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ON THE CONVERGENCE OF A SEQUENTIAL PENALTY FUNCTION
METHOD FOR CONSTRAINED MINIMIZATION*
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Abstract. The convergence behaviour of a class of iterative methods for solving the constrained

minimization problem is analysed. The methods are based on the sequential minimization of a simple
ditterentiable penalty function. They are sufficiently general to ensure global convergence of the iterates to

the solution of the problem at an asymptotic (two-step Q-) superlinear rate.
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1. Introduction. We are concerned with solving the constrained minimization
problem

1.1 a) minimize f(x) (x R

subject to the constraints

(1.1b) Ci(X =0 for all i = {1,..., t},

where the functions f and ci are assumed to be twice continuously differentiable
functions of the variables x. We suppose that ui, i are given fixed (and finite)
constants and that/x is a positive parameter. Then we are interested in solving (1.1)
by means of a sequential minimization of the penalty function

(1.2) C(x,p):f(x)@ i(x)ui+l/2tz Ci(X)2,
ic ic

for various values of/x approaching zero. Specific instances of such a function are the
quadratic penalty function (Fiacco and McCormick [8]) and the augmented Lagrangian
function (Powell [19], Hestenes [15]) although the latter is often used in a different
context where/x is bounded away from zero but the ui are allowed to vary.

It is well known that, under relatively weak conditions,

(1.3) lim lim x=x*,
t---,O+ xx(l)

where x(x) and x* are, respectively, local minimizers of (1.2) and local solutions of
(1.1). Recent work (Broyden and Attia [2], Gould [14]) has shown that the often
perceived difficulty of minimizing as x approaches zero can be avoided. In this
paper, we analyse the convergence of a particular scheme for solving (1.1) by way of
the function (1.2). The scheme produces iterates that are globally and, potentially
(two-step Q-), superlinearly convergent. The global convergence is assured by ensuring
that x approaches zero. The fast asymptotic convergence is achieved by ensuring that
a good starting point for the minimization of for a fixed value of x is available.

The paper is organised as follows. In 2, we define our notation and a description
of the algorithm framework follows in 3. In 4, we describe the assumptions we will
use in our convergence proofs and draw any immediate conclusions. The bulk of our
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convergence proof is given in 5 and we make a number of comments and suggestions
in 6 along with a report on the results of some simple numerical experiments.

2. Notation. We denote the gradient and Hessian matrix of the objective function
by

g(x) =Vf(x) and G(x) Vf(x),

respectively. Similarly, we denote the gradient and Hessian matrix of the ith constraint
function by

ai(x) Vci(x) and Gi(x) Vci(x),

respectively. We shall let c(x) be the vector whose ith component is c(x) and let A(x)
denote the Jacobian of c(x). Thus

A(x)=(a(x), a,(x)).

For any vector , we let

(x,a)=g(x)+ 2 Aa(x)=g(x)+Ar(x) ,, and

G(x, A G(x) + E AiGi(x)

be the gradient and Hessian matrix, respectively, of the Lagrangian function

f(x, ) :f(x)+ Y iici(x ).

We also define the augmented matrix

K(x, h, tx)= [ (x, h) Ar(x)]A(x) -IxI
where I is the (appropriately dimensioned) identity matrix. We say that the matrix
K(x, h,/x) satisfies the second-order condition if K is nonsingular and has precisely
negative eigenvalues. Finally, we shall be especially concerned with the particular
choice

X=-X(x,)=u+c(x)/

for ,. For such a choice of I we have

(2.1) Vx(x, x)= (x, X), and

(2.2) Vxx(x, x) F(x, X, x), where

r(x, .)= d(x,

We shall say that a point x* is a Kuhn-Tucker (first-order stationary) point for
the problem (1.1) if there is a vector of Lagrange multipliers h* for which

(2.) g(x*)+Ar(x*)*=O and c(x*)=0.

Any Kuhn-Tucker point for which K(x*, ,*, 0) satisfies the second-order condition
is necessarily an isolated local solution to the problem (1.1) (see, e.g., Gould [13]).
Last, we define the (right) generalized inverse of any full rank matrix B by

B+=BT(BB)-1.
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We are concerned with the asymptotic behaviour of sequences of numbers and
need to be able to compare the relative magnitudes of two such sequences. To this
end, suppose that {ak} and {bk} are two sequences of numbers converging to zero.
Then we say the following:

(i) { ak} is asymptotically smaller than { bk} if

lim lak/ bk[ 0

and write ak--o(bk) as k tends to infinity.
(ii) { ak} is asymptotically no larger than { bk} if

for all k => ko, and write ak- O(bk) as k tends to infinity.
(iii) { ak } is asymptotically similar to { bk} if

for all k-> ko, and write ak O.(bk) as k tends to infinity, for some constants c and
c2 and integer ko.

3. Algorithm. We propose to solve (1.1) by the following scheme:

Step 0 [|nitialization and start of the outer iteration].
The starting point x() is given. The positive constants 7, r, fi, /2, e, IX(0), and
b[,mi are specified to satisfy/31 < 0.5,/3 </32 < 1, e << 1, and l,mi (( 1. Set k =0
and x(’) x.

Step 1 [Inner iteration]. Here we find an approximate minimizer of (x, Ix(k)) with
the following iteration.

Step 1.0 [Start of the inner iteration].
Evaluate the problem functions, gradients, and Hessian matrices at x(k’).
Set X (k’) X(x(k’), tx (k)) and assemble (x(k’), X(k’)), d(x(k’), X (k’)) and
K (x(k’), X (k,o), Ix ). Set 0.

Step 1.1 [Test for convergence of the inner iteration].
If

(3.1)

set

(3.4)

(3.3)

and go to Step 2.
Step 1.2 [Compute a search direction].

Find any vector p(k,l satisfying

’, I1( ’,X ’’) p"-(x’ X’’ p"> x’ ll 2"

In particular, if K (x(’, X (’, ()) satisfies the second-order condition,
use the Newton direction p(’) for , which may be computed from the
augmented set of equations

[(x(",’’)) A(x("))][p(’’] [(x(",(")]A(x(’) -(I r(’ 0

(see Gould [14]), whenever such a vector satisfies (3.3).
Step 1.3 [Compute a steplength].

(3.2) x,(k) x(k,t3 and , *(k) (k,l)
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Find a scalar a (k’) satisfying the Armijo condition (Armijo [1])

(3.5) #((k)q-(k)p(k)&(k))(((k)c(k))qt-(k)((k),(k))Tp(k)
and the Goldstein condition (Goldstein 11])

’, + ,, )p >=(x X p(3.6) g(x’)+ (’)p’ X(x’) ’p(’ )) ’) ’), ’)) ’)

If p’) is the Newton direction, always try a stepsize of unity as the first
candidate for (’).

Step 1.4 [Compute the new iterate and evaluate problem functions].
Set

X(k,t+) x(k,t) +

Reset l’= + 1. Evaluate the problem functions, gradients, and Hessian
matrices at x(k’). Set X(k’)=X(X(’), ()) and assemble
(x(k,), X(k,)), and K(x(k’), X(k,), (k))" Go to Step 1.1.

