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Abstract. We consider the following classes of nonlinear programming 
problems: the minimization of smooth functions subject to general 
constraints and simple bounds on the variables; the noniinear l~- 
problem; and the minimax problem. Numerically reliable methods for 
solving problems in each of these classes, based upon exploiting the 
structure of the problem in constructing simple differentiable penalty 
functions, are presented. 
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1. Introduction 

In a recent  p a p e r  (Ref.  t ) ,  it has  been  shown how the non l inea r  
p r o g r a m m i n g  p r o b l e m  

( N L P )  min imize  f ( x ) ,  

subjec t  to ci(x)  = O, i ~ ~, 

c~(x)>~o, ieJ, 

m a y  be so lved  by  a careful  use o f  the quad ra t i c  pe na l t y  func t ion  

p2(x, tz ) = / ( x ) +  1/2/~ 2 e~(x) 2 + 1/2/z Y~ rain(0,  ci(x)  ) 2. 
i ~  i ~  
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Although theoretically sound methods for solving NLP via a sequential 
minimization of pg(x, tz) have been known for many years (see Ref. 2 for 
a detailed history), they have been disregarded as practical methods because 
of the natural ill-conditioning of p2(x, tz) as /~ shrinks to zero. This ill- 
conditioning manifests itself in the increasing condition number of the 
Hessian matrix of p2(x, ~) as /z decreases. As a consequence, a direct 
application of Newton's method to finding a stationary point of p2(x, tz) is 
likely to produce increasingly inaccurate search directions in the presence 
of finite precision computer arithmetic (see Refs. 3 and 4). 

Recently, a number of authors (Refs. 1, 5, and 6) have shown that, 
despite the deteriorating condition number of the Hessian matrix of P2(X, tz ), 
it is still possible to determine the solution to the exact Newton equations 
very accurately. This, in turn, has enabled the authors to construct efficient 
and robust algorithms for solving NLP. In this paper, we shall be concerned 
with applying the method proposed in Ref. 1 to a number of commonly 
occurring classes of nonlinear programming problems. We shall be 
especially interested in using the inherent structure in such problems to 
enhance the method. In particular, we shall try to construct methods which 
are more efficient than just simply considering the special problem as an 
instance of NLP and then applying the method in Ref. 1. 

The special problems to be considered here are these: the nonlinear 
programming problem where the variables are subjected to simple bounds 
(which may be infinite), 

(BNLP) minimize f ( x ) ,  

subject to c,(x) = O, i ~ g, 

ci(x)>~O, i~p ,  

li<<_x~<~u~, l<~i~<n; 

the minimization of a function which may be expressed as a finite sum of 
absolute values of given functions, 

(LIP) minimize ~ If~(x)l; 
x ~  n i=1 

and the minimization of the largest of a finite collection of given functions, 

(MINIMAX) minimize maximum f~(x). 
xEe .~  n l ~ i < ~ m  

A discussion of each of these problems will be given in the appropriate 
section of the paper. 

The paper is organized as follows. The method given in Ref. 1 is briefly 
reviewed in Section 1.1. BNLP is considered in Section 2. L1P is considered 
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in Section 3, and numerical experiments with the resulting algorithm follow 
in Section 4. Section 5 contains a description of how MINIMAX can be 
solved, and numerical results obtained with this proposed method are given 
in Section 6. 

Throughout much of this paper (Sections 1-6), we shall assume that 
any solution to NLP satisfies the following nondegeneracy assumption: 

(NDA) If x* is a local solution to NLP and if s~ ={i: i~o~w ~ and 
c~(x*) = 0}, then the collection of constraint gradients V~c~(x*), i ~ s/, are 
linearly independent and the associated Lagrange multipliers are all strictly 
positive. (See, e.g., Ref. 7). 

In Section 7, we discuss the implications of relaxing this assumption 
and the corresponding modifications to our algorithms. We include this 
section because degenerate optimal solutions to L~P and MINIMAX often 
occur in practice. 

Whenever they occur, functions f, f,c~ map ~ "  into YL The functions 
are all assumed to be twice continuously ditterentiable, although the 
methods described here can normally tolerate some second derivative dis- 
continuities. The t x t identity matrix wilt be denoted/ , .  If the dimension 
is dear, It will be written as L The appropriately dimensioned vector e is 
the vector with each element 1. The ith element of a vector z, will often be 
denoted by ~,~. Finally, the vector x* will indicate a local solution to the 
problem under consideration. 

1.1. Underlying Method. The transformation of nonlinear program- 
ming problems into unconstrained minimization problems via penalty func- 
tions has proved to be one of the most successful methods for solving NLP. 
The simplest such penalty function, the quadratic penalty function p2(x, tz), 
is continuously differentiable (and piecewise twice continuously differenti- 
able) and is such that, under normal circumstances, if x(/x) is a local 
minimizer of p2(x, ~), then x(/z)~ x*, a local solution of NLP, as /x ~ 0+ 
(see Ref. 2). This then prompts the following SUMT-type [sequential 
unconstrained minimization technique (Ref. 2)] method for solving NLP: 
Given a starting value of ~st~, (10 -~, say), an initial estimate of x* (x~t~), 
and a prescribed smallest value ~mi~ (10 -12, say), the SUMT algorithm is 
as follows: 

Set/z := J'£start, Xo := Xstart. 
Until tx < ~m~n, do these operations: 
Minimize p2(x, #) to find x(/x) starting from xo. 
Let xo:= x(/z),/x :=/x x 10 -2. 
The unconstrined minimization of p2(x,/x), for fixed/z, can be effected 

by either a line search or trust-region method (see, e.g., Ref. 7). The method 
proposed in Ref. 1 is of the line search variety and finds a sequence x (k~, 
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so that 

x(k+l)  ---- X(k)+  ~(k)p(k) ,  

where p(g~ is a descent direction for p2(x, Ix) at x (k~ and where a (k) is chosen 
so that p2(x (k+l~, ~)  is sufficiently smaller than p2(x (k~, ~) in the sense of 
Armijo (Ref. 8). 

In order that such an algorithm attains a fast asymptotic convergence 
rate, it is desirable that p(k~ be chosen as the Newton direction whenever 
possible. Let 

V(x) ={i:  i ~ ~, c~(x)~<O}u E. 

At x = x (k~, the penalty function may be expressed as 

f ( x )  + 1/2ix Y" ,k, ci(x)2 ~-/~(x), 
i ~ ( x  ) 

say. Gould (Ref. 1) takes the point of view that p(k/ should be chosen to 
be the Newton direction for/~(x) whenever V~/~(x) is positive definite, a 
direction of negative curvature whenever V~p(x)  is indefinite, and either 
a weak solution to the Newton equations or a direction of linear infinite 
descent whenever V~/~(x) is positive semidefinite and singular. The major 
trouble with such a procedure is that, as/z -~ 0+, V~/~(x) becomes increas- 
ingly ill-conditioned and a direct realization of the above choices of p(k) 
increasingly difficult. To overcome these difficulties, we observe that the 
Newton equations 

V~/~(X~k~)p(k~ = --V~/~(X ~k~) (1) 

may be rewritten as 

A(x  (k)) - # i  J k r ~ " ~ J = - L c ( " ~ J  ' (2) 

for some auxiliary vector r Ck), where gtk~ = V~f(x(k~), c(k) is made up of the 
e~(x(k)), for all the indices i ~ %(x°°), A(x  ~ )  is the Jacobian matrix of the 
c~(x) at x k, i~ °V(x(k~), and 

~x)V~xcAx ~, G(x (~, IX) = V ~ f ( x  (~)) - Z ~ hi( x(k~, , (k~,, 
i ~ ( x  ~ ) 

with 

;~,(x, Ix)=- ix- lc , (x) ,  i c ~(xtk~). 

Under the nondegeneracy assumption NDA, 

lim lim M(x, IX)=A*>0,  
~ 0 +  x ~ x ( p . )  

(3) 
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where the A* are the unique Lagrange multipliers for NLP. As a con- 
sequence, 

lim lim G(x, lx)=VxxL(x*,A*) ,  (4) 
tz~O+ x~x(,u,) 

where L(x, A) is the Lagrangian function for NLP. Hence, 

lim lim F d(x(k)' ~) A(x(k>)~/" 
,,~o+ x(k,~x(.) 1_ A ( x  (~)) - ~ l  j 

[VxxL(x*, A*)A(;*) r ]  
= k A(x*)  " (5) 

The conditioning of the matrix (5) indicates the sensitivity of NLP to 
perturbations in the data. For welt-conditioned problems, (5) is well condi- 
tioned, and hence, for small values of ~, so is the coefficient matrix of (2). 
Therefore, an accurate solution of (2), unlike (I), may be obtained from a 
suitable stable factorization [the Bunch-Parlett-Fletcher-Kaufman general- 
ized Cholesky factorization is recommended (Refs. 9-11)]. 

