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We describe a method for solving large-scale general quadratic programming
problems. Our method is based upon a compendium of ideas which have their
origins in sparse matrix techniques and methods for solving smaller quadratic
programs. We include a discussion on resolving degeneracy, on single phase
methods and on solving parametric problems. Some numerical results are
included.

1. Introduction

In this paper we describe a method for solving the quadratic programming
problem

minimize Q(x) = {xTHx + cTx (xeU",H = HT), (1.1a)

subject to a]x = bj, l « i « m e (1.1b)

and ajx^bi, «re + l« i=sm. ( l i e )

We are particularly concerned in solving (1.1) when n is large and the vectors a,
and matrix H are sparse. We do not restrict H to being positive (semi-)definite
and consequently are content with finding local solutions to (1.1). Of course, for
many classes of problem, it is known a priori that any local solution is a global
one. Our method is fundamentally related to that proposed by Fletcher (1971),
but makes use of sparse matrix technology (in particular, linear programming
basis handling techniques) to exploit the nature of the problem.

In Section 2, we describe a general framework for our method. Linear
algebraic issues are considered in Section 3 together with a description of how
these issues relate to solving more specific quadratic programming problems of
the form

minimize Q{x) = WHx + CTX (xeW,H = HT), (1.2a)

subject to Ax = b (l-2b)

and /«*=£«, (1.2c)

in which A is an m by n matrix, b is an m-vector, and / and u are n-vectors whose
components may be infinite. This latter description is important as it forms the
basis of the algorithm implemented as subroutine VE09 in the Harwell
Subroutine Library. The construction of initial feasible points for (1.2) is
described in Section 4 and a discussion of parametric problems follows in Section
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3 0 0 NICHOLAS I. M. GOULD

5. Finally some numerical results are given in Section 6. An appendix is included
to show how a certain set of anti-cycling rules may be applied to problem (1.1).

We let g(x) denote Hx + c, the gradient of Q(x), let / be the (appropriately
dimensioned) identity matrix and let ek denote its A:th column.

2. The basic algorithm

In this section we describe the algorithm of Fletcher (1971) in a general setting.
Our aim is to isolate the important parts of Fletcher's method and to show how
each stage is related to solving a particular set of linear equations. Methods for
solving such equations will not be considered until Section 3.

In his paper, Fletcher describes an active-set algorithm for solving (1.1). He
comments that he hesitates to call his method 'new' as it freely borrows from
existing ideas in other branches of mathematical programming. We should add
that the method described here is even less 'new' as it borrows quite heavily from
Fletcher's method and from the sparse matrix technology that has arisen in the
1970s and 80s. Indeed, most existing algorithms for convex quadratic program-
ming (including Fletcher's method and the method given here when applied to
convex problems) are theoretically identical (in exact arithmetic they all generate
the same sequence of iterates from a given starting point) provided that they
operate under an identical set of pivoting rules (Best, 1984; Djang, 1979). For the
general non-convex problem, the method of Gill & Murray (1978) is closely
related in philosophy to Fletcher's method; this method and the philosophically
different method of Keller (1973) actually generate the same sequence of iterates
as Fletcher's approach under identical pivoting rules. The differences between the
various methods for solving (1.1) are essentially restricted to the manner in which
the set(s) of linear equations that occur at each iteration are solved.

In order to describe the algorithmic framework in a general setting, we need
the following definitions and observations.

DEFINITION 2.1 An equality problem EP(/) is given by

minimize Q(x) subject to ajx = bh iel (2.1)

for the set / = E U A, where £ = {1,..., me} and A c {/ne + 1 ,...,m}.

Given a point x that satisfies ajx = bi for all i e /, any finite solution x+p to
EP(/) must satisfy the first-order optimality conditions

Hp+ATk=-g(x), (2.2a)

Ap = 0, (2.2b)

where A is the matrix whose rows are aj (i e /), and the vector A is a vector of
Lagrange multipliers for EP(/).

DEFINITION 2.2 A matrix K(l) of the form
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AN ALGORITHM FOR LARGE-SCALE QUADRATIC PROGRAMMING 301

is said to satisfy the second-order condition (SOC) if K(l) is non-singular and has
exactly |/| negative eigenvalues.

This property has a number of alternative interpretations (Gould, 1985); in
particular, it is equivalent to A having full rank and pTHp being strictly positive
for all nonzero vectors p satisfying Ap = 0 and thus to the projected or reduced
Hessian matrix (see, for example, Gill, Murray, & Wright, 1981) being positive
definite. If K(l) satisfies SOC and p satisfies equation (2.2), the solution of
problem (2.1) is unique and occurs at x + p. If H is positive definite and A has
full rank, K(l) always satisfies SOC.

DEFINITION 2.3 A feasible solution to an equality problem (FSEP) is a solution
jr(/) to EP(/) for which ajx > 6, holds for all i not in /.

The aim of Fletcher's algorithm is to construct a sequence of FSEPs with
decreasing objective function values. The algorithm terminates when an FSEP
without any positive Lagrange multipliers is obtained. If the multipliers are all
strictly negative or if H is positive semi-definite, such a point will be a local
solution to (1.1). If H is indefinite and there are some zero multipliers, the point
obtained may not be a local solution to (1.1); however, as Fletcher points out,
such a situation may be regarded as degenerate in that an arbitrarily small
perturbation to the problem data can transform the FSEP into a local solution.
The difficulty of verifying optimality in this circumstance is considerable; the
optimality conditions for (1.1), when there are zero Lagrange multipliers, are
computationally unattractive (see, for example, Mangasarian, 1980) in that they
are equivalent to needing to find the global solution to a second (closely related)
nonconvex quadratic program. To our knowledge, no existing algorithm is able to
overcome this difficulty in an efficient manner.

As there are only a finite number of FSEPs and, as we shall indicate, moving
from one to the next is a finite process, the overall algorithm is finite. It remains
to describe how to proceed from one FSEP to a better one.

The idea is very simple. Suppose JC(*' is a feasible point for (1.1) and

a]xw = bi for all i e /<*> = E U A(k\

If jr(A:) is an FSEP for EP(/(A:)), a constraint must be removed from /(A) to reduce
Q(x) further—candidates occur in A(k) and are identified by having positive
Lagrange multipliers. Any one such constraint, say j , may be removed and we
set 7 = l(k)\{j). Otherwise, when JCW is not an FSEP for EP(/ ( t )), we set 7 = f(*>.

Now we solve EP(7) in the sense that either
(a) we find a vector p (* ) for which x(*) +pw solves EP(7), or
(b) we determine a direction of infinite descent pw so that for all a ^ 0

aj(x<k) + apw) = bi for all i e 1,
aJix^ + ap^^bj, K >

and so that Q{xw + ap^k)) is a monotonically decreasing function of a. (This case
can only occur when H is not positive definite.)

