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A MULTIDIMENSIONAL FILTER ALGORITHM FOR NONLINEAR
EQUATIONS AND NONLINEAR LEAST-SQUARES*
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Abstract. We introduce a new algorithm for the solution of systems of nonlinear equations
and nonlinear least-squares problems that attempts to combine the efficiency of filter techniques and
the robustness of trust-region methods. The algorithm is shown, under reasonable assumptions, to
globally converge to zeros of the system, or to first-order stationary points of the Euclidean norm of
its residual. Preliminary numerical experience is presented that shows substantial gains in efficiency
over the traditional monotone trust-region approach.
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1. Introduction. We analyze a filter algorithm for solving systems of nonlinear
equations. More formally, we consider the problem of solving

(1.1) c(x) =0,

where c is a twice continuously differentiable function from R"™ into R™. We partition
the equations of (1.1) into p (not necessarily disjoint) sets {c;(x)}iez, for j =1,...,p,
with {1,...,n} =73 Uy U---UZ,, and define
def .

(1.2) 0;(x) = ez, (x)]| for j=1,...,p,

where || - || is the ordinary Euclidean norm and where cz; is the vector whose compo-
nents are the components of ¢ indexed by Z;. The point z is therefore a solution of
(1.1) if and only if 6;(z) =0 for j = 1,...,p. The quantity 6,(x) may be interpreted

as the size of the residual of the jth set of equations at the point z. We will also use

the abbreviations 0(z) = (01(z), . ..,0,(z))T, 0x < 6(xy), and 0, < 0;(xx). In the

simplest case, that is, when p = m and Z; = {j}, we have that 6, = |¢;(zx)| and
10l = ezl

We follow the classical approach for solving (1.1), which consists of minimizing
a merit function involving some norm of the residual. For simplicity, we choose to
consider
(1.3) min f(z) = 4[|0(z)]*.

zER"

Note that this is a least-squares formulation of (1.1), which justifies the second part of
the paper’s title. (The least-squares are weighted with integer weights if the subsets
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Z; are not disjoint.) Our objective is therefore to find a (local) minimizer x, of f(x).
If f(z.) =0, z, is also a solution of (1.1).

The class of algorithms that we discuss for achieving this objective belongs to the
class of trust-region methods and also to that of filter methods introduced by Fletcher
and Leyffer in 1997 and subsequently published as [8]. Although originally intended
for the solution of constrained optimization problems, we claim here that the main
idea of the approach, namely, that of a filter to decide on acceptability of the successive
iterates, may be extended to the context of (1.1). The question is of interest, since
most of the recent contributions to the field of filter algorithms (see, for instance,
Fletcher and Leyffer [8], Ulbrich, Ulbrich, and Vicente [24], Chin and Fletcher [2],
Fletcher, Leyffer, and Toint [10], Gould and Toint [17], Fletcher et al. [7], and Wéchter
and Biegler [25]) rely on an external “restoration procedure” whose purpose is to
reduce constraint infeasibilities (i.e., when only equality constraints are present, solve
a problem of the type (1.1), albeit possibly approximately). The proposal by Gonzaga,
Karas, and Vanti [11] goes even further as it uses such a computation as part of the
step calculation at every iteration. The fact that (1.1) can itself be handled by a filter
algorithm, which, as will be seen below, does not explicitly depend on any external
restoration procedure, therefore significantly extends the range of applicability of the
filter idea.

The question of using filter techniques for the solution of nonlinear equations
has already been considered by Fletcher and Leyffer [9], but their approach is very
different from the one proposed here. It relies on a quadratic programming solver
to partition the constraints into a set of violated constraints and a set of satisfied
or active constraints. These sets are refined from iteration to iteration. It is not
clear how this approach can be extended to large-scale systems of equations where
only approximate subproblem solves are available and this limits the applicability
of [9] to problems that allow active-set-type solvers to be used. By contrast, our
approach takes all violations into account together and does not require the revision
of any subset during the algorithm. This makes it applicable to very large systems of
equations that require inexact subproblem solves to be efficient.

We introduce our algorithm for problem (1.1) in section 2 and discuss its conver-
gence in section 3. Numerical experience is reported in section 4, and some preliminary
conclusions are drawn in section 5.