It is also shown in Ref. 1 how the inertia of the matrices for (1) and 
(2) are related, and hence when the search direction p(k) obtained from (2) 
should be used. When V,~/5(x (k)) is not positive definite, it is shown how 
to construct directions of negative curvature, weak solutions to (2), and 
directions of linear infinite descent, whichever is appropriate. 

Numerical experience with the given algorithm and with an algorithm 
in which G(x (k),/x) is approximated [using the symmetric rank-one secant 
update (Ref. 12)] has been very encouraging. 

It is worth noting that (1) may also be rewritten as 

l A(x (~)) -~ I  jLs(~)J 

= - [ g~)-'~f~'~')A'(x(~'~)v~c~(x(k)) ' (6) 

where s (k) is another auxiliary vector. For small values of/~, the right-hand- 
side of (6) is well behaved [by virtue of (3)] and identical arguments to 
those given above show that p(k) may be obtained very accurately from (6) 
when NLP is well conditioned. 

2. Problems Including Simple Bounds 

In this section, we consider how to solve the nonlinear program BNLP 
introduced in Section 1. Our approach will be to use the quadratic penalty 
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function 

p 2 ( x , ~ ) : f ( x ) + ( 1 / 2 / x )  2 c~(x)2+(1/2t x) ~, Ci(X) 2 
i ~  ic~. ~ 

+(1/2/X) i [(x-li)2-+(ui-x~)2-], 
i = l  

where we define 

h(x)_ = min(0, h(x)). 

As usual, we will try to locate a local minimizer x(/x) of p2(x, tz) and trace 
the locus of  x(/x) as /x ~ 0+. However, we shall try to exploit the special 
nature of  the simple bound constraints in calculating a search direction p(k) 
from our current estimate x ~k) of  x(/x). 

Define the index sets 

72(x) = ~ w {i: i E ~ and ci(x) ~<0}, 

5f(x) = {i: 1 <~ i <~ n and xi ~< li}, 

~ ( x )  ={i:  l<~i<~n and xi~> u~}. 

We may then write the penalty function p2(x, tz) at x = x  (k) as 

p2(x, tx) =-~(x) = / ( x ) +  (1/2~)  ~(~ c~(x) 2 
i e ~ ( x  ) 

Let us assume, for simplicity, that l~ < u~ (if l~ = u~, a direct elimination of 
the variable xi is possible), and define the vector b(x) so that 

Xi -- li, if i ~ ~(xCk)), 
bi(x) = xi - us, if  i ~ °ll(x(k)), 

0, otherwise. 

For convenience we shall also assume that the variables have been ordered 
so that 

~(x(k) )w ~ (X  (k)) = { 1 , . . . ,  V}, where V=lSf(xCk))tJ ql(x(k)). 

This reordering is not necessary in practice. In this case, 

/5(x) = f ( x )  + (1/Z/x) , ~ , ~ , )  el(x)2+ (a/z/x) i=li bi(x) 2. 
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Consider applying Newton's method to finding a zero of the gradient 
of p(x). From x (k), we find a correction p(k~ which satisfies 

Vx~/~(xCk~)p (k~ = -V~/~(xCk~). (7) 

It is easy to show that p(k~ also satisfies the augmented equations [cL (2)] 

where 

[ 0~ 0 7  AT 
G, 0 ,  A, r 

A~, A, -/x/~ 

I~ 0 0 

P~ = _  g ' ,  

-~I~  r~ b~ 

(s) 

[ G,, qr~ 1 = O ( x ( k ) ) = _ V . , j ( x ) +  E (Ix-~C~(X(k))V,:xC~(X(k~), 

(A,,,  As )  = A(x(k~), 

where A ( x  (k~) is made up of the t =  I~V(x(k~)I rows V~rc~(x(k~), i e  ~K(x(k~), 
where 

x,, = x(k) ' P,, = p(k), = b, = V,~.f(x(kl), 
x,  p~ b~ k g, A 

and where c, is a vector made up of entries c~(x(k~)~ i ~ 7/'(x(k~). 
Under the nondegeneracy assumption NDA, the usual argument that, 

for small ~, the coefficient matrix of (8) is a perturbation of the matrix 
which indicates the sensitivity of BNLP to small perturbations in the problem 
shows that accurate solutions of (8) will be possible whenever BNLP is 
well conditioned. However, (8) contains a useful structure. We now indicate 
how this structure may be exploited. 

Let ~r be a given positive number. We start by rescaling (8) by multiply- 
ing the first row and column by/xm This yields 

where 

cr/zA~ As -/z/~ 

oTzI~ 0 0 

/3~ = ~r -l/x-lp~, /~ = ~-tb~ ' 

The last row of this block system gives 

(9) 

(10) 
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If we use (10) to eliminate r, from (9), we obtain 

o'#zG, G, A T . (11  

o-tzA~ A,. - .s, /L r, j c, 
/ /  ] 

Finally, rescaling (11) by multiplying the first row and column by - ~ / 2  
we obtain 

"o-2(L + ~12,.) 
o-#.l, I I  2 ~, .  

crlz II2A~ 

where 

A~ 

~,, = 1,1/; ff,, = o-p.-l/2p,,, 

gu = O'l['g--l12~v = (3rl.L I / 2g . ,  

- M ,  Jk~,J L c, j 
(12) 

Now, from (3), 

lim lira lx-lb, .(x (;')) = w*, 
/x~0+ x(k)~x 

positive Lagrange multipliers associated with the simple bound constraints. 
Hence, 

lira lira ~ ( x  (k)) = 0 = lim lira /~(xCk)). 
~-~0+ x~k)-~x(I*) I*~0+ x~k) ~X(l *) 

Thus, the right-hand-side of (12) will remain bounded as p~ approach zero. 

(13) 

We also have, from (4), 
[o.~(L+~zd.) o.t,,12c~f _. 1t~A~7 o~ z-t~ t 

lim lira o'/x 1/2G, G~ A r [ 

~o+ ~-~(~) o_ix l/2A. A~ - ~ L  J 

o 1 = o sis  , 

o .A~ 

where 

the Hessian matrix of the Lagrangian function associated with BNLP and 

(A , ,  A~) = A(x*) .  



JOTA: VOL. 56, NO. 1, JANUARY 1988 97 

We would expect that the submatrix 

normally to be well conditioned, as the conditioning of this matrix indicates 
the sensitivity of the related nonlinear programming problem 

(BNLP') minimize f(x), 

subject to c i ( x )  = O, i ~ ~, 

c~(x)>-O,  i ~ ,  

l~ <~ xi <~ u~, i ---1, . . . , n, 

xi = bl, i --- 1 , . . . ,  ~,, 

to perturbations in the data. Under assumption NDA, the local solution x* 
to BNLP is also a solution to BNLP'. Thus, if BNLP is well conditioned, 
so is BNLP', and therefore so is (14). Furthermore, the matrix (13) will 
also be well conditioned if o- is suitably chosen. Specifically, if ~r 2 is chosen 
as a good approximation to the 2-norm of (14), the condition number of 
(13) will be close to that of (14). 

To summarize, we may obtain an accurate solution to (7) by solving 
(12) and recovering 

p~ = ~ ~/%.-1/~. 

The system of equations (12) is smaller than (8). Moreover, the coefficient 
matrix of (12) is structurally identical to the leading 3x3  blocks of the 
matrix for (8). Hence, reducing the size of the system solved has not 
increased the storage requirements above that needed to maintain 

(~(x,/x) A ( x ) r ] ;  

a ( x )  - ~ I t  J 

the simple bound constraints have not increased the dimension of the linear 
system to be solved. 

The remaining issues relating to solving BNLP are concerned with 
whether we should be solving (8) at all. We would normally only choose 
p(k)  from the Newton equations if V~x/5(x (k~) were positive definite. We 
relate the inertia of Vxx/7(x (k)) to that of the coefficient matrix of (12) as 
follows. 

Definition 2.1. The iner t ia  of a real symmetric matrix M is the triple 
In(M) = (m÷, m_, too), where m+, m_, mo are the numbers of positive, 
negative, and zero eigenvalues of M. 
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T h e o r e m  2.1 .  Le t  K be the coefficient matrix of (12), and let t = 

I V(x~k~) I, Then, 

In(K)  = In(V~x/3(X<k~)) + (0, t, 0). 

