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On the Accurate Determination of Search Directions for Simple
Differentiable Penalty Functions
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Waterloo, Ontario, Canada

We present numerically reliable methods for the calculation of a search direction
for use in sequential methods for solving nonlinear programming problems. The
methods presented are easy to adapt to such problems as locating directions of
negative curvature and linear infinite descent. Encouraging numerical results are
included.

1. Introduction

In this paper, we shall be concerned with the following continuous optimization
problems:
NLP: minimize f(x), x € R", subject to

c(x)=0 (ie®), ¢(x)=0 (ied);
SIP: minimize f(x), x € R”, subject to
¢:(x, )=0 forallted; (ied), J; = R?: closed, bounded (i € .%).

We shall assume that each problem function has sufficiently many continuous
derivatives for any implicit assumptions that we make to hold. One of the most
successful tools for solving problems of the form NLP and SIP is the penalty
function. A penalty-function approach replaces the relevant problem by a suitably
weighted combination of the objective function f(x) and functions representing
violations of constraints. This weighted combination is known as a penalty
function. The unconstrained penalty function is normally minimized for a
particular choice of the weighting and the weighting subsequently adjusted. The
rationale behind such methods is the existence of powerful theoretical results
which indicate how the weighting should be adjusted and when the minimizer of
the penalty function is likely to converge to that of the relevant original problem
(see Fiacco & McCormick, 1968; Pietrzykowski, 1970).

Early penalty functions for NLP include the quadratic loss function (form
mixed equality and inequality constraints) and the barrier functions (for ine-
quality constraints):

1

Quadratic penalty function: p,(x, u) = f(x) + L > o) +=— D ci(x);
2uice 2pics

Barrier function: pg(x, u) =f(x) + 1 D, @[c:(x)];
ie®
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where ¢;(x)_ indicates the lesser of c¢;(x) and zero and p is a positive scalar
parameter. The function ¢ : R— R included in the definition of the barrier
function is any function such that ¢'(u) <0 and ¢"(x) > 0 for u >0 and such that
lim,,_,¢+ ¢(u) = +. (For instance, the logarithmic barrier function has @(u)=
—log. u and the reciprocal barrier function chooses @(u)=u"* for some s > 0).

In the same class of functions is the limiting penalty function p,(x, u) for
semi-infinite programming:

1
Limiting penalty function: p((x, u)=f(x) - ; > J ¢i(x, t)-dt.
ie$T;

All of these functions have the following properties.

(i) For a fixed value of the penalty parameter u, they are continuously
differentiable within their domains of definition. (The functions p, and,
under suitable assumptions (Conn & Gould, 1985), py are continuously
differentiable at all points for which the problem functions are. The barrier
function pyg is continuously differentiable at all points strictly within the
feasible region).

(ii) Under fairly mild conditions it can be shown that any local solution x* to
either the problem NLP or SIP is such that lim,_o+ x(u) = x* where x(u)
is a local minimizer of the relevant penalty function (Pietrzykowski, 1970).
In most cases, it is necessary that u tends to zero. This has unfortunate
repercussions as:

(iii) The second derivatives of the penalty functions are locally differentiable in

a neighbourhood of x(u). However as u— 0%, the second derivative

(Hessian) matrices become increasingly ill conditioned (see Lootsma,

1969; Murray, 1971).
This third property was thought to be catastropic as a simple-minded application
of Newton’s method to finding a stationary point of the penalty function would
require the solution of many systems of linear equations, each of which has the
Hessian matrix of the penalty function as its coefficient matrix. The il
conditioning of the matrix proved to make accurate determination of x(u)
exceedingly difficult for small values of u. During the 1970’s the simple
differentiable penalty functions fell from favour, with the more complicated exact
penalty functions and augmented-Lagrangian functions taking their place (see for
example Gill, Murray & Wright, 1981).