Step 2 [Test for convergence of the outer iteration]. If (k)<m,, Stop with the
+)approximations x*(k) to x* and A.(k) to * Otherwise, compute ( such

that 0<(k+)< (k).
Step 3 [Find a starting point for the next sequential minimization]. If

K (x*(k), .(k), (k)) satisfies the second-order condition, compute the solution
p() to the equations

-(I r c(x*() (+(a*(- u)

(3.8)

(k)

and define

Xa(k) X(k) nt-p(k).

Otherwise, set x*(k) x,(k). Then, if
(k+l)(3.9) [[g(x*( X(x,*() /x(+))[[)=max (z, [[(x*() X(x

set x(+’)=x*,(k). Otherwise, set x(k+’)= x*(k). Reset k:= k+ 1 and go to
Step 1.

[End of the algorithm].

Although much of this algorithm might be thought of as standard, a word of explanation
of Step 3 is in order. The alternative starting point X*a (k) is merely the result of a single
iteration of Newton’s method for a root of the nonlinear system of equations

(3.10) g(x)+A(x)h=O and c(x)--tz(k+)(h--u)=O
with a slightly perturbed Jacobian matrixthe bottom diagonal entry /x

(k+) having
been replaced by/x ()starting from the estimates x*() and h*(). The equations (3.10)
give a stationary point for the function (x,/x(+)). The perturbed Jacobian is con-
venient in that it is already available from Step 1 of the algorithm. We might expect
the alternative starting point to be superior to x*(k) when/x() is small and indeed we
will show that this is the case. The test (3.9) is merely to stop the alternative starting
point from being used when, in the early stages of the algorithm, the gradient of the
penalty function at x,*() could be relatively large in comparison with that at x*().

Note that there is still considerable freedom in our algorithm. In particular, we
have not indicated how the search direction p(’) in Step 1.2 should be chosen if the
Newton direction is inappropriate, nor have we been specific as to the actual choice
of the stepsize Ot

(k’l) in Step 1.3.
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Although, in practice, we would expect to set ]min to some small positive constant
(bearing in mind the asymptotic estimate IIx*-x*k)l] O(/zk)), see, for example,
Fletcher 10]), here we shall be interested in the behaviour of the algorithm when Imn O,
and we shall assume that this is so in the next three sections. Clearly, such an
investigation is of both theoretical and practical interest. For although the limits of
finite precision computer arithmetic prohibit us from observing in full any predicted
asymptotic convergence results, in practice we benefit from a predicted rate when we
are close to the solution. We discuss the limitations of our results in 6.

4. General assumptions and consequences. We make the following assumptions
about the problem functions and the iterates generated by the algorithm.

Assumption (AS.l) The iterates generated by the algorithm all lie within a
bounded domain

Remark. This condition is needed to ensure that inner iteration converges. It is
entirely possible that the function is unbounded from below for any value of the
penalty parameter and (AS.l) is designed to prevent this possibility causing a problem
within the algorithm. We consider this assumption to be rather strong but are somewhat
placated in that it appears in almost every convergence proof for constrained optimiz-
ation algorithms that we have encountered.

Under (AS.l), the line search assumptions (3.5) and (3.6), and the search direction
condition (3.3), we must satisfy the inner iteration convergence criterion (3.1) in a
finite number of iterations (see Theorem 6.3.3 of Dennis and Schnabel [7], where we
may replace the assumption of local Lipschitz continuity of g in their proof by our
stronger assumption of continuity of the second derivatives of within the bounded
region ).

Assumption 2 (AS.2) The sequence {/z)} converges to zero as k tends to
infinity.

Under (AS.2) we have the following important result, which is based on Theorem
12.1.2 of Fletcher [10].

THEOREM 4.1. Suppose that (AS.l) and (AS.2) hold. Let x* be any limit point of
the sequence {x*()} generated by the algorithm of 3 as k tends to infinity and suppose
that A(x*) is offull row rank. Then we have the following:

(i) x* is a Kuhn-Tucker (first-order stationary) point for problem (1.1) and the
corresponding elements of the sequence {A*)} converge to the Lagrange multipliers A*.

(ii) For those indices k for which {x*()} converges to x*, we have the following
estimates"

(4.1) A*k A*+ o(1),

(4.2) c(x*k)) k)(A * u) + o(/k)
(k)as tz ->0+.
Proof We consider only those indices k for which a particular subsequence {x*(}

converges to x*. As A(x*) is of full rank, we may define

*= -a(x*)+(x*).
Furthermore, for k sufficiently large, A(x*))+ exists, is bounded, and converges to
A(x*)+. From (3.1) and (3.2), we have that

(4.3)
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Thus, we may deduce that

(4.4)
( TII2"r IIA(x*)+

But then we may combine the identity

*- * (a(x*+x*) + *+ (a(x*+x* a(x*+x*
with (4.4) to obtain the bound

(4.5) I}*(k)-- *]2 lla(x*()+ll=+ a(x*)+(x*)-a(x*())+rg(x*())]]2.
Thus, as the right-hand side of (4.5) can be made arbitrarily close to zero by picking
k large enough, A*( is bounded for k sufficiently large and converges to A*. Then,
taking the limit of (4.3) as k approaches infinity, we may deduce that

(4.6) g(x*) + A (x*)A * 0.

Furthermore, multiplying (4.5) by (, we obtain the additional bound

IIc(x*)) ((* u)llz
(4.7)

+ <> m(x*)+(x*) A(x*))+(x*>) 112.
Again, taking the limit of (4.7) as k approaches infinity, we have that

(4.+) c(x*) =0.

Hence, (4.6) and (4.8) imply that x* is a Kuhn-Tucker point and the (sub)sequence
{A *(>} converges to the relevant vector of Lagrange multipliers. The asymptotic
estimates (4.1) and (4.2) may be deduced from (4.5) and (4.7), respectively.

Remark. Theorem 4.1 remains true if the test (3.1) is replaced by the weaker test

+l+(x,’> X<,’>)[++< +(
for any positive function e() which converges to zero as approaches zero.

Assumption 3 (AS.3) The augmented matrix K(x*, I*, 0) satisfies the second-
order condition at any limit point x* of the sequence
{x*(>}.

Remark. This is a sufficient condition for a constrained stationary point to be a
solution of (I.I) (see Gould [13]). Note, in particular, that (AS.3) implies that A(x*)
is of full row rank and therefore that the conclusions of Theorem 4.1 are valid.

Assumption 4 (AS.4) The third derivatives of the functions f(x) and c+(x) exist
and are bounded for all points in a.

Remark. We may now extend Theorem 4.1 to the following result.
THeOReM 4.2. Suppose that (AS.I)-(AS.4) hold. Let x* be any limit point of the

sequence {x*>} generated by +he algorithm of 3 as k tends to infinity. en the
conclusions of eorem 4.1 remain true and, for the appropriate subsequence of {x*(>},
we have the further estimates"

(4.9) x*(> x* + O((>),
(4.10) *>= *+ O(>), and

(4.t t) cCx*>) =.(>(a *- u) + o(<++)
as (k) + 0+.