There are now three possibilities. Firstly, if case (a) above occurs, xw + pw

may be an FSEP. We then set x(*+1) = *<*> +p(k) and /(*+1) = 7. Secondly, if case
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3 0 2 NICHOLAS I. M. GOULD

(b) occurs, xik) + ap(k) might satisfy (1.1c) for all a > 0. In this case, the problem
is unbounded and we stop. Finally, if neither of these situations occur, there must
be a largest value a for which x( t ) + apw satisfies (1.1c). If the /th constraint is
one of the constraints which imposes this upper bound on a, we set jr(*+1) =
x(/t) + ap^k) and /(*+1) = 7 U {/}. It is important to observe that in this last case

aJpw<0. (2.5)

We now repeat the procedure with k incremented by one.
The above process is finite and, provided an unbounded direction is not found,

must terminate with an FSEP. This is because every time jr(*} +/»(*) fails to be an
FSEP, we add to /(/t) a constraint whose gradient is independent of those already
indexed by /(*\ If this adding continues we will eventually either exhaust all of
the constraints (1.1c) or arrive at an extreme point of the feasible region (which is
automatically an FSEP).

Complications arise when H is not positive definite, as it is then not obvious
wliich of the two cases (a) or (b) will occur. However, whenever K(l) satisfies
SOC, only case (a) is possible. The novel part of Fletcher's algorithm is that, at
each iteration, the iterate jr(*) is associated with an equality problem EP(/( t)) for
which AT(7(fc)) satisfies SOC. The essence of the algorithm is contained in the
following theorems (the proofs are straightforward and are omitted).

THEOREM 2.1 Suppose K(l) satisfies SOC, x satisfies the constraints ajx = bit for
all i e I, and that p and A satisfy the equations

U O J L L K o J- (26)

Then x+p solves EP(/) and A is the vector of Lagrange multipliers for EP(/).

THEOREM 2.2 Suppose K(l) satisfies SOC, there is a vector p for which Ap = 0
and ajp ¥= 0, and that l+, = / U {/}. Then K(l+I) satisfies SOC.

THEOREM 2.3 Suppose K(l) satisfies SOC, x solves EP(/), x is an FSEP, and that
the Lagrange multiplier Ay associated with constraint j of EP(/) is strictly positive.
Let Lj= l\{j), let A_; denote A with the row aj removed, A_; denote A with Ay

removed and let p, q, and n satisfy the equation

H Alj a,
A_, 0 0

_a] 0

then

(2.7)

(i) n=-P
xHp,

(ii) iffi<0 and a = Xj/pTHp, then K(Lj) satisfies SOC, J: + ap solves EP(/_y)
and A_; + dcq is the corresponding vector of Lagrange multipliers;

(iii) if n^O, then aj(x + ap) = bt, for all i e l_y, aj(x + ocp)^bjt and
Q(x + ap) is a monotonically decreasing function of a for all a^O.
However K(Lj) does not satisfy SOC;

(iv) K(Lj) is singular if and only if \i = 0.
Now suppose that x + ap becomes infeasible for a> a because constraint I is
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AN ALGORITHM FOR LARGE-SCALE QUADRATIC PROGRAMMING 303

violated. Let u, v, and 6 satisfy the equation

H ilj a,
0 0
0 0

u

V

e
=

a,
0

. 0
(2.8)

and let /_y+/ = /_, U {/}, then
(v) d = aJp<0;
(vi) if u = 0 and if a<a when /x <0 , tnen K(Lj+i) satisfies SOC, x + cq>

50/ues EP(/_/+/) (and is therefore an FSEP), A,, f/ie Lagrange multiplier
for constraint I, is (Ay + an)/6 and the remaining Lagrange multipliers
are A_; + aq — A7v;

(vii) if u =£ 0 and /+/ = / U {/} tfien K(l+,) satisfies SOC;
(viii) u = 0 if and only if aju = 0.

For future reference (Section 5) we also state the following:

THEOREM 2.4 Suppose that the assumptions made at the start of Theorem 2.3 are
satisfied excepting that the Lagrange multiplier A; associated with constraint j of
EP(/) is zero. Then

(i) if /* < 0 then K(Lj) satisfies SOC, * solves EP(/_;) (and is therefore an
FSEP), and k_j is the corresponding vector of Lagrange multipliers;

(ii) if n = 0 then x + ap solves (2.2) for all a^O for which x + ap remains
feasible. The remaining Lagrange multipliers are A_y + aq;

(iii) if n > 0 then a](x + ap) = bt for all i e Ljt a](x + ap) 3= bjt and Q(x + ap)
is a monotonically decreasing function of a for all a^O.

In addition, conclusions (v)-(viii) of Theorem 2.3 remain true under the current
hypotheses.

Theorems 2.1 and 2.2 tell us that once we have encountered a set /for which
AXO satisfies SOC, then we will eventually discover an FSEP for which the
corresponding matrix K must satisfy SOC. Theorem 2.3 describes the only
circumstances under which we may lose the second-order condition; we delete a
constraint from / and encounter a direction of infinite descent (n 5s 0). Once we
have lost the second-order condition, it would appear to be more difficult to solve
EP(/_;). However, Fletcher observes that if the circumstances described by (iii) of
Theorem 2.3 are satisfied then either the problem is unbounded from below or
one or more constraints will restrict the step a for which x+ ap satisfies (1.1c). If
the /th constraint is one such constraint and if a is restricted by this constraint to
be at most a, then x + ap satisfies (1.1c) and equation (2.5) holds. Hence either
condition (vi) or condition (vii) of the theorem is satisfied. In the former case,
the second-order condition is maintained for the set /_/+/. In the latter case,
JC + ap is an FSEP for the equality problem

minimize Q(x)

subject to a[x = bk, k e l+l\{j}

and ajx = bj + a,

(2.9a)

(2.9b)

(2.9c)
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3 0 4 NICHOLAS I. M. GOULD

for which the second-order condition is satisfied. Moreover, the Lagrange
multiplier corresponding to the constraint (2.9c) for problem (2.9) has the value
Ay + a ft 5* A,; > 0 and is therefore a candidate for deletion (applying Theorem 2.3
to (2.9); note that the remaining nonzero multipliers for (2.9) are A_, + aq). But
then the resulting equality problem, EP(/+/\{;}) is the same problem as the
problem EP(/_y U {/}) which would have arisen naturally by just removing
constraint / from / and then adding constraint /; the difference is that, by going by
way of the set /+,, we are able to maintain the second-order condition and to
calculate the solution to EP(/+/\{/})-

Repeating this argument from x + ap, we must eventually arrive in the position
where one of the alternatives (ii) or (vi) of Theorem 2.3 occurs. (As the sets /+/

grow in size, then alternative (vi), which automatically occurs when |/| = n, will
occur unless (ii) happens first.) In case (vi) we will have found an FSEP which
satisfies SOC. In all cases any new FSEP encountered must satisfy SOC.

