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Abstract. We consider the algebraic issues concerning the solution of general, large-scale, lin-
early constrained nonlinear optimization problems. Particular attention is given to suitable methods
for solving the linear systems that occur at each iteration of such methods. The main issue addressed
is how to ensure that a quadratic model of the objective function is positive definite in the null-space
of the constraints while neither adversely affecting the convergence of Newton’s method nor incurring
a significant computational overhead. Numerical evidence to support the theoretical developments
is provided.
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1. Introduction. Newton-like line-search methods for unconstrained and lin-
early constrained optimization may be broadly divided into two categories on the
basis of how they deal with nonconvexity. Some methods wholeheartedly embrace
nonconvexity by calculating directions of negative curvature as a means of escape
from regions of nonconvexity. Others prefer to pretend that the nonconvexity is not
present by replacing the Newton model by a convex modification. Although the for-
mer approach has theoretical advantages (see, for example, [35]), the latter is often
preferred because of its simplicity.

The prototypical example of convex modification is the modified Cholesky method
of [25] for unconstrained minimization. Here the second derivatives V2, f of the
objective function f(x) are replaced by a modification B = V2_f + D whenever
V2, f is insufficiently positive definite. The diagonal perturbation D is chosen so
that B is sufficiently positive definite, that is,

(L.1) p Bp > op’p for some constant ¢ > 0 and all p.

Most significantly, the perturbation is determined during an attempted Cholesky fac-
torization of V2 f. If V2_f is itself sufficiently positive definite, D is zero. The cost
of finding B is barely more than the cost of a Cholesky factorization, and the norm
of the resulting B has a guaranteed bound. More recently, [38] developed a similar
method with a better a priori bound, while extensions to large-scale unconstrained
and bound constrained optimization, using sparse factorizations, have been proposed
by [26], [7, Chapter 3], and [37]. A thorough survey of modified Newton methods for
unconstrained optimization is given by [9].

In this paper, we are interested in extending these ideas to linearly constrained
optimization. We shall not concern ourselves with inequality constraints but presume
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that these are being handled by active set or barrier methods (see, for instance, [27,
section 5.2] and [17]). Thus we aim to solve a smooth linearly constrained, nonlinear
optimization problem,

(1.2) minimize f(x),
zeR™

subject to m general, linearly independent, linear equations
(1.3) Ax =b.

We consider a general iteration in which we have a point @ satisfying (1.3) and wish
to determine an improvement & + p. We build a second-order model of the objective
function and pick p as the solution of the equality constrained quadratic program

(1.4) minimize 1p? Bp+p’g subject to Ap=0.
peRn

Here g def V. f is the gradient of f and B is a suitable symmetric approximation to

the Hessian H % V2, f. We wish to guarantee that p is bounded and thus we require
that the model problem is bounded from below. We ensure this by requiring that B
be second-order sufficient, that is, that

(1.5) pTBp > op’p for some constant o > 0
’ and all p satisfying Ap = 0.

This condition is the natural generalization of (1.1) for the constrained case. To ensure

rapid asymptotic convergence, we also require that B be equal to H whenever the

latter is itself second-order sufficient.

We shall be concerned with general, large-scale problems so we will not consider
methods based solely on dense factorizations. We presume that H and A are sparse,
and we consider sparse direct methods. So long as B is second-order sufficient, the
solution to (1.4) satisfies the sparse linear system

B AT P\ _( —9
@ (2 5)(X)-(7)
where A are Lagrange multipliers. Note that the coefficient matrix,

aet [ B AT
(1.7) K_<A 0 ),

of (1.6) is inevitably indefinite—it must have at least m positive and m negative
eigenvalues (see [28]). Thus any matrix factorization of (1.7) must be capable of
handling indefinite matrices. To be efficient, one would normally try to exploit the
symmetry of K in the factorization. The natural generalization of the Cholesky (or
more precisely LDLT) factorization in the symmetric, indefinite case is that first
proposed by [5] and later improved by [4] and [18] in the dense case and [16] and [14]
in the sparse case. Here a symmetric matrix K is decomposed as

(1.8) K =PLDL"P”,
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where P is a permutation matrix, L is unit lower triangular, and D is block diago-
nal with blocks of size at most two. Each diagonal block corresponds to a pivoting
operation. We shall refer to the blocks as 1 by 1 and 2 by 2 pivots.

Because we are particularly concerned with the large-scale case, it is the Duff—
Reid variant that is of special interest. We note that the permutation matrices are
used extensively in the factorization of sparse matrices to keep the fill-in—that is, the
introduction of extra nonzeros in the factors—at an acceptable level. Unfortunately,
the [30] implementation, MA27, [13] of the Duff-Reid variant sometimes proves inef-
ficient when applied to matrices of the form (1.7) as the analysis phase treats the
whole diagonal of K as if it contains nonzero entries. Thus a good predicted ordering
supplied by the analyze phase is often replaced, for stability reasons, by a less satis-
factory ordering when the factorization is performed, resulting in considerable extra
work and fill-in. Ways of avoiding these difficulties, and of taking further advantage
of the zero block in K, have been suggested by [12] and form the basis for a recent
Harwell Subroutine Library code MA47 [15].

In the special case when f is separable, H will be diagonal. In particular, when
f is also strictly convex, H will be positive definite and a block elimination of H
followed by a sparse Cholesky factorization of the (negative of the) Schur complement
AH'AT is feasible. Indeed, this approach is fundamental to many interior point
methods for linear programming (see, for example, [34], [31], [32], or [6]). However,
because such an approach is merely the restriction of a particular pivot order applied
to (1.7), and because it is less appealing when H is not diagonal, Fourer and Mehrotra
[22] have suggested methods for solving (1.7) using more general pivot sequences for
linear programming problems, and Vanderbei and Carpenter [40] do the same for
general problems.

If B is known a priori to be second-order sufficient, as for instance would be
the case if f(x) were strictly convex, we wholeheartedly recommend the use of MA27,
MA47, or the procedure within loqo [40] to solve (1.6). When there is a chance that
B may not be second-order sufficient, alternatives to blindly solving (1.6) must be
sought. We note that it is always possible to determine a posteriori if B is second-
order sufficient, as [28] showed that B is second-order sufficient if and only if K has
precisely m negative and n positive eigenvalues. The inertia of K is trivially obtained
by summing the inertia of the pivots.

Having set the scene, we may now describe our goals. We aim

(i) to determine a matrix B = H + E so that (1.5) is satisfied and such that
the perturbation E = 0 whenever H satisfies (1.5);

(ii) to obtain E without incurring undue overheads above those normally con-
sidered acceptable when calculating the search direction;

(iii) to ensure that ||E|| is bounded relative to max(||A||, || H ||)—provided that
{x} remains bounded, this will ensure that B is uniformly bounded;

(iv) to use the sparsity and structure of (1.6) to derive a sparse factorization;
and

(v) to limit numerical growth to acceptable limits to ensure a stable algorithm.
In this paper, we shall show how, to a certain extent, we may achieve these aims.
The paper is organized as follows. In section 2 we describe Forsgren and Murray’s
modified factorization approach [21]. In sections 3 and 4, we describe techniques which
are particularly attractive when the systems are large and sparse, and we indicate in
section 5 how the ideas presented in this paper behave in practice, using a prototype
code.
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We shall denote the inertia of the generic symmetric matrix M as
(19) In (M) = (m+7m—7m0)a

where m,, m_, and mq are, respectively, the numbers of positive, negative, and zero
eigenvalues of M. The n by n identity matrix will be written as I,, or I when
the dimension is clear from the context. Finally, e; will be the ith column of I.
We stress that throughout the paper, the matrix B denotes a second-order sufficient
approximation to H which will actually be H whenever the latter is itself second-
order sufficient.

