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ON GROWTH IN GAUSSIAN ELIMINATION
WITH COMPLETE PIVOTING*

NICK GOULD,"

Abstract. It has been conjectured that when Gaussian elimination with complete pivoting is applied to a
real n-by-n matrix, the maximum possible growth is n. In this note, a 13-by-13 matrix is given, for which the
growth is 13.0205. The matrix was constructed by solving a large nonlinear programming problem. Growth
larger than n has also been observed for matrices of orders 14, 15, and 16.
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1. Introduction. Let A be an n-by-n real matrix, let A() A, and let A(k+ ), for
k 1, n 1, be the n k-by-n k matrix derived from A by elimination operations.
That is, if we partition Ak) as

(1.1) A)= (a)a) A(k)

(where the scalar a () is known as the pivot at the kth stage of the elimination), then

(1.2) A+ )=Atn)-a)[a(k)]-a(c).
Alternatively, A (g + l) is the Schur complement of the first k-by-k block ofA in the ma-
trix A.

IfGaussian elimination, with complete or partial pivoting, is used to solve the system
of linear equations Ax b, Wilkinson 9 showed that the computed solution 2 satisfies
the perturbed equations

(1.3) (A +E) b,

where the error matrix E satisfies the normwise bound

(1.4) E[I -< up(n)g,(A)IIA[I

Here u is the unit roundoff, p(n) is a cubic polynomial of n, and
()(1.5) gn(A) max I(PAQ) o [/ max [(PAQ)ij[,

<=i,j_n-k+ 1, <=i,j<=n
l<=k<-_n

where P and Q represent the pivoting permutations applied to A during the elimination.
As the other contributions to the bound (1.4) are beyond our control, it is of interest to
know precisely how large the growth factor gn(A) can be.

We say that A is a complete elimination matrix if, at each stage of the elimination,
the modulus of each entry in A(g) is no larger than that of the pivot. Such matrices arise
when complete pivoting is used to permute the rows and columns of a general matrix
during Gaussian elimination (see Wilkinson [11]). The permutation matrices P and Q
in (1.5) are both the identity matrix if A is a complete elimination matrix. Moreover,
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the growth factor is now the ratio of the moduli of the largest pivot to the first. For such
matrices, Wilkinson 9 showed that

(1.6) gn supgn(A) < n
A

/2(23 /24 /3... n/n )1/2

and he noted that there were no known examples of matrices for which g,,(A) > n
(Wilkinson, [10, p. 97] and [11, p. 213 ]). Indeed, Cryer [3] hypothesized that gn < n
for all n with equality if and only if there is a Hadamard matrix, that is a matrix with
entries + and orthogonal rows and columns, ofdimension n. Higham and Higham [6
give a class of matrices for which g,,(A) >= (n + )/2, while simulations by Trefethen
and Schreiber [8] on random matrices indicate average growths on random matrices of
approximately n/2.

One way oftrying to generate large growth factors for complete elimination matrices
is to attempt to solve the optimization problem of maximizing the modulus of the nth
pivot. (It is always possible to arrange that the maximum growth occurs at this pivot.
For, suppose the kth pivot is largest in magnitude. Then the matrix formed by replacing
the last k-by-k block of the n-by-n identity matrix, scaled by a, with the first k-by-k
block ofA is also a complete elimination matrix with the same growth factor but with
the maximum growth now occurring at the nth pivot.) This approach has been considered
by Day and Peterson [4 and is also the approach taken in this note. Day and Peterson
give lower bounds on the growth for =< n =< 8. Here we extend the range to -< n =<
16. The major result we obtain is that there are a number of 13-by-13 matrices for which
g3 is larger than 13, and thus that Cryer’s conjecture is false. Examples of growth larger
than n have also been observed for matrices of order 14, 15, and 16.

In 2, we describe the nonlinear programming approach we have taken to this
problem. In 3, the results of our numerical experiments are presented. We give an
example where g3 > 13 in the Appendix.