In order to guarantee that we do not generate a repeating sequence of FSEPs
with the same objective function value, we must ensure that we occasionally take
a nonzero step. Consideration of Theorem 2.3 indicates that it is sufficient to
ensure that an infinite consecutive occurrence of case (vi) (a cycle) cannot
happen. (All other cases result in either a nonzero step or an increase in the size
of / and hence a move to an FSEP which has not been encountered before.) The
simplest possible method for ensuring that a cycle cannot happen is to perturb the
right-hand sides bt by small random amounts (such as might be introduced
naturally in a finite precision calculation) whenever case (vi) of the theorem
occurs. Other possibilities include replacing the true objective function by its
linearized approximation g(xo)

Jx at the degenerate point jr0 and using anti-cycling
rules from linear programming (see Wolfe, 1963; Fletcher, 1988; Gill et al., 1989)
to find a direction in which the approximation, and hence Q(x), may be reduced
in a feasible neighbourhood of x0. This approach is somewhat unsatisfactory in
that matrix operators/factorizations for a different problem may be required.
Alternatively, anti-cycling rules which take account of the quadratic nature of the
objective function have been suggested in conjunction with certain quadratic
programming methods (see, for example, Chang & Cottle, 1980; Ritter, 1981). In
the appendix, we establish that the least index rule proposed by Bland (1977) for
use with the simplex method is equally appropriate within our general framework
(this was conjectured, but not proved, in the paper by Chang & Cottle).

Finally, the algorithm requires that we start from an FSEP for which the
second-order condition holds. It is, of course, by no means obvious how one can
obtain even a feasible point in general. Fletcher suggests using a phase-one linear
programming method to find a feasible vertex (at which the second-order
condition must hold and which must necessarily be an FSEP). If there are fewer
than n linearly independent constraints it will be necessary to introduce some
artificial bounds to create a vertex to use this approach. We prefer to use a
single-phase method (in which an artificial objective function contrasting con-
straint infeasibilities and the true objective is minimized), but a description of this
is considerably simplified in the context of a reformulation of problem (1.1) and
will be left until Section 4.
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AN ALGORITHM FOR LARGE-SCALE QUADRATIC PROGRAMMING 305

3. Linear algebra

Considerable ingenuity has been used in finding different ways of solving matrix
equations of the type (2.6), (2.7), and (2.8) which arise at each iteration of the
algorithm described in Section 2 (see, for instance, Van de Panne & Whinston,
1969; Bartels, Golub, & Saunders, 1970; Fletcher, 1971; Murray, 1971; Best &
Ritter, 1976; Gill & Murray, 1978; Bunch & Kaufman, 1980; Powell, 1981;
Goldfarb & Idnani, 1983; Gill et al., 1984). Often smaller systems of equations
which take account of the structure of the matrix K(l) are obtained; the equations
are usually solved by means of matrix factorizations or, in earlier methods
(including Fletcher's implementation of the algorithm of Section 2), explicit
matrix inverses. As consecutive sets / are closely related, it is normal to update
these factorizations or inverses rather than recomputing them each iteration.

In the large-sparse context, we would normally think of using methods for
which the resulting systems of equations have coefficient matrices

(a) which are comparable in sparsity with the problem matrices H and A,
(b) for which sparse factorization methods are applicable, and
(c) for which it is possible to update the factorization in an efficient manner

when the set / changes.
We would not usually think of using matrix inverses in this context as they are
invariably dense. Unfortunately, most of the methods which have been developed
for small problems (including those mentioned above) are not generally appropri-
ate for larger problems as they violate requirement (a). The only really
satisfactory methods for general sparse problems are likely to be related to
methods which do not try to simplify equations (2.6)-(2.8) but form factorizations
of the matrix K(l) itself. Such methods are likely to satisfy requirements (a) and
(b). However requirement (c) poses more of a problem. The trouble with the
matrix K(l) is that both rows and columns change as / is altered and it is this
aspect which causes trouble when an existing sparse factorization is updated.

The Schur-complement update method proposed by Gill et al. (1985, 1987a)
manages to avoid this problem by maintaining a sparse factorization of the initial
matrix X(/(0)) and a dense factorization of the Schur complement (see, for
example, Golub & Van Loan, 1983) of /iC(/(0)) in a growing matrix of the form

Er

IE F

Equations (2.6)-(2.8) and their solutions may be embedded in linear systems
whose coefficient matrices are precisely of this form. The matrix E is made up
from appropriate rows of the identity matrix and vectors aj. F is symmetric and
made up of rows with at most one nonzero entry. Both /JT(/(0)) and its Schur
complement are therefore symmetric and this may be exploited when forming
factorizations. Updating the dense factorization of the Schur complement is not
difficult provided that sufficient storage space is available. However, the constant
need to access E can be inconvenient; furthermore, it will be necessary to
refactorize K(l) whenever the Schur complement becomes too large to store
economically. This approach seems to hold considerable promise and, indeed, has

 at R
adcliffe S

cience Library, B
odleian Library on M

ay 17, 2010 
http://im

ajna.oxfordjournals.org
D

ow
nloaded from

 

http://imajna.oxfordjournals.org


306 NICHOLAS I. M. GOULD

already been used successfully to solve very large convex problems arising in the
electrical power industry (P. E. Gill, private communication). The adaptation to
nonconvex problems using the framework of Section 2 should not prove very
difficult. The paper of Gill et al. (1987a) should be consulted for further details.

More recently, Gill et al. (1987b) have described a method of updating a sparse
unsymmetric factorization of a matrix when both rows and/or columns are added,
deleted, or replaced. Such a tool is extremely valuable and, again, its use in
conjunction with the framework of Section 2 is anticipated. It has the slightly
unfortunate feature that, although symmetric changes are made to K(l) as /
changes, the updating procedures for its factorization ignore this symmetry—the
updates are treated as a row change followed by a column change (or vice versa).
This is almost certainly a consequence of maintaining an unsymmetric factoriza-
tion of a symmetric matrix.

Ideally, we should like to maintain a symmetric sparse factorization of K(l) and
to perform symmetric updates as / changes. Although it is possible to find such a
factorization (see Duff & Reid, 1983), the possibility of being able to update it
appears remote; even in the dense case, when the Duff-Reid factorization
reduces to the symmetric indefinite factorization of Bunch & Parlett (1971) and
where an updating scheme is known (Sorensen, 1977), the updates are extremely
complicated and appear not to adapt to the sparse case.

All of the equations (2.6)-(2.8) are of the generic form

(3.1)

In the method that we propose, we suppose that A represents the matrix whose
rows are the vectors aj for k $ I. Then, on defining s = —Ap, (3.1) can be
expanded to give

AT
H
A
A

0
0

0
0
/_

p
1

_s _
=

~b
r

_0_
(3.2)

and we shall refer to (3.2) as the expanded version of (3.1). The advantage of
(3.2) over (3.1) is that as / changes, with the exception of simple row
permutations, only the columns of the coefficient matrix

B =
H AT 0
A 0 0
A 0 I

(3.3)

change. This is the situation normally associated with linear programming basis
matrices and there are extremely powerful methods for dealing with the changes
which occur if an LU factorization of B is maintained (see, for example,
Saunders, 1976; Reid, 1982). We shall refer to B as the extended basis matrix.
The principal disadvantages of using (3.2) in comparison with (3.1) are that B is
not symmetric and may be significantly larger than K(l). The hope is that the
advantages of using a proven factorization updating technique will outweigh such
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AN ALGORITHM FOR LARGE-SCALE QUADRATIC PROGRAMMING 307

disadvantages. We note, however, that the work involved in finding a sparse LU
factorization of B using many common pivotal strategies (such as the Markowitz
test) will naturally pick the last diagonal block of (3.3) first. Thereafter the
factorization will actually be working upon the remaining block of B which is
actually K(l). The work will therefore be comparable with schemes which just
factorize K(l). There is some evidence that ignoring symmetry can actually be
advantageous when forming sparse factorizations (see Duff, Erisman, & Reid,
1986: p. 241; George, 1974).