Proof. L e t / (  be the coefficient matrix of (8). Then (Ref. 1, Theorem 
3.2), 

In( / ( )  = In(V~x/~(x(k)))+ (0, u + t, 0). (15) 

By Sylvester's law of inertia, the inertia o f / (  and of the coefficient matrix 
K of (9) are identical. Performing a block pivot on the last block o f / (  and 
using Ref. 1, lemma 3.1, we have 

In(K)  = In( / ( )  = (0, v, 0)+ In(gO, (16) 

where /(  is the coefficient matrix of (11). Again, Sylvester's law ensures 
that the inertia o f / (  and K are identical. Therefore, from (15) and (16), 
we have 

In (K)  = In( / ( )  = In(K)  - (0, v, O) 

= In(Vx~/~(x(g))) + (0, v+ t, 0) - (0 ,  v, 0). [] 

Corollary 2.1. Let K be as in Theorem 2.1, and let I n ( K ) =  
(k+, k_, ko). Then: 

(i) Vxxp(x (k~) is positive definite if and only if ko=0 and k_ = t; 
(ii) Vxx/5(x (k>) is positive definite but singular if and only if k_ = t 

and ko > 0; 
(iii) Vxx/5(x ~k~) is indefinite if and only if k_ > t. 

P r o o f .  It follows directly from Theorem 2.1. 

Corollary 2.1 indicates that we should only find p(k) from (12) when 
k0= 0 and k_ = t. When k_ > t, we should locate a direction of negative 
curvature. When k_ = t and ko> 0, we should either find a weak solution 
of (12) or a direction of linear infinite descent. The latter two possibilities 
are mutually exclusive and occur whenever (12) is or is not compatible. 
The mechanics of establishing which one of the possibilities of Corollary 
2.1 is satisfied at x (k) and of locating the alternative search directions in 
cases (ii) and (iii) may all be accomplished if a generalized Cholesky 
factorization of K is known (see Section 1.1). The details are essentially 
identical to those described in Ref. 1, Section 3 and will not be repeated here. 
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We note that the reduction in the size of (12) from (8) is not as large 
as that normally associated with projected Lagrangian methods for nonlinear 
programming (see, e.g., Ref. 7); such systems typically involve n-v+t ,  
rather than our n +  t equations and variables. Such a reduction is only 
possible in the limit as /~ ~ 0+ with our method as the coefficient matrix 
approaches (13) and the determination of/3~ becomes trivial. 

One possibility which we have not considered here is that (12) might 
be solved approximately by finding 

and then recovering 

lAG; A: lrp, l - p J ,  J Lr,_l = -Lc, + o'l~l:A~fi~J" (17) 

Such a method might also incorporate iterative refinement to try to satisfy 
(12) more accurately. The advantage of this scheme is that the system (17) 
may be considerably smaller than (12) when v is large. We leave this for 
future research. 

3. Minimizing a Sum of Absolute Values 

We turn to the second class of problems under consideration, the 
following problem: 

(L1P) minimize F~(x),where Fl(x) = ~ ]f(x)] .  
x c ~ "  i=1 

Such problems arise naturally in a number of  different areas; in particular, 
robust methods for data fitting are frequently of this form. For obvious 
reasons, this problem is often known as the l~-problem. Our particular 
concern will be with L~P when some or all of  the functions f ( x )  are 
nonlinear. There are many good algorithms for the linear ll-problem, most 
of which are based upon linear programming techniques (see, for a survey, 
Ref. 13), but relatively few for the nonlinear problem. Before we describe 
our approach, we shall briefly review existing methods. 

3.1. Existing Algorithms. The algorithm of Osborne and Watson (Ref. 
14) proceeds by linearizing the nonlinear functions ~ (x )  and by solving a 
sequence of  linear /l-problems. As might be expected, the convergence of 
such a method is often relatively slow. Improvements on this idea are 
proposed by Mclean and Watson (Ref. 15) in which the above method is 
used until the set of functions f ( x )  which are thought to be zero at the 
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solution of L1P are identified. The algorithm then switches to a variant of 
Newton's method in which the sum of the nonzero functions is minimized 
subject to the zero functions remaining zero. A similar method, in which 
approximate (rather than exact) second derivatives are used in the Newton 
stage of the algorithm is given by Hald and Madsen (Ref. 16). Bartels and 
Conn (Ref. 17) propose a method in which second derivatives are used in 
both phases of the above algorithm. 

A second class of methods is based upon the observation that L~P may 
be reformulated as the nonlinear programming problem 

(NLP1P) minimize ui, 
XEg~ n, U ~  m 

subject to ui - f ( x )  >! O, i=  1 , . . . ,  m, 

ui+f(x)>--O, i=1 . . . .  ,m. 

El-Attar et al (Ref. 18) propose that NLPL1P be solved by minimizing a 
sequence of differentiable penalty functions. They recognize the ill- 
conditioning introduced by their approach and try to avoid it by an extrapo- 
lation process. Murray and Overton (Ref. 13) suggest using a projected 
Lagrangian method based upon NLPL~P which exploits the special structure 
of the problem. In order to globalize the algorithm, they argue that, as 
Fl(X) is the natural merit function for LiP, there is no need to introduce 
an auxiliary penalty function to force global convergence, merely to use 
Fl(X) and to maintain feasibility at each iteration. However, we agree with 
Conn (Ref. 19), who believes that it is a mistake to try to globalize a locally 
convergent method for nonlinear programming by choosing a merit function 
solely on the basis that the search direction for the local method is a descent 
direction for the merit function. Conn argues that it is the merit function 
which should be chosen first and the search direction subsequently construc- 
ted to minimize local approximations of the given merit function. Many of 
the problems associated with the transition from the global to the asymptotic 
convergence phases [the Maratos effect (Ref. 20)] of projected Lagrangian 
algorithms for nonlinear programming (see, e.g., Ref. 7) are directly attribu- 
table to imposing a merit function upon a search direction. It is unclear 
that these same problems could not affect the convergence of the algorithm 
described in Ref. 13. The previously mentioned method of Bartels and Conn 
(Ref. 17) is a realization of Conn's philosophy in which a direct minimization 
of Fl (x )  is attempted. 

3.2. New Method. Our method for solving L1P is to proceed via 
NLPL~P. One obvious approach is to solve NLPLIPby means of a sequential 
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minimization of the quadratic penalty function 

e(x, u, 5 ) =  ~ u ; + 0 / 2 g )  ~ (u , - f , (x ) )~_+(u ,+S(x)E.  
i = 1  i = l  

It is easy to show that, in such an approach, it is possible to take special 
account of the auxiliary variables uf, i = 1 , . . . ,  m. However, we propose 
that the auxiliary variables should be explicitly removed from/5(x, u,/2) 
and a simpler penalty function p(x, ix) obtained. We proceed as follows. 

Suppose we fix x a n d / L  We observe that 

p(x, u , / 2 ) -  O~(x, u,,/2), (18) 
i = 1  

where 

O,(x, u,, g) = u, + {(u,-S(x))~ + (u, +f,(x))~_}/2/2. 

For fixed/2, our aim is to minimize/~(x, u,/2). If we knew which value of 
x minimized/5(x, u,/2), it would be easy to find the corresponding u, as 
each of the ®~(x, u,/2) is a piecewise quadratic one-dimensional function 
of u,. We therefore define 

p(x,/2) = min p(x, u,/2), (19) 
u E ~  m 

and observe that the minimizer ofp(x,/2) over x is the same as the minimizer 
ofp(x ,  u,/2) over x and u. Let 

g(x,/2) =arg rain/5(x, u,/2). 
u 

Then, 

a~(x,/2) =arg rain @,(x, ut, hi). 
ul 

It is straightforward to show that 

a,( x, /2 ) = ~lf,(x)l /2, 
L-Cz/2, 

This then leads to 

@i(x,/ii(x,/2),/2) = ~'[f/([~)] -/.Z/2, 
[./2- f ( x )  - /2 /4 ,  

If we define index sets 

J+ = {i: f (x )  >/2/2}, 

Y_ = {i: f (x )  < -/2/2}, 

ago = {i: - / 2 / 2  ~ f ( x )  <~/2/2}, 

i f /2/2 < if(x)[, 

if I f (x)  t ~</2/2. 

i f /2/2 < If  (x) j, 

if I f  (x)l ~/2/2.  
(20) 
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and combine (18), (19), (20), we obtain 

p(x , /2 )=  E ( f ( x ) - / 2 / 2 ) +  ~, ( - f ( x ) - / 2 / 2 )  
iE f f  + i~ f i_  

+ g - I  E (fi(x)2--112/4) • 
l e f t  o 

Finally, if we let ~ =/2/2,  we have 

p ( x , ~ ) =  E ( f , ( x ) - i x ) +  E ( - f , ( x ) - ~ , )  
ie~¢+ i ~ _  

+(1/2/.,) ~2 ( f (x )2- tx2) ,  

where 

(21) 

and 

3.3. Derivatives of p(x, I~). We obtain the following derivatives: 

Vxp(x, ~ ) = A+(x) re+ - A - ( x ) r e -  + Aorho(X, ~),  

V~xp(x, tz) = G(x, IX) + tx-IA~'(x)Ao(x), 

where A+, A_, Ao are made up of the rows V~rf(x) for i t  J+ ,  ~¢_, ~¢o, 
respectively; e+ and e_ are appropriately dimensioned vectors of l 's; 
/o(X, tt) is made up of entries 

a,(x,~)=~-lf,(x), i~¢o; 

d(x ,  ix)= E vxxf,(x) E vxxf~(x)+ E ,~i(x, ix)vx~f,(x). 