Proof Again, we consider only those indices k for which a particular subsequence
{x*(>} converges to x*. The conclusions of Theorem 4.1 follow from (AS.I)-(AS.2).
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To obtain the estimates (4.9) and (4.10), we use the relationships

g(x*(k)) + a(x*(k)) TA *(k)= (x*, A *)(x*()- x*) + aT(X*) (/ ,(k)__/ ,)
(4.12) +O(max(l]x*’)-x*ll x* * *2,1 -x I111 - I1))
and

(4.13) c(x*’) A(x*)(x*’) x*) + O([Ix*’- x*]] 2).

Equations (4.12) and (4.13) follow from the relevant Taylor series expansions of their
left-hand sides, using (AS.4), and from the relationships (2.3). Rearranging these
equations, we obtain

(4.14)
[3(x*,*) a(x*)][x*()-x*] =[(x*(),A*())]A(x*) 0 A *() A * c(x*())

The vector on the right-hand side of (4.14) is O(/x()), from (3.1) and (4.2). As the
coefficient matrix K(x*, A*, 0) of (4.14) is nonsingular (see (AS.3)), the estimate (4.1)
combines with (4.14) to give (4.9) and (4.10). The estimate (4.10) then implies
(4.11). ff]

Remark. In fact, Theorem 4.2 remains true if (AS.3) is replaced by the weaker
assumption that K(x*, A*, 0) is nonsingular.

5. Convergence results. In this section, we are concerned with the speed at which
the algorithm of 3 convergesmto be more specific, with the speed at which the iterates
converge to a limit point. Essentially two factors affect the rate of convergence. First,
because of the estimate (4.9), the rate of convergence ofthe outer iteration is determined
by the rate at which the sequence {/.)) is allowed to converge to zero. For instance,
a Q- or R-superlinear rate of convergence (in the sense of Ortega and Rheinboldt
[18]) of {/x ()} implies at least as fast an R-rate of convergence for the sequence {x*)}.
Second, even if the outer iteration possesses a fast rate of convergence, the overall
speed of the algorithm will be severely restricted if each outer iteration requires many
inner iterations. In this section, we show that, under very mild restrictions on the
sequence {k)}, the inner iteration will cost at most two problem function evaluations
for large enough k and that an overall two-step Q-superlinear asymptotic rate of
convergence can be achieved. We do this by obtaining the following results"

(i) The point x*) of (3.8) is a "better" starting point for the (k + 1)st iteration
than x*) if k is large enough.

(ii) From this starting point, the Newton iteration with unit stepsize satisfies the
linesearch conditions (3.3), (3.5), and (3.6) at every inner iteration provided that k is
large enough.

(iii) The starting point is sufficiently close to a minimizer of (x,/x(k)) that the
first inner iterate satisfies the inner iteration convergence test (3.1) when k is large
enough.

In order to prove such results, we must restrict our attention to sequences
that satisfy the further assumptions:

Assumption 5 (AS.5) The sequence {x (k)} is such that [db(k-t-l)o’(k)lJ, (k) where
limk_o r(k) cr < 1.

Assumption 6 (AS.6) The sequence {/_t()} is such that

()2/ (k+l)
/.t /x -o(1)

as k approaches infinity.
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Remark. Assumption (AS.5) essentially says that {/x()} converges to zero at least
linearly and implies (AS.2). Assumption (AS.6) restricts the sequence to have a Q-order
of convergence of anything less than two. Both assumptions thus restrict the overall
rate of convergence of the algorithm.

As we shall be concerned with convergence to a limit point of the sequence {x*(k)},
we will start by restricting our attention to an infinite subsequence of iterates {x*(k)},
k Y{, whose limit point is x*. We caution the reader that we often use qualifiers such
as "for all k" and "as k approaches infinity" when we strictly mean "for all k
and "as k 3’{ approaches infinity." Our assumptions are sufficiently strong that we
will ultimately be able to show that the algorithm actually has only a single limit point.
We start by obtaining the following theorem.

THEOREM 5.1. Suppose that (AS.1)-(AS.5) hold, that >- 1, and that u # A*. Then
we have the following estimates:

g(x*(’‘), X(x*(), (+’))) O((")/
(5.2) g(x*(), i(--*().o (+’))) o(()/ (+’))

as k 27{ tends to infinity.
Proof To verify (5.1), first we have that the estimate (4.2) yields

(5.3)
(x*(g),/x (+’)) X *(g)=- c(x*(g))(1/tx(+’)- l/Ix ())

+1)=(/z()//z (+1) 1)(A* u)+o(tx()/tx(k
as k tends to infinity. From (AS.5), we have that

q-l)(5.4) 1/2(1- (r)/x ()/z(+’)_-< Iz()/z(+’)11_-</()/z(

for all large k. Therefore, combining (5.3) and (5.4), we have

(5.5)

for all k sufficiently large--the terms (1- e) and (1 + e) (0< el << l) accounting for
the asymptotically smaller terms in (5.3). Now (4.3) and (5.5) give

+1)(x*(), X(x*(),/x(+’))) (x*(), A*(k)) + Aw(x*())(x(x*(),/x( A ))
+1) ,(k)(5.6) =Ar(x*(k))(X(x*() tz

( )-A )+O(tx ))
+l) ,() (k)/ +1)aT(x*(k))(](x*() /x

( )- A + o(/x /x(k ).

Then (5.5), (5.6), and the continuity of A(x) give the bound

(5.7) II(x*(),X(x*(),/x(/1)))11<_-(2(1-t-61)(1
for all k sufficiently large; the term (1 +em) (0 % e2 << 1) accounts for the asymptotically
smaller terms in (5.6) and the constant two occurs because of the bound Ila (x*("))ll <--
211ar(x*)llm. Premultiplying (5.6) by a(x*())+T gives

X(x*(k), p,(k+’))-A*()=A(x*(k))+(x*( X(x*() /x(k+l))) + o(/x()//x(k+l))

this combines with (5.5) and the continuity of A(x)+ in some neighbourhood of x*
to give the bound

(+’))- *() <2(l+)lA(x*)+llllp,(x*( X(x*() (+’
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for all k sufficiently largenthe term (1 + e2) once again accounts for the asymptotically
smaller term in (5.7). Inequalities (5.5) and (5.8) combine to give the bound

(1/4(1 o-)(1
(5.9) +

for large k. The bounds (5.7) and (5.9) then imply (5.1).
To obtain the estimate (5.2), first observe that the coecient matrix

()K (x*(), h*(), of (3.7) satisfies the second-order condition (and hence is nonsin-
,(k)gular) for large enough k from assumption (AS.3) and Theorem 4.2. Hence x is

defined by (3.8). Now define

(5 10) *) *)+ r

where r;) is given by (3.7). Then, a straightforward Taylor’s expansion and (3.7) give
that

c(x]("))-("+’)(A](")-u) A(x*()) -("+’)I L

[ (x*()*()), ]+
c(x*()) (+’)(*()- u)