Most real-life problems include simple bound constraints of the form

/^JC^II. (3.4)

We do not necessarily assume that all (or any) of the bounds in (3.4) are finite.
We now consider how the structure of such simple constraints might be exploited.
For simplicity, we shall assume that the first k such constraints are contained in /.
If we partition the vectors and matrices in the obvious way, (3.2) may be
rewritten as

«OD «FR

AFX A F R

/ 0

AFX A F R

0 /

0

0

0

0

/

0

0

0

0

0

0
0

0

0

/

0

0 '
0

0

0

0
/

>FX"

PFR

0GC

0BC

*GC

S B C

•&FX

6FR

rGc

rBc

0

0 .

(the suffices FX, FR, OD, GC, and BC are supposed to indicate 'FiXed', 'FRee',
'Off Diagonal', 'General Constraint', and 'Bound Constraint' respectively); this
can be simplified to

HFR

A F R

_ A F R

A F X

0
0

/
0
0
0

0
0
0
/

P F R

0GC

0BC

Sac.

rGC

(3.5)

where /»FX = 'BC- Once again, only columns of the extended basis matrix
associated with (3.5) change as / changes. Moreover the matrix for (3.5) is
considerably smaller than that which would result if (3.2) were applied without
taking special account of the simple bound constraints. However it is interesting
to consider the types of column changes which can occur as / changes. In
particular, when a general constraint or a simple bound is added to /, a column of
the coefficient matrix of (3.5) is replaced by a column of

A F R

0
0

or
A F X

- A p x .
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308 NICHOLAS I. M. GOULD

respectively. Notice that, in the former case, access is needed to a row of A
whereas, in the latter case, a column of A is needed. This can be rather awkward
for large problems when A is stored in a packed form. If, however, the general
constraints are all equality constraints and are included in the initial /, the only
subsequent changes in / will be due to simple bound constraints and hence only
access to the columns of A will be necessary.

It is for this reason that we now consider it convenient to concentrate on the
problem

minimize Q (x) = &THx + cJx (xeR",H = HT),

subject to Ax = b

and / «£ x =s u.

(3.6a)

(3.6b)

(3.6c)

Indeed, the subroutine VE09 in the Harwell Subroutine Library assumes that
problems are supplied in this form. We note that (1.1) may, of course, be
converted to this form by adding slack variables to the inequality constraints
(1.1c), although this inevitably increases the number of unknowns and may be
undesirable if there are many general inequality constraints. For problem (3.6),
our generic linear system becomes

0GC

PFR

"FX 'BC

~ "OD'BC (3.7)

and the extended basis matrix is now

B =
0

FR
0.

(3.8)

(We have reordered the variables and the rows of the extended basis matrix for
convenience. Now only the last n columns of B can change with I.) It is
convenient to store the data for the problem in the matrix

Li b\
stored in packed form by columns. Notice that it is still necessary to access the
rows of A when the initial factorization (or any refactorization) of B is formed.
However, this overhead will normally prove acceptable in comparison with the
overall work needed to form the factorization. (There are efficient algorithms for
changing from a column-wise to a row-wise storage scheme for a matrix A,
requiring a small multiple of nA, the number of nonzeros of A, operations—for
instance, the code MC46 in the Harwell Subroutine Library performs this task in
roughly 2/iA operations. Thus, the original matrix B may be formed efficiently in
comparison with the number of operations—a linear or frequently worse function
of nB—required to find its factors.)
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AN ALGORITHM FOR LARGE-SCALE QUADRATIC PROGRAMMING 3 0 9

We now consider the work involved in updating an LU factorization of B as /
changes. Each change will involve at most one element leaving / and one element
being added (as described in Theorems 2.2 and 2.3). We must be careful with the
order in which the computation is performed because, although the extended
basis matrix at the end of each iteration is guaranteed to be nonsingular, the
intermediate matrices need not be. In fact, this can only happen if possibility (iv)
of Theorem 2.3 occurs. Our implementation uses subroutine LA05 (Reid, 1982)
from the Harwell Subroutine Library as the mechanism for updating the
factorization. Very briefly, if the Arth column of B, bk, is to be replaced by the
vector b to form the matrix B, we have the relationship

B = B + (6 - bk)el = B(I + (d - ek)el), (3.9)

where Bd = b. If a factorization of B is known, the special form of the matrix

I + (d-ek)e
T

k

(differing from the identity matrix in just a single column) may be exploited so
that the factors of B are easily updated to find those of B. If a constraint is being
removed from /, the linear system 'Bd = b' is the expanded version of (2.7); when
a constraint is added to /, the relevant system is the expanded version of (2.9).
Thus the solutions to these systems actually play two roles; in determining the
search direction (as in Theorem 2.3) and in updating the factorization of B.
Notice that when B is nonsingular, B is nonsingular if and only if the kth entry of
d is nonzero.

In the case of possibility (iv) of Theorem 2.3, it can happen that although the
matrices B and

B = B + (bl- bk)e[ + (b2 - b,)ej
( '

(corresponding to the sets / and / respectively) are nonsingular, both of the
intermediate matrices

B1=B + (bl-bk)e
T

k and B2 = B+ (b2-b,)ej (3.11)

are singular. Therefore, we must exercise some care in finding the factors of B; in
particular we cannot simply use_LA05 twice, putting 6, in column k and then b2

in column /. The singularity of Bx and B2 imply that the kth entry of dt and the
/th entry of d2 are zero. But the nonsingularity of B implies that the matrix

must be nonsingular. Hence the /th entry of dx and the kth entry of d2 are
necessarily nonzero and both of the matrices

B + (B2-bk)el and B + (bx-b,)el (3.12)

are nonsingular. Noting that B = BP, where
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3 1 0 NICHOLAS I. M. GOULD

and P is the permutation matrix which interchanges columns k and /, it is clear
that B is nonsingular and that the factorization of B can be obtained by way of
the factors of one of the matrices in (3.12). That is, we use LAOS twice, placing
bl in column / and then b2 in column k. Rather than incorporating P in the
factorization of B, the permutation may be stored separately. All of the other
updates required by Theorems 2.2 and 2.3 may be accomplished by either a single
(nonsingular) rank-1 update of the form (3.9) or a (nonsingular) rank-2 update of
the form (3.10) in which at least one of the intermediate matrices (3.11) is
nonsingular.