If we extend the definition of Ao(X, ~) to h(x, tz), where 

Ai(x, ;z) = 1, i e ¢ + ,  

hi(x, IX) = --1, i ~ _ ,  

hi (x , t* )=l~- l f (x ) ,  ie~¢o, 

o~+ =--- ~¢+(x, ti) -- {i: f ( x )  > ti}, 

t _ - -  ~_(x, Ix) = {i: f~(x) < -ix}, 

S~o--- to(X, Ix) = {i: - Ix ~ f,(x) ~ Ix}. 

Our proposal is thus that LiP be solved by a sequential minimization of 
p(x, ix) as /,-+0+. It is interesting to observe that (21) bears a strong 
resemblance to the loss functions used to obtain robust regression estimates 
(Ref. 21). We have not explored this relationship, but feel this may be 
worthwhile. 
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the derivatives may be written in the slightly more compact form 

V~p(x, ~ ) = A(x) ra (x, ix), 

V=p(x, ~)= G(x, IX)+ tx-Iao(x)rao(x), 

where 

O(x, **) = E a,(x, ~,)vxxf,(x). 
i=1 

By definition, 

- 1 <~ A~(x,/~) ~< 1. 

As the functions f ( x )  are twice continuously differentiable, both V~p(x, t*) 
and (3(x,/~) are continuous for all tx > 0. Furthermore, by definition of x(>),  

A(x0,))a (x0,),  ~) = 0. 

Therefore, if 

lim lim a , (x , / z )=a* ,  
~-~0 x-~ x(t~ ) 

the Lagrange multipliers A* satisfy the first-order optimality conditions 

(i) -1-<a~*< 1, 
(ii) A(x*)ra*=O, 

for L~P (see, e.g., Ref. 18). Moreover, 

lim lim G(x,~)=v,,~L(x*,a*), 
~ 0 +  x+x(cz )  

where 

L(x, a) = 2 a~S(x). 
i=1 

Notice that the above statements imply that, if 

lim lim x=x* and lim lim &(x, tL)=A*, (22) 
~ 0  ~c~x(~) ~ 0  x . ~ x ( ~ }  

then x* is a first-order stationary point for L1P. This is a stronger conclusion 
than normally attainable for penalty function methods for general nonlinear 
programs where convergence to nonfeasible points is possible. We note that 
(22) is satisfied if we assume that the gradients V~f(x*), i e Jo ,  are linearly 
independent (Ref. 22). Moreover, if/xk is any sequence such that/~k -~ 0+ and 

lim lira A~(x,/*k) = A*, 

for some a*, the same conclusion is true. That at least one such sequence 
exists follows from the boundedness of &(x,/~). 
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3.4. Minimizing p(x, I~). As p(x, I~) is piecewise twice continuously 
differentiable, the obvious way of generating a search direction p~k~ from 
an estimate x (k) of x(tz) is to apply Newton's method and its variants to 
p(x, Ix). The normal difficulty, the increasing ill-conditioning of Vxxp(x, Ix) 
as /x  decreases, is present. Therefore, instead of  calculating p(k) from the 
Newton equations 

Vxxp(x~k~, Ix )p~k) = _Vxp(x~k), Ix), 
we obtain it from 

[p(k)] [ G ( x  (k~,Ix) Ao(x~k)) r j]l_rCk~j 
k Ao(x (k~) -ixI, 

[ a+(x(k~)re+ - A-(x(k))re-] (233 

= - [  fo(x(k~) J' 
or from 

[p(k~] 
FG(x(k?, IX) Ao(X~k)) T j ][_s~J 
L Ao(X ¢k)) -IxI, 
=--[A+(x(k))Te+--A-(x(k))TO-+ A°(x(k))r~°(XCk)'lx)], (24) 

where t = Ilol and fo is made up of entries £(X¢k)), i ~ JO. 
For convenience, let us make the following nondegeneracy assumption: 
(NDA2) The gradients Vxf~(x*), i c Jo ,  are linearly independent and 

the associated Lagrange multipliers satisfy - 1  < A* < I, for all i ~ J o .  
We shall consider relaxing this assumption in Section 7. 

The usual arguments indicate that, under NDA2, either (23) or (24) allow 
an accurate determination of p¢k). Furthermore, we have the following 
theorem. 

Theorem 3.1. Let K be the coefficient matrix of  (23). Let In(K)= 
(k+, k_, ko), and let t = lid, Then: 

(i) Vxxp(x (k), p~) is positive definite if and only if ko = 0 and k_ = t; 
(ii) Vxxp(x (k), Ix) is positive semidefinite but singular if and only if 

ko>0  and k_ = t; 
(iii) V~p(x (k),/x) is indefinite if and only if k_> r 

Proof. The proof is identical to Theorem 3.2 and its corollaries in 
Ref. 1. [] 

As usual, we should only calculate p~k~ from (23) when (i) above is 
satisfied. The calculation of directions of infinite descent or weak solutions 
to (23) or (24) in cases (ii) and (iii) is identical to that described in Section 
3 of Ref. 1. 



JOTA: VOL. 56, NO. 1, J A N U A R Y  1988 105 

3.5. Practicalities. The obvious way to use the preceding theoretical 
development in an algorithm to solve L~P is to incorporate the function 
(21) in the SUMT framework described in Section 1.1. Such an apporach 
should clearly succeed. However, there is a drawback. 

Recall the definition of  5%, 

So(x ,/~) = {i: - #  <~f(x) < ix}. 

For fixed /~, the minimization of  p(x, ~) is implicitly trying to find 
So(x(~),/.L). Under NDA2, if/~ is small enough, there is a neighborhood 
of  x(/z) in which p(x, I~) is twice continuously differentiable. In such a 
neighborhood, Newton's method is normally very successful in determining 
x(/~). Moreover, in this neighborhood, 

So(X(~), ~) = So(X*, 0), 

and thus So(x(/z) , /z)  predicts which of  the f ( x )  are zero at the solution. 
Let us suppose that we have found x (~ )  for some fixed p~, and we now 

reduce/~ to g (in our description of  SUMT, g = 10 -2 x/z) .  The next iteration 
of  SUMT starts at x = x(/~). It is unreasonable to expect that 

So(X(~), ~) = So(x(~), ~). 

Therefore, between x(/~) and x(/2), there will often be second derivative 
discontinuity of  p(x, ~). Such a discontinuity is likely to slow the conver- 
gence of x to x(/~); note that the asymptotic convergence rate should still 
be quadratic. We take the point of view that the aim of our algorithm is to 
identify So(x*, 0) by way of  So(x(/z), /z)  and that we should exploit the 
fact that So(x(~)  ,/~) should give a prediction of  5%(x(/2),/2). To this end, 
let S be a given subset of  { 1 , . . . ,  m}. Define the auxiliary" function 

p(x,~,s)= E (f~(x)-~)+ E ( - f ( x ) - ~ )  

+(1/2~) E (A(x)2-~), (25) 
iaJoU5 ~ 

where the set S+, S_,  S 0 are as given in (21). We note that 

p(x, ~, o) =p(x, ~). 

Furthermore, let x(p., S)  be a local minimizer of p(x, t~, S). We propose 
that LIP is solved by the following scheme: 

Set/x := /~ t~ ,  xo := x~t~, S = O. 
Until/~ < ~ ,  do these operations: 
Find x(/~, S)  and So(x(#,  S) , /~)  by minimizing p(x, ~, S ) starting at xo. 
Let xo:= x(/~, S).  
If S _ So(x0,/-~), minimize p(x, ~) starting at Xo to find x(/z) (*); let 
Xo:= x(u). 
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Let 5~ := 3%(Xo, tx), ~ := tx x 10 -2. 
The idea behind this scheme is that, if 

~¢o(X(~), ~,) = ~¢0(x(~), ~) ,  

p(x, fi, o¢o(X(/X), t x)) is twice continuously differentiable in a neighborhood 
of x( t i  ) which includes x(p,) and will have a local minimizer at x(fi). The 
part of  the algorithm indicated by (*) is merely to allow for incorrect choices 
of 3ro(X(~i.), fi). The minimization of p(x, I~, ~¢) may be accomplished in 
essentially the same fashion as described in Section 3.4, the only differences 
being that the definitions of  the gradients and Hessian matrices in Section 
3.3 must allow for the differences between the summation indices in (21) 
and (25). 

3.6. Discussion. We discuss briefly the dominant storage costs and 
the approximate cost per iteration of  our algorithm. Suppose that Ao(x (k)) 
is t x n. The principal storage requirement is the space needed to store the 
matrix 

[ (~(x(k) '~) A°(x~k))r ] (26) 

Ao(x (k)) - tx~¢, 

and its symmetric factorization. Using symmetry and overwriting the factors 
of (26) on (26), the dominant storage cost is (n + t)2/2 locations. As we do 
not usually know how large t may be, t <~ n, we must normally reserve 2n ~- 
locations. 