2. Forsgren and Murray’s sufficient pivoting conditions. As far as we
are aware, the only serious attempt to generalize the modified Cholesky methods
for unconstrained optimization to the general, large-scale, linearly constrained case
is that by Forsgren and Murray [21]. All other methods we are aware of either are
appropriate only for small-scale calculations because they disregard problem structure
(see [19, section 11.1] or [27, section 5.1] for example) or implicitly assume that n —m
is sufficiently small that coping with dense matrices of order n —m is practicable (see,
for instance, [36]).

We say that the first n rows of K are B-rows and the remaining m rows are
A-rows. Forsgren and Murray show that, if the pivots are restricted to be of certain
types until all of the A-rows of K have been eliminated, the remaining uneliminated
(Schur-complement) matrix, S, is sufficiently positive definite if and only if B is
second-order sufficient. Until all A-rows of K have been exhausted, Forsgren and
Murray allow only the following types of pivots:

b, pivots: strictly positive 1 by 1 pivots occurring in B-rows of K.

a_ pivots: strictly negative 1 by 1 pivots occurring in A-rows of K.

ba pivots: 2 by 2 pivots with a strictly negative determinant, one of whose rows

is a B-row and the other of whose rows is an A-row of K.

Forsgren and Murray further restrict the pivot so that the absolute value of its de-
terminant is greater than a small positive constant so as to bound the elements in
L and limit any growth in S. The motivation behind this choice of pivot is simply
that if ¢ A-rows have been eliminated, the factorized matrix has exactly ¢ negative
eigenvalues. Thus, when all A-rows have been eliminated, the factorized matrix has
precisely m negative eigenvalues and hence any further negative eigenvalues in S can
occur only because B is not second-order sufficient.

Once S has been determined, Forsgren and Murray form a stable symmetric
indefinite factorization. If the factors reveal that S is sufficiently positive definite, the
(quasi-) Newton equations (1.6) are subsequently solved using the factorization. If S
has insufficiently many positive eigenvalues, Forsgren and Murray show how both a
direction of sufficient descent and a direction of negative curvature may be recovered
from the factors, and they form a search arc as a linear or nonlinear combination of
these two directions.

An obvious variation is, instead, to form a modified Cholesky factorization of S.
If no modification is performed, the true Hessian H must be second-order sufficient.
Otherwise, a suitable perturbation E will have been produced. In either case, the
Newton equations (1.6) are solved using the complete factorization.

The main difficulty with Forsgren and Murray’s approach is that any restriction
on the pivot order can disqualify potentially advantageous sparsity orderings. While
it is always possible to choose a pivot according to the Forsgren—-Murray recipe, the
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available choices all may lead to considerable fill-in. Nonetheless, we shall consider a
number of variations of this scheme.

3. Methods using ba pivots. In this section, we consider a scheme which uses a
restricted version of [21]’s pivoting rules. Specifically, we consider what happens if we
choose the first m pivots to be ba pivots. This choice of pivots is covered by Forsgren
and Murray’s analysis. We are particularly interested in these pivots because the fill-
in is easy to predict and, most important, the stability of the method is determined
entirely by A. Hence, for linearly constrained problems, the same sequence of ba
pivots may be used at each iteration.

Since we are primarily concerned with large problems, it is essential to try to
ensure that the chosen permutation P introduces as little fill-in as possible. Notice
that each ba pivot requires that we select a row and a column of A and that the
selected column of A defines the row of B used.

Without loss of generality, we describe how the first ba pivot is determined. The
same procedure then may be applied recursively to the Schur-complement of this pivot

in K to determine ba pivots 2, ..., m. Suppose that we consider the permutation
Boalb al
0|al O
(3.1) PTKP, = |2 |,
bC a, BR AR
a. 0 AR 0

where a # 0 and [ are scalars, b, and a, are (n — 1)-vectors, a. is an (m — 1)-vector,
and Br and Ar are n — 1 by n — 1 and m — 1 by n — 1 matrices, respectively. Then
a simple calculation reveals that the Schur-complement of the ba pivot in P?K Pqis

_( Br A%
S1= Ar O

o _alz[a@z)(zﬂ o)m(‘ﬁ)(bf aZ)—ﬁ(‘BT)(a? 0)}‘

Notice that no fill-in occurs in the zero, bottom block of S;. Furthermore, suppose
that we have picked «a so that

(3-3) laf = vljar[|e

for some pivot tolerance 0 < v < 1. Then it follows from (3.2) and (3.3) that the
largest entry in the updated A can grow by a factor of at most 1 + 1/v, while that
in the updated B can grow by at most (1+ 1/v)2%. While these factors may be large,
they do provide an upper bound on the overall growth factor after a sequence of ba
pivots. Indeed, if we perform m ba pivots, then it is easy to show that

(3-4) IS|I < (1 + [1AT" Ag )| B,

where A = (A; A)P (see [29]). Hence element growth may be controlled by
repeated use of (3.3), and if one of the modified Cholesky methods cited in the in-
troduction is subsequently employed to factorize S, the perturbation matrix E will
remain bounded in terms of the initial A and B.

As the same permutation may be used at every iteration of the nonlinear program-
ming algorithm, it is worth investing considerable effort in producing a good ordering.
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We now follow [33] by picking the ba pivot to modify the least number of coefficients
in the remaining n+m—2 order block of P{K P as the Schur complement is formed.
Thus we aim to minimize the number of nonzeros, n,, in the matrix

35 o o )@ owa( G )l ah-s( G )@l o

Q.

There are two cases to consider.

Following [12], we call a ba pivot a tile pivot if 3 # 0 and an ozo pivot when
B =0. We let n,(v) denote the number of nonzeros in the vector v, and n,(v,w)
give the number of overlaps (the number of indices 7 for which both v; and w; are
nonzero) between the vectors v and w.

A simple computation reveals that if we choose an oxo pivot, the number of
nonzeros in the matrix (3.5) is

(3.6) ns = 2n,(a,)[n.(a.) + n.(b.)] — no(a,, b.)?,
while a tile pivot yields
(3.7)  ns <2n.(a,)[n.(ac) + n.(b.)] —no(a,, bc)2 + [n.(a;) —no(ay, bc)]Q.

(The inequality in (3.7) accounts for the possibility of exact cancellation between the
terms in (3.5).) Thus if A has rows a,,, i =1,...,m, and columns a.,, j =1,...,n,
and B has columns b.;, j = 1,...,n, one possibility is to pick the ba pivot for which

(3.8) la; ;| > v 1réllagxn @

and for which

2(n.(a,,) —1)(n (ac]) n(be ) -1)— no(a""i7bci)2 when b;; =0,
‘7716,3' = 2(n.(a,) — 1)(n. ( ) + TLZ(bc ) —2)
— (no(ar,, be,) — 1) + (nz(aT ) —no(ar,, he,) —2)>  when b;; #0
(3.9)
is smallest. However, since computing no(a”,bcj) may prove to be unacceptably
expensive, we follow [12] and overestimate (3.6) and (3.7) by assuming that, except
in the pivot rows, there are no overlaps and thus pick the pivot for which

. { 2(n.(a,,) —1)(n.(ac;) +n.(b;;) — 1) when b;,; =0,
LI 2(n.(a,,) — 1)(”Z(a6j) + nZ(ij) 2) + (nz(a,,) — 1)2 when b;; # 0

(3.10)

is smallest. It is relatively straightforward to compute and update the nonzero counts

required to use (3.10). Indeed, since n.(a,,) and n.(a.,) + n.(b.,) are, respectively,

the row and column counts for the matrix

(3.11) < ﬁ ) ,

the schemes described by [11, section 9.2] are appropriate.