2. Method. We may formulate the maximum pivot growth problem as a nonlinear
optimization problem as follows:

Starting with an n-by-n real matrix X) A, we let Xk) be the matrix

(2.1) XCk)=(0 0 )0 A ()

where A(k) is the kth elimination matrix 1.1 ). Let xi,j, be the (i, j)th entry ofX(k). We
thus wish to maximize x,,,n,,, subject to the restrictions that the matrices X() and X(+ )

are related to each other by elimination operations, that the largest element inX() occurs
in position (k, k), and that the initial matrix X() is scaled so that the largest entry in
magnitude is 1. This leads to the problem

(2.2) maximize x,,,n
subject to the elimination constraints:

(2.3)
for

Xi,j,k + Xi,j,k - Xi,k,kXk,j,k/ Xk,k,k O,

k<i,j<=n and k=l,...,n-1;

constraints which make the signs of the pivots unique:

(2.4) x,,k>=0 for k=l,...,n;

a normalizing constraint, Xl,1,1 1; and complete pivoting constraints:

(2.5) -1 -’-Xi,j, for <=i,j<=n
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and

(2.6) --Xk,k,k <= Xi,j,k <= Xk,k,k for k <= i,j <= n and k 2, n 1.

This formulation involves roughly n 3/3 variables, but is a very sparse optimization
problem. We chose to solve this problem using our large-scale nonlinear programming
package, LANCELOT (Conn, Gould, and Toint [2 ]), since the package is designed to
handle such nonlinear sparsity as appears in problem (2.2)-(2.6) above.

By contrast, Day and Peterson 4 formulate the problem entirely in terms of the
n 2 variables X), treating all of the remaining variables XCk), k 2, ..., n as implicit
functions ofX). This leads to a problem that is significantly more nonlinear and makes
the calculation of analytic derivatives considerably harder. Nonetheless, Day and Peterson
report considerable success with the nonlinear programming package NPSOL (Gill,
Murray, Saunders, and Wright [5]).

Of course, neither nonlinear programming method is designed to find anything
stronger than local solutions to a problem. The problem (2.2)-(2.6) has many local
solutions and most of them are highly degenerate. The problem is thus challenging for
a nonlinear programming algorithm and the values given in the next section are the
result ofmany runs from different starting points in an attempt to find the global solution
to the problem.

3. Results. In Table 3.1, we give the results obtained by running LANGELOT on
the problem posed in 2. LANCELOT is written in standard Fortran 77, compiled in
double precision with the SUN Fortran 1.3 compiler; the problems were solved on a
SUN SPARCstation 1. Each problem has many local solutions; we cannot, of course,
guarantee that the values reported are the largest growths that can be obtained, merely
that they are the largest values we encountered.

Of particular interest are the values obtained for n 13, 14, 15, and 16, for here
we see growth of more than n. We also observe that for n 16, where a complete
elimination Hadamard matrix exists and gives rise to growth of 16, other complete elim-
ination matrices give larger growth. Thus Cryer’s 3] conjecture is false.

TAnLE 3.1
Maximum growth factors encountered.

1.0 trivial
2 2.0 trivial
3 2.25 optimal (see Cohen, [1 ])
4 4.0 Hadamard matrix, optimal (see Cryer [3])
5 4.1325 agrees with Day and Peterson [4]
6 5.0 agrees with Day and Peterson [4]
7 6.0 agrees with Day and Peterson [4]
8 8.0 Hadamard matrix
9 8.4305
10 9.5294
11 10.4627
12 12.0 Hadamard matrix
13 13.0205
14 14.5949
15 16.1078
16 18.0596 not a Hadamard matrix

n Growth size Comments
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The matrices that give rise to the growth factors reported in Table 3.1 are often
extremely sensitive to small perturbations in their entries in that tiny perturbations to a
complete elimination matrix rarely results in another such matrix. This phenomenon
was observed by Day and Peterson [4 and may explain why examples of large growth
have proved elusive in previous attempts to find them. It also makes it rather difficult to
specify matrices which give rise to large growth. Indeed, we had to solve the optimization
problem of 2 to very high accuracy, requiting the residuals ofthe nonlinear constraints
(2.3) to be of the order of the unit roundoff. In some cases, this meant that we had to
take the best solution that we obtained on the SUN as a starting point for a further run
in extended precision on the CRAY X-MP/416 at Rutherford to reduce the residuals to
the desired level. Even then, the mere fact of rounding the CRAY values to 16 decimal
places frequently prevented the computed matrix from being a complete elimination
matrix when the operations 1.2) were performed in double precision on the SUN. The
values obtained had to be adjusted by eye to obtain a suitable floating-point complete
elimination matrix.

We specify a 13-by-13 matrix that gives rise to growth ofslightly more than 13.0205,
in IEEE double precision arithmetic on a SUN SPARCstation l, in the Appendix to this
paper. The values must be read in Fortran 1P,D24.16 format. It is not known whether
there are matrices with simple fractional entries that give rise to such large growth. Other
13-by- 13 matrices that give rise to growth of larger than 13 were encountered.