During the past ten years, there have been a number of attempts to overcome
the difficulties discussed above. Gerencser (1974), Biggs (1975), and Broyden &
Attia (1983) proposed methods which sought to isolate those terms in the
penalty-function Hessian which caused the ill conditioning by a suitable transfor-
mation of variables. Indeed Broyden and Attia report considerable success with a
method in which a form of iterative refinement is used to correct an initial
attempt at solving Newton’s equations for a stationary point of p,(x, ).
Likewise, Biggs has avoided the ill conditioning by isolating the dominant terms
in V.p,(x, #) and by maintaining a positive definite approximation to the
remaining second-derivative terms. Murray & Wright (1978) seek to follow the

0TOZ ‘LT Ae uo Arelqr uelsjpog ‘Areiqi] a0uaIds apljopey 1e Bio sjeuinolpioxo-eulewiy/:dny woly papeojumoq


http://imajna.oxfordjournals.org

ACCURATE DETERMINATION OF SEARCH DIRECTION 359

trajectory of x(u) as p— 0 by solving a ‘well conditioned’ approximation to the
Newton equations. Almost all of these methods rely on a transformation of the
coordinate axes and have much in common with the so-called null-space methods
which are often used to solve equality-constrained quadratic programs (see e.g.
Gill, Murray, & Wright (1981)).

In this paper, we present several alternative methods for solving the system of
equations which arises from an application of Newton’s method to the solution of
V.p[x(n), u]=0. (Here, p(x, u) is any of the previously mentioned penalty
functions.) Given an estimate x* of x(u), Newton’s method gives a suitable
correction p® as the solution of

Vxxp (x(k)’ .u)P(k) =- pr(x(k)) -u)' (1' 1)

The methods we suggest do not suffer from the ill conditioning present in a direct
solution of (1.1).

If we view Newton’s method as finding a search direction vector p®) so that
p(x® + p®, u) is sufficiently less than p(x*, u), we have no reason to expect
(1.1) will give rise to a descent direction for p(x, u) if x® is far from x(u). Under
these circumstances, it is often more appropriate to calculate a ‘direction of
negative curvature’ for p(x, u) if such a direction exists. Our methods easily cope
with such a possibility. Indeed, the technique used in this case is a minor
modification of those methods discussed in Conn & Gould (1984). For simplicity
of presentation, we shall focus our attention on p,(x, 1) rather than the other
penalty functions. The techniques discussed extend trivially to pg(x, u) (see
Section 6). The extension to py(x, u) is slightly more complicated because of the
nature of the quadrature required to evaluate the penalty function. An algorithm
for SIP based on some ideas here will be featured in a separate paper (Conn &
Gould, 1985).

In Section 2, we describe our fundamental philosophy. In Section 3, we consider
how to calculate directions of negative curvature for p,(x, ). In Section 4, we
present an effective algorithm for solving NLP and give some numerical results in
Section 5. Further extensions are considered in Section 6.

2. Solving Newton’s equations

If we consider p,(x, 1) and define the index set V(x)=¢U {ie $ : c,-(xj =0},
we obtain
pr2(x: H) =g(x) —A(x)T}'(x: “)

and

1
Vxpo(x’ “) = G(x) - . g‘z )A’i(xx .u’)Gl(x) + ;A(X)TA(X),
where g(x) and G(x) are the first and second derivatives of f(x), c¢(x) is the
vector whose components are the c¢;(x) with i € ¥(x), A(x) is the Jacobian matrix
of c(x), G;(x) is the Hessian matrix of c;(x), and the vector A(x, u) has
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components
Ailx, p) = —cx)p (i€ V(x)).

Under mild conditions as p—0,, x(1)—x* and A;[x(u), u]— A where A} is a
Lagrange multiplier associated with the solution x* of NLP (see Fiacco &
McCormick, 1968; Wright, 1976). Therefore, as u—0, it is clear that
Vep2lx(u), u] is dominated by the term p~'A[x(u)]"A[x(n)] (the remaining
terms converging to the Hessian matrix of the Lagrangian function £(x, 4) =
f(x) — Ac(x) at x =x*, A=A4*). Thus, in most cases V,p,[x(u), u] will become
increasingly ill conditioned as u decreases. (However if ¥'(x) is empty or if
[¥(x)|=n and A(x) is full rank, the ill conditioning will not occur.) This ill
conditioning will also be reflected in V,,p,(x%, u) where x® is an approximation
to x(u). Hence, a straightforward application of Newton’s method (1.1) is likely
to encounter severe numerical difficulties in calculating a search direction p® for
small values of p.
Let us define

Glx, W) =G(x)— ;( )M(x, 1)Gi(x).