The main disadvantage of the schemes described in this section is that by restrict-
ing the pivot order, the fill-in within the Schur complement may prove unacceptable.
This will be the case if A contains dense rows since then the Schur complement will
almost certainly be completely dense.
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A possible way of alleviating this difficulty is to allow all of the pivot types
suggested by [21] (see section 2). A drawback is that by allowing b, and a_ pivots,
we may generate nonzeros (fill-ins) in the “zero” block of (1.7) and thereafter the
Markowitz costs (3.9) and (3.10) would be inappropriate. Appropriate Markowitz
costs in this case have been suggested by [12]. Preference still should be given to
pivots involving A-rows if at all possible. A more serious complication is that B will
contaminate A if these additional pivot types are allowed, and thus it may no longer
be possible to use the same pivot order for a sequence of related problems.

Even if we allow all types of pivots suggested by Forsgren and Murray, there will
certainly be cases where the Schur complement becomes unacceptably dense. In the
next section, we consider methods that aim to avoid such difficulties.

4. Modified pivoting methods. Suppose that A contains mgy rows with a large
number of nonzeros and that the remaining m. = m — my rows are sparse. Then it
is likely that if any of the dense A-rows is included in an early pivot, the remaining
Schur complement will substantially fill in. It therefore makes sense to avoid pivoting
on these rows until the closing stages of the elimination when the Schur complement
may be treated as a dense matrix. However, the Forsgren-Murray pivoting rules may
conspire to make this impossible.

Let us suppose that we have eliminated the sparse m, rows of A using Forsgren
and Murray’s pivoting rules and that the remaining Schur complement S is relatively
sparse excepting the my A-rows. Thus, we may no longer use ba or a_ pivots and are
restricted to using b pivots, that is, 1 by 1 pivots occurring in B-rows of S.

We may continue the factorization of S in two ways. First, we might pick a
favorable pivoting sequence for 1 by 1 pivots from the B-rows of S purely from a
sparsity (fill-in) point of view. Such an approach implicitly assumes that the defined
pivot sequence will be acceptable from a numerical viewpoint and is typical of the
symbolic analysis phase of the sparse factorization of positive definite matrices (see, for
example, [23] or [11]). Having determined the pivot sequence, a numerical (Cholesky
or LDLY) factorization stage proceeds either to completion or until an unacceptable
numerical pivot is encountered. In our case, we view any pivot less than a small
positive threshold as unacceptable and, slightly abusing notation, shall refer to this
pivot as a b_ pivot. If a b_ pivot is encountered, a readjustment of the pivot order
may allow the factorization to proceed further, but this is likely to introduce extra
fill-in and merely delays us from facing up to an unacceptable pivot.

Second, we might use a combined analysis-factorization strategy, more typical of
unsymmetric factorizations (again, see [11]), in which the pivot order is determined as
the factorization proceeds and numerically unacceptable pivots moved down the pivot
order. Ultimately, once again, if the b-rows/columns of S are insufficiently positive
definite, this process will ultimately break down since all remaining b pivots will be
b_ pivots. More fill-in may be predicted with this strategy than with the last, and,
in the worst case, restrictions on the pivot order may produce an unacceptable level
of fill-in within B. Our preference is for the first (separate analysis and factorization
phases) strategy because the second strategy is likely to prove a considerable overhead
in optimization applications when many systems with the same structure are to be
solved.

Thus our remaining concern is when the pivot we wish to use, or are forced to
use, next is a b_ pivot. We shall refer to this as a potential breakdown. At this stage,
we are no longer able to take Forsgren-Murray pivots. We now assume that the b_
pivot would be acceptable from the point of view of fill-in. We aim to investigate the
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consequences of attempting to use this pivot. Remember that our goal is ultimately
only to modify B if it fails to be second-order sufficient.

4.1. Implicit modifications. In this section, we consider always modifying b_
pivots, but with the knowledge that we can reverse the effect of these modifications
at a later stage.

4.1.1. Pseudo modification of b_ pivots. Suppose the uneliminated Schur-
complement when we encounter potential breakdown is of the form

(4.1) ( 58‘ SST )

where f_ < o7 is the candidate b_ pivot. Now suppose that

(42) 64‘ = max(ag, ||SH<X>)5
where 0 < 01 < g3, and let

def

(4.3) A B -

Then if we could replace S_ by (4, the latter would be an acceptable pivot. This is
precisely what we do, leaving the consequences for later. We call such a modification
of B a pseudo modification since it is not yet clear that such a modification is actually
required to guarantee that B is second-order sufficient.

We propose continuing such a strategy of replacing b_ pivots with acceptable
by pivots until the remaining Schur complement is sufficiently small that it may be
treated by dense factorization methods. Thereafter, the Forsgren—Murray strategy
may be applied to remove the remaining dense A-rows, and a modified Cholesky
factorization may then be applied to whatever remains. Thus the resulting (modified)
Hessian matrix will be second-order sufficient. However, when replacing any b_ pivots
with acceptable b, pivots, we may have unnecessarily altered elements and must now
reverse any damage caused.

Stewart [39] suggested using pseudo modifications as an alternative to pivoting
in Gaussian elimination, and he provided a satisfactory error analysis when a single
modification is made. Such an analysis may, of course, be used recursively to cover the
scheme suggested here. He comments that this strategy may be particularly beneficial
for sparse problems, where altering the pivot sequence could lead to undesirable fill-in.

We will have formed a stable factorization of
N def ( B+AB A" )

(4.4) A o

where B = H + AH, the diagonal matrix A B corresponds to the m_ (say) modified
b_ pivots, and the other diagonal matrix A H corresponds to those diagonals changed
using the dense modified Cholesky factorization. These later diagonal modifications
are necessary to ensure that B is second-order sufficient, while it is not clear that the
former modifications are so. Thus we investigate the consequences of removing these
modifications.

4.1.2. Countering the effects of pseudo modifications. The system we
wish to solve is (1.6), while we have a factorization of (4.4). Suppose that the ith
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pseudo modification (1 < i < m_) occurred in column j; of H and that the modifi-
cation was Af;, > 0. Let

(4.5) AB=V'V,
where VT is the n by m_ matrix whose columns are v; ef ApBj,ej,. Then we may
write (1.6) as
(4.6) B+AB-V'v AT p\ [ -g
’ A 0 A 0
or equivalently as
B+AB A" vT D —g
(4.7) A 0 0 A= 0
1% o I, s 0

for some auxiliary vector s. A standard block-decomposition of (4.7) shows that we
may determine the solution to (1.6) by solving, in order,

4 (7 A (R)-(0)

(4.9) Gs=Vq,
and

B+AB A" p\ [ —-g-V's
o (P ) (X))
where

-1
_ B+AB AT vT

(4.11) G=1, —(V 0)( A 0 ) ( 0 .
Thus to solve (1.6) via the stable factorization (4.4), we also need to form and factorize
G. This factorization also reveals whether the modification AB is necessary. Thus
we have the following proposition.

PRrROPOSITION 4.1. B is second-order sufficient if and only if G is positive defi-
nite.