The results of applying the elimination operations (1.2) to this matrix are given in
Table 3.2. The size of the pivot and the largest nonpivot in absolute value at each stage
ofthe elimination are shown. Note that the pivots are far from monotonic and that there
is a "surge" ofgrowth in the last few stages. Such a surge has been observed for Hadamard
matrices by other authors 3 ], 4 ]. Indeed, values for the last six pivots for such matrices
are known 4, Prop. 5.5]. Also observe how close the largest nonpivot at each stage is
to the pivot and thus how tiny perturbations to the matrix elements may completely
alter the pivot sequence.

4. Conclusions. We have shown that growth of larger than n is possible when
Gaussian elimination with complete pivoting is performed on real n-by-n matrices by
exhibiting a 13-by- 13 matrix for which this is true. IfA is an n-by-n complete elimination

TABLE 3.2
Details ofthe elimination.

1.0000000000000000 1.0000000000000000
2 2.0000000000000000 2.0000000000000000
3 2.0000000000000000 2.0000000000000000
4 2.5964300000000002 2.5964300000000002
5 2.3776999999999999 2.3776999543751263
6 2.3038700000000003 2.3038700000000003
7 2.9587400000000001 2.9587398634283884
8 3.5890399999999998 3.5890399999999998
9 4.1163800000000004 4.1163800000000004
10 3.3550400000000007 3.3550399999999998
11 6.5102699999999984 6.5102698773166514
12 6.5102700000000011 6.5102699999999567
13 13.0205000013724188

Largest modulus of
Pivot Pivot size nonpivot entry
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matrix with growth g(A), and P is the matrix which permutes the first 2n integers to
{1, n + 1, 2, n + 2, n, 2n}, then (see [7] and [4, Prop. 5.12])

(4.1) PT( AA -AA)P
is also a complete elimination matrix with growth 2g(A). Thus there are an infinite
number of matrices, of dimensions 13.2 k for nonnegative k, which give rise to growth
larger than their dimension. We suspect that there are examples oflarge growth for many
other dimensionswe have encountered such examples for n 14, 15, and 16
and that

lim sup g,,/n
n

is unbounded. It is not known if there are matrices of dimension smaller than 13 for
which growth larger than n is possible, nor is it known quite how close the growth factors
given in this paper are to gn.

We have observed that examples of large growth in complete elimination are very
unstable in that very small perturbations to the matrix entries give rise to radically different
pivot sequences. We suspect that this is why such examples have not been observed in
practice. We also realize that the examples given here are extremely unlikely to--nor
indeed should they--discourage people from using Gaussian elimination with pivoting.
The potentially less stable partial and threshold pivoting strategies are used with impunity,
and considerable success, throughout the scientific world.

Appendix. Here we give a 13-by-13 complete elimination matrix for which the
growth is slightly over 13.0205 when the elimination operations (1.2) are performed in
IEEE double precision arithmetic on a SUN SPARCstation 1. The values should be read
in Fortran 1P,D24.16 format.

row 1

1.0000000000000000D+00 -I.0000000000000000D+00 -I.0000000000000000D+00

6. 6084891857885364D-01 3.5076867724029653D-01 I .3913093634808771D-01

1.0000000000000000D+00 -1.0000000000000000D+00 9.4546309508853699D-01

-6. 4358761317393848D-02 -4. 72590565392 6077 6D-02 9. 8144752878695718D-01

1. 0000000000000000D+00

row 2

1.0000000000000000D+00 1.0000000000000000D+00 -I.0000000000000000D+00

-1.0000000000000000D+00 -8. 8262544148845457D-01 -7.9349789219584022D-01

-1.0000000000000000D+00 -7.0049633754068708D-01 1.0000000000000000D+00

1. 0000000000000000D+O0 -1. 0000000000000000D+00 I. 0000000000000000D+00
-6. 5149858941930272D-01

row 3

1 0000000000000000D+00 4. 9321847997082674D-01 1. 0000000000000000D+00

5.2321986889464023D-01 1.0000000000000000D+00 9.3147802581501915D-01
-1.0000000000000000D+00 -1.0000000000000000D+00 -1.0000000000000000D+00