The tacit assumption here is that G(x, u) will be well behaved for points
encountered in our minimization process as ¢ — 0. This assumption is reasonable
provided we start our process with a largish value of u (say u =10"" for well
scaled problems (see Section 5)). Our proposal is then to proceed in the fashion
of the SUMT method of Fiacco & McCormick (1968) but to ensure that the
search direction p® from (1.1) is accurately determined. Let A® = A(x®),
GO =G(x®, u), g©=gx®), A9 =24x®, u), and ¢® = c(x®). Consider the
Newton equations (1.1), at x®,

(GO + p~ ADTAO® = _(g®) 4 =1 40T ®R) @.1)
Define the vector r® = u~'(A®p® + V). Then (2.1) may be rewritten as
GO 4 AWTW - g
AWR® _ 0 — _ o)

S ATy 0 *)
oo Zullo]=-[E] @

AP ul 7 c®
As u—0,, there is no reason for the coefficient matrix of (2.2) to be poorly
conditioned; indeed if we denote the Lagrangian function £€(x, 4) = f(x) — A"c(x)

then

i.e.

- [G[x(u), u] A[x(u)]T]=[Vn€(x*: 4%) A(x*)T]. (2:3)

Axw) -l Ax?) 0
The matrix in (2.3) is precisely that which reflects the sensitivity of the solution of

NLP to small perturbations in the data (see Robinson, 1980). As such, ill
conditioning in (2.3) is indicative of inherent ill conditioning in NLP. For small

u—0,
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values of u and x® close to x(u), the coefficient matrix of (2.2) is likely to be a
small perturbation of (2.3). Therefore the conditioning of (2.3) will normally be
reflected in the coefficient matrix of (2.2). In Section 3 we shall discuss properties
of the matrix

[Gm AT

- K®
A® —M]_K' (2.4)

At present it is sufficient to notice that it is symmetric and (normally) indefinite.
An appropriate way to solve (2.2) would therefore be by way of the Bunch-
Parlett—Fletcher—Kaufman Generalized Cholesky factorization (Bunch & Parlett,
1971; Fletcher, 1976; Bunch & Kaufman, 1977). This has additional benefits
which will be discussed in Section 3. .

We note that the vector —r® will converge to the vector A* as u—0 and
k— . It may be appropriate, therefore, to replace the vector A(x®, u)=
—u"'c(x®), needed in calculating G, by —r%~" as we approach the solution.
This should avoid possible numerical inaccuracies associated with the calculation
of ¢(x*®)/u as u— 0, although we have never had to resort to such a substitution
in practice.

We consider (2.2) to belong to the class of Lagrangian methods for solving
NLP (see Fletcher, 1981). Indeed, in the limit as p—0, (2.2) gives the
Newton—Lagrange method for solving the equations

A(x) Mx) =g(x), c(x)=0.

If G is non-singular, the simplicity of the structure in (2.2) allows us to write
p® in terms of r® in the first equations of (2.2) and substitute into the second
equations to obtain the range-space equations

(APGEO=IAOT 4 )0 = (0 _ 4OG0-1g0 (2.5a)
GWp® = _ g _ AGITL(0), (2.5b)

We notice that these equations are very similar to those developed by Biggs
(1972, 1975, 1978). Biggs’ method replaces G® in (2.5) by a suitable positive
definite approximation. We note, however, that we do not require G* to be
positive definite in the methods we are suggesting here. Equations (2.5) may be
appropriate when |¥'(x®)| is small, for then (2.5a) will be a small system of
equations. The arguments for using a range-space rather than a Lagrangian
method have been made elsewhere (Conn & Gould, 1984; Gill, Murray, &
Wright, 1981) and will not be repeated here. Once again (2.5) should be solved
using a Generalized Cholesky factorization of the matrices G% and
AOGEO=14WT 1 I and this yields additional benefits (see Section 3).