2. Nonlinear equations, filter, and trust regions. An efficient technique
for solving (1.1) is to use the Newton or the Gauss—Newton method (or one of their
many variants like secant methods), which, from a current iterate xj (and possibly
from information gathered at iterations preceding iteration k), computes a trial step
sg and thus yields a trial point

xg = Tk + Sg.
Unfortunately, such algorithms may not be convergent from an arbitrary starting
point xg, and we may have to include it within a framework that guarantees this very
desirable property. Our proposal is to use a suitable combination of the trust region
(see Conn, Gould, and Toint [4]) and filter techniques.

The main idea of filter algorithms for constrained optimization is that new iterates
of the underlying iterative algorithm can be accepted if they do not perform, compared
to past iterates kept in the filter, worse on both important and typically conflicting
accounts for this type of problem, namely, feasibility and low objective function value.
In the context of nonlinear equations, we no longer have to consider an objective
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function, but we still face conflicting purposes. Indeed, we may consider driving each
of the {¢;(z)}™, (or each of the {6;(x)}Y_;) to zero as an independent task, which
is typically conflicting with that of driving the other components of ¢ (or 6) to zero.
Thus we will consider a multidimensional filter, instead of a two-dimensional one.

2.1. The multidimensional filter. To define our filter, we first say that a point
r1 dominates a point xo whenever

Gj(xl) S ej(l’g) for all ] = 1,. oy P

Thus, if iterate xg, dominates iterate xy,, the latter is of no real interest to us since
Tk, is at least as good as xy, for each of the equation sets. All we need to do now is to
remember iterates that are not dominated by other iterates using a structure called
a filter. A filter is a list F of p-tuples of the form (61 x,...,8p ) such that

0;x < 0j¢ for at least one j € {1,...,p}

for k # £. Filter methods propose to accept a new trial iterate xZ‘ if it is not dom-
inated by any other iterate in the filter and x;. In the vocabulary of multicriteria
optimization, this amounts to building elements of the efficient frontier associated
with the p-criteria problem of reducing infeasibility on each of the p sets of equations.

While the idea of not accepting dominated trial points is simple and elegant, it
needs to be refined a little to provide an efficient algorithmic tool. In particular, we

do not wish to accept a new point z} if 6, def 0(z;) is arbitrarily close to being

dominated by another point already in the filter. To avoid this situation, we slightly
strengthen our acceptability condition. More formally, we say that a new trial point
ac: is acceptable for the filter F if and only if

(2.1) Vo, e F 3je{l,....p} 05(x) < 0j.0—05(]|0c]], 165 ]),

where v € (0,1/,/p) is a small positive constant and where §(-,-) is one of the
following:

(2.2) 8([16c1, 1657 11) = N6l
(2:3) S(ll6el1, 1651) = 116511, or
(2.4) S(II0cl, 1657 11) = min([16 ], [|671)-

The first of these formulas measures the margin as a function of the constraints’s
violation corresponding to the existing filter point; the second measures it as a function
of the constraints’s violation at the trial point. The third formula attempts to weaken
these conditions even further by considering only the smallest of the two violations.
The upper bound of 1/,/p on 7y ensures that the right-hand side of (2.1) is always
positive for some j for the choices (2.2) and (2.4) and thus that points acceptable
for the filter always exist in these cases. Note that such points must exist if (2.3) is
considered provided ||f¢]] > 0, but a small value for 4 clearly makes it more likely
that (2.1) holds for a given 0.
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2.1.1. Adding a new point to the filter. To avoid cycling, and assuming the
trial point is acceptable in the sense of (2.1), we may wish to add it to the filter, so as
to avoid other iterates that are worse. The procedure is extremely simple: we simply
perform the operation F «— F U {6, }. But this may cause an existing filter entry 6,
to be strongly dominated in the sense that every new entry 9,:' that is acceptable for
the other filter points must also be acceptable for 8,. We therefore remove 6, from
the filter if

36,6 F Vi e {Looph B0 —0ll00ll = 65— 0ll0,]
if we have chosen to use (2.2),
(2.5) 16, e F Vie{l,....,p} 6,0>06,,
if we have chosen to use (2.3), or
0,6 F Vel opb -l > 05,
if we have chosen to use (2.4). That this last formula is adequate results from
0, < 05— yomin {165 1 10 1) < 00 < 65,0 — 7o l16e]| < 0. — 7o minf16 [, 16,1,

which shows that if H,j is acceptable for ,, then it must be acceptable for 6.