4. Initial point problems

We now turn to the problem of finding an initial FSEP mentioned at the end of
Section 2. Let x0 be any point satisfying (3.6c) and let D be the diagonal matrix
whose ith diagonal entry is 6, - ajxo. The standard phase-1 problem (see, for
example, Chvatal, 1983) is then given by

minimize eTy (4. la)

subject to Ax + Dy = b, (4. lb)

/=£.r=£u (4.1c)

and O^y^e, (4. Id)

where e is a vector of ones. The point x=x0, y = e is feasible for (4.1);
furthermore x = x satisfies (3.6b, c) if and only if x = i, y = 0 solves (4.1). It is
straightforward to pick a point x0 so that x =x0, y -e is a vertex of (4.1b,c,d)
(introducing artificial bounds if necessary). In this case, any optimal solution to
(4.1) for which y = 0 must yield an FSEP for (3.6) provided that we now consider
(3.6) to be a problem in the n +m variables x and y and include the additional
constraints 0 ^ j , ^ 0 . (These latter constraints would be removed from the
problem if they were not, or if they ceased to be, in /.) Possible disadvantages of
such an approach are that (4.1) is a linear programming problem (requiring
different factorizations from (3.6)) and that the initial feasible point will normally
lie at a vertex of (3.6b,c) (whereas the solution to (3.6), especially when H is
positive definite, may not and the phase-2 calculation may require many iterations
to recover from a poor initial feasible point).

An alternative is to let p be a nonnegative scalar parameter and to solve the
composite problem

minimize Q(x) + peTy, (4-2)

subject to the constraints (4.1b,c,d). (Such a problem is related to the Big-M
method for linear programming, see, for example, Chvatal, 1983.) It is easy to
show that, if the Lagrange multipliers for the general constraints (3.6b) at a local
minimizer x of (3.6) are k^ and if p ^ —min(D^GC), then x = x and y = 0 is a
local minimizer of (4.2). This means that, in particular, if H is positive definite
and if p is large enough, simple convexity arguments show that solving (4.2) is
equivalent to solving (3.6). Consequently, such problems can be solved in a single
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AN ALGORITHM FOR LARGE-SCALE QUADRATIC PROGRAMMING 3 1 1

phase. The difficulty in making an a priori selection of p may be avoided if (4.2) is
considered as a parametric problem (in which p is increased as a parameter) and
if the quadratic programming method is capable of solving such problems (see
Section 5).

When H is not positive definite, it is conceivable that local solutions to (4.2) for
which eTy =£ 0 might be encountered for all finite p and yet a feasible solution to
(3.6) still exist. In fact this turns out to be impossible in a number of important
cases. We have

THEOREM 4.1 Suppose that the feasible region (3.6b,c) is nonempty. Suppose
further that either

(i) the feasible region (3.6b,c) is bounded, or
(ii) for each value of p, only bounded local solutions to (4.2) are encountered in

the solution process and that the matrix K(l) corresponding to a given
solution satisfies SOC.

Then, any solution (x, y) to (4.2) yields a solution x to (3.6) for all sufficiently
large p.

Proof. To see this, let L and U be any two disjoint subsets of the first n integers,
let Z be any subset of the first m integers and let

A = {(x, y) : Xi = /,, i e L, x, = «,, i e U and yt = 0, ieZ}. (4.3)

Now let EP(A, p) denote the problem

minimize Q(x) + peJy (4.4a)

subject to Ax + Dy = b (4.4b)

and (x, y) e A (4.4c)

For such a problem / is made up of the constraints (4.4b) and (4.4c). It is easy to
show that, for a given set A, EP(A, p) can only provide a local solution to (4.2)
for all p in at most one interval [pA, pA]. (The intervals may be closed or open at
either end and may be infinite.) Let S(p) be the set of sets A which give rise to
local solutions to (4.2) for a particular value of p. The region (4.1b,c,d) is
nonempty. Therefore, (4.2) must have at least one solution for each value of p
(S(p) is nonempty) and any local solution is, by assumption (a) or (b),
necessarily bounded. (In case (a), the boundedness and nonemptiness of (3.6b,c)
is sufficient to ensure that (4.1b,c,d) is bounded. For suppose otherwise that* =JC
satisfies (3.6b,c) but that (4.1b,c,d) is unbounded. Then there must be a nonzero
vector (p, q) (a direction of recession in the terminology of convex analysis) such
that

Ap+Dq = 0, l^x + ap^u and 0« a-g =£«,

for all a ^ 0. This implies that q = 0 and hence that

A(x + ap) = b and I ̂ x + ap^u,
for all a 5=0 which is impossible if (3.1b,c) is bounded. Thus (4.1b,c,d) is
bounded.)
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312 NICHOLAS I. M. GOULD

The only way in which we can obtain a local solution that does not yield a
feasible solution to (3.6) for any p is for the algorithm to encounter a set A e S
for which p A is infinite and for which ery>0 for all pe[pA ,°°). Consider a
particular value of p, p, in this interval and its related solution. The solution,
(x, y) and its associated Lagrange multipliers, A, will satisfy an equation of the
form

(4.5)

p and

(4.6)

0

# F R

0

^ F R

0

0

0

0

oFR

I
0

0

0

0

0
/

0

0

0

-pe

-pe
0

with Xpx and ypx fixed at the bounds defined in (4.4c). The solution for p ;
its associated multipliers are then given by

(x + (p - p)Ax, y + (p - p)Ay) and k+ (p - p)Ak,

where Axpx = 0, Aypx = 0 and

A F X

DT
FX

^ F R

# F R

0

floD
0

•^FR

0

^ F R

0

0

0

0

A*

/
0

0

0

0

0

/

0

0

0_

~4>IGC~

A r F R

^ F R

4 A B X

_AksY_

=

0

—e
0

—e

0

(4.7)

As (4.6) is a local solution to (4.2) for all p=*p, the signs of the components of
AXBX and AABY are such that the multipliers corresponding to the constraints
(4.4) do not change sign as p increases. Moreover ACFR = 0 and AyFR = 0. (This
occurs in case (a) because (4.1b,c,d) is bounded. In case (b), (4.7) yields

FR 0]fArF R]J L J
= 0.

It then follows from SOC that eT Ay^^^Q and that AcFR = 0 if and only if
eT AyFR = 0. As the variables yFR are bounded from below, AyFR, and hence

and , must be zero.) Hence

Apx

Dl*
AF R

DlR

I
0

0

0

0"
/
0

0_

r ~i
Akoc

BX

_AkBy_

~ 0 "
—e

0

_— e_

(4.8)

But then the solution (x, y) and the parameters AXBX and 4>lBy are optimal
primal and dual variables for the phase-1 linear program (4.1); as ery>0, (3.6)
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has no feasible solution, which contradicts our initial hypothesis and thus
establishes the theorem. •

We may also deduce the following corollaries to Theorem 4.1.

COROLLARY 4.2 Suppose that the feasible region (3.6b,c) is nonempty and that the
bounds I and u are finite. Then, any solution (x, y) to (4.2) yields a solution x to
(3.6) for all sufficiently large p.

COROLLARY 4.3 Suppose that the assumptions of Theorem 4.1 are satisfied and
further that any solution to (3.6) satisfies SOC. Then the solutions to (3.6) and
(4.2) coincide for all sufficiently large p.

There are a number of ways of proceeding if (a) and (b) of Theorem 4.1 are
not satisfied and we encounter an unbounded solution to (4.2). The simplest is
merely to revert to solving (4.1) (This is equivalent to solving (4.2) with infinite
p.) We might also introduce artificial bounds whenever a step to infinity is
indicated. It is worth noting, however, that if a step to infinity occurs with // > 0
(Theorem 2.3) for (4.2), then a move in the same direction from any feasible
point for (3.6) will also result in a step to infinity. This follows as the components
of /?FR for the artificial variables y must all be zero by virtue of (4.Id). The
remaining components of p then give a feasible direction of negative curvature for
Q{x) which is not restricted by any of the bounds (3.6c/4.1c). Therefore the
presence of such a direction for (4.2) is indicative of an unbounded solution to
(3.6) whenever (3.6) has a feasible point. The situation when fi = 0 is not so
clear.