If our interest is in solving large-structured nonlinear programs, the equation
(2.2) may be preferred, since any sparsity in G* and A% carries over into K®.
Our preferred method of solution of (2.2) would then be by a sparsity-exploiting
variant of the Generalized Cholesky factorization (see e.g. Duff & Reid, 1983).
In particular, if our problem is partially separable in the sense of Griewank &
Toint (1982), the multifrontal elemental approach of Duff & Reid would seem
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most appropriate. Moreover, it should be hoped that the data structures needed
to solve (2.2) many times would remain more or less fixed.

3. Properties of the matrices and directions of infinite descent

If we wish to use our computed p™® as a search direction along which to reduce
pa(x, 1), we need to ensure that p® is a descent direction. This is immediate
whenever V_p,(x®, ) is positive definite. If V,,p,(x®, u) is indefinite, a local
quadratic model of p,(x, u) predicts directions of negative curvature along which
the quadratic model decreases without bound. This is often the case far from the
solution. If V.p,(x®, u) is positive semidefinite but singular (1.1) may not have
a solution. In this case there are directions of linear infinite descent along which
the quadratic model again decreases without bound. When such directions of
linear infinite descent or directions of negative curvature exist it is reasonable to
locate one and use it, in place of the p® obtained from (1.1), as a search
direction. In this section we consider when such directions exist and how we
might find one. We need the following formal definitions and elementary results.

DEFNITION. Any vector p such that pTV.p,(x®, u)p <0 is a direction of
negative curvature for p,(x, u) at x®.

Clearly the quadratic approximation
Q(® + ap) =pa(x®, p) + ap " Vopa(x©, p) + 10’ Vepa(x @, wp (3.1)

of the penalty function about x* is a decreasing function of & for all a>0
provided we choose the sign of the direction of negative curvature p so that
P V. (x, p) <0.

DEFINITION.  Any vector p such that V.p,(x®, u)p =0 and p"V,p,(x®, u) <0 is
known as a direction of linear infinite descent for p,(x, p) at x©.

Once again, the quadratic approximation (3.1) is a decreasing function of o
whenever p is a direction of linear infinite descent.

DerINITION.  The inertia of the m X m real symmetric matrix M is the triple
In M =(m,, m_, mg) where m,, m_, m, are respectively the number of positive,
negative, and zero eigenvalues of M (with multiplicities counted according to
their occurrence). It is well known that m, +m_+my=m.

Lemma 3.1 (Haynsworth, 1968). Suppose M = [AA;:, L/Ij] where M is real and
symmetric. Then if M, is non-singular

In M =1In M, + In (M; — MIM'M,).
If M, is non-singular

In M = In M; + In (M, — M,M5'M3).

Where it is convenient we shall omit the superscripts k: all matrices and vectors
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are assumed to be evaluated at x®). We shall use Lemma 3.1 to tell us when
Vo.p(x®, u)=G+u'ATA is positive definite, positive semidefinite, or
singular.

DernimioN.  Let In (G + p™'ATA) = (g, g-,80), and In K = (k., k_, ko) where
K is as given by (2.4). Furthermore, if G is non-singular, let InG = (h,, h_, 0)
and In (AG™ AT + ul) = (a,, a_, ag).

THEOREM 3.2. Let the inertias of G + u *A"A and K be as given. Then, if A is
tXnand u>0,

(k+: k—’ kO) = (g+’ -, gO) + (0, L, O)

Furthermore, if G is non-singular and the inertias of G and AG™'A” + ul are as
given,

(g+) 8-> gO) + (0 4 O) = (h+: h—: 0) + (a—: a,, aO)

Proof. The result follows from Lemma 3.1 with M=K, M;=G, and M;=
—ul. O

CoRrOLLARY 3.3. G T u~'ATA is positive definite if and only if ko=0 and k_ =t
If G is nonsmgular, G +u"'ATA is positive deﬁmte if and only if ay=0 and
=h_

COROLLARY 3.4. If the inertias of G, AG'A" + ul and K are as given, there is a
direction of negative curvature for G + u'ATA if and only if k_>t which (when
G is nonsingular) is if and only if h_+a, > t.