Proof. The result follows from Sylvester’s law of inertia (see, e.g., [8]) by consid-
ering different block decompositions of

B+AB AT v7T
(4.12) M = A 0 0
%4 o I,

Pivoting on the first two blocks of M and using the definitions (4.4) and (4.11) reveals
that

(4.13) In(M) =In(N) +In(G),



1050 NICHOLAS TAN MARK GOULD

while pivoting on the last block and using the definition (1.7) gives that
(4.14) In(M)=In(I,_)+In(K).

But, since I,,,_ is clearly positive definite and IN is second-order sufficient,
(4.15) In (Imf) =(m_,0,0) and In(N) = (n,m,0).

Thus combining (4.13)—(4.15), we see that In (K) = (n,m,0) if and only if In (G) =
In (G_l) = (m—-,0,0). The required result then follows since B is second-order
sufficient if and only if In (K') = (n,m,0) (see [28]). a

This result suggests that G should be factorized using a modified Cholesky fac-
torization. If no modification to G is made, B is second-order sufficient. Suppose, on
the other hand, that the ith pseudo modification involved column j; of H and that in
the subsequent modified Cholesky factorization the ith diagonal of G was increased
by A~;. Then this is equivalent to actually modifying B by

Av; T
(4.16) <1+A%> v,v; .

Thus modification of G gives an implicit modification of B, and the actual modifica-
tion is no larger than the pseudo modification.

We note that another possibility is to attempt a Cholesky factorization of G but to
retain all the pseudo modifications if the factorization reveals that G is not sufficiently
positive definite. This is equivalent to solving (4.8) and then setting p = g and A = .
However, instinctively we feel that it is better to remove as many pseudo modifications
as possible, and thus we prefer to use the modified Cholesky factorization and (4.8)—
(4.10).

4.1.3. The pseudo-modification algorithm. In summary, we propose the
following algorithm:

1. Perform a symbolic/numerical analysis and factorization to obtain a good
ordering for the complete numerical factorization.

(i) First, construct ko 2 by 2 ba pivots, using the strategy outlined in section 3
(this involves processing the values of A but not B). Stop once the resulting Schur-
complement reaches a specified density, i.e., the proportion of its nonzero entries
exceeds a given threshold.

(ii) Next, construct k1 1 by 1 b pivots from the remaining Schur-complement
using, for instance, the minimum degree ordering (see, for example, [23] or [11]). Stop
once the resulting Schur-complement reaches a specified density.

(iii) The remaining Schur complement will be considered to be dense.

2. Perform the complete numerical factorization.

(i) Perform k2 2 by 2 sparse eliminations, using the pivots specified in 1(i)
above.

(ii) Perform k; 1 by 1 sparse eliminations, using the pivots specified in 1(ii)
above. Modify any b_ pivots encountered to ensure that they are sufficiently positive,
using the scheme of, for example, [38]. Record any pseudo modifications made.

(iii) For the remaining dense block, factorize using the scheme of [21] until all the
A-rows have been eliminated. Thereafter, use a dense modified Cholesky factorization
to eliminate the remaining B-rows.

(iv) If any pseudo modifications were made in 2(ii) above, form the matrix G.
Perform a modified Cholesky factorization of G.
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3. Perform any solves, using the factors obtained in 2 above, by solving the
sequence of equations (4.8)—(4.10).

One would normally anticipate performing only a single symbolic/numerical anal-
ysis and factorization per minimization, while many complete numerical factorizations
and solves might be required. Thus, a good ordering will pay handsome dividends,
and one might be prepared to expend considerable effort in step 1.

We should stress that (3.2) indicates that the Schur-complement of the A-rows
following the elimination of the ba pivots is independent of B and thus, since A
is independent of x, need be formed only once per minimization. This is the only
numerical processing involved in the symbolic/numerical analysis and factorization
phase.

Notice that the effectiveness of such a scheme depends upon the dimension of G.
Although the number of pseudo modifications will not be known until the numerical
factorization phase, it may be possible to influence this by overriding the pivot selec-
tion outlined in section 3 to favor incorporating potentially small or negative elements
within the initial ba pivots. For instance, if a diagonal of B is known to be negative,
it may be worth trying to encourage this element to lie within a ba pivot so that it
will not be available for pseudo modification in step 1(ii).

4.1.4. Generalizations. When H is strictly positive definite, no pseudo mod-
ifications should be necessary. In other cases, it is possible that the dimension of G
might be unacceptably high. However, considering (4.1), it is clear that rather in ad-
dition to modifying the diagonal 3_, we are free to modify as many nonzero elements
of s as we like without introducing extra fill in the factorization. Thus, if the diagonal
of S, in a row in which s has a nonzero element, is also small or negative, we should
modify the corresponding element of s to increase the offending diagonal. All that
we have said in this section about diagonal modifications equally applies for the more
general perturbation, but the ith column of the matrix V now contains nonzeros in
all positions for which the j;th pivot column was modified.

Nonetheless, we have to recognize that there are some matrices for which this
strategy is inappropriate, as the following example shows.

Example 4.1. Suppose H = —1I,, and A = e, the vector of ones. Then a ba pivot
is out of the question because the resulting Schur complement would be completely
dense. But since each diagonal of H is negative, and there is no connectivity between
the diagonals, n pseudo modifications will be required. Unfortunately, G will then be
a dense n by n matrix.

Another possibility is to replace G by a simpler matrix as soon as G is found to
be indefinite. If we replaced G by G + AG, it is straightforward to show that this is
equivalent to an actual modification of B by

(4.17) VI (I — (Im_ +AG) M) V.

Thus, provided that AG is positive semidefinite, the actual modification will again
be smaller than the pseudo modification. A simple scheme would be to replace G
by 71,,_, where 7 is chosen so large that 7I,,_ — G is positive definite whenever
G is not positive definite. The advantage of this replacement is that the storage
and factorization overheads associated with G may be considerably reduced. The
disadvantages are that the size of the actual modification made may be higher than
really necessary and that it is not obvious how to choose a satisfactory value for 7.

4.2. Explicit modifications. In the previous sections, we always chose to mod-
ify b_ pivots, with the knowledge that we could reverse the effect of the modification
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at a later stage. As we have seen, it may happen that a considerable number of
pseudo modifications will be made and this may be undesirable because of the space
and effort required to factorize G. In this section, we take the opposite point of view
and consider changing b_ pivots only when we know it is necessary to modify them.
The intention with this alternative is thus to remove, or at least lessen, the need for
pseudo modifications.

We now assume that a b_ pivot would be acceptable from the point of view of
fill-in and stability. This is tantamount to assuming that the pivot is negative and of
a reasonable size compared to the remaining entries in its row. We aim to investigate
the consequences of using this pivot. Remember that our goal remains only to modify
B if it fails to be second-order sufficient.

4.2.1. The condemned submatrix. Recall that we are supposing that we have
eliminated the sparse m. rows of A using Forsgren and Murray’s pivoting rules and
that mqg = m — m. A-rows remain within S. Suppose that we have also eliminated
n. rows of B using Forsgren and Murray’s rules.

We pick a nonsingular, square submatrix, the condemned submatrix, C, of S,
which contains all the A-rows and perhaps some of the B-rows (but not the b_ pivot
row) of S and has precisely m, negative eigenvalues. The condemned submatrix will
be eliminated last of all and thus any B-rows included in C will not be generally
available as pivots. The aim is that when only the rows that make up C remain to
be eliminated, the uneliminated Schur complement will have precisely my negative
eigenvalues and hence K will have exactly m negative eigenvalues. The Schur com-
plement S has at least my negative eigenvalues. A suitable C may be obtained, for
instance, by picking m,_ < min (n. — me,mg) a— followed by mg — m,_ ba pivots.
We shall show how such a matrix may be obtained in section 4.2.4.