(.) +

Moreover, equations (3.1), (4.1), and (4.2) ensure that the right-hand side of (3.7) is
O(.("). Thus Ilp(")l]= O(.("))= I]r(")]] and (5.11) yields

(5.12) g(X(g,A(k))=O((k2), and

(.3) e(x() u)= o(

But then, (5.13) and the definition of ](x(), (+)) give

(+((-u)= o(()),
and hence

(+)(.4) (x() (+’))-*( o(()/
Equations (5.12) and (5.14) then combine to give

g(x() ,() (+,)x , ))=g(x(,a )+A(x (+’)-
O(()/(+)),

which establishes (5.2).
Theorem 5.1 shows that the gradient of the penalty function at the alternative

starting point x() is asymptotically smaller than at x*(). In fact, if {()} is chosen
as a superlinearly convergent sequence, the gradient at x*() will become arbitrarily
large as k approaches infinity. Under (AS.6), quite the opposite will happen to the
gradient at x(), which asymptotically converges to zero. There is therefore good
reason to prefer the alternative starting point.

If, by design or chance, the parameters u are chosen to be the Lagrange multipliers
at the solution, we have the following theorem.
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THEOREM 5.2. Suppose that (AS.1)-(AS.5) hold, that >- 1, and that u A*. Then
the estimates

(5.15) (x,(k), X(x,(k), (k+l))) O(.L (k)2/jLi, (k+l))
and (5.2) hold as k Y{ tends to infinity.

Proof The estimate (4.11) ensures that c(x*() O(/x (k)2). This then implies that

(5.16) x(:(k), d‘(k+)):(k)-- C(:(k))(/J.‘(k+) /[‘(k))--. ([‘(k)2/‘(k+))
Equation (5.6) is still valid and combines with (5.16) to give (5.15). The estimate (5.2)
is obtained exactly as in the proof of Theorem 5.1.

In the unlikely event we can choose u h*, we might feel that (5.15) does not
indicate starting the (k + 1)st inner iteration from the alternative point as the gradient
at x *(k) is already very small; indeed, it is not clear whether (5.2) or (5.15) yields the
smaller gradient. There is, however, a more subtle reason for preferring x*(k)--not
only is the gradient of the penalty function at this point small, but the point is in a
very definite sense actually closer to x(/x (k+l)) than x*(k) is. We discuss this further
after a slight digression but conclude that, in our algorithmic framework, we have the
following corollary.

COROLLARY 5.3. Suppose that (AS.1)-(AS.6) hold, and that >-_ 1. Then the (k + 1)st
inner iteration will be started at x* (), as defined by (3.8), rather than x*) for all
sufficiently large.

Proof This follows immediately from the test (3.9) in the algorithm in conjunction
with the estimate (5.2), which holds regardless of the value of u, and (AS.6).

When there are no constraints we have the following more conclusive result.
THEOREM 5.4. Suppose that (AS.1)-(AS.6) hold and that O. Then X(k+l’0) Xa (k)

and satisfies the inner iteration convergence test (3.1) for all k Y{ sufficiently large.
Proof If there are no constraints, g(x, h g(x) and G(x, G(x) K (x, ,, Ix).

The matrix K(x*(), *(), tx (k)) satisfies the second-order condition for all large k,
from (AS.3) and the estimates (4.9) and (4.10), and x*(k) will then be computed from
(3.8). The exact reasoning that allowed us to derive (5.12) gives the estimate

g(Xa(k)) (Xa(k), /. (k)) 0(/.6 (k)2)
for large k. Therefore x*(k) satisfies the test (3.9) and x(+1’) x*(). But then we may
invoke (AS.6) to obtain

g(x("+"))I1-- o((k)2) O(/d, (k+l)).
This implies that (3.1) will be satisfied at x(k+’) for all k sufficiently large.

We see from Corollary 5.3 that if constraints are present in the problem, the inner
iterations will ultimately all be started from the alternative starting point X*a (k). The
first inner iteration of the (k + 1)st outer iteration involves the computation of a search
direction p(k+,o) from (3.4). Considering this equation in combination with the estimate
(x(k+l’O),X(k+l’O))--O(I.z(k)Z/[z(k+l)) from Theorem 5.1 might lead us to suspect that
p(k+.o) is of the same order. In fact, p(k+l,0) is actually smaller. For we have the
following lemma.

LEMMA 5.5. Suppose that (AS.1)-(AS.6) hold and that t>-O. Then we have the
following:

(i) K(x(k+’) (k+,o) (k+l)) satisfies the second-order condition.
(ii) Ifp(k+’ is found from (3.4), we have the estimate

(5.17) p(k+,,o) O(L6 (k)2)

for all k Y{ sufficiently large.
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Proof Corollary 5.3 gives that x(k+’)= X*a (k). As the right-hand side of (3.7) is
O(x(k), (3.7), (3.8), and (4.9) imply that

(5.18) x(+’ x* + 0(
as k approaches infinity. Furthermore, the estimates (4.1), (5.10), and (5.14) (under
(AS.6)) show that

(5.19) X (k+l,o . + o(1)

,( converges to K(x* * 0)as k approaches infinity. Thus K(x(+l’ +,o +)

and, by continuity, satisfies the second-order condition for all k sufficiently large.
Now, we have that

(x(+’’, X (+’’)) (x ))
(5.20)

(k+l) (k)=g(x( X*)+a(xk+")(X(x*k.. )--

If we substitute (5.20) into the right-hand side of (3.4) and then rearrange terms, we
obtain that p(k+’ may be computed from the alternative set of augmented equations

A(x(+’’) -(+I L s(k+’’

(5.21)
,( ,,(.(+’(X(x(, .(+’) a()

Equations (5.12) and (5.14) ensure that the right-hand side of (5.21) is O(/x(k)2). The
nonsingularity of K(xk+l’), Xk+l’),/x+)) for large k (and the boundedness of its
inverse) and (5.21) then imply the estimate (5.17).

We will also need to be able to bound the condition number of the Hessian matrix
of (P. To this end, we have the following lemma.