The dominant cost per iteration (excluding the often considerable costs 
of evaluating problem functions, common to all methods) is that required 
to factor (26). The factorization is dominated by ( n +  t)3/6 flops. Here, a 
flop is a floating point multiplication or division. Hence, the dominant cost 
may be as large as 4n3/3 flops. 

As a comparison, the methods of  Bartels and Conn (Ref. 17) and 
Murray and Overton (Ref. 13) maintain the matrix Ao(x(k)), its LQ factoriz- 
ation Ao(x ~ )  = (L, O)Q r, where Q is n x n and L is t x t, and the matrix 
Z'rHZ, where H is an approximation to the Hessian of  the Lagrangian 
function and Z r includes the last n - t rows of Q r  

If  we assume that ZTHZ is maintained without requiring H and the 
factor L is overwritten on Ao(x(k~), the dominant storage requirements of 
such a method is (n - t )2/2+ tn + n e = 3n2/2+ tz/2. If H is maintained, this 
cost increases to 3n2/2+ tn. Thus, once again, we must allow 2n 2 locations 
(with H, 5n2/2 locations). 



JOTA: VOL. 56, NO. 1, JANUARY 1988 107 

The dominant  cost per iteration is that required to factorize Ao(x (k)) 
and, possibly, to form and factor Z r H Z .  Depending upon which method 
is used to factor Ao(x ~k)) (Householder 's  or Givens '  method are the usual 
candidates; see, e.g., Ref. 23), the factorization requires roughly between 
t2(n - t/3) and 2t2(n - t /3) flops. If  Z r H Z  is formed and factored, an extra 
n2(n - t )+(n  - t)3/6 flops are used. Once again, the dominant cost may be 
as high as 4n3/3 flops. 

3.7. Comments. In general, it is necessary that we let b~ approach zero 
if we wish to find a local solution to L1P. However,  it is not always the case, 

Firstly, suppose that 5%(x(fi),/2) is empty for some value ~ of/~. Then, 
it is easy to see that 

x ( ~ )  = x(/2), for all/z <~ fi, 

and hence 

x *  = x ( ~  ). 

Secondly, suppose that 

&(x( /2 ) , /2 )  = ~ = ~_(x(~Z),/2), 

for some value/2  of tz, and that 

--- max fi(x(/2)). 
l ~ i ~ m  

Then, 

x(Ix) = x(f i) ,  for all ~ ~< t x ~ ft. 

In particular, if _~ = 0, 

x * = x ( ¢ ) .  

In these two cases, p(x, Ix) is therefore an exact penalty function. 
The second case, with 8 = 0, has important  consequences for solving 

sets of  nonlinear equations, i.e., in trying to find a point x* for which 

f i (x*)  = 0, for all 1 <~ i ~< n. 

A common approach to such problems is to define a function h: ~ - ~  ~+  
such that h(0) = 0 and to solve the given nonlinear equations by minimizing 
h( f (x) ) .  The major advantage of  such an approach is that progress toward 
the solution can be measured by the size of  h( f (x) ) ;  this allows one to 
construct globally convergent methods for solving nonlinear equations. The 
most popular  choice for h(x) is 1Ix[j2; another possibility is ]]x[[~. We 
advocate the use of p(x, /x) ,  with decreasing values of /x  if necessary. Such 
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a choice can be viewed as a compromise between the differentiability of 
Ilxl]~ and the robustness of IlxlI~; our approach combines both virtues. If  
x(~)-~x*, at which f ( x * ) = 0 ,  l<~i<~n, it is normally that case that 
~¢o(x(/x),/z) = {1 . . . .  , n}, for all tx smaller than some threshold/2. In this 
case, f (x(¢))=0,  1 ~< i ~  < n, and we need not reduce/x any further. 

Our second comment is that all of the preceding theory can be extended 
to the constrained /l-problem, 

(CL1P) minimize Fl(X), 
x R  n 

subject to c;(x) = 0, ie  ~, 

c,(x)>-O, i ~ ,  

by the obvious sequential minimization of the penalty function 

p(x,~) :  E (f~(x)-~)+ 2 ( - f (x ) -~) '  
i E ~ +  i6,,~_ 

+(1/2/x) 2 ( f (x)2- /x2)  
i t  J0 

+(1/2/x) • c,(x)2+(1/21x) 2 c,(x) z-. 
i~ ~' i ~ . ¢  

Finally, we have only considered solving NLPL~P by using the quadratic 
penalty function. This is by no means the only simple differentiable penalty 
function which may be used to solve the /l-problem. For instance, the 
appropriate variant of the logarithmic barrier function (see, Ref. 2) for LIP 
is the function 

pB(x, ~) = ~ (,/(~-~+f,(x) 2) 
i = 1  

- /x  loge (/x + ~/(/~2+f(x)Z)))+ m/x(1 -log~ 2/x). 

This function may be derived in essentially the same way that p(x, p~) was 
obtained in Section 3.2. Although this function appears rather complicated, 
it has a significant advantage in that it is twice continuously differentiable 
at all points at which t h e f ( x )  are. This may be important when the soluton 
to L~P is degenerate (see Section 7). 

4. Testing 

In this section, we give results of some preliminary numerical testing 
of the algorithm outlined in Section 3. Our aim has not been to present the 
results of a highly polished code, but merely to indicate that our approach 
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is promising. We have implemented the scheme given in Section 3.5 with 
/X~tart = 10 -1 and /-/~min ~--- 10 -8 -  The problems we have solved and the starting 
v a l u e s  Xstar t we use are as follows: 

Problem 4.1. Example 3 in Ref. 16. 
Starting point Xsta~t = (0.25, 0.39, 0.415, 0.39) r. 

Problem 4.2. Example 2 in Ref. 16. 
Starting point x~ta~t = (3.0, 1.0)7-. 

Problem 4.3. Example  1 in Ref. 16. 
Starting point Xsta~t = (1.0, 1.0, 1.0)r 

Problem 4.4. Example  6 in Ref. 16. 
Starting point x~t~t = (2.0, 2.0, 7.0, 0.0, -2 .0 ,  1.0) r. 

Problem 4.5. Rosenbrock 's  function. 
f~(x) = 10.0 (x2-x~), f2(x) = ] . 0 - x 1 .  
Starting point Xsta~t = ( -1 .2 ,  1.0)r. 

Problem 4.6. Davidon 2, see Ref. 24. 
Starting point Xsta~t = (25.0, 5.0,--5.0,--1.0)~ 

Problem 4.7. Constrained distance problem. 
f / ( x )  : x / ( ( y i - - X 0 2 +  (Zi -- X2)2), 1 <~ i~<64, 
Yi = 2.0 sin(Tri/32.0), zl = 2.0 COS(Iri/32.0). 
The variables are constrained so that el(x) = (xl + 3.0) z + x2 z = 0. 
Starting point X~,art = (1.0, 1.0) r. 

Problem 4.8. Problem 4.3 with a constraint. 
The objective function in Problem 4.3 is constrained so that e~(x)= 
x~ + x~ + x~- l .o:o.  
Starting point x~ta~t = (1.0, t.0, 1.0)r. 

Problem 4.9. Problem 4.6 with constraints. 
The objective function in Problem 4.6 is constrained so that 
cl(x) = x~ + 2.0(x2-  0.25 e4°) -~ + x3 + (x4 - -  cot(4.0))" = 0, 
c2(x) = x~ +x3 = 0. 
Starting point xs~t = (25.0, 0.5, -5.0,  -1 .0)  r 
The results are summarized in Tables 1 and 2. In Table 2, n, m, c give 

the numbers of  variables, functions, and constraints (if any) for the problem; 
a gives the number  of  functions in the set 5%(x*, 0); and k is the number  
of  iterations required by the algorithm. 

The number  of  iterations required by the method is equal to the number  
of  times the derivatives are evaluated. Our implementat ion uses a rather 
crude backtracking line search. Consequently the number  of  function evalu- 
ations made is sometimes considerably more than the number  of  iterations. 
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Table 1. Solutions obtained by the algorithm. 