A factorization of the condemned submatrix should be obtained. As the C-rows
of S will ultimately invariably be dense, a full matrix factorization is appropriate
and, because we may subsequently need to modify the factors, we recommend a QR
or L() factorization. This of course limits the scope of the current proposal because
of the size of C' which can be accommodated. We note that the dimension of C as
constructed above is 2mg — m,_ and hence lies between my and 2my.

4.2.2. The consequences of pivoting. With this choice of C, S is a permu-
tation of the matrix

B sl | s

(4.18) s C |83 |,
S2 521‘522

where §_ < 0 is the candidate b_ pivot. If we were now to pivot on C' instead of G_,
we would have eliminated all m A-rows of K and, because of the choice of C, the
factorized matrix (the submatrix of K corresponding to eliminated rows) would have
exactly m negative eigenvalues. Thus B is second-order sufficient if and only if the
matrix

T T
(4.19) (5 )-8 )o@ sh

is sufficiently positive definite. In particular, if G_ —slTC_lsl is insufficiently positive,
B is not second-order sufficient and should be modified.
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With this in mind, if
(4.20) B —sTC sy <o,
we modify B by replacing 8 by

(4.21) By < max (05 + sTC sy, ||s]])

where s7 = (sf sQT) and, as before, 0 < 01 < gy. Conversely, if

(4.22) B —s{C sy >0 >0,

it is safe to pivot on f_. Moreover, although this implies an increase (by one) in the
number of negative eigenvalues that have been recorded, the increase is counteracted
by a corresponding reduction in the number of available negative eigenvalues in the
Schur complement C — s1s7 /3_. This follows directly from the inertial identity

(4.23) In(C—s187/8-) =In(C) +In (B~ —sTC 7 's;) —In(B-)

for block decompositions of
b o

(4.24) ( s, C >
(see, e.g., [8]). We then pivot on the possibly modified value of 5_ and replace C
by C — 8187 /3_—we update the matrix factorization to account for this (see [24]).
We repeat this procedure until we have eliminated the remaining Ss2 rows, at which
point the only noneliminated portion of K is the (updated) matrix C.

Alternatively, once it has been determined that B is not second-order sufficient,
we might modify all remaining B pivots. One possibility, in the same vein as [38],
is to insist that all diagonals are larger than the sum of the absolute values of the
(remaining) off-diagonal terms in B-rows.

For the case of Example 4.1, the explicit modification scheme considered here
would be preferable. The condemned submatrix might be made up from the last row
of H—indeed, any row of H will do—and the single A-row. Examining (4.20) for

each diagonal pivot in turn, it follows that H is not second-order sufficient, every
pivot will be modified, but no fill-in takes place.

4.2.3. Other pivot types. If the only possible pivots in B-rows are zero or
small, we may again test them one at a time to see if they might be modified and
then used as pivots. If the test reveals that the matrix is not second-order sufficient,
we may modify the tested pivot and pivot on it. But if the test is inconclusive, we
must either add a pseudo modification (see section 4.1.1) or reject the potential pivot
and pass to the next.

It may be better to consider 2 by 2 pivots,

Bi1 P
4.25 )
(4.25) ( P21 P22
arising from the B-rows of S, especially when the only possible 1 by 1 pivots are
small or zero. Then S is a permutation of the matrix

B P siy | shy
Ba1 o2 3?2 3%2

(4.26)
S11 S12 C | Sn

S21 S22 S ‘ S22
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and B is second-order sufficient only if the matrix

P11 Bo1 ) ( 31T1 > -1
4.27 - C (s s
(4:27) ( Bo1 Bo2 1y (11 812)
is sufficiently positive definite. As before, if (4.27) is indefinite, the potential pivot
(4.25) should be modified before use. The inertial result

-1
Inl| C = (sT T Bi1 Ba1 ) ( S11 >
(4.28) " < (s11 s12) ( Ba1 B2z 812
Bi1 B2 8{1 -1 P11 Bo1
=In(C)+1 — C -1

n(C)+In (( P21 P22 51y (11 812) "\ B B
once again indicates that the updated C' after the pivot inherits the correct number
of negative eigenvalues.

4.2.4. Calculating the condemned submatrix. In this section, we consider
one way in which the initial condemned submatrix, C, may be found. We should
stress that the definition of C' is by no means unique.

Let the mg uneliminated A-rows in the Schur complement, Sy, , following the m,
ba pivots, be Ayp,. Similarly, let the n — n. uneliminated B-rows and columns in S,
following these ba pivots be By,. Furthermore, let

(429) O = {i15i27"'7in—m8}
be the ordered pivot sequence for the elimination of By,. Now define the ordered sets
(430) Pl = {ih Z'27 e 7Z‘ne7me} and PQ = {Z’nfme;infnaflv U aincfmeJrl}

and the ordered set of preferences
(4.31) P=PiJP.

For example, suppose that B-rows 1, 6, and 4 were involved in ba pivots; that the
remaining b pivots were requested from rows 3, 7, 5, 8, and 2 in order (thus, O =
{3,7,5,8,2}); that the pivots from rows 3 and 7 were satisfactory; but that row 5 is
a b_ pivot. Then P; = {3,7}, Po = {2,8,5} and P = {3,7,2,8,5}.

Our intention is to find a well-conditioned, nonsingular subset, C, of the columns
of Ay, by pivoting. The row and column indices of the pivots would provide satis-
factory ba pivots, if such pivots had not been disqualified on sparsity grounds, for
St Moreover, the submatrix, C,, formed by taking the rows and columns of Sy,
corresponding to these 2 by 2 pivots is nonsingular and has precisely my negative
eigenvalues. If we now consider the subsets C; = C[\P; and C; = C ()P, and pivot
on all B-rows of C}, whose indices occur in C;, the remaining Schur-complement
still has precisely mq negative eigenvalues and provides us with a suitable condemned
submatrix, C. This matrix has the correct inertia as the subblock of C}, correspond-
ing to the C; pivots is contained within the subblock of S}, corresponding to the P
pivots, and the latter subblock is positive definite since the first n, — m, b pivots on
S, are positive.

It remains to describe how C is calculated. We consider how the first element
is obtained, the remaining my — 1 elements following in exactly the same way. The
set C is initially empty and the matrix A, is initialized as Ap,. The columns of
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A, are considered one at a time, in the order defined by P. The nonzeros in the
current column are examined one at a time. If the entry in row ¢ and column j is
that currently under examination and if the stability restriction (3.8) holds (where
here a; ; are the entries of A.), column j is added to C and removed from P, and A,
is reset to the Schur complement of A. following a pivot on a; ;. On the other hand,
if (3.8) fails to hold, attention passes to the next nonzero in column j or, if there are
no further unexamined entries in the column, to the next column in P.

The order of the preferences P is chosen deliberately. It first encourages ba pivots
whose b4 component has already been used—the resulting a_ pivot is then available
and reduces the possible dimension of C. If P is not entirely made up from P;, the
preference then encourages pivots from those B-rows which are last in the elimination
ordering—the intention here is that these are unlikely to be good pivots from a fill-in
point of view and so it is better to include them in the dense matrix C from the
outset.