2.1.2. Computing a trial point. We also need to indicate how to compute
the trial point x;r = x) + sy, for some step si. This assumes we have a model my(x)
of f(x) and a trust region

(2.6) Br = {ax + 5| [Islle < Ax},

where we believe this model to be reasonably accurate. The norms || - ||z are allowed
to vary from iteration to iteration provided they remain uniformly equivalent to the
Euclidean norm. The convergence analysis that follows requires, as is common in
trust-region methods, that this step provides, at iteration k, a sufficient decrease on
the model: we require that

B

where g, = Vmyg(zy), Ok is a positive upper bound on the norm of the Hessian of
My, and K4 is a constant in (0,1). This is a natural requirement in the context of
trust-region algorithms (see [4, p. 131], for instance), and there are efficient algorithms
for achieving (2.7) in the trust-region framework for both small- and large-scale cases.
This condition is also satisfied if the model is further reduced outside the trust region,
as is the case in our algorithm when ||sg| > Ag.

At variance with classical trust-region methods, we do not require that

@.7) muuwwmuwmemmmwmmPWWA47

(2.8) [selle < Ak

at every iteration to obtain our most important convergence result. In particular,
this means that whenever (2.8) is not enforced and m = n, we might use the step
sy = —J; ‘¢, where Jj is the Jacobian of c(z) at xy (assumed here to be full rank).
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This step leads to the root of the first-order model for ¢(z), which is also the global
minimizer of

p
(2.9) mi (x4 8) =3 > llez, (zx) + Jz, (28],
i=1

a Gauss—Newton model for f(z), where Jz, is the Jacobian of ¢z,. This model may
also be minimized if m > n and (2.8) is not enforced, or one could choose in this case
to minimize the second-order truncation of the Taylor series for f(z),

P
(2.10) my (x4 5) = miN (e + )+ 3D ¢ilar)(s, Vie(an)s),
i=1 j€I;

which corresponds to a full Newton model, whenever this last model is convex.

ALGORITHM 2.1. FILTER-TRUST-REGION ALGORITHM.

Step 0: Initialization.
An initial point £y and an initial trust-region radius Ag > 0 are given, as
well as constants 0 < o <71 <1< y2,9 € (0,1/{/p), 0 <m <m2 < 1.
Assume that the sets {Z;}7_; are also given. Compute ¢y = c(zo) and
0y. Set k = 0, define a flag RESTRICT to be unset and initialize the filter
to the empty set.

Step 1: Test for optimality.
If 6, = 0 or ||V f(z)|| =0, stop.

Step 2: Determine a trial step.
Compute a step si that satisfies (2.7) and that also satisfies (2.8) if
RESTRICT is set. Compute the trial point xz =Tk + Sk.

Step 3: Evaluate the residual at the trial step.
Compute c(z;7) and 07 = 6(x}). Define

flze) — f(x}:)

my () — mg(z)

Pk =

Step 4: Test to accept the trial step.
o If xZ‘ is acceptable for the current filter:
set Tpy1 = x;, unset RESTRICT, and add G,j to the filter if either
pr < m or (2.8) fails.
o If x£ is not acceptable for the current filter:
If (2.8) holds and pg > 11, set T = xﬁ and unset RESTRICT. Else,
set xx+1 = 2k and set RESTRICT.
Step 5: Update the trust-region radius.
If ||skllx < Ag, update the trust-region radius by choosing

oAk, AR if pr <1,
Apt1 €4 1Ak, Ak if pr € [n1,7m2)
[Ak, 722 if pr > mg;

otherwise, set A1 = Ag. Increment k by one and go to Step 1.
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2.2. The algorithm. We now combine these ideas into an algorithm. The main
objective of Algorithm 2.1 is to let the filter play the major role in ensuring global
convergence and to fall back on the usual £5-norm reduction algorithm if things do
not go well, or if convergence occurs to a local minimizer of f which is not a zero of c.