Minimum value 
Problem obtained Minimizer obtained 

4.1 3.87680 × 10 -2 

4.2 1.0 

4.3 7.89423 
4,4 5.59813 x 10 -1 
4.5 6.7 x 10 -'ts 
4.6 903.23433 

4.7 162.94190 

4.8 8.95605 

4.9 4836.29362 

(0.19337, 0.19377, 0.10893, 0.13973) T 
(1.1 x 10 TM, 2.2362 x 10-4) T 

(0.53596, 0.0, 0.03192) T 

(2.2407, 1.8577, 6.7700, -1 .6449 ,  0.1659, 0.7423) r 
(1.0, 1.0) 7- 

( -10 .224 ,  11.908, -0 .4581 ,  0.5803) T 
( -2 .0 ,  - 2  x 10-12) T 

(0.98923, -0 .9786 ,  0.10873) T 
( -2 .1  x 10 --3, 13.644, 2.1 x 10 -3, 0.864) v 

As the solution is approached, the Newton  stepsize a (k)= 1.0 is normally 
taken, and one function evaluation per iteration is required. For test prob- 
lems 4.5 and 4.6, it was notnecessary  to reduce/~ below 10 -1 for the reasons 
described in Section 3.7. In all cases, the asymptotic convergence rate for 
a fixed value o f / x  was observed to be quadratic. Typically, three or four 
iterations were required to move  from x(/~) to x(/2) when /2  = tz x 10 -2. We 
believe that the results are promising; however,  we feel that a more sophisti- 
cated line search would considerably enhance the behavior of  the algorithm. 

5. Minimax Problems 

The final class of  problems that we shall consider is the minimization 
o f  the largest o f  a finite set o f  functions, 

( M I N I M A X )  minimize Fro(x), where Fro(x) = m a x i m u m  f(x). 
X E g l  n l ~ i ~ m  

Table 2. Performance of  the algorithm on test problems. 

Problem n m c a k 

4.1 4 11 - -  4 45 
4.2 2 3 - -  2 36 

4.3 3 6 - -  1 t8 

4.4 6 51 - -  6 66 
4.5 2 2 - -  2 41 

4.6 4 20 - -  0 1 
4.7 2 64 1 1 18 
4.8 3 6 1 3 20 

4.9 4 20 2 1 42 
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Such problems are normally known as minimax problems; an important 
special case is the discrete Chebyshev approximation of data. Again, we 
shall be concerned particularly with minimax problems for which some or 
all of the functions f ( x )  are nonlinear. The linear case has been studied 
extensively, and many good algorithms for solving such problems are 
available (see, for a survey, Ref. 25)_There are relatively few methods for 
the nonlinear case (a good survey is given in Ref. 26), and we start by 
reviewing some of them. 

5.1. Existing Algorithms. The development of algorithms for solving 
MINIMAX parallels that for solving L1P. A number of algorithms (Refs. 
24, 27, 28) are based upon two-phase strategies which start by solving 
sequences of linearized versions of the nonlinear problem. This continues 
until those f ( x )  which are considered to be equal to m a x l ~ m  f ( x )  at the 
solution are identified after which a suitable sequence of nonlinear equations 
are solved by quasi-Newton methods. The method of Conn (Ref. 29) solves 
MINIMAX directly taking into account the nondifferentiable nature of 
Fro(x). 

A second approach to the problem is to observe that MINIMAX is 
equivalent to the following nonlinear programming problem 

(NLPMM) minimize u, 
X E "J~ n. ~t ~ ji~ 

subject to u - f ( x )  >~ O, i = 1 , . . . ,  m. 

Han (Ref. 30) proposes that NLPMM be solved by applying his 
nonlinear programming method (Ref. 31) to NLPMM. The methods of 
Murray and Overton (Ref. 26) and Han (Ref. 32) apply projected Lagrangian 
methods to NLPMM and exploit the structure of NLPMM to solve 
MINIMAX. Both methods impose Fm(x) as a merit function for the 
minimization, but differ in the way constraints are used in the projected 
Lagrangian formulation. 

5.2. New Method. We tackle MINIMAX by way of NLPMM. An 
obvious way of solving NLPMM is by means of a sequential minimization 
of the quadratic penalty function 

fi(x, u, lx)=u+(1/2tx) ~ (u-f(x))2_. 

Such an approach can easily take special account of the auxiliary variables 
u. However, we prefer to remove u directly from/5(x, u, ~) and to construct 
a simpler penalty function p(x, Ix). 
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We observe that, if we fix x and IX, iO(x, u,/x) is a piecewise quadratic 
function of  the single variable u. Thus, if x and IX are given, it is easy to 
find u to minimize/5(x, u,/x). We therefore define 

p(x, IX)= mion p(x, u, IX), (27) 

and observe that the minimizer ofp(x,  IX) over x is the same as the minimizer 
of/5(x, u, Ix) over x and u. For given x, suppose t h e f ( x )  have been ordered 
so that 

Define 

and let 

A , > ~ A 2 ( x ) > ~  " ' " > ~ A ~ ( x ) .  (28) 

O(u)=-~(x,u, IX), for fixed x, IX, 

if(x, Ix) = arg rain O(u). 
u 

It is clear that O(u) is strictly convex in the region u<~fk,(x) and the 
minimizer if(x, Ix) lies in this region. 

For convenience, introduce 

fk . . . .  ( X )  ~" - - 0 0 .  

Let the region ftj be 

• j  = {t/: f k j+l (X)  ( I,I <~fk~(x)}, j = 1 , . . . ,  m. 

In the region ~j ,  

J 
O(u)=Oj(u)=u+(1/2IX) ~ (u-fk,(x)) 2. 

i = l  

Let 

tij = arg min Oj(u). 

It is then easy to show that 

and that t~j lies in ft, if and only if 

fkj+,(X)<[ ~= fk,(X)--lx]/J<~fkl( x)" 
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As O(u) is stictly convex when u ~fl(x), 

~(x, ix)=[ ~=lfk,(x)-lxt/j ,  (29) 

where j =--j(x, IX) is the smallest integer such that 

fk,<(X)<[ ~= fk~(X)--IX]/j. (30) 

In this case, (27) and (29) combine to give 

J 
p(x, IX)=(1/j) • fk,(x) 

i = l  

j 2 

It is clear that p(x, IX) is one times, and piecewise twice, continuously 
differentiable. Our proposal is then that MINIMAX be solved by a sequen- 
tial minimization of  p(x, t*) as # -+ 0+. 

5 . 3 .  

(31): 
Derivat ives  of p(x, p). We obtain the following derivatives from 

Vxp(x, 1 ~) = (1/j)Aj(x) re + t~-lAj(x) rWjf(x), (32) 

V=p(x, Ix)= G(x, IX ) + tx-~ Aj(x) rWjAj(x), (33) 

where Aj(x) is made up of the rows V x . ~ , ( x ) ~ ,  1 ~< i<~j; f ( x )  is made up 
of  entries fk,(x), 1 <- i<~j; Wj is the projection matrix of  rank j - 1, 

Wj = Ij - ee T /j; 

and 

J J 

G(x, IX)=(1/j) 2 Vxxfk,(x)+ix-l Z wi(x)Vx.~fk,(x), 
i ~ l  i = l  

where wi(x) is the ith element of  Wjf(x), i.e., 

J 
wi(x)=fk,(x)- ~, fk~(x)/j. (34) 

k = I  

In order to investigate these derivatives further, we need the following 
lemma. 
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Lemma 5.1. The quantities wi(x) are bounded by 

-1/ j  <<- wi(x)t x-l <~ 1, 

for all x, al l /x > 0, and all 1 ~< i <~j. 

Proof. See the Appendix. [] 
Define scalars Ai(x, tz) such that 

{ 1/j+wi(x)lx-l' i f l ~ i < ~ J '  (35) 
~i(x, p~) = 0, otherwise. 

It is easy to show that these Ai are continuous functions of x. With such a 
definition, (32) and (33) may be rewritten as 

J 

Vxp(x, ~) = 2 A,(x, ~)vxA,(x), 
i = 1  

Vxxp(x, IX)= d(x, lz ) + I~-IAj(x) TWjAj(x), 

where 

J 

d(x, ~)= E ,~,(x, ~)VxxA,(x). 
i--I 

Therefore, both Vxp(x, Ix) and G(x, t z) are continuous [provided the f (x)  
are twice continuously ditterentiable]. If we sum (35), we obtain 

hi(x,/~) = 1. 
i - - I  

Furthermore, Lemma 5.1 gives 

hi(x, tz) ~> 0, l<~i~m. 

Finally, by definition of x(/x), 

J 

lim lim Y~ A~(x,/~)Vxf(x) = 0. 
~ 0 +  x ~ x ( ~ )  i=1  

Therefore, if 

lim lim A~(x,/z)=3.*, l~i<~m, (36) 
~ 0 +  x ~ x ( ~ )  

the Lagrange multipliers A* satisfy the first order optimality conditions 

J 

(i) ~ ,~*=1, A*~>O, l~i<~m, 
i=1  

(37) 
J 

(ii) E ) t*VJk , (x*)=0 ,  
i = l  
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for MINIMAX (see, e.g., Ref. 33). Moreover, 

lira lira G(x,~)=VxxL(x*,A*),  
, ~ 0 +  x~x( ,~)  

where 

(38) 

m 
L(x, A) = E Affk,(x). 

i=t 

Hence, if 

x*--lira Iim x 
p.~O x ~ x ( ~ )  

and (36) is satisfied, (37) indicate that x* is a first-order stationary point 
for MINIMAX; once again, this is a stronger statement than is normally 
possible when penalty function methods are applied to nonlinear program- 
ming probiems. We note that (36) is satisfied if the gradients Vxfk~(x*), 
1 <~ i <~j, span a space of dimension j -  1. This assumption is often known 
as the Haar condition. Moreover, if/Zk is any sequence tending to zero such 
that 

lim lira A(X,~k)=A*, l<~i<~m, 
k~oc~ x ~ x ( ~ k )  

for some A*, the same conclusion is true. As A(x, ~) is bounded (Lemma 
5.1), there is at least one such sequence. 