A disadvantage of the preceding approach is that the order of the set P depends
on at which stage a b_ pivot appears. This may be significant if more than one matrix
factorization is required as changes in B may affect P. It may, therefore, be preferable
to redefine the preference as

(432) P= {in—meain—me—la o 7i1} .

This will have the effect that the resulting C' will generally be of dimension 2my
but the advantage that the selection of C is made only once. As before, it will favor
including disadvantageous B-rows within the condemned submatrix.

5. Numerical experiments. We are currently planning to implement a code to
solve systems of the form (1.6) for the Harwell Subroutine Library. A key requirement
is that B should be a second-order sufficient modification of H. To test the efficacy
of some of the ideas presented in this paper, we report on experiments conducted with
a prototype, KKTSOL, of this code.

5.1. Implementation details. We have written a prototype implementation of
the algorithm outlined in section 4.1.3. This implicit modification algorithm divides
naturally into an analysis, a factorization, and a solve phase.

The analysis phase need be performed only once for a sequence of systems so long
as the matrix A and the sparsity structure of H are unchanged. Some numerical pro-
cessing of the matrix A is performed in the analysis phase. There are several control
parameters, in particular the pivot threshold tolerance v (see (3.8)), the density &,
of the Schur complement of A during ba pivoting at which the remaining rows of A
may be treated as dense, and the density 6, of the Schur complement of B during b
pivoting at which the remaining rows of B may be treated as dense. We choose to
switch to full-matrix code as soon as the density of the Schur complement of B during
b pivoting exceeds 8,. However, experience has shown that switching to b pivoting as
soon as the density ¢, of the Schur complement of A during ba pivoting exceeds 0,
is sometimes inappropriate since further cheap ba pivots may be possible—remember
that it helps to eliminate as many A rows as possible before the b pivoting stage. In
particular, if the matrix A is highly structured, many essentially identical ba pivots
occur and switching solely on the basis of §, may interrupt a promising sequence of
pivots. Thus, we actually choose to switch as soon as the density has exceeded its
tolerance and the Markowitz cost (3.10) next changes. This heuristic has worked well
in our tests. Default values of v = 0.0001, 6, = 0.1, and 6, = 0.25 have proved quite
reliable. We will indicate the effect of §, on the algorithm in section 5.3.
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TABLE 5.1
Problem characteristics. Key: n = number of variables; m = number of equations; nnz A, H
= number of nonzeros in A and H(z); -eval = number of negative eigenvalues of reduced Hessian;
nullity = nullity of K; convex? = is the Hessian H(x) positive definite?

Problem n m nnzA nnzH -eval  nullity convex?
AUG2DCQP 3280 1600 6400 3280 0 0 yes
AUG2DQP 3280 1600 6400 3120 0 0 yes
AUG3DCQP 3873 1000 6546 3873 0 0 yes
AUG3DQP 3873 1000 6546 2673 0 0 yes
BLOCKQP1 2006 1001 9006 1005 1000 0 no
BLOCKQP2 2006 1001 9006 1005 1 0 no
BLOCKQP3 2006 1001 9006 1005 900 1 no
GOULDQP2 699 349 1047 697 0 0 yes
GOULDQP3 699 349 1047 1395 0 0 yes
HAGER2 2001 1000 3000 3001 0 0 yes
KSIP 1021 1001 21002 20 0 0 yes
MINC44 1113 1032 1203 0 0 0 yes
MOSARQP1 1500 600 3530 945 0 0 yes
NCVXQP1 1000 500 1498 3984 438 0 no
NCVXQP2 1000 500 1498 3984 320 0 no
NCVXQP3 1000 500 1498 3984 163 0 no
NCVXQP4 1000 250 749 3984 610 0 no
NCVXQP5 1000 250 749 3984 428 0 no
NCVXQP6 1000 250 749 3984 224 0 no
NCVXQP7 1000 750 2247 3984 250 0 no
NCVXQP8 1000 750 2247 3984 192 0 no
NCVXQP9 1000 750 2247 3984 127 0 no
QPCBOEI1 726 351 3827 384 0 0 yes
QPCBOEI2 305 166 1358 143 0 0 yes
QPCSTAIR 614 356 4003 467 0 0 yes
QPNBOEI1 726 351 3827 384 30 0 no
QPNBOEI2 305 166 1358 143 12 0 no
QPNSTAIR 614 356 4003 467 13 0 no
SOSQP1 2000 1001 4000 1000 0 0 no
UBH1 909 600 2400 303 0 0 yes

During the factorization phase, once a b pivot for which 8 < o1 has been detected,
any b pivot which is smaller than the sum of absolute values of the off-diagonal terms
in its column is pseudo modified. The pseudo modification is chosen to satisfy (4.2),
where o7 = 107® and 09 = 1. The rows of A and H which are left over following
the sparse ba and b pivoting steps, along with the matrix G, are treated as dense
matrices. The highest appropriate levels of BLAS (see, for instance, [10]) are used to
perform the dense operations wherever possible.

In addition, we have also implemented the explicit modification scheme suggested
in section 4.2. This differs from the implicit modification scheme described above
in two respects. First, the ordering of the b pivots may be altered to provide a
nonsingular condemned matrix, if it is needed. We have implemented the method
described in section 4.2.4 using the preference (4.32). Second, during the b phase
of the factorization, by pivots are used so long as no b_ pivot is detected. If a b_
pivot appears, the condemned matrix is formed and factorized, and the resulting QR
decomposition is used to see if this pivot is acceptable or if it should be modified.
Subsequent b_ pivots are treated in the same way, except that now the factors of the
condemned matrix are obtained from its predecessor by updating. Slightly modified
LAPACK routines (see [1]) are used to compute and update the QR factors.

All our tests were performed on an IBM RISC System/6000 3BT workstation
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TABLE 5.2
Dependence on the allowed density of A. Key: 64 = density of updated A at which remaining
rows are treated as dense (no dense means that no dense rows of A are allowed); fill-in A, H, dense
= fill-in within A, H, and the final dense block; dense rows A, H = number of rows of A and H
which are treated as dense; dense rows G = number of pseudo modifications made (dimension of
G); # mod = number of diagonals of H actually modified; anal., fact., solve = times for analyze,
factorize, and solve (cpu seconds).

AUG3DQP:
Fill-in Dense rows # Time

ba A H dense A H G | mod | anal. fact. solve

0.01 | 1043 16231 348195 | 777 57 0 0 .33 3.93 .05

0.05 | 3161 49458 144991 | 297 241 0 0 .60 2.30 .03

0.1 | 3860 67921 171991 | 198 388 0 0 71 2.92 .04

0.2 | 4333 87143 180901 | 130 471 0 0 .80  3.07 .04

0.5 | 4773 109644 223446 73 595 0 0 97 4.22 .04

1.0 | 5058 138324 245350 47 653 0 0 1.09 5.01 .04

no dense | 5806 331483 245350 0 700 0 0 3.99 4.57 .05

QPNBOEI1:
Fill-in Dense rows # Time

ba A H dense A H G | mod | anal. fact. solve

0.01 0 3816 73920 | 347 3 34 34 .02 .84 .02

0.05 4 3844 43365 | 250 13 31 33 .02 .40 .01

0.1 4 5229 21115 147 25 33 33 .04 17 .01

0.2 4 5877 13203 98 38 26 33 .04 A1 .00

0.5 4 6577 9180 63 51 21 36 .04 .08 .00

1.0 16 6574 10296 46 78 19 38 .05 .08 .00

no dense 153 71225 70500 0 375 0 32 .92 ird .01

with 64 megabytes of RAM; the codes are all double-precision Fortran-77, compiled
under xIf with -O optimization, and IBM library BLAS are used.