LEMMA 5.6 (Murray [17]). Suppose that >= 1, that the matrices G(x, A) and A(x)
of 2 are bounded in some domain A, and that A(x) is offull row rank there. Then, for
all (x, A A, we have the following"

(i) If < n, the smallest eigenvalue, rmi,(x, h,/x), of the matrix F(x, A,/x)--
d(x. a)+(1/)a(x)A(x) satisfies

O’min(X /, ]J,)-" O’min(X /) -Jr" O(1),

where O’min(X, A) is the smallest eigenvalue of the matrix Z-(x)J(x, A)Z(x) and where
Z(x) is any matrix satisfying A(x)Z(x)= 0 and Z(x)Z(x)= L

(ii) If t= n, the smallest eigenvalue of F(x, , x) satisfies
O’min(X A, .)-- O’min(X)//J, -t- o(1/x),

where Crmin(X is the smallest eigenvatue of the matrix AT(x)A(x).
(iii) The largest eigenvalue, rmx(x, A, x), of F(x, A,/x) satisfies

O’max(X A, /J,)-- O’max(X)/t/, n o(1//x),
where O’max(X) is the largest eigenvalue of the matrix AT(x)A(x), as tx approaches zero

from above.
It is known that the matrix Z(x) may not be a continuous function of x (see,

Coleman and Sorensen [6] and Gill et al. 12]). However, Byrd and Schnabel [5, Thin.
2.3] show how to construct a matrix Z(x) that is continuous in some open neighbour-
hood of x*. For this we require that A(x*) has a positive smallest singular value (see
(AS.3)) and that A(x) is continuous in a neighbourhood of x*. With such a choice of
Z(x), Lemma 5.6 leads to Lemma 5.7.
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LEMMA 5.7. Suppose that (AS.1)-(AS.6) hold and that t>-l. Then (using the
notation of Lemma 5.6), for all k 7[ sufficiently large, we have the following"

(i) The smallest eigenvalue of F(x(k+l’), (k+l.o),/x(+l)) satisfies

(5.22) 0 < O.min < O.min(X(k+ 1,0), (k+ 1,0), (k+l))

where O’m, is the smallest eigenvalue of the matrix Zr(x*)O(x*,A*)Z(x*) if t<n or

the smallest eigenvalue ofAr (x.)A(x*) otherwise.
+ 1,0),(ii) The largest eigenvalue of F(x(+’), ( (+)) satisfies

(5.23) O.max(X(k+l,0), (k+l,0),

where O’ma > 0 is the largest eigenvalue of the matrix Ar(x*)A(x*).
Proof The results follow immediately from Lemma 5.6, the estimates (5.18) and

(5.19), the (local) continuity of G(x, A), A(x), and Z(x), and the consequent continuity
of the eigenvalues of the symmetric matrices Zr(x)d(x, 1)Z(x) and Ar(x)A(x)the
constants and 2 being arbitrary numbers smaller than and larger than one, respectively.
The eigenvalue O’mi is positive from (AS.3) (see, Gould [14]).

The results of Lemmas 5.5 and 5.7 are of fundamental importance, for they allow
us to prove Theorem 5.8.

THEOREM 5.8. Suppose that (AS.1)-(AS.6) hold and that >- 1. Then, for all k
sufficiently large, we have the following"

(i) The Newton direction p(k+,o) obtained from equation (3.4) satisfies condi-
tion (3.3).

(ii) A stepsize tY (k+’)= 1, used in conjunction with the Newton direction, satisfies
the linesearch conditions (3.5) and (3.6).

Proof The results are trivial if p(k+,o)=0, and so we only consider the case
p(+l,O) 0.

(i) In our algorithm, the Newton direction is computed from the system of
equations (3.4). However, this direction also satisfies the (potentially badly-condi-
tioned) equations

(5.24) F(x(/’+1’), X (k+l’O),/,t (k+l))p(k+l,O)= _(x(k+l,O), X (k+l,O)).

This equation (5.24) is, of course, merely

(5.25) VO(x(k+’), tt (+,)p(+,o) _VO(x(+,o, tt (+1)).

It follows from (5.24) that

(5.26) _(x(+,o),.(+,o)rp(k+,O)=p(+,,O)rF(x(+,o) [(+,o /x(+,))p(+,o)

,o), tt satisfies the second-order condi-Lemma 5.5(i) ensures that K(X(k+l’O), (k+l (k+l))
+ ,o), /x(k is positive definitetion for all k sufficiently large and thus that F(x(k k+,o),

(Gould [14]). Therefore (5.26) gives that

(5.27)

for all k sufficiently large. Moreover, we have from (5.24) that

(p(+’>rF(x(+">, X (+’),/x
(5.28)

(g+,,O>r(x<+,,o> X<+,,o>, +’)-’<+">/<+"><+")
+) ,o), tt> O.min(x(k+,,O) <k+l,O) /.L<k )/O.max(X(k+l (k+,,O), <k+,>
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where we have written (k+,o) for (x(k+’), (+,o)). Therefore, for all k sufficiently
large, (5.22), (5.23), (5.27), and (5.28) combine to give

_(x(+,,o, X(+,,o)p(+,,o/II (x(+,,o
(5.29)

If we choose k large enough, we must have that

(5.30) (min/max)(k+,) > (k+l).
Inequalities (5.29) and (5.30) then imply that (3.3) is satisfied for all k sufficiently large.

(ii) To verify (3.5), observe that a Taylor series expansion, (2.1), and (5.24) give

(x+’)+p+’), +))
(x+’’, +’) + v (x+,,o, +,)+,,o
+p+,o;V (x+,o, +)p+,o+O([p+,o[]/+)

(x+,,o, +’)+#(x+,,o, +,,o)p+,,o + o(p+,,o]/+,)
under (AS.4). Then

(x+,,O+p+,,o,+,)_(x+,,o, +,_,g(x+,,o, +,,o)+,,o
(_ ,)#(x+,,o, +,,o)+,,o + O(]p+,,o]]/+,).

But, by assumption (AS.6) and the estimate (5.17),

p+,,o/+, o(/+’) o();

this implies that the second term on the right-hand side of (5.31) is o(]]p+")).
Furthermore, (5.22) and (5.25) give the inequality

(k+) (k+,o) (+,o)(x+,o, +,o))p+,o) < _m,(X+,0), +,0), )p p
(5.2)

p(k+,o)< < o.
As fl <0.5, (5.31) and (5.32) give

(x+,o +p+,o, +) (x+,o, +) g(x+,o, +,o) ;p+,o)

1 1< ( ,)(-),[]p+"]<o
for all large k; the term (1-e)(0< e<< 1) accounts for the asymptotically smaller
second term in (5.31), which implies that the Newton direction with a unit stepsize
satisfies (3.5).

The inequality (3.6) is established in much the same fashion. A Taylor series
expansion, (2.1), and (5.24) give

#(x+,,o +p+,,o, (x+,,o + p+,,o, +,))+,,o
,o, )pV(x+,o, +);p+,,O+p+,o;v(x+, +, +,,o

under (AS.4). Then

(x+,,o +p+,,o, (x+,,o +p+,,o, +,))+,,o
(5.3) _#(x(+, +,,o) + ,o
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Once again, the second term on the right-hand side of (5.33) is o([]p
(5.32), and (5.33) give

As/3:> O,

.o).. )) t:g( X p(+ .o)(X(k+,,o) +p(/c+,,o) (X(/c+,,o) +p(/c+l (k+,) Tp(k+,,O) X(/C+,,0) (k+,,0))
> 32(1 e4)Crminll p/c+")ll 2 > 0

for all large k--the term (1- e4) (0< e4<< 1) again accounts for the asymptotically
smaller second term in (5.33), and hence the Newton direction with c (/c+’) satisfies
(3.6). [3

