk [4] have
investigated the a,‘? = 1 case in more detail—since projection onto Cj is linear, (3.1)
may be written as

X1 = (1 — o) xg + g Pa(Pp(xk))

so long as x; € C4, where we have replaced a,f by o,—and have established conver-
gence for oy (significantly) larger than 2.

How should we pick o ? Since {x;}x>1 € Ca, it is convenient to measure conver-
gence in terms of || Pp(xg) — xx||2. Thus, if we let

x(a) = (1 —a)xp +aPa(Pp(xp)),

it seems reasonable to pick o to minimize ¢ () = || Pp(x (@) — x (@) ||§.

Since ¢ is a differentiable convex piecewise-quadratic function of «, a global min-
imizer is easy to find. Indeed, each component of Pp(x()) — x(«) has derivative
discontinuities at most two values (“breakpoints”) of «. Thus arranging the at-most
2n breakpoints of Pp(x(«)) — x(«) using a heapsort [32], the resulting quadratic
may be examined between increasing pairs of breakpoints until the global minimizer
is found. The slope and curvature of the quadratic may be updated trivially as break-
points are traversed, and the overall cost of the stepsize determination is O (nlogn)
integer and floating-point operations.

Turning to simultaneous projection, Algorithm 2.2 simplifies as follows.

Algorithm 3.2: Simultaneous bi-projection.

Given xg, A € (0, 1) and € € (0, 1), for k =0, 1, ... until convergence, set
X1 = (I — o) xp + o [APa(xp) + (1 — 1) Pp(xi)]

for some oy > €.

Here progress is measured in terms of A || P4(x) — x||% + (1 —=2)|Pp(x)— x||%. Thus
it would seem reasonable to consider the line

x(a) =(1 —a)xp +azg, wherezx =APs(xr)+ (1 —A)Pp(xy),

and to pick o to minimize ¥ (o) = A|| P4 (x(x)) — x(ot)ll% + (1 =N Pg(x(a)) —
x(a) ||%. As for the successive bi-projection case, Y is a differentiable convex
piecewise-quadratic function of & and thus its global minimizer is easy to find.

One small implementational issue is that in order to evaluate ¥ (), it would appear
at first sight that we need to evaluate

Pa((1 —a)xp +oazi) = (1 — o) Pa(xp) +aPa(zi)
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How good are projection methods for convex feasibility problems? 7

and thus that we need to compute (potentially expensive) projections at both xi
and zi. But of course we may subsequently recur

Pa(xpq1) = (1 —ag) Pa(xg) + o Pa(zi)

to start the next iteration, and thus each iteration actually only requires a single pro-
jection P4 (zx) into Cyq.

4 Numerical experience

We now turn to our numerical experience with the algorithms we discussed in Sect. 3
for the linear feasibility problem (1.1). We have implemented both Algorithms 3.1
and 3.2 as a Fortran 95 module LCF (Linearly-Constrained Feasibility) as part of the
upcoming release 2.0 of the nonlinear optimization library GALAHAD [18].

LCF is actually designed to find a feasible point for the general linear constraint
set

l

cl<Ax<c* and x' <x<x" 4.1)

Here any or all of the components of the bounds cl, e, x! and x* may be identical or
infinite, thus allowing equality constraints and fixed or free variables. Although the
details and bookkeeping are more complicated than for (1.1), the underlying method
is essentially to introduce slack variables ¢ and to find a feasible point for the equiv-

alent set
0 X < X < X ( 2)
A X —C= al (1 Cl = = u . 4

The dominant cost per iteration of each algorithm is, of course, the cost of comput-
ing the projection P4 (x). As we suggested in Sect. 2.1, this projection may be calcu-
lated as the solution to the symmetric, indefinite (augmented) linear system (2.5), but
sometimes it is more convenient to obtain it using the range-space/Schur complement
approach, for which

px)=x— ATq(x), where AATq(x) =Ax—b

and the crucial matrix AAT is positive definite. LCF uses another GALAHAD module
SBLS (itself built on top of the HSL [23] package MA27 [14]) to find the projection.
SBLS uses the Schur complement method by default, but switches to the augmented
system approach if A has any relatively dense columns or if AA” proves to be too ill-
conditioned. MA27 may be trivially replaced by the more powerful (but commercial)
package MAS57 [13] if desired.

We consider four strategies. The first two correspond to Algorithm 3.1, the first
(later denoted A3.1(e = 1)) with oz,f = oz,f = | being the original von Neumann [31]
approach, while the second (A3.1(« = opt)) is with a,f =1and o ,f being chosen to
minimize ¢ («) as described in Sect. 3. The second pair of strategies correspond to
Algorithm 3.2 with A = %, the first (A3.2(« = 1)) using the traditional o = 1, and
the second (A3.2(« = opt)) with ox chosen to minimize ().
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8 N.LLM. Gould

Table 1 Types of failures for

each algorithm tested Variant >10° iterations >1800 CPU seconds
A3l(a=1) 36 15
A3.1 (¢ = opt) 29 15
A32(@=1) 40 18
A3.2 (a =opt) 32 15

In our tests, we start from the (usually infeasible) point xg for which
(x0); = x! — 1, if x! is finite, otherwise (xo); = x" + 1, if x is finite, and oth-
erwise (xo); = 0. The corresponding ¢y = Axg. Each run is terminated as soon as
max(||Ps(x,c) — (x,c)ll2, | Pp(x,c) — (x,c)|l2) is smaller than a prescribed stop-
ping tolerance, here 0.000001 In addition, a CPU time limit of half an hour, and an
iteration bound of one million iterations is imposed to preclude unacceptably poor
performance.