5.4. Minimizing p(x, l~). As with the penalty function for LiP, we 
advocate using Newton's method and its variants to minimize p(x, Ix). The 
usual problem of increasing ill-conditioning of Vxxp(x, #) would arise if 
Newton's method were applied directly. This time there is a further compli- 
cation. From (33), 

Vx~p(x, Ix)= G(x, ~ ) + ~-lAj(x)  rl~Aj(x),  

where, as usual, G(x, ~) is well behaved [in the light of (38)]. The additional 
problem is that Aj(x)rwjAj(x) is of rank at most j -  1. To simplify matters, 
let us make the following nondegeneracy assumption: 

(NDA3) The gradients VxJk,(x*), 1 ~< i<~j, span a space of dimension 
j - 1  and the associated unique Lagrange multipliers A* are nonzero, i.e., 
A~* > 0, l<~i<~j. 

We shall consider the implications of relaxing this condition in Section 
7. Under NDA3, if x is sufficiently close to x*, Aj(x)rWjAj(x) is positive 
semidefinite and of rank j - 1 .  Let Aj(x) be any ( j - 1 ) ×  n matrix such that 

Aj(x) ~ ( x )  = aj(x) rWiaj(x). (39) 
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Then, the Newton equations, giving a correction pCk) to x (k), 

V~xp(x (k), tL)p (k)= -Vxp(x ck), tL), 
can be written as either 

- 

L L j( ) -#~- ,  
o r  

(40) 

=--[i~" 1 )ti(X (k), /~)Vxfk,(X(k))l , (41)  

where f ( x  (k)) is any vector satisfying 

~j( X(k)) rf  ( X(k)) = Aj( x(k')-CWjf( x(k)). (42) 

Under NDA3, the normal arguments indicate that, if M I N I M A X  is well 
conditioned, either (40) or (41) may be used to determine p(k) accurately. 
In order to find Aj(x) satisfying (39), we propose that Cholesky's method 
with interchanges (symmetric LU decomposition with interchanges) be used 
to find 

where P is a permutation matrix, L is (j - 1) x (j  - 1) lower triangular, and 
l is a j - 1  vector (see, e.g., Ref. 23). A suitable vector f ( x  (k)) may then be 
found by solving 

Lf(x 
where f ( x  (k)) comprises the first j - 1  entries of  pTA~(x(k))TWjf(x(k)). 
However, in view of the extra work involved in finding f(x(k)), (41) may 
be preferred to (40). 

In order to determine when either (40) or (41) is appropriate, we have 
the following theorem. 

Theorem 5.1. Let K be the coefficient matrix of (41), and let In(K) = 
(k+, k_, ko). Then: 

(i) Vx~p(x (k), Ix) is positive definite if and only if ko = 0 and k_ = j  - 1; 
(ii) Vx~p(x (k),/~) is positive semidefinite but singular if and only if 

ko>0  and k _ = j - 1 ;  
(iii) Vxxp(x (k),/z) is indefinite if and only if k_~j. 

Proof. The proof is identical to Theorem 3.2 and its corollaries in 
Ref. 1. [] 
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We should only calculate p(k) from (40) or (41) when (i) is satisfied. 
In cases (ii) or (iii), weak solutions to (40) or (41) or directions of infinite 
descent can be calculated in the manner described in Ref. 1. 

The storage and iteration costs for our method are essentially the same 
as those described in Section 3.5 for the algorithm for L~P. The cost per 
iteration is inceased slightly by about 2n2min(n,j)/3 multiplications, 
because of  the need to assemble Arg~Aj and find A~. These figures are 
roughly the same as for good existing algorithms. 

5.5. Practicalities. The problems associated with a straightforward 
sequential minimization of p(x, Ix) described in Section 3.5 for L~P (the 
introduction of second derivative discontinuities between the starting value 
and the minimizer of the penalty function when/x is reduced) equally apply 
to MINIMAX. Our remedy is essentially the same. 

Let 

So(X, ~ ) = ( k , , . . . ,  k;}, 

where j is defined by (30). Suppose that 3~1 is a given subset of { 1 , . . . ,  m} 
of cardinality j l .  Let 

5~2 = { t , . . . ,  r n } \ ~  1 

have cardinality J2; and suppose that for a given x, the elements of 5~ 2 are 
written as {k~ , . . . ,  k}~}, where 

fk',+,(X)<-fk',(X). 

Further, let j '  =--j'(x, Ix, ~¢~) be the smallest integer such that 

,;,/'(x)+,;o 
ifj~ > 0, or j '  =j ,  if j l  = O. Finally, let 

~0(x, ~, t , )  = s~, ~ {k', ,  . . ,  k'j,} 

have cardinality J0. Then we define the auxiliary function 

p(x, ~, t~) = Z f ( x ) / j o -  ~/2jo 

(44) 
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Notice that p(x, IX, ;g) = p(x, Ix). The important property of p(x, Ix, `ca) is 
that, as `Cl c_ ̀ co(X,/~, `Cl), there can be no second derivative discontinuities 
of p(x, IX, `Cl), due to the functions f ( x ) ,  i~ i t -  We would normally expect 
that the set ,Co(X, IX) will remain fixed for all IX sufficiently small (at least 
for nondegenerate problems). Therefore, if we fix ̀ ca = `co(X(/2),/2) for some 
sufficiently small/2, we would expect that p(x, IX) =p(x,  ix, `Cl), for all x in 
a neighborhood of x(ix) and all IX ~/2. Consequently, the minimizer x(tx, `C0 
ofp(x,/~, `ca) and x(ix) should be identical. Furthermore, p(x, ix, `Cl) should 
be twice continuously differentiabte in a neighborhood including both x(ix) 
and x(/2) if we have correctly identified `Cl. This motivates the following 
algorithm: 

Set IX :=/~start, X :=  X~;tart , `Cl = ~ "  

Until IX </~m~,, do these operations: 
Minimize p(x, tx, `C~) starting at x0 to find x(ix, ~¢a) and `c0(x(ix, `C~), IX). 
Let xo: = x(ix, `ca)- 
If  `Cl ¢`c0(x(ix, `ca), IX), minimize p(x, IX) starting at Xo to find x(ix) 
(*); let xo: = x(ix). 
Let C̀~ := `co(Xo,/x), u :=/x x 10 -2. 
The part of the algorithm marked (*) is to allow for an incorrect 

identification of `co(X(ix), IX). The minimization of p(x, tx,`cl) may be 
accomplished in essentially the same manner described in Section 5.4, The 
summation indices in (44) are different from those in (31); these differences 
carry over into the derivatives (32) and (33) in the obvious way. 

5.6. Comments. A commonly occurring minimax problem is to minim- 
ize the infinity-norm of a vector valued function, 

(LooP) minimizemaximum If(x)t. 
x ~  ~ l ~ i ~ r n  

Clearly this may be written as follows: 

(LooP) minimize maximum { f ( x ) , - f ( x ) }  
x ~  "~ l ~ i ~ m  

and solved by the methods of the preceding sections. However, it is also 
possible to derive a special penalty function specifically for this problem 
which takes account of its structure. 

Suppose, for fixed x and Ix, that the functions f ( x )  are ordered so that 

Ifk,+l(X)l~lfk,(X)]" 

Define 

[Ifk,.,(x)l, 
tj = 

i f l < - - j ~ m - 1 ,  

if m<--j<--2m-1, 
i f j = 2 m ,  
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uj 

if l_<j<_ m - l ,  

if m<-j<-2m. 

Now, pick 

j=----j(x,#), l<--j<--2m, 

such that j is the smallest integer for which lj < uj. Then, the appropriate 
version of the quadratic penalty function for L~P is 

p(x, a)-- 

J 
Y. Ifk,(X)l/j-- ~x/2j 

i = 1  

if 1 --<j--< m, 

2 m - - j  

Z ]A,(x)l/j-~/2j+ ~ f~,(x)2/~ 
i = 1  i = 1  

- f d x ) -  '~-J  ' 
1 z = l  l- i = t  

if m+l<-j<-2m. 

This function may be derived using the techniques of Section 5.2. Notice 
that this function is differentiable; for, although there are terms involving 
Ifk,(x)], the choice o f j  excludes any f ( x )  for which f (x )=0.  