We then have the immediate corollary.
COROLLARY 5.9. Suppose that (AS.1)-(AS.6) hold and that >= 1. Then,

x(k+l,1) x(k+l,0) +p(k+l,O),

with p(/c+l,o) being the Newton direction (3.4), for all k Y[ sufficiently large.
Proof This follows directly from Lemma 5.5 (i) and Theorem 5.8.
Having shown that a full Newton step is possible at the first inner iteration, we

can now reap the benefits of such a step. Therefore, we show Lemma 5.10.
LEMMA 5.10. Suppose that (AS.1)-(AS.6) hold and that >= 1. Then,

(k+l)(5.34) (x(k+’’), X (k+l’l)) O(/d, (k)4//.

for all k Y[ sufficiently large.
Proof A Taylor series expansion, (2.1), (5.17), (5.20), and (5.27) give

(X(k+l’l) X(k+l’l)) ,(x(k+l,O)-[-p(k+l,0), X(x(k+"O)+p(k+’’), /X (k+’)))
VO(x(,+ ,o) + p,+,o), ,it +))

+) ))pVO(x+’), + VxO(X(+ ,o),+
+ O( p+l,O>ll/(k+l>)

(+)) (k+O(llp(k+l’O)/ O((k)4/ 1))
under (AS.4), which establishes (5.34). V1

THEOREM 5.11. Suppose that (AS.1)-(AS.6) hold. Then inequality (3.1) is satisfied
with <= for all k :7 sufficiently large.

Proof This follows immediately from Lemma 5.10 in conjunction with (AS.6),
when t-> 1, and from Theorem 5.4, when =0. [3

If we say that a step of the algorithm is the computation that takes place between
the start of one function/derivative evaluation and the start of the next, we deduce
the following corollary.

COROLLARY 5.12. Suppose that (AS.1)-(AS.6) hold and that the whole sequence of
iterates {x*()} generated by the algorithm converges to x*. Then the iterates converge
at least two-step R-linearly if {/x (k)} converges Q-linearly and at least two-step R-
superlinearly if {/x ()} converges Q-superlinearly.

It is interesting to note that the actual rate of superlinear convergence of the
algorithm is entirely controlled by the sequence {/x(/c)}, which may be assigned before
the computation commences.

We conclude the section by showing that our assumptions actually imply that the
sequence of iterates has a single limit point and that the R-rates of convergence referred
to in Corollary 5.12 may be tightened to be Q-rates.

LEMMA 5.13. Suppose that (AS.1)-(AS.6) hold. Then we have the estimate

(5.35) x*(+) x* +/x(+lv + o(/x (+’),
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where the vector v satisfies the equation

(5.36)
A(x*) 0 w h *- u

as k Y[ approaches infinity.
Proof We may obtain the estimate

A(x*) 0 h ,,(k) , , c(x,(k))

+ O(max (llx*o( )-x*

in exactly the way that we derived (4.14) in the proof of Theorem 4.2. Equation (5.12)
shows that (x*), ,*)= O(ix)2) and (5.13) combines with (4.1), and (5.10) to give
c(x,() Ix(k+l)(,* u) + O(ix(2) + o(ix(+l)). Then, as Ix(2 o(ix(+l)) (see (AS.6)),
we may rewrite (5.37) as

[((x*,A*) AT(x*)l[x*(k)-x* ] +1)[ ,0 ]A(x*) 0 , ,,) , =Ix , u

+ o(Ix’+’))+ O(max (llx*)-x*ll
This then gives the estimates

(5.38) x*()=x*+Ix(k+)v+o(Ix(+l)), and

(5.39) ,(k , + Ix
(+’

W + O(Ixk+l).

But, from Corollary 5.3, xk+’) X*k); Theorem 5.11 gives that x*k+) is either x
or xk+’) where Corollary 5.9 implies that x(k+’) x+1’) +p+,o) and where Lemma
5.5 gives p+,o)= O(Ixk)2)= O(Ixk+)). Thus (5.35) is true.

THEOREM 5.14. Suppose that (AS.1)-(AS.6) hold. Then the whole sequence of
iterates {x*(k)} generated by the algorithm converges to a single limitpoint x*. Furthermore,
the iterates converge at least two-step Q-linearly if {Ix (k)} converges Q-linearly and at
least two-step Q-superlinearly if {Ix k)} converges Q-superlinearly.

Proof Let x* be a limit point of the sequence {X*(k)}. As x* is a limit point, there
is some infinite subsequence of iterates 77[ and, from Theorem 4.2, some bound K for
which IIx*k)-x*l KIx

(k) for all k Y[. Without loss of generality we may assume
that -> 211,112, where u is given by (5.36).

Now consider the set

Clearly 7711 c_ y[ and Y[ defines a convergent subsequence of the iterates. Then Lemma
5.13 applies to this subsequence. In particular, (5.35) shows that there is an index ko
such that

(5.40) IIx x*l12 211 112,*

for all k->_ ko, k :7[; the factor two accounts for the asymptotically smaller term in
equation (5.35). But then (5.40) implies that k+ :7[ provided that k >_-ko. Hence,
inductively, :7[ contains all k>-ko and the entire sequence {x*(g)} converges to x*.
Finally, we now have that the estimate (5.35) holds for all k large enough and thus
the Q-rate of convergence of the penalty parameters is inherited by the iterates
x,(k). [-]
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6. Comments. We conclude the paper with a number of comments and remarks.
(i) This paper was motivated by a need to analyse the algorithm sketched in

Gould [14]. In that paper, the sequence of penalty parameters {/x (k)} was constructed
so that/x (k+l) =0.01/x) and the convergence of the iterates was observed to be at a
fast two-step linear rate. We have performed a number of experiments with superlinearly
convergent sequences {/x )}, but the numerical results obtained are never substantially
better than those given in Gould 14] for the linearly convergent sequence. We suspect
this really indicates that a fast linearly convergent algorithm is quite adequate on a
finite precision computer where the analytic advantages of superlinear convergence
only start to occur as the computation is terminated. However, for completeness, we
give details of some of the numerical experiments we have made.

All of the linear algebraic processes in the algorithm of 3 may be performed in
a stable fashion, In particular, the block linear equations (3.4) and (3.7) may be solved
using the symmetric indefinite matrix techniques of Bunch and Parlett [4], Fletcher
[9], and Bunch and Kaufman [3]. The only time we need to compute carefully is in
the calculation of the constraint values. In particular, the calculation of A requires that
we form the ratio c(x)/tx, and we should expect both c(x) and to approach zero

(in an analytically well-behaved fashion). However, computer rounding errors and in
particular cancellation errors in forming c(x) can be magnified in an unfortunate way
by/x. We suggest that the constraint values themselves be computed in a higher precision
than the rest of the computation to alleviate this difficulty.

In order to illustrate the performance of the new algorithm, we consider the
following simple test problem.