CorOLLARY 3.5. The following are equivalent:
(i) G + u~'A"A is positive semidefinite and singular and (1.1) has no solution.
(ii) k_=1t, ko>0, and (2.2) has no solution.
If G is nonsingular, (i) and (ii) are equivalent to
(iil) a_+ag=h_, ay>0, and (2.5a) has no solution.
Finally each of (i)-(iii) imply the existence of a direction of linear infinite descent.

Proof. The equivalence of (i)—(iii) follows from Theorem 3.2 and from the
equivalence of (1.1), (2.2), and (2.5). If there were no direction of linear infinite
descent, pTV,p,(x®, 1) =0 whenever Vp,(x®, u)p =0. Thus V,p,(x®, u) lies
in the range of V,p,(x®, 1) and (1.1) has a solution. This contradicts (i). O

Corollaries 3.3-3.5 indicate when we should expect to find a direction of linear
infinite descent or (preferably) a direction of negative curvature. We now indicate
how such a direction of negative curvature may be obtained. The methods are
almost identical to those given in Conn & Gould (1984). Indeed the only real
difference is that the methods given there are appropriate when matrices of the
form

[G‘ AT

4 O] or AG'ATand G
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are present. In the present case we have the slightly more general

G AT - -

K=[ ] or AG7'AT+ul and G.
A —ul

For completeness, we briefly explain the procedures used. Suppose we have the

matrix K and wish to find a direction of negative curvature for G + u 'A"A.

Then if we can find vectors p and r such that

i 4
= 3.
[r] a —ullr <0, Ap = ur, (3.2a,b)

we obtain, on expanding (3.2a),
- 1 -
0>p"(G+u'ATA)p — p (Ap —ur)"(Ap —ur)=p"(G + p'ATA)p from (3.2b).

Thus p is a direction of negative curvature. To satisfy (3.2a), recall that we are
assuming that G + u~'A"A is indefinite and hence K has more than ¢ negative
eigenvalues. Let vy, ..., v,_ be such that v,-Tva =0 (i#j) and v]Kv,<0. (For
instance, the v; could be eigenvectors corresponding to the negative eigenvalues
of K.) It is clear that any nontrivial linear combination v =¥ av; satisfies
v Kv <0. On letting v"=[pT r'], we therefore satisfy (3.2a). Moreover, it is
possible to find a nontrivial solution to

k_
Ap—ur=[A —pllv=[A -ul] av,=2 &[4 -uly;=0
i=1

i=1

as the vectors [A —pullv; are of length t<k_. Thus we satisfy (3.2b). The
mechanics behind finding the v, and computing the «; when a Generalized
Cholesky factorization of K is known are given by Conn & Gould (1984). In
general, the computation may be performed extremely efficiently and in a stable
fashion. Note that the method does not require that we find the eigenvalues or
eigenvectors of K.

Alternatively suppose we are given the matrices G and AG™'A" + ul and wish
to find a direction of negative curvature for G + u~'ATA using these matrices.
Suppose we can find vectors r and s which satisfy

sTGs <0, r"(AG™'AT + ul)r=0, (3.3a)
and )
As—AG'Ar—ur=0. (3.3b)
Now if we define p =s — G™'A"r, we obtain
P(G+u'ATA)p=5"Gs — r"(AG'AT + ul)r <0.
Thus p is a direction of negative curvature. To satisfy (3.3a) lets; (i=1,...,h_)
and r (i=1,...,a,) be chosen so that s/Gs;=0 (i#j), s/Gs;<0,
rI(AGT'AT+ul)r;=0 (i#j), and r/(AG™'AT + ul)r,>0. (For instance, the s;
could be eigenvectors corresponding to the negative eigenvalues of G and the r,
could be eigenvectors corresponding to the positive eigenvalues of AG™'A” + ul.
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We note that a, may be zero in which case we choose r=0.) It is clear that any
linear combinations

h_
r=2 o;r; and s=2ﬁisi
i=1
satisfy (3.3a). In order to satisfy (3.3b) we note that
h_ ay
As—AG'ATr—ur=> Bi(As)— D, ai(AG AT+ uDr,=0
i=1 i=1

is a system of ¢ equations in the h_+a, (>f) unknown «; and B;. Thus there
must be a nontrivial solution to these equations. Once again, Conn & Gould
(1984) show how this may be achieved in an efficient and stable fashion when
Generalized Cholesky factorizations of G and AG~'A” + ul are known.