We note that it is obviously unnecessary to include an artificial variable for any
constraint which is satisfied at x0. Indeed, it is desirable for there to be as few
artificial variables as possible as the algorithm will normally perform at least as
many iterations as there are artificial variables. This then raises the interesting
question of finding an initial x0 at which many constraints are satisfied, a process
often known as crashing. We shall not comment further on this problem here but
refer the reader to Gould and Reid (1989) for one possible solution.

5. Parametric problems

An important feature of the Harwell code VE09 is that it provides a facility for
solving parametric problems. Indeed this option is used extensively in the solution
of ordinary problems whenever the single-phase method (4.2) described in
Section 4 is attempted—VE09 used just such a single-phase method. The theory
of parametric quadratic programming is well understood (at least for convex
problems) and has been described by many authors (see, for instance, Ritter,
1967; Best, 1982; Valiaho, 1985). Our implementation is based upon the
framework given by Best (1982) with adaptations to cope with nonconvex
problems. Briefly, we consider the parametric problem

minimize %xJHx + (c +18c)Jx (5.1a)
subject to Ax = b +16b (5.1b)

and /s£x=su (5.1c)
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314 NICHOLAS I. M. GOULD

for all values of t in the interval \t ,t\. Although other parametric problems
sometimes occur (see, for example, Pang, Kaneko, & Hallman, 1979), problems
of the form (5.1) are by far the most common. Classes of such problems occur in,
for example, the fields of portfolio analysis (see Markowitz, 1952), structural
engineering (see Maier, 1970), and multiple criterion decision processes (see
Rhode & Weber, 1984).

Suppose we have found a local solution x for the value t = 1 e [t ,i), that the
components jcpx of JC are contained in / and fixed at one of the bounds (5.1c), and
that K{1) satisfies SOC. The remaining variables *FR and the Lagrange multipliers
then satisfy

Let

0

= 0 and

*FR — C F R — i <5cF R

. b +1 bb -
(5.2)

/
0
0_

bkac
&r F R

bXBC_
=

- 6 C F X

- S C F R

6b
(5.3)

0 A,

Then x + (t - ?) bx gives a local solution to (5.1) so long as

' F R djrFR =s uF R ,

if (*FR), < («

if (*FR)/>(/FR)I-

(5.4a)
(5.4b)

(5.4c)

Let i be the supremum of all values of t for which (5.4) is satisfied. To simplify
the discussion, suppose that only one of the inequalities (5.4) is critical—that is,
would be violated if t were further increased—at this supremum. (This amounts
to a nondegeneracy assumption; Ritter (1981) shows how this assumption may be
relaxed.) We may then extend the parametric solution from ? to i. The solution at
and beyond /depends upon which of the inequalities (5.4) becomes critical at i.

If one of (5.4a) is violated beyond /, the relevant variable is introduced into /.
Under these circumstances the analysis given by Best remains true even for
nonconvex problems. Two possibilities occur; either the new K(l) is nonsingular
(in which case it satisfies SOC and t may be extended beyond i using the new
(5.3)) or it is singular. In the latter case, either we can conclude that the solution
path we are following ends at / or there is another variable whose removal gives
rise to a set / for which K{l) again satisfies SOC and which also allows us to
extend t beyond /.

If one of (5.4b) or (5.4c) is violated at i, possible outcomes may be deduced
from Theorem 2.4 when applied to (5.1). If case (i) of the theorem applies, the
solution may be extended beyond / by freeing the relevant variable from its
bound and using the new (5.3). In case (iii), x + (r — ?) dx does not solve (5.1) at
t = i and a new solution to the problem must be sought. This gives a discontinuity
in the parametric solution but cannot occur when H is positive (semi-)definite. In
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case (ii) the position is not so clear. Although x + (t - ?) 6x is an FSEP for (5.1)
at t = i with nonpositive Lagrange multipliers, the presence of a zero multiplier
makes it difficult to say whether x + (l-1)5x solves (5.1) or not. (This is the
same problem as that discussed in Section 2.) Our remedy is to increase t very
slightly beyond Mo 1 and to resolve the problem at t = 1 using x + Q-i) dx as
the starting point. This will mean that we will miss a small portion of the
parametric interval but can simply backtrack from 1 to recover the missing part.
Under our simplifying nondegeneracy assumption, we can always choose ?> / so
that the starting point is an FSEP for (5.1); the existing factorization of B may be
used when the new minimization is attempted.

We note that special forms of equations (5.2)-(5.4) are the basis of the method
proposed by Markowitz & Perold (1981) for the solution of portfolio optimization
problems; such problems can be stated and solved as parametric quadratic
programs.

6. Numerical experience

In this section we give details of some of the problems that we have solved
using VE09. The list is intended to provide a bench-mark for the development of
future codes. We have tried to find problems which are either nonconvex or
large. We have found the former to be extremely useful in debugging our code.
The latter are included as an indication as to how the algorithm performs on
larger problems; we purposefully did not solve any huge problems because of the
expense involved but would be grateful to receive any real-life problems (i.e.
problems for which the answer is of interest to someone) for future testing.

Our code is written in Double Precision Fortran 77. All of our computation was
performed on the IBM 3084Q computer at Harwell; the code was compiled using
the VS Fortran compiler with the optimization option OPT = 2. All timings
reported are in seconds for time spent in the CPU and appear to be correct to
about one hundredth of a second.

Our purpose in reporting some numerical results is merely to indicate how an
algorithm like VE09 should perform on reasonably large examples. We do not
regard the results as indicating the best performance that may be achieved by
such algorithms. Indeed, as the number of iterations required will depend
crucially upon the initial point and the associated set /, the performance will
undoubtedly be enhanced by a more sophisticated crash procedure for automati-
cally generating the starting point. This issue has recently been investigated by
Gould & Reid (1989).

Problem 1. For our first problem we took problem 118 of Hock &
Schittkowski (1981), converted the inequality constraints to equalities by adding
slack variables, and perturbed some of the diagonal entries for the objective
function to make the problem nonconvex. If we denote the diagonal Hessian
matrix for the problem by D, our problem differs from that given by Hock &
Schittkowski in the following diagonal elements: rf,, = -1.0, d4A= —0.0001,
d6>6 = 10.0, d7,7= -0.0001, d%9 = 25.0, dl0il0=-2.5, and rf13>13=-0.0001. The
performance of the algorithm on this problem is summarized in Table 6.1.
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3 1 6 NICHOLAS I. M. GOULD

TABLE 6.1
Results for test problem 1.

n Iterations Q(**) Time(s)

32 22 -3.485 333E + 03 0.10

The solution x* obtained for this problem is defined by the variables x, (i e L)
being fixed at their lower bounds and xt (i e U) at their upper bounds (the
remaining variables lying between their bounds); the sets L and U are as follows:

L = {2, 3, 6, 9, 20, 30, 31, 32}, U = {1, 16, 17, 18, 22, 23, 27}.