This algorithm provides only a canvas for a practical implementation, as we have
not fully specified each step. In particular, we have not detailed how the step si can
be computed in practice to satisfy the sufficient decrease condition (2.7) and remain
in the trust region when required, but the literature provides several choices of direct
or iterative techniques; see Moré and Sorensen [20], Gould et al. [12], or Chapter 7 of
[4], for example. Similarly, techniques to initialize and update the trust-region radius
can be found in Chapter 17 of this last reference. As is usual, we say that iteration k
is successful if xy11 = xf + Sk

3. Global convergence. We now investigate the convergence properties of Al-
gorithm 2.1, under the following set of assumptions:

Al: ¢(x) is twice continuously differentiable on R™.

A2: The iterates x remain in a bounded domain of R™.

A3: my(z) is twice differentiable on R™ for all k.

A4: For all k, mg(zx) = f(zr) and gr = Vmyg(x) = V f(xp).
For the purpose of the convergence analysis, we also assume that the algorithm does
not terminate in Step 1.

Note that Al, A2, and A3 together imply that there is a constant x, > 0 such
that
(3.1) le(@)]| < ks [V2ei(@)|| < Ky and [V2my(2)] < &,

for all k£ and all z in the convex hull of {x;}. The second of these inequalities then
ensures that x, can also be chosen such that

IV2f ()] < -

We could have assumed the three conditions (3.1) independently instead of imposing
A2, but we have chosen not to do so for the sake of simplicity. Assumptions Al,
A3, A4, and (3.1) are typical of convergence theory for trust-region methods (see
Chapters 6 and 16 of [4]).

We first investigate what happens if infinitely many values are added to the filter
in the course of the algorithm.

LEMMA 3.1. Suppose that Al and A2 hold and that infinitely many values of 0y
are added to the filter by the algorithm. Then

(32) Jim ey = lim [[Vf(zp)] =0,

Proof. Let {k;} index the subsequence of iterations at which 6, = 0,:2_1 is added
to the filter. Now assume, for the purpose of a contradiction, that there exists a
subsequence {k;} C {k;} such that

10,11 > €

for some €; > 0. Since our assumptions imply that {|[0,[|} is bounded above and
below, there must exist a further subsequence {k¢;} C {k;} such that

(3.3) lim Ok, =0 with [0l > €.

£—o00
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Moreover, by definition of {k¢}, 6k, is acceptable for the filter for every ¢, which
implies in particular that for each ¢, there exists a j € {1,...,p} such that

(3.4) Oy — Oy < =000k, II; 1Ok, [])-

Furthermore, this conclusion does not depend on 6, , still being in the filter. In-
deed, if 05, , has been removed from the filter, it must be strongly dominated by
another entry in the filter, which then guarantees that (3.4) holds. But (3.3) and our
assumptions on § imply that there exists an e; > 0 such that

6(”9]%—1 ”7 ||0kz ||) > €

for all ¢ sufficiently large. Hence we deduce from (3.4) that
Ojke = Ojke s < —0€2

for ¢ sufficiently large. But the left-hand side of this inequality tends to zero when ¢
tends to infinity because of (3.3), yielding the desired contradiction. Hence

(3.5) lim 6| = 0.

Consider now any £ ¢ {k;} and let k;(;) be the last iteration before £ such that 6y, .
was added to the filter. Since, by construction, every successful iteration where the
value of @ at the trial point is not included in the filter must result in a decrease of the
objective function (since pj > 11 on such iterations), we deduce that, for all ¢ & {k;},

f(xe) < f(@n, 1))
and therefore that

[6(zo)l < [16(zk,@0)ll-
Combining this inequality with (3.5) and the fact that k;y) € {k;}, we obtain that
li =
Jm |6y =0,

which implies (3.2) and completes the proof. d

Let us now consider the case where only finitely many values are added to the
filter in the course of the algorithm, and let us examine first the case where the number
of trial points acceptable for the filter is also finite. Hence, the main test of Step 4
fails for all k > kg, say, and the method is then identical to an ordinary trust-region
method for minimizing f(x), since iterations for which (2.8) fails have no effect on the
current iterate nor on the trust region radius and may be ignored in the convergence
theory. Our assumptions are sufficient to use the results of Chapter 6 in [4] and we
may therefore deduce the following two properties.