Lastly, directions of linear infinite descent are very easy to obtain whenever the
Generalized Cholesky factorization of the matrices relevant to Corollary 3.5 are
known. The methods are essentially identical to those given in Conn & Gould
(1984, §2.2). The interested reader should consult that paper. The procedures
described also indicate how weak solutions to (1.1), (2.2), and (2.5a, b) may be
found when these equations are consistent.

4. The algorithm

In this section, we propose the following algorithmic framework for solving the
nonlinear programming problem NLP.

ArcoritaMm (for fixed p). Given initial data x@, an estimate of the solution
x(u), k=0, iterate:

Step 1. Compute G®, g®, ¢®, A®, and ¢, the number of rows of A®. Find a
Generalized Cholesky factorization of

o [G'ac) A(k)T]

AW —ur
Obtain k_, the number of negative eigenvalues and k,, the number of zero

eigenvalues, of the matrix from the factorization. If ||g® + p~'A®Tc¢®|| is
sufficiently small, and k_ =t and k, =0, stop.

Step 2. If k_=tand ko =0 calculate p® and r® from
G® AWTIpW] g i
A® ]l |T T ew ] *.0)

If k_>t, calculate a direction of negative curvature p® as described in
Section 3.

Otherwise calculate a weak solution to (4.1) or find a direction of linear infinite
descent.
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Step 3. Perform a line search along p® from x® for the penalty function
pa(x, p) so that p,(x® + a®p®, ) is sufficiently smaller (in the sense of, for
instance, Armijo, 1966) than p,(x*, u).

Step 4. Set x**V=x® + ¢®Wp® and k:=k + 1. Return to step 1. O

As we have taken care to ensure that p® is always a descent direction and that
our step size a® gives us sufficient decrease on the penalty function p,(x, u), the
above algorithm should produce a sequence of iterates ¥’ which either converge
to a local minimizer x(u) of p,(x, u) or decrease p,(x, u) without bound. We
would also expect the method to converge quadratically in some neighbourhood
of x(u) since (4.1) are just Newton’s equations for minimizing p,(x, x). The
dominant costs per iteration are those incurred in calculating the problem
functions and derivatives and those incurred in factorizing K® (and perhaps in
obtaining a direction of infinite descent). The factorization will require about
i(n +1)* flops (floating point multiplications or divisions). The calculation of a
direction of negative curvature may cost as many as 3£ flops (although this is in
the worst case, see Conn & Gould (1984)). All other costs are O(n?) flops.

5. Numerical experience

A prototype implementation of a method for solving NLP based upon the
algorithm given in Section 4 has been written in Double Precision Fortran 77 and
tested on a Honeywell 6066 at the University of Waterloo. The algorithm in
Section 4 is used as a subroutine in the following scheme:

ALGORITHM MINISH:
Given po and p;, such that 0 <p i, < uo, set = puo. Then

until g < pmin
solve: minimize p,(x, u), x eR”,
pi=p x1072

In all cases uo was taken as 107! and u,,;, was set to 107'2. For a particular value
of u, we considered x* an adequate approximation to x(u) when
|V.p2(x®, ull,<107"/u and when k_=tr. The dependence of this test on p
merely indicates the expected accuracy which we believed possible given that we
have to form p~!'V.c;(x*) numerically in order to find V,p,(x*, u) and that
small inaccuracies in forming V,c,(x*®’) will be magnified by u~*'. MINISH has
been used to solve a subset of the (nontrivial) test problems given by Hock &
Schittkowski (1980) from the prescribed starting points and the results of the tests
are given in Table 1. We note, however, that the constraints in all problems were
rescaled according to the following scheme:

Pick a ‘typical’ value of x, x,, (in the absence of any better value, the starting
point for the test problem). Evaluate the constraint functions at x.,, and at
X.p +y, where the ith element of y satisfies

yi = 10~2 max {1, |(xtyp)il}ri
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TasLE 1
Tests results of the algorithm on a subset of test problems from Hock & Schittkowski (1980)