9.0634017140409751D-01 1.0000000000000000D+00 1.9635994245021532D-01
5. 2020043801610605D-01



GROWTH IN GAUSSIAN ELIMINATION WITH PIVOTING 359

row 4

-8. 5237723616654504D-01

1 0000000000000000D+00

-1. 0000000000000000D+00

1 0000000000000000D+00

1 0000000000000000D+00

1.0000000000000000D+00 -7.9959593728640932D-01

-6.1395029873598805D-01 -1.0000000000000000D+00

1.0000000000000000D+00 1.0000000000000000D+00

1. 0000000000000000D+00 -1. 0000000000000000D+00

row 5

-6.4197976615948327D-01 1.0000000000000000D+00 -8.2347773920951672D-01

-1.0000000000000000D+00 1.0000000000000000D+00 -1.0000000000000000D+00

-1.0000000000000000D+00 1.0000000000000000D+00 -1.0000000000000000D+00

-1.0000000000000000D+00 -9.8047514562210913D-01 1.0000000000000000D+00
1. 0000000000000000D+00

row 6

-7.5746114421052313D-01 8.7625388681860783D-01 -I.0000000000000000D+00

-1.0000000000000000D+00 -8.1410469390205387D-01 1.0000000000000000D+00

1. 0000000000000000D+00 -1. 0000000000000000D+00 -1. 0000000000000000D+00
1. 0000000000000000D+00 -1. 0000000000000000D+00 -1. 0000000000000000D+00

1. 0000000000000000D+00

row 7

1. 0000000000000000D+00 I. 0000000000000000D+00

5.8822529846976079D-01 1.0000000000000000D+00

1.1780693451504934D-01 -I.0000000000000000D+00

-I.0000000000000000D+00 -I.0000000000000000D+00

1. 0000000000000000D+00

1. 0000000000000000D+00

-i. 0000000000000000D+00

1. 0000000000000000D+00

-1. 0000000000000000D/00

row 8

1. 0000000000000000D+00 1.0000000000000000D+00

-1.0000000000000000D+00 -1.0000000000000000D+00

1. 0000000000000000D+00 I. 0000000000000000D+00

-1. 0000000000000000D+00 I. 0000000000000000D+00

1. 0000000000000000D+00

-1.2365439895441106D-01

1. 0000000000000000D+00

1.0000000000000000D+00

1. 0000000000000000D+00

row 9

-1.0000000000000000D+O0 1.6728019890561854D-01 -1.0000000000000000D+00

-1.0000000000000000D+00 1.0000000000000000D+00 6. 7037707945403946D-01

-1. 0000000000000000D+00 -1. 0000000000000000D+00 1. 0000000000000000D+00

-1. 0000000000000000D+00 1. 0000000000000000D+00 -1. 0000000000000000D+00

-1. 0000000000000000D+00
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row 10

-I. 0000000000000000D+00 1.0000000000000000D+00

7.7420992278979484D-01 1.0000000000000000D+00

1. 0000000000000000D+00 1. 0000000000000000D+00

1.0000000000000000D+00 -1.0000000000000000D+00

-1. 0000000000000000D+00

7. 3451234413636224D-01

1. 0000000000000000D+00

1.0000000000000000D+00

1. 0000000000000000D+00

row 11

-1.0000000000000000D+00 -3.2294803009723511D-01 1.0000000000000000D+00

-1.0000000000000000D+00 5.9471427088948606D-02 -1.0000000000000000D+00

1.0000000000000000D+00 -7.7305121515367092D-01 1.0000000000000000D+00

1 0000000000000000D+00 1 0000000000000000D+00 1 0000000000000000D+00

1 0000000000000000D+00

row 12

-1.0000000000000000D+00 -1.7007857952327707D-01

1.0000000000000000D+00 -1.0000000000000000D+00

-1.0000000000000000D+00 -1.0000000000000000D+00

-1.0000000000000000D+00 -1.0000000000000000D+00

I. 0000000000000000D+00

1 0000000000000000D+00

1 0000000000000000D+00

9 1898031012251935D-01

2. 5049340232649964D-01

row 13

9. 6143110935926346D-01 -I. 0000000000000000D+00 7. 2409299018425932D-01

-1.0000000000000000D+00 1.0000000000000000D+00 1.0000000000000000D+00

-1.0000000000000000D+00 1.0000000000000000D+00 1.0000000000000000D+00

1.0000000000000000D+00 -I.0000000000000000D+00 -I.0000000000000000D+00

i. 0000000000000000D+00
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