PROBLEM 6.1. Minimize = ix subject to the constraints

(X "- X -t- X5) 1, (X -1- X -[- X4) 1, XlX6 1,

starting from the initial point (-2, 1.5, 2,-1,-1, 3)r.
We compare the method suggested here with the stabilized use of the quadratic

penalty function as given by Gould [14]. All of our experiments were performed on
the CRAY 2 computer at Harwell, using extended precision arithmetic, with the
sequence of penalty parameters 10-i, with i= 1,2,3,4, 6,9, 14, and 22. The other
parameters used in our implementation of the new algorithm were chosen to be y 1,
-=0.1, e 10-1, /31 10-4, and /32 =0.1, and all components of u were set to zero.
Both algorithms take six iterations to reduce the gradient of the penalty function to
3.3D-2 for the value x 10-1, and we describe the progress from there onward--unit
stepsizes were always acceptable for both methods with such values of x. The results
for the method proposed in 3 are summarized in Table 6.1 and those for the method
that does not use the alternative starting point in Table 6.2. We show the progress of
each inner iteration as the penalty parameter is reduced. For the new method, we
observe (Note 1) that the gradient of the penalty function at iteration 1 with/x 10-14

is starting to suffer from numerical cancellation when evaluating the constraint values
and the magnification of this error through dividing by . We would expect to have
only about 28m14 significant figures here (the machine precision is roughly 10-2s on
the CRAY for extended precision arithmetic). We see this effect more seriously for
/.t--10-22 (Note 2), where we would only expect to have six figures correct in the
constraint values, and the subsequent loss in accuracy when forming the gradient. The
figures for larger values of/x follow closely the theory predicted in the papermindeed
it was figures like these that actually suggested the theory!

Again, in Table 6.2, we observe (Notes 3 and 4) the effects of finite precision
arithmetic when calculating the gradients for small values of the penalty parameter.
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TABLE 6.1
The progress of new method on problem 6.1.

Calculate
Inner derivatives Gradient

iteration x yes) norm Comments

1.0D-2 0 x 9.4D + 0 alternative starting point
x 2.4D+0

2 x 1.1D-1
3 x 4.6D -4

1.0D-3 0 x 1.4D + 0 alternative starting point
x 5.9D-4

1.0D-4 0 x 2.9D + 0 alternative starting point
x 5.6D-7

1.0D-6 0 x 1.8D- alternative starting point
x 8.8D -9

1.0D-9 0 x 1.9D-2 alternative starting point
x 9.1D- 14

1.0D-14 0 x 1.9D-3 alternative starting point
x 3.2D-15 (see Note 1, p. 122)

1.0D-22 0 x 1.8D- 5 alternative starting point
x 5.9D-6 (see Note 2, p. 122)

Significantly, we do not observe the same pleasing behaviour in Table 6.2 that we saw
in Table 6.1 with respect to the number of inner iterations performed for each outer
iteration. How many inner iterations will be required per outer iteration for the older
method is not obvious. We observe that the (norm of the) gradient at the end of the
first iteration of the older method appears to be of the same order of magnitude as
that at the alternative starting point for the new algorithm. However, subsequent
Newton steps (with unit stepsizes), only approximately square the size of the gradient
at each step (as we might expect from Newton’s method). This is in contrast to the
behaviour predicted for the new scheme in Lemma 5.10, where the alternative starting
point leads to a greater reduction in the size of the gradient at the next step than might
be expected just from the use of Newton’s method.

In Table 6.3 we show how the new algorithm performs on the subset of Hock and
Schittkowski [16] test problems used by Gould 14]mexcept that problems 68 and 69
are not used now as they require an accurate computation of the error function erf(x),
which is unfortunately not available on the CRAY 2 at Harwell. For every test problem,
we record the number of gradient evaluations required by the algorithm for each value
of the penalty parameter used. The sequence of penalty parameters and other constants
used is exactly as described above. We note the widely differing asymptotic regionsmthe
regions within which two gradient evaluations are sufficient for the convergence of the
inner iterationfor the various test examples, but also note that the predicted
asymptotic behaviour takes place in all cases.

(ii) Although we have concentrated on equality constraints in this paper, our
results may be extended to inequality constrained problems in a natural way. If we
consider the inequality constrained problem

(6.1a) minimize f(x)(x R n)
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TABLE 6.2
The progress of the method in Gould [14] on problem 6.1.

Calculate
Inner derivatives Gradient

iteration yes) norm Comments

.’0D-2

1.0D-3

1.0D-4

1.0D-6

1.0D-9

1.0D-14

1.0D-22

0 2.3D+
3.9D+2

2 1.1D+2
3 2.2D+
4 2.7D+0
5 3.3D+0
6 3.1D-1
7 9.6D-4

0 3.9D +
2.9D+0

2 4.5D-2
3 3.9D-3
4 3.1D-8

0 4.1D+l
2.6D-

2 4.2D-3
3 1.9D-6

0 4.5D+2
3.2D-

2 8.7D-3
3 5.9D -6
4 2.8D- 12

0 4.6D+3
3.3D-2

2 8.9D -4
3 x 6.3D -9
4 3.2D- 17

0 4.6D + 5
3.3D-3

2 x 8.9D-5
3 x 6.3D- 12
4 2.8D- 15

0 4.6D+8
3.3D-5

2 x 1.6D -6

(see Note 3, p. 122)

(see Note 4, p. 122)

subject to the constraints

(6.1b) ci(x)>-O, forall i={t+l,...,m},

then a suitable penalty function for this problem (see, Rockafellar [20]) is the function

(6.2) (x,/x)=f(x)+ Y { ci(x)ui-k(1/2t’x)ci(X)2 if C,(X)= txUi<--_O,

i,Ik --(],g / 2) u2i otherwise,

where, as before, the ui, i are fixed, finite scalars. Once again, it is well known
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TABLE 6.3
The performance of the new algorithm on some test problems of Hock and Schittkowski [16].

Example

Number of gradient evaluations for the particular
penalty parameter value

number 10- 10-2 10-3 10-4 10-6 10 10-4 Total

43 9 3 2 2 2 2 2 22
64 19 4 3 3 3 3 2 37
74 7 2 2 2 2 2 2 19
75 8 5 5 4 3 3 2 30
78 2 6 8 4 4 3 2 29
80 6 5 2 2 2 2 2 21
81 5 2 2 2 2 2 2 17
83 3 3 5 5 3 3 2 24
86 4 3 3 3 2 2 2 19
106 52 23 23 3 3 2 2 108
111 11 8 8 4 3 2 2 38
112 11 2 5 3 3 2 2 28
117 37 34 3 2 2 2 2 82

that, under relatively mild conditions,

lim lim x=x*,
pO+ xx(/)

where x(/.) and x* are, respectively, local minimizers of (6.2) and local solutions of
(6.1). If we make a strict complementary slackness assumptionmthat all of the Lagrange
multipliers corresponding to active constraints at x* are strictly negative--it is straight-
forward to extend the results of 4 to show that limit points of iterates generated by
the obvious adaptation of the algorithm of 3 converge to Kuhn-Tucker points of
(6.1). Moreover, for k large enough, the algorithm correctly identifies the active set
for the solution (in the sense that, for k large enough, ci(x*’) + pku <= 0 if and only
if the ith constraint is active at x*). Even more importantly, for k large enough, we
can show that the use of (6.2) is equivalent to the use of (2.2) with the set chosen
to be the indices of those constraints active at a limit point of the algorithm. Briefly,
when/. is small and x is in some neighbourhood of x*, the two functions differ only
at points for which ci(x)+ ui > 0 for some i . For k large enough, we have shown
that the only iterates generated by the algorithm as applied to (2.2) are {x*(k)} and
{X*k-}. At the former points we have