Approximate
Number of residual of
Test problem gradient active

(Hock & Number of  Number of evaluations constraints

Schittkowski) variables constraints made (unscaled)
43 4 3 30 1077
64 3 4 32 107°
68(I) 4 10 128 107"
69(1) 4 10 60 107°
74 4 13 27 107
75 4 13 21 107*
78(1) 5 3 34 10-1°
80(1) 5 13 25 B
81(I) 5 13 24 107"
83(D) 5 16 34 107°
86(I) 5 15 24 107"
106(S) 8 22 168 107"
111(D) 10 23 48 107"
112(1) 10 13 23 107°
117(IS) 15 20 92 107?

I indicates an indefinite matrix was encountered
S indicates a singular matrix was observed.

and r; is a random number uniformly distributed in [~1, 1]. Compute
Ac; = |ei(Xyp) = CilXegp + ¥, Acpin=min {Ac;eR, : 1sism}.
Then solve the rescaled problem
NLP: minimize f(x), xeR,

s.t. G(x)=0 (i€, c(x)=0 (ie),
where

if Ac; >0, and ¢:(x) = ¢;(x) otherwise.

The idea is just to try to ensure that ‘typical’ perturbations in the values of x
produce ‘similar’ perturbations in all of the constraints. As penalty functions in
general, and the quadratic penalty function in particular, are sensitive to the
relative sizes of the constraints, it seems sensible to incorporate some sort of
pre-scaling. We note that this scaling is done automatically. Clearly the above
scheme is not foolproof. However, it has performed very well on our admittedly
limited testing.

In Table 1 we have included details of the problems solved, the number of
gradient/Hessian evaluations made (1 gradient evaluation includes all of the
gradients of the currently violated constraints) and the 2-norm of the residuals of
the unscaled constraints active at the solution found. In all cases the solution
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identified was that quoted in Hock & Schittkowski (1980) (excepting that the
misprint in the 3rd constraint in problem 112, where the constant —1 is omitted
was corrected). The implementation of our algorithm is relatively crude, at
present.

In particular a simple backtracking line search is used starting with the estimate
a® =1 and reducing «® by 0.5 until p,(x*® + a®p®, u) is sufficiently less than
P2(x®, 1) (in the sense of Armijo, 1966). If p® is not the Newton direction (4.1)
and p,(x*® + p®, u) is significantly less than p,(x®, ), we allow a® to increase
by a factor of 2 until p,(x* +2a¢®p™®, u) is no longer acceptable. A more
sophisticated line search would, in all likelihood, enhance the performance of the
algorithm.

In no instance was there any indication of a poorly determined search
direction. The expected asymptotic quadratic convergence of the iterates was
observed for all values of u encountered. The test problems indicated by (I) and
(S) respectively encountered regions in which V,.p,(x, u) was indefinite or
singular and progress towards x(u) using directions of infinite descent was made.
For those problems whose solutions are known analytically, the computed and
known solutions differ, typically by 107'°. For the other problems, our solutions
agree with those of Hock & Schittkowski to the accuracy given in their report.

The rather large residuals for some active constraints (Problems 64, 74, 75)
were a consequence of the high nonlinearity of the constraints for these problems
and the scaling procedure used. By reducing u further, more accurate answers
were possible. For instance, the residuals of Problem 74 were forced down to
107" by reducing u to 107** at the cost of an extra 16 gradient evaluations. For
most of the problems solved, our scaling procedure did not significantly affect the
efficiency of the algorithm. However, this is not always the case; when Problems
68, 106, and 117 were solved unscaled, the number of iterations increased
dramatically. None the less, the algorithm still converged. The dominant extra
cost appears to have been in finding x(107"). Thereafter the observed conver-
gence is always fast.