Once again, constrained MINIMAX problems present no difficulties; 
the constraints are introduced into the penalty function in an obvious way. 
However, in contrast to L~P, we have been unable to derive differentiable 
functions for MINIMAX based upon barrier functions which exploit the 
structure of NLMMP. 

6. Testing 

An implementation of  the algorithm described in Section 5 has enabled 
us to conduct preliminary numerical experiments. The problem data given 
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Table 3. Solutions obtained by the algorithm. 

Minimum value 
Problem obtained Minimizer obtained 

4.1 8.08444 × 10 -3  

4.2 6.16432 x 10 -1 
4.3 3.59971 
4.4 3.49049 x 10 -z 
4.5 0.0 
4.6 115.70643 
4.7 3.99999 
4.8 4.16140 
4.9 485.39904 

(0.18463, 0.10521, 0.01197, 0.11179) T 
(0.45330, -0.94659) T 
(0.32826, 0.0, 0.13132) 7̀  
(1.1759, 1.8993, 6.9482, -t,6503, 0.1457, 0.5170) T 
(1.0, 1.0) r 
(-t2.244, 14.022, -0.451, -0.011) r 
(1.20, 1.5 x 10-13) r 
(0.97778, 5.3 x 10 -;2, 0.20965) r 
(-3.912 x 10 -3 ,  13.639, 3.912 x 10 3, 0.8634)T 

in S e c t i o n  4 has  b e e n  u s e d  to c o n s t r u c t  tes t  e x a m p l e s  o f  the  f o r m  

m i n i m i z e  m a x i m u m  If~(m)l, 
xE~ n l < _ i ~ m  

sub jec t  to t he  g i v e n  cons t r a in t s ,  i f  any.  T h e  resu l t s  o f  o u r  t e s t ing  are  g i v e n  

in T a b l e s  3 a n d  4. T h e  s t a r t ing  va lues  and  v a l u e s  of/x.~ta~t and/Xmi,  a re  t h o s e  

g iven  in S e c t i o n  4. 

T h e  c o m m e n t s ,  w i t h  r ega rd s  to  h o w  the se  resul t s  s h o u l d  h a v e  b e e n  

i n t e r p r e t e d ,  g i v e n  in S e c t i o n  4, a re  e q u a l l y  r e l e v a n t  here .  O n c e  aga in ,  we  

fee l  t ha t  t h e s e  resul t s  a r e  e n c o u r a g i n g  a n d  i n d i c a t e  t h a t  a l g o r i t h m  is a use fu l  

t e c h n i q u e  fo r  so lv ing  m i n i m a x  p r o b l e m s .  In  T a b l e  3, n, m, c, k a re  as 

d e s c r i b e d  in  S e c t i o n  4; a g ives  t he  n u m b e r  o f  f u n c t i o n s  t h o u g h t  to  be  e q u a l  

to m a x l f  I at  t he  so lu t i on .  

Table 4. Performance of  the algorithm on test problems. 

Problem n m c a k 

4.1 4 11 - -  5 43 
4.2 2 3 - -  2 16 
4.3 3 6 - -  2 16 
4.4 6 51 - -  7 69 
4.5 2 2 - -  2 26 
4.6 4 20 - -  3 26 
4.7 2 64 1 1 24 
4.8 3 6 1 2 24 
4.9 4 20 2 1 37 
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7. Degenerate Problems 

We shall discuss degeneracy with respect to the problem NLP. Any 
comments that we make wilt apply to all of the problems that we have 
considered in this paper. We say that a nonlinear program is degenerate if 
the local solution that we encounter does not satisfy the nondegeneracy 
assumption NDA. 

Degeneracy has two effects on solving NLP by way of the quadratic 
penalty function. Firstly, the matrix (5) is singular if the constraint gradients 
Vxe~(x*), i c ~,  are linearly dependent. This implies that (2) may be badly 
conditioned for small/z and the corresponding numerical solution prone 
to errors. Secondly, the presence of zero Lagrange multipliers indicates that 
the set 7~(x) of violated constraints may not settle down as ~ approaches 
zero. Consequently, the second derivative matrix Vxxp(x,/~) may be discon- 
tinuous in any neighborhood of x(~) and of x*. This can impede the 
convergence rate of the method, even for fixed value of/z. 

The first problem may often be avoided in a satisfactory fashion. The 
second defect is more problematical. In order to proceed, we need to isolate 
the most frequently occurring cause of degeneracy. 

Definition 7.1. We say that the local solution x* of NLP is strongly 
degenerate if the constraint gradients Vxe~(x), i c M, are linearly dependent 
for all x in some open neighborhood of x*. 

Strong degeneracy usually arises when !M I > n. This frequently happens 
in 4-problems and minimax problems. It manifests itself, when using the 
quadratic penalty function, in the second term of the second derivative 
matrix 

V~,/5(x <k)) = ~3(x ~k>, # ) + v - l  A( x<k>) TA(x~k~). 

If A(x <k~) is rank deficient and # is small, (2) is ill-conditioned. This may 
be avoided using the technique already mentioned in Section 5.4. That is, 
find a matrix A such that 

~T~ = A(x(k)) rA(x<k)), 

and so that A is full rank. This may be accomplished using a symmetric 
LU decomposition with interchanges as indicated in (43). Then, (2) can be 
replaced by 

- 

or by 

(45) 

(46) 
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where 

g = g~k~_ Z ~ '~(x ~k~,/x)Vxc~(x~k~) 
i c~ / ' (x  ) 

and ~ is any vector satisfying 

The formulation (46) may be preferred, as it avoids the need to find ?. We 
do not necessarily limit the use of (45) or (46) to cases when tz is small. 
These approaches have the additional benefit that (45) or (46) have 
dimension at most 2n. The formulation (2) may have as many as m + n 
equations. For data fitting/1-problems and minimax problems, where m is 
frequently much larger than n, this may be important. 

It is not clear as to the best way of dealing with the second derivative 
discontinuities in p(x,  Ix) which arise because of the degeneracy. One 
possibility is to use an active set strategy to predict which constraints are 
active (i.e., have the value zero) at x*. Suppose that the constraints indexed 
by ~ are predicted to be active at x*. Clearly, ~ c s~. Then, we might try 
to solve NLP by a sequential minimization of the auxiliary penalty function 

p(x ,  I x , ~ ) = f ( x ) + ( 1 / 2 ~ )  ~ c;(x) ' -+(1/2Ix)  ~ c,(x)2_. 

Using the Lagrange multiplier estimates generated in the minimization, it 
may be possible to correct for incorrect choices of ~ .  However, such 
Lagrange multiplier estimates are not unique, and the difficulties associated 
with verifying optimality normally associated with degeneracy under these 
circumstances will now apply (see Ref. 7). We have not pursued this further. 

A second way of dealing with such discontinuities is to avoid them 
altogether by using a different penalty function. For instance, the logarithmic 
barrier function for inequality constraints is twice continuously differenti- 
able. The difficulty is, of  course, the need to find and maintain feasible 
points for the nonlinear program. This is trivial for L1P and MINIMAX, 
and it may turn out that barrier functions are preferable for these problems. 
We are currently pursuing this idea. 

8. Appendix 

Proof of Lemma 5.1. For simplicity and without losing generality, 
assume ki = i, 1 <- i -~j. We first establish the lower bound. From (28) and 
(30), 

3 ( l / j )  f k ( x )  - tx <~fj(x) <--fj_,(x) <--" • " <--fl(x). 
=1 
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Hence, for any 1 <- i---j, 

y 
2 fk(x)-tx <--jr(x). 

k = l  

Rearranging, we obtain 

[jf(x)--k~l fk(X) ]l~-l ~-- - t. 

Combining with (34), we obtain 

wi(x)tx-l >_-l/j, 
as required. 

To establish the other part of the inequality, observe that the minimality 
o f j  in (30) implies that 

f,(x)>- '''>-f(x)>-f+~(x)>-[~_ fk(X)--~]/i, 

Assume inductively that 

fl(x)-tx<-fg(x), k--1,...,i<-j. 
This is trivially true for k =  1, 2. Then, from 
hypothesis, 

Thus, 

l<_i<-j-1. 

(47) 

(47) and the inductive 

A ( x ) - ~ < - f ( x ) ,  1<- i<-j. 

Summing these inequalities, we obtain 

J 
j f , ( x ) - j ~  ~- E A(x),  

k = l  

i.e., 

y 
fl(x)- 2 f(x)/j<--t x. 

i ~ l  

(48) 
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But as 

f j ( x )  ~ £ _ l ( X )  ~ '  "" ~fl(X), 

(48) gives 

J 
f ( x ) -  ~ f (x ) / j<- - l  ~, 

i=1 

which establishes that  

i~-lwi(x) <- 1, 

l ~ i ~  L 

l <--i~j. [] 
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