5.2. Test examples. We considered all of the larger quadratic programming
examples in the current CUTE test set (see [3]), except that we excluded those which
are minor variants (namely BLOCKQP4, BLOCKQP5, HAGER4, MOSARQP2, and SOSQP2).
The characteristics of this test set are described in Table 5.1. All general inequality
constraints were converted to equations by the addition of slack variables. To simulate
a typical early iteration of a barrier function method, a small value (one-tenth) was
added to each diagonal entry of the given Hessian. For each test, the given matrix
was factorized and modified if necessary. A right-hand side was then generated so
that the required solution is a vector of ones.

5.3. Results. We first illustrate the effect of o, the density of the Schur com-
plement of A during ba pivoting at which the remaining rows of A may be treated
as dense, on the performance of our algorithm. We consider two examples, AUG3DQP
and QPNBOEI1, from our test set; the first is strictly convex while the reduced Hes-
sian of the second has a few negative eigenvalues. The behavior on these examples is
representative of the whole set.

In Table 5.2 we give our results on runs which used the explicit modification algo-
rithm; similar results were observed for the implicit modification scheme. Examining
the times taken during the analyze and factorize stages, we see that it is important not
to let 6, be too large, as the remaining Schur complement of K is then too dense. On
the other hand, skipping pivoting on rows of A when 6, is too small is also undesirable
since the dimension of the resulting dense matrix is then large. Thus a compromise is
necessary and we have found, empirically, that a density of around 10% is reasonable.
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TABLE 5.3
Performance of MA27 and MA47 (default settings). Key: fill-in = fill-in during factorization;
anal., fact., solve = times for analyze, factorize, and solve (cpu seconds).

MA27 MA4T7
Problem fill-in anal. fact. solve fill-in  anal. fact. solve
AUG2DCQP | 11038 .09 .09 .01 36179 21 .13 .04
AUG2DQP 11198 .09 .09 .01 36339 21 .13 .03
AUG3DCQP 10797 11 .16 .01 50401 .25 .25 .04
AUG3DQP 11997 .10 .16 .01 51601 .25 .25 .04
BLOCKQP1 2015 1.26 .05 .00 16989 1.97 .09 .02
BLOCKQP2 2015 1.27 .06 .00 16989 1.97 .09 .02
BLOCKQP3 2015 1.27 .06 .01 16982 1.97 .08 .02
GOULDQP2 1749 .01 .01 .01 2927 .03 .02 .01
GOULDQP3 2787 .02 .02 .01 3357 .32 .03 .01
HAGER2 9 .04 .03 .01 6004 .07 .04 .02
KSIP 3029 .13 13 .01 17860 1.94 12 .02
MINC44 2241 .01 .01 .00 1548 .03 .02 .00
MOSARQP1 6466 .04 .07 .00 29104 11 .10 .01
NCVXQP1 12539 .13 1.01 .02 | 273646 1.87 30.26 .06
NCVXQP2 12539 12 1.01 .02 241150 1.83  29.00 .06
NCVXQP3 12539 .13 .98 .02 | 272372 1.83  31.53 .06
NCVXQP4 8461 .07 .45 .01 | 110796 .43 4.00 .02
NCVXQP5 8461 .07 45 .01 | 104070 .42 3.53 .03
NCVXQP6 8461 .07 44 .01 108867 .43 3.69 .02
NCVXQP7 15913 .20 2.60 .02 | 404465 2.84 61.43 .08
NCVXQP8 15913 .19 2.61 .03 | 419779 2.89 77.55 .09
NCVXQP9 15913 20 2.57 .03 | 406633 2.84 68.19 .09
QPCBOEI1 3886 .08 .03 .00 13333 .16 .05 .00
QPCBOEI2 941 .01 .01 .00 4421 .03 .02 .00
QPCSTAIR 3318 .05 .05 .00 12444 .14 .08 .01
QPNBOEI1 3886 .08 .04 .00 13333 .15 .06 .01
QPNBOEI2 941 .01 .02 .00 4421 .03 .02 .00
QPNSTAIR 3318 .05 .05 .00 12444 .14 .08 .01
SOSQP1 5003 .16 .04 .00 3001 1.25 .06 .01
UBH1 2109 .02 .01 .00 3915 .05 .02 .01

As a yardstick, all of the test examples were factorized using the Harwell codes
MA27 and MA47, using default settings. Of course, these codes make no effort to modify
H to produce a second-order sufficient B; these results are included to indicate the
sort of times we consider acceptable for a good factorization and thus the sort of
times that we should be aiming for in our modified factorization. The results are
given in Table 5.3. We note that although MA47 was especially designed to cope with
augmented systems of the form (1.6), it is often less efficient than the general purpose
method MA27. In its defense, we sometimes observed that MA47 obtained accurate
solutions to (1.6) while its older sister failed to do so; the NCVXQP problems are cases
in point.

In Table 5.4, we report on the performance of the implicit modification option
from our prototype code, KKTSOL, on the test set. For these and subsequent runs,
we restrict the total number of dense rows of A and B to be at most 350, although
this means that the target densities 6, or §, may be exceeded. We have found that
although dense matrices are processed using high-performance BLAS, this restriction
often has a beneficial effect on execution times. A value of roughly 350 has been
observed empirically to give a good compromise between increased dense storage and
the advantages of direct addressing of data.

We make two observations. First, KKTSOL performs well in many cases, at least in
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TABLE 5.4
Performance of the implicit modification variant of KKTSOL. Key: fill-in A, H, dense = fill-in
within A, H, and the final dense block; dense rows A, H = number of rows of A and H which are
treated as dense; dense rows G = number of pseudo modifications made (dimension of G); # mod
= number of diagonals of H actually modified; anal., fact., solve = times for analyze, factorize, and
solve (cpu seconds).

Fill-in Dense rows # Time
Problem A H dense A H G | mod | anal. fact.  solve
AUG2DCQP | 5369 42539 61425 | 168 182 0 0 .31 .58 .02
AUG2DQP 5369 42539 61425 | 168 182 0 0 .31 .58 .01
AUG3DCQP | 3860 116416 61425 | 198 152 0 0 .55 1.36 .03
AUG3DQP 3860 116416 61425 | 198 152 0 0 .55 1.36 .03
BLOCKQP1 0 10998 507528 1 8 998 | 1003 1.16  16.29 .06
BLOCKQP2 0 10998 45 1 8 0 5 1.17 .04 .00
BLOCKQP3 0 10998 412686 1 8 899 904 1.17  12.46 .06
GOULDQP2 348 1862 253 0 22 0 0 .03 .01 .00
GOULDQP3 348 3479 703 0 37 0 0 .05 .01 .00
HAGER2 0 990 66 0 11 0 0 .06 .01 .00
KSIP 0 190 210 0 20 0 0 .32 .04 .00
MINC44 0 187 253 19 3 0 0 .01 .01 .00
MOSARQP1 0 11703 23005 0 214 0 0 13 .06 .01
NCVXQP1 1378 13940 208981 73 277 296 515 64 2.85 .03
NCVXQP2 1378 13940 203841 73 277 288 507 64 2.78 .02
NCVXQP3 1378 13940 145530 73 277 189 400 66 1.84 .02
NCVXQP4 288 8730 345696 49 301 481 771 .26 5.37 .03
NCVXQP5 288 8730 278631 49 301 396 682 27 4.09 .03
NCVXQP6 288 8730 194376 49 301 273 556 27 2.68 .03
NCVXQP7 2535 16182 80200 75 219 106 259 .90 .86 .02
NCVXQP8 2535 16182 76636 75 219 97 252 .89 .84 .01
NCVXQP9 2535 16182 76245 75 219 96 237 .89 .82 .02
QPCBOEI1 4 5229 14878 | 147 25 0 0 .03 .08 .00
QPCBOEI2 0 1349 6903 | 110 7 0 0 .01 .02 .00
QPCSTAIR 687 10021 23653 | 186 31 0 0 .07 A7 .00
QPNBOEI1 4 5229 21115 | 147 25 33 33 .04 A7 .01
QPNBOEI2 0 1349 8515 | 110 7 13 13 .01 .04 .00
QPNSTAIR 687 10021 28441 186 31 21 21 .06 .26 .01
SOSQP1 0 997 10 1 3 0 0 12 .01 .00
UBH1 1288 5066 9316 97 39 0 0 .06 .03 .00