6. Extensions

As we indicated in the introduction, the ideas presented in Section 2 carry over
to other penalty functions in a straightforward way. If we consider the barrier
function pa(x, ) the first and second derivatives at the feasible point x are given

by
V:PB(x) ﬂ) =g(x) —A(X)Ti(x, Au)
and
Vaps(x, 4) = G(x) = 3 (x, )Gi(x) + A®)D(x, wA(),
where A(x, p) is the vector whose ith element 4,(x, u) is —u@'[c,(x)], A(x) is the
Jacobian matrix of the constraint functions c;(x), and D(x, u) is the positive

definite diagonal matrix whose ith diagonal element is u@"[c;(x)]. Under very
mild conditions, x(u) (a minimizer of pp(x, u)) converges to x* and Alx(u), u]
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converges to 4%, the vector of Lagrange multipliers for NLP, as u tends to zero
(see Fiacco & McCormick, 1968). However as u tends to zero, some of the
diagonal elements of D(x, u) may increase without bound. Hence the Newton
equations

Veps(x®, w)p™ = = V,pp(x®, p) (6.1)

for finding a correction p® to the iterate x® are likely to be badly conditioned
when y is small. To avoid this problem we must first isolate the large and small
components of D(x, u). To this end, let T be a given positive number (7 =1, say)
and define index sets & and £ from
P, u)={ied: ue'lc(x)]<t} and Llx, p)=I\F(x, p).
Under the usual conditions we have
. 0 if ci(x*)>0
lim pp'(c; = { ! ’
Jim pe'(ale@l) =1, 4 c(x*) =0,

Therefore, as
lim Fx(u), ul={ie ¥ : c(x*)>0}
u—0,

and
lim Lx(u), ul={ied : c(x*)=0},
u—0,

we see that L(x, u) and F(x, u) are predictions of the ‘active’ and ‘strictly
satisfied’ constraints at x* and that the ill-conditioning in (6.1) is due to the
diagonal elements in D(x, u) corresponding to those constraints which are active
at x*. We may then write (6.1) as

(G, 1)+ AEOTDED, AED)P® = ~ (36, 1) - AG) I, W),
(6.2)

where

G(x, p)=G(x) - 2; Aix, ©#)Gi(x) + 2 1@"[c;(x)] Veci(x) Veci(x) T,

ief(x,p)

g, m)=gx)— X Ax, u)Vic(x),

ieS(x,u)

and where A, D, apd A cgmprise the rows, rows and columns, and entries
(respectively) of A, D, and 4 indexed by £(x, 1). Defining r'*) by

1 = D, WAGE®)p® - s, ),
equations (6.2) give rise to
Gax®,p) AT p®1_ 186, )
AE®)  —DE®, )t w] T pe |

where b® is the vector whose components are @’[c;(x*)])/@"[c;(x*®)] with
i € £(x*®), ). Equations (6.3) are well conditioned in the sense that as u— 0 and

(6.3)
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x® — x* the coefficient matrix of (6.3) approaches

[ 4]

the very matrix which indicates the conditioning of NLP (see Section 2). The only
modification required in the remaining analysis of Sections 2 and 3 is to replace ul
by D(x*, u)~! whenever the former appears.

The same analysis may also be applied to the limiting penalty function py (x, )
for semi-finite programming. Complications are introduced because the penalty
function contains integral terms. For this reason we shall not consider p;(x, )
further here but refer the interested reader to Conn & Gould (1985).

An obvious extension is to allow approximations to G(x®, u) in (2.2) or (2.5)
rather than use the exact matrices. We have in mind obtaining secant approxima-
tions to ‘G. Indeed, much work has already been done in this area, since the
matrix we are trying to approximate approaches V. %(x*, 4*) as x — x*. Methods
for approximating such matrices have been suggested by Biggs (1975), Han
(1976), and Powell (1978). We note that our general framework does not require
that G(x®, u) be approximated by a positive definite matrix. Although our
current implementation does not include such possibilities, we intend to consider
them in the future.

Finally, we believe that a special purpose line search algorithm for the
quadratic penalty function would be appropriate. Special purpose line searches
for problems involving sums of squares have already been suggested (Lindstr6m
& Wedin, 1984). As p,(x, i) is merely a sum of squares with (possibly) one extra
term (f(x)) it would seem reasonable to devise a special line search for this
problem. There are, of course, already special purpose line searches for the
barrier functions (see, for example, Fletcher & McCann, 1969, Murray & Wright,
1976).
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