In addition we solve a parametric version (5.1) of the same problem for all t in
the interval [0 ,5 ] and where the elements of the vectors 6b and 6c are all zero
excepting 6cx = l, 6c5 = -l, 6cl6 = l, <5c2 4=-2, 6bl = 6, and 6b9 = -6. The
solution obtained was defined over 10 parametric sub-intervals and for reference
the intervals and the changes which occur at the end of each interval are
described in Table 6.2. The problem has no feasible solution for / > 4 . 5 .

Problem class 2. Here we solve

minimize - ^ (**+(+i —xk+i)
2

subject to xk+i - xi+1 + X; = 0, i = 1,..., k — l,

0.4(ar,+2 - a,)^xk+i =£ 0.6(ar,+2 - or,-), i = 1,..., k - l ,

where the constants ait i = \,...,k + \, are given. These problems arise in the
optimal placement of nodes in a scheme for solving ordinary differential
equations with given boundary values (J. R. Kightley, private communication).

In Table 6.3 we give details of the performance of VE09 on this problem for
various values of k and n (=2k — l), and where we chose ar,- = 1.0 +1.01'"1,

TABLE 6.2
Details of the parametric solution

Interval
end

0.6667
1.0000
1.7080
1.7100
1.8333
3.4186
3.4206
4.1423
4.1566
4.5000

Variable
leaving /

6(L)
20 (L)
21 (U)

9(L)
2(/.)

30 (L)

4(L)

Variable
joining /

24(/.)
21 (U)

20 (U)
25(Z.)

21(0

26(0
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TABLE 6.3
Results for test problem class 2

k n

-50 99
100 199
150 299
200 399
250 499
300 599
350 699

Iterations

62
122
169
222
265
308
350

Qix*)

1.309070E-07
9.395663E - 07
3.123420E-06
9.002067E - 06
2.489882E - 05
6.789742E - 05
1.841940E-04

Time (s)

0.63
1.77
3.16
6.37
7.01
8.86

10.70

1 =£ i: ^ k + 1. The algorithm was started from the feasible point at which the first
k variables are at their lower bounds and the remaining variables are determined
by the constraints—this is the point chosen by the crash procedure in VE09. For
reference, the solutions for these problems are defined by the sets L and U as
follows:

)t = 50, L={1,50}, L7 = {25,26};

* = 100, L= {1,100}, L/ = {24, 25, 75, 76};

A: = 150, L= {1,150}, U = {22, 126};

k = 200, L={1, 90, 200}, U = {20, 21, 177};

it = 250, /-= {1, 107, 115, 123, 130, 250}, U = {21, 226, 227};

k = 300, L = {1, 107, 115, 123, 130, 136, 139, 147, 155, 162, 168, 179, 181, 300},

L/ = {21,277};

k = 350,

L= {1, 107, 115, 123, 130, 136, 139, 147, 155, 162, 168, 171, 179, 187, 195, 200, 203,

211, 219, 228, 230, 232, 350},

U = {21, 326, 327}.

Problem class 3. Here we solve a variant of the problem in class 2,

minimize - 2 (**+/+i ~ **+,)2 + ~ 2 (**-. + **+/ - ak-i+\)2

subject to xk+i — xi+1+Xj = 0, i = 1,...,k — 1,

0.4(ar,+2 - a,) =£**+, «0.6(a I+2 - or,), i = 1 ,...,* - 1,

where the constants ah i = \,...,k - 1, are given.

In Table 6.4 we give details of the performance of VE09 on this problem for
various values of fc; we chose or, and started from the same point as described for
the previous class. For reference, the solutions for these problems are defined by
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TABLE 6.4

Results for test problem class 3

k

50
100
150
200
250
300
350

n

99
199
299
399
499
599
699

Iterations

26
72

142
208
285
370
459

Q(**)

1.307696E + 02
3.755771E + 02
8.851590E + 02
2.036007E + 03
4.801736E + 03
1.174076E + 04
2.964436E + 04

Time (s)

0.28
1.01
2.44
4.54
7.05

10.60
14.65

the following sets L, there being no variables at their upper bounds:

£ = 50, L={l,...,24,50,99};

£ = 100, L={1,...,49, 199};

£ = 150, L={1,...,74, 298, 299};

£ = 200, L={1,...,99, 398, 399};

£ = 250, L={1,...,124, 498, 499};

£ = 300, L = {1,..., 149, 598, 599};

£ = 350, L = {1,..., 174, 698, 699}.

Problem class 4. Here we take any (large-scale) linear programming problem

minimize cTx

subject to Ax = b and /«jr=s«

and replace the objective by

minimize \xTDx + crx,

where D is a prespecified diagonal matrix. In Table 6.5 we summarize the
performance of VE09 on such problems for various (well-known) linear program-
ming test examples. The problems were supplied by John Reid of Harwell and
further details are available from the author. The matrix D for the problems was
chosen to have diagonal elements da satisfying

du = «/„ + (i - l)/(« - l)(dnn - </„), i = 1,.., n,

where the elements du and dnn were either (A) 1.0 and 10.0 or (B) - 1.0 and
10.0.

The initial point for each problem was chosen by the crash routine within
VE09; the sets which define the solutions obtained are not given here but are
available on request.
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TABLE 6.5
Results for test problem class 4

Test problem

Blend (A)
Blend (B)
Boeing 1 (A)
Boeing 1 (B)
Boeing 2 (A)
Boeing 2 (B)
Stair (A)
Stair (B)

7. Conclusions

n

114
114
726
726
304
304
532
532

m

74
74

351
351
165
165
356
356

Iterations

91
79

859
1001
222
178
443
465

C(*')

2.492275E + 03
1.210728E + 03
1.815191E + 09
1.248909E + 09
8.918297E + 07
5.701263E + 07
3.568584E + 06
3.246777E + 06

Time (s)

1.55
1.41

56.00
63.85
8.33
7.47

82.82
88.05

We have presented the basis for a general large-scale quadratic programming
algorithm. The algorithm proceeds in a single phase and is equally capable of
solving parametric problems. It has been implemented as subroutine VE09 in the
Harwell Subroutine Library. In the future we intend to compare this method with
the promising Schur complement method of Gill et al. (1987a).
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Appendix

In this appendix we show that the anti-cycling rules for linear programming
proposed by Bland (1977) may be extended to cover the quadratic programming
case. The rules are extremely simple to state:
(i) To remove a constraint from /, pick the candidate with the smallest index,
(ii) When more than one constraint is encountered as the largest "feasible step is
taken, choose the candidate with the smallest index.

We model our proof of the finiteness of our algorithm under such rules on
those given by Chang & Cottle (1980) and ChvStal (1983). The proof is by
contradiction.

We have indicated in Section 2 that the algorithm can only fail to be finite if we
encounter a cycle; that is we encounter a sequence of FSEPs corresponding to the
sets Ij for which l\ = lk for some k > 1. This can only happen in our algorithm if
case (vi) of Theorem 2.3 repeatedly occurs and if a is persistently 0. (Each matrix
K(lj) will then satisfy SOC.) Notice that a cycle does not necessarily occur at a
vertex of the feasible region. To obtain a contradiction we suppose that we apply
rules (i) and (ii) when solving (1.1) and that a cycle is encountered.