G(x*(k)) + l (k)ui t (k)A* + O(l (k)),

from (4.2); for the latter (5.15), (5.39), and (AS.6) combine to give

Ci(X*(k-l))+l(k)ui=(k)A*i +O(t(k)), i6 .
Thus in all cases the strict complementary slackness assumption ensures that c(x)+
u < 0 for all , and hence (1.2) and (6.2) are the same for all iterates encountered
for all sufficiently large k. Thus the rates of convergence of the iterates obtained in 5
apply equally to the obvious modification of the algorithm of 3 when applied to the
problem (6.1). In particular, a "popular" concern that second derivative discontinuities
of will cause inefficiencies is avoided as the iterates generated by our algorithm all
lie within a region in which the discontinuities do not occur when k is large enough.
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(iii) In this paper we have only considered using the penalty function (1.2) with
u fixed. If we allow u to vary, we move into the realms of the classical augmented
Lagrangian methods. However, such methods normally operate under the condition
that x is bounded away from zero and convergence is encouraged by means of forcing
u to approach the vector of Lagrange multipliers at a Kuhn-Tucker point. Although
it is beyond the scope of this paper, it is interesting to speculate what would happen
if we allow/x to approach zero at the same time as encouraging u to converge to &*.
A preliminary perusal of the results in 4 and 5 indicates that the theory still holds
if we allow different u, u k), for each outer iteration, provided that the {uk} remain
bounded and satisfy the asymptotic estimate

(6.3) uk+’ u (k O(tx (k/ (k+,))

as k ’{ tends to infinity. If in addition we ensure that uk) is a sufficiently good
approximation to ,* we would hope to improve upon the estimates (4.9) and (4.10).
In particular it seems likely that if we pick u+=,*(), then we will obtain the
improved estimate

(6.4) x*(k X* -[- O([.L (k-1)loL (k))

while if we choose u(k+= *) then we will obtain the estimate

(6.5) x*k)= x* + O(tx

and we conjecture that (6.4) and (6.5) are true. Although such estimates do not imply
a faster Q-rate of convergence, they would improve on the size of the error for a given
value of/xk). We are currently pursuing this line of research.

(iv) We have intentionally chosen only to analyse methods for which exact second
derivative information has been available. In some cases such information is hard,
impossible or extremely expensive to obtain and our algorithm is inappropriate. It is
of course easy to formulate an algorithm along the lines of that given in 3 in which
all occurrences of the second derivative matrix (x(k’l, (k.)) are replaced by a suitable
approximation B(k’l. Although we have not analysed such a situation in much detail,
we make the following observations; we stress that these comments only apply to our
method of proof in 5 and may be invalid for other proof techniques.

First, it is crucial that the approximations should all asymptotically satisfy the
second-order condition (in the sense that the matrix obtained by replacing
G(x(k,I) (k,t)) in K(x(k’l) (k, (k)) (k,t)),/x by B should be uniformly nonsingular and
have precisely negative eigenvalues for large k). Failure to do so may inhibit the
algorithm from picking the alternative starting point, an important ingredient in the
algorithm we analysed in 5.

Second, the results of Theorem 5.1 are unaffected by approximations to the second
derivatives although the estimate (5.12) used in its proof is weakened to

where /() is the appropriate approximation to ((x*(k), I*(). However, our proof
of Theorem 5.4, which shows a one-step Q-superlinear rate of the method when applied
to unconstrained problems, depends crucially upon the estimate (5.12), and thus (6.6),
and may therefore no longer be true. In particular, one-dimensional examples that use
the secant method to approximate the second derivatives can be constructed for which

(6.7) ((k)_ O(x.(k, a *(k)))p(k) Os(i (k),
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for some constant 1< v<2 as k approaches infinity. Therefore, unless (AS.6) is
strengthened so that the sequence {x(k)} satisfies the estimate

(6.8) /x(k)v//x (+1) o(1)

as k approaches infinity, we may be unable to derive a one-step Q-superlinear rate of
convergence for the algorithm in the unconstrained case for an important class of
second-derivative approximations. We should not expect things to improve in the
constrained case and believe that this indicates that we need to be more conservative
in how we pick x(+l) when we have approximate second derivatives.

Third, we cannot obtain the estimate (5.17) using the technique given in the proof
of Lemma 5.5 unless

(6.9) (/( ((x*(), h*(k)))p() O(/x ()2).
In particular, if

(j(k)_ (X,(k), ,. ,(k)))p(k) 0(tl,(k)v) then p(k+,,o) O(x(k’)
for 1 < v < 2. However, the principal use of Lemma 5.5 is in the proof of Theorem 5.8
where we need the estimate

P(k+"O)l 2/ (g+’) O(1 );

this estimate is obtained by combining Lemma 5.5 with (AS.6). The same estimate is
possible if

(6.10) (/ ((x
and if we restrict x(k+)by (6.8).

Fourth, Lemma 5.6 remains true for any bounded approximation B to G(x, )
(in the sense that all occurrences of G in the statement of the lemma are replaced by
B) as does the relationship (5.23). The results of Theorem 5.8 then remain true provided
that

(6.11) p(,+l.o)r(B(,+,o) j(x(,+,o, (+1,o)))p(+1,o) o(p(,+,.O)Tp(,+.o))
for all sufficiently large k. This relationship is needed to establish (5.28) and to show
that the change in the values of (5.31) and (5.33) due to the approximation of
second-derivative information is negligible in comparison to the dominant terms in
the two expressions.

Finally, if we assume that

(6.12) (B+l,O_ ((x+,.o, +,,o)))pk+,,o O(/x),
(6.8) combines with (6.12) to give Theorem 5.11; the quantity (x(+’),(k+’)) is
now O(x()v). The same assumptions are also needed to extend Theorem 5.14 for
approximate second derivatives.

In summary, it would appear that we can use approximate second derivatives
within our framework provided that the approximations satisfy the conditions outlined
above--of course we have not proved this rigorously here but believe it to be correct.
Whether these conditions are necessary in general is unknown; moreover, precisely
which approximations (if any) satisfy such conditions is at present unclear but under
investigation.

(v) The determination of an alternative starting point is the key to the success of
the algorithm suggested in this paper. It has essentially three beneficial effects: it gives
us a point which is close to a stationary point of the new merit function, a point at
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which the gradient of the merit function is also small (in view of the ill-conditioning
of the penalty function these are not necessarily equivalent), and enables us to maintain
bounded Lagrange multiplier estimates X. There is every reason to believe that
algorithms based upon other simple penalty functions or barrier functions would benefit
from alternative starting points and that such points may be generated from the
appropriate version of (3.10).

7. Acknowledgement. The author thanks the referees for their helpful comments
on an earlier version of this paper.
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