comparison with MA47. Clearly, restricting the pivot order has some detrimental effect
on the fill-in. This is often compensated by our not requiring further pivoting during
the factorization, to correct for an inappropriate pivot sequence from the analysis
phase, which sometimes hampers MA47.

Second, for the nonconvex problems, a large number of pseudo modifications is
required, but many of these later turn into actual modifications. This is especially
noticeable for the BLOCK and NCVXQP problems. For many of these problems, signifi-
cantly more actual modifications are needed than are strictly required to counter the
negative eigenvalues in the reduced Hessian, but this is difficult to avoid without hav-
ing good approximations to their related eigenvectors. BLOCKQP1 and BLOCKQP3 are
generalizations of Example 4.1, and, as predicted, the implicit modification scheme is
slow precisely because G is large.

In Table 5.5, we consider the performance of the explicit modification variant on
the test set. We first note that the alteration of the b pivot order sometimes has a
slightly detrimental effect on the analysis times, but this is not significant. However,
the main differences are observed on the BLOCK and QPN examples. For the former, the
explicit modification scheme clearly helps. Rather than requiring the factorization of
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TABLE 5.5
Performance of the explicit modification variant of KKTSOL. Key: fill-in A, H, dense = fill-in
within A, H, and the final dense block; dense rows A, H = number of rows of A and H which are
treated as dense; # mod = number of diagonals of H actually modified; anal., fact., solve = times
for analyze, factorize, and solve (cpu seconds).

Dense
Fill-in rows # Time
Problem A H dense A H | mod | anal. fact.  solve
AUG2DCQP | 5369 56098 61425 | 168 182 0 .75 .89 .02
AUG2DQP 5369 56098 61425 | 168 182 0 .76 .89 .02
AUG3DCQP | 3860 145843 61425 | 198 152 0 1.93 2.19 .03
AUG3DQP 3860 145843 61425 | 198 152 0 1.94 2.14 .04
BLOCKQP1 0 10998 45 1 8 | 1003 1.17 .04 .00
BLOCKQP2 0 10998 45 1 8 5 1.17 .02 .01
BLOCKQP3 0 10998 45 1 8 904 1.17 .04 .01
GOULDQP2 348 1862 253 0 22 0 .03 .00 .01
GOULDQP3 348 3479 703 0 37 0 .04 .01 .00
HAGER2 0 990 66 0 11 0 .05 .01 .00
KSIP 0 190 210 0 20 0 .32 .03 .00
MINC44 0 162 741 19 19 0 .02 .00 .00
MOSARQP1 0 11703 23005 0 214 0 12 .07 .00

NCVXQP1 1378 13940 61425 73277 515 .66 3.93 .01
NCVXQP2 1378 13940 61425 73 277 507 .65 3.87 .01

NCVXQP3 1378 13940 61425 73 277 397 .66 3.91 .01
NCVXQP4 288 8730 61425 49 301 769 .28 3.16 .01
NCVXQP5 288 8730 61425 49 301 682 27 3.14 .01
NCVXQP6 288 8730 61425 49 301 554 .28 3.13 .01
NCVXQPT7 2535 16182 43365 75 219 259 91 1.70 .01
NCVXQP8 2535 16182 43365 75 219 251 91 1.70 .00
NCVXQP9 2535 16182 43365 75 219 237 91 1.70 .01
QPCBOEI1 4 4040 43365 | 147 147 0 17 31 .01
QPCBOEI2 0 861 24310 | 110 110 0 .04 11 .00
QPCSTAIR 687 1465 61425 | 186 164 0 .36 .33 .01
QPNBOEI1 4 4040 43365 | 147 147 41 .18 17.93 .01
QPNBOEI2 0 861 24310 | 110 110 24 .05 4.06 .00
QPNSTAIR 687 1465 61425 | 186 164 81 .36 22.02 .01
SOSQP1 0 997 10 1 3 0 12 .01 .00
UBH1 1288 5041 18915 97 97 0 .10 .06 .00

a large matrix G, the factorization and update of a trivial (2 by 2) condemned matrix
is performed. For the QPNBOEI1 and QPNSTAIR examples, the roles are reversed.
The condemned matrices are now large (of orders 292 and 372, respectively) and the
updates quite inefficient. The only difference between the QPC and QPN examples is
that the former are (strictly) convex. Thus, the differences in factorization times in
Table 5.5 for these examples are purely because the QPN examples form and update
their condemned submatrices, while the QPC examples do not need to.

Thus, we see that both the implicit and explicit modification schemes have their
advantages and disadvantages. In many cases, these methods are able to compete with
the nonmodification methods, and of course the proposals here have extra function-
ality. However, there are clearly some instances where there is a significant overhead
caused by the restriction on the allowable pivots. Thus we must conclude that, so far,
we have been only partially successful in fulfilling our stated aims.

6. Conclusions and further comments. In this paper we have shown that a
number of modified factorization methods for linearly constrained optimization cal-
culations may be derived, and we have indicated that these techniques hold some
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promise for large-scale computations. Our next task is to complete our code for the
Harwell Subroutine Library. Because this code is of general interest, we intend to
release a version, KKTSOL, into the public domain. Our ultimate goal is to provide
implementations of barrier function-based methods for solving general linearly con-
strained nonlinear optimization problems with the Harwell Subroutine Library.

An outstanding theoretical question remains. It is relatively straightforward to
obtain an upper bound on the (possible) perturbation E made to H. Thus so long as
x remains bounded and f has a continuous Hessian, B will remain bounded. How-
ever, to use the factorization with confidence within a general linearly constrained
optimization algorithm, one also needs to ensure that B is uniformly second-order
sufficient, i.e., the constant ¢ in (1.5) is independent of the iteration. We have been
unable to provide such a bound for the methods suggested here, nor do we believe that
it is likely to be easy. This is in contrast to the method of [21], where such a bound is
obtained. As we have already mentioned, the difficulty with the Forsgren—Murray ap-
proach for sparse problems is that the required pivots may all prove unacceptable from
a sparsity viewpoint. It remains an open question as to whether there is a satisfactory
method for sparse problems from both the theoretical and practical perspectives.

We have purposely not attempted to derive directions of sufficient negative cur-
vature for such problems (see, for example, [21], [20], and the references contained
therein), although algorithms which use them offer stronger convergence guarantees—
specifically, convergence to points for which second-order necessary optimality condi-
tions hold. We intend to investigate this possibility for large-scale problems in future.
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