Let A be the m xn matrix whose rows are the vectors aj and let b be the
corresponding vector whose elements are bt. Consider the underdetermined
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system of linear equations

H

o i
(A.I)

The objective function value Q(x) for any point x obeying equation (A.I) then
satisfies

Now let / be a subset of {1 ,...,m}, let A\ and Aj be matrices whose rows are made
up from the vectors aj for i e / and i $ I respectively and let Bx and bx be the
corresponding vectors made up from elements bt. Then, provided that K(l) is
nonsingular, a solution to (A.I) is given by

H A]
A, 0

_A, 0

JC(A

A(A
r(Auh,

l)
l)
0.

=
—c
b

_ b _

-
M
0

_ 0

0
/
0_

(A.2)

for any choice of Ai and t\. We may thus express the objective function Q(x) in
terms of the independent variables kx and rv If we denote the value of Q(x) by
G(Ai, ri, / ) , Q satisfies

(A.3)

(A4)

2g(A,, r,, I) = u, + 2A(0,0, /)Tr, + r7L,r, + A^.A,,

where the block skew symmetric matrix

U AjylroJ Lro -n\H Ajy o J
and where Ui is a constant. For convenience, define the vector A, to have a
nonzero entry in the ith position / e / with the value of the appropriate entry from
X(o, o, /).

The solution of each problem EP(^) is a special instance of (A.2) and the
matrix K(l/) is invertible for these problems by virtue of SOC. The relationships
(A.2) and (A.3) are quadratic programming equivalents of the dictionaries used
by Chvatal in his proof of the finiteness of the simplex method under Bland's
rules. They are also the basis for many of the linear programming-based methods
for solving quadratic programs (see, for instance, Dantzig, 1963).

Following Chvatal, we say that a constraint is fickle if it is present in some set (
but absent from li+l with 1 «£ i <k. We shall say that a constraint is faithful if it is
present in all the sets (. Any constraint which is neither faithful nor fickle is
disinterested. We note that the residual r, for any fickle or faithful constraint must
be zero. Let constraint w be the fickle constraint with the largest subscript, let (
be such that »v e (+ i \( , let v e (\(+i and let ( be such that w e $\ll+l. We note
that the least index rules imply
(a) (A,.),, > 0 and (A,.)u « 0 for all u < v, u e <•;
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(b) constraint w is the only candidate for inclusion in (-+1 (because it is the fickle
constraint with the largest index); and
(c) {ki)w > 0 and (A,.)u ̂  0 for all u < w, u e f
We shall need the following lemma.

LEMMA A.I Suppose I is any of the index sets encountered during the cycle. Then
the matrix Ni defined by (A A) is independent of I. Furthermore, each row and
column of Ni corresponding to a fickle constraint is null.

Proof. We consider the consequences of changing from the index set / to the next
set 7 in the cycle. Suppose that the constraint with gradient a moves out of / and
is replaced with that with gradient a. Let

v, NJI \H Ajjy1 rjv, Nil \H Ajy1
and U * 3 J = U OJ • (A--5)

It follows from (A.4) that Ni = AiNtAj. By definition TVja = 0. Furthermore, as
the cycle can only occur if equation (2.8) is satisfied with u = 0, TVjd = u = 0.
Referring to equation (15b) in Fletcher (1971) (with the suitable change in
notation), we have Ni = ty. But then, as .TV} only differs from Nt by a number of
rank-1 terms, each of which contains one of the products N^ or tya, we have
N\ = N\. Thus Afi is independent of /. Finally, the column of TVi corresponding to
the fickle constraint with gradient a is given by A^id which is zero as Nta = 0.
Since TVi is symmetric, the lemma is proved. •

Although the form of (A.2) is different for ( and (, the solution sets must be
identical as both sets of equations are derived algebraically from (A.I). The
objective function values (A.3) are therefore identical for ( and Ij so long as the
same choices of A and r are made.

Let p, q, and s satisfy the equation

H A\ 0
A, 0 0

L^i, 0

p
q

\_s
=

' 0

ev,
0_

where al is the u,th row of Ah. (The solution to this equation is exactly that used
to compute the search direction in Theorem 2.3, c.f. equation (2.7).) Further-
more, let x(a), A(a), and r(ar) be such that x(a) =x(0, 0, () - ap, the nonzero
entries of A(ar) occur in positions k e ( with the values being the entries of
>[(0, 0, () - aq in the appropriate order, and the nonzero entries of r(a) occur in
position v where the entry has the value a and in positions k $ ( with the values
of the entries of r(0, 0, () - as in the appropriate order. Such choices of x, X, and
r satisfy (A.I) for all a as they satisfy (A.2) when / = f. Therefore the objective
function values

(A.6a)
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and

"i, + 22) (AI;),r(or), + rCoOjVW,, + I ^ t f ^ a ) , , (A.6b)

are identical for all a. We may thus equate the coefficients of similar powers of a
in the expressions (A.6a) and (A.6b). In particular, we shall consider the
coefficient of a in the two expressions.

Taking (A.6a) first, the only coefficient of a is the term

2(AI/)U, (A.7)

the only other nonzero terms in the expression are the constant vtl and a single
coefficient of a2, (Li)ViVj. Now referring to (A.6b), the components of the vector
r(a)i. are linear functions of a. However, the constant term in each component is
zero; for the components correspond to either faithful or fickle constraints and
the residuals for such constraints are necessarily zero. Thus the term
f(ar)JXi/r(a)i/ gives only a2 (or possibly constant) terms. The components of
X(ar)iy correspond to fickle or disinterested constraints. Lemma A.I ensures that
only the disinterested components make a contribution to A(or)7JV|JL(ar)i; the
constant terms for these components are zero by definition. Therefore, once
again, the term i.(a)jNiX(a)i. gives rise to only a? (or possibly constant) terms.
The remaining terms in (A.6b) have the value

h ^ AI.)/r(a)/. (A.8)

The coefficient of the a term in (A.6b) is therefore

/(5),,., (A.9)

where the index /, is such that the /,th row of Ah is a] for / $ (. Equating (A.7)
and (A.9) and rearranging terms we have

(A,,)w - (*,,)„ + £ (A,,),*,,. = 0. (A. 10)

The remainder of the proof then follows Chvdtal's. From observation (a) above,
(Ai,)u > 0. Furthermore (A )̂,, =s 0. (Constraint v is fickle and therefore v < w. If
velj, (Aly),,s£0 from observation (c). If v $ (-, (AI/)u = 0, by definition.) Hence
from (A. 10)

(Ai;)usu, < 0 for some u $ (. (A.11)

Since u $ ( and a s u e | (because (A,)„¥= 0) constraint u is fickle. Thus u<w. In
fact u^w as w does not satisfy (A.ll) . For (Ai/)M,>0 from observation (a),
sw. > 0 as H>e(+,\( and hence (A^)^^ > 0. Thus as u < w and uelj, ( A ^ ^ O
from observation (c) and therefore su.>0 from (A.l l) . But this means that
constraint u is a candidate for inclusion in (+ 1 which contradicts observation (b)
as u # w. Thus the algorithm cannot cycle and is therefore finite.
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