No preprocessing of the problems is performed by default, aside from identifying
and removing dependent linear equality constraints. We do this by calling yet another
GALAHAD module FDC. This factorizes

al ATY T
(A O>_LBL

using MA27, and assesses rank deficiency from tiny eigenvalues of the one-by-one
and two-by-two diagonal blocks that make up B—a value o = 0.01 is used by default.
We recognize that this is not as robust as, for example, a singular-value decomposition
or a rank-revealing QR factorization, but fortunately has proved remarkably reliable
in our tests.

All of our experiments were performed on a single processor of a 3.06 GHz Dell
Precision 650 Workstation. The codes were compiled using full optimization with the
Intel ifort compiler, and the computations were performed in double precision.

We consider the complete set of linear programming Netlib and other linear pro-
gramming test problems as distributed with CUTEr [17]. Our intention here is simply
to evaluate projection methods for a diverse and important set of real-life examples.
In particular, since almost all of these problems are known to have feasible points, we
aim to find such a point efficiently.

For comparison purposes, we also apply the GALAHAD interior-point package
LSQP to find the projection of xg onto C.

The complete set of results for our four variants are given in Appendix 1 of the
on-line attachment to this paper. It is immediately clear that none of these methods is
generally reliable or fast. We break down the failures for each variant in Table 1.

By way of comparison, in Appendix 2 of the on-line attachment we give results for
LSQP, which solves all 120 problems with the exception of the (allegedly) infeasible
BCDOUT and MPSBCDO3. To illustrate the relative performance of the five methods,
we plot their CPU time performance profiles [12], for the 118 problems solved by at
least one of the methods, in Fig. 1. It is immediately clear that, at least for this test
set, the interior-point method is vastly superior to all four projection methods. Closer
scrutiny of the detailed results in the appendices indicates that even for the subset

@ Springer



How good are projection methods for convex feasibility problems? 9

Performance Profile: CPU time — Netlib/CUTEr LP problems
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fraction of problems for which solver within o of best

Fig. 1 Performance profile, p(w) including LSQP: CPU time for the 118 problems under consideration

of problems for which all succeed, the interior-point approach is still a clear overall
winner.

We now turn to assessing the projection methods. Since there is little point in
comparing the variants on problems for which all fail, we restrict ourselves to the 77
out of the 120 problems that were solved by at least one variant.

In Figs. 2 and 3, we plot the performance profiles for CPU times and iteration
counts for the projection methods. These indicate that the successive projection meth-
ods are generally superior to the simultaneous ones, and that picking the stepsize to
be locally optimal is better than the traditional unit step. Again, examining the tables
in Appendix 1 in the on-line attachment in detail, the (often pitifully slow) linear
convergence of the methods is apparent.

5 Comments and conclusions

When we started this study, we were under the impression that projection methods
would be generally applicable techniques for solving real-life problems. In particu-
lar, numerical experience with (small) random problems [4, 5, 7] suggests that modest
numbers of iterations are required to achieve reasonable accuracy for methods of the
sort we have described here. This is contrary to our numerical experience, and sim-
ply suggests to us that there is a significant difference between random and real-life
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10 N.LLM. Gould

Performance Profile: CPU time — Netlib/CUTEr LP problems
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Fig. 2 Performance profile, p(w): CPU time for the 77 problems under consideration

problems (similar observations have been made for linear equations, where random
problems tend to be well-conditioned [16], and thus often easier to solve than those
from applications). The only real hint we found in the literature that these methods
might be expensive is for an example from (/N -convex) regression [28]. With hind-
sight, since for linear systems Kaczmarz’s method [26] is essentially the Gauss-Seidel
iteration, while Cimmino’s [10] may be viewed as Jacobi’s method for the normal
equations, it is perhaps not surprising that these simple projection methods do not
perform particularly well; some form of (low-cost) acceleration is undoubtedly and
urgently needed.

We do not want to suggest here that successive and simultaneous projection meth-
ods are not useful, since in particular they appear to have been applied successfully
for many years in medical imaging, radiation therapy planning and signal processing
[2, 8, 9]. But our experience suggests that despite the large literature devoted to the-
oretical analysis, they should not be considered as the method of choice for a given
application without further strong empirical evidence to support such a claim.

We also need to be cautious in extrapolating our findings on problems involving
two constraint sets to the more general case. Our argument is simply that this is the
setting which we had anticipated would put the methods in the best light, and that
projecting into a larger number of sets would likely have increase iteration counts (if
not costs).
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fraction of problems for which solver within o of best
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Fig. 3 Performance profile, p(w): Iteration counts for the 77 problems under consideration

Of course the observation that successive projection methods tend to require fewer

iterations/projections than simultaneous methods is not new [5]; in defense of the
latter, it is easier to exploit their natural parallelism, especially when a point in the
intersection of a large number of sets is required.
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