LEMMA 3.2. Suppose that A1-A4 hold and that only finitely many trial points
xZ are acceptable for the filter. Suppose furthermore that there are only finitely many
successful iterations. Then the algorithm terminates in Step 1 with xp = x., and
Vf(z.) =0.

LEMMA 3.3. Suppose that A1-A4 hold, that only finitely many trial points xz
are acceptable for the filter, and that there are infinitely many successful iterations.
Then

likminf IV f(xk)] = 0.
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We have thus covered all cases, except that where only finitely many values are
added to the filter but infinitely many trial points are acceptable for the filter. In
this situation, we therefore have for sufficiently large k£ three kinds of intertwined
iterations:

e The first are iterations where z; is not acceptable for the filter but (2.8)
fails. These iterations have no effect and may be ignored, as we argued
before Lemma 3.2.

e The second are iterations where xﬁ is not acceptable for the filter but (2.8)
holds. These are perfectly standard trust-region iterations.

e In the third kind, xz is acceptable for the filter, but 9;{ is not added to
it because pr > n; and (2.8) holds. These are again standard (successful)
trust-region iterations.

The sequence of iterations can therefore be viewed as resulting from a standard trust-
region algorithm, and known convergence results are again applicable. As a conse-
quence, the conclusions of Lemmas 3.2 and 3.3 are also valid in this context.

We summarize our results in the next theorem.

THEOREM 3.4. Suppose that A1-A4 hold. Then there exists a subsequence {k;}
such that iminf; o |V f(zk,)|| = 0. Moreover, if infinitely many values are added to
the filter, then limy_ o ||c(zx)|| = 0.

Note that this theorem does not guarantee that a subsequence of {||c||} converges
to zero in all cases, but only that a stationary point of f(z) is reached. This is expected
because it may happen that the equations (1.1) have no solution or that the iterates
get trapped near a local minimum of f(x) with positive value. Such an outcome might
be troublesome if one aims at finding a root of (1.1), as opposed to a locally minimum
residual, but avoiding this situation requires global optimization techniques, which
are outside the scope of this paper.

The convergence theory of trust-region algorithms also implies (see [4, Theorem
6.4.6]) that the limit inferior in Lemma 3.3 can be replaced by a true limit provided

(3.6) Iskllx < kalg  for all k> ko,

for some kg > 0 and some constant ko > 1. In the usual trust-region context, this
is automatically guaranteed since the trial point always lies within the trust region
itself. However, this property no longer holds for the algorithm described in this
paper, because unrestricted steps are possible. But we may still obtain the stronger
result if we are ready to assume that (3.6) holds for some ka possibly larger than
one, which might be seen as a reasonable implementation safeguard. The rest of the
discussion above then remains unchanged and we deduce our final convergence result.

THEOREM 3.5. Suppose that A1-A4 and (3.6) hold. Then either ||V f(x)|| = 0
for some finite k or limg_ ||V f(xr)|| = 0. Moreover, if infinitely many values are
added to the filter, then we have that limg_, ||c(zk)|| = 0.

4. Numerical experience.

4.1. Test problems and performance measures. We now look at the practi-
cal behavior of the new method when applied to test problems of the CUTEr collection!
(see Bongartz et al. [1] and Gould, Orban, and Toint [13]). Table 4.1 indicates the

'We have excluded the problems FLOSP2HH, FLOSP2HL, FLOSP2HM, FLOSP2TL, FLOSP2TM, and
SEMICON1 because their solution appears to require more specific preconditioning (they all require
more than 1 hour of CPU time for every option we tried) and problems CHEMRCTA and CHEMRCTB
because they seemed to generate numerical overflow with all the tested methods.
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TABLE 4.1
Test problem characteristics.

Problem n n free m [[6«]] | Problem n n free m 10«
ARGLALE 400 400 800 + DRCAVTY1 4489 3969 3969 0
ARGLBLE 400 400 800 + DRCAVTY2 4489 3969 3969 0
ARGLCLE 400 400 799 + DRCAVTY3 4489 3969 3969 0
ARGTRIG 200 200 200 0 EIGENAU 2550 2550 2550 0
ARTIF 100002 | 100000 | 100000 0 EIGENB 2550 2250 2250 0
ARWHDNE 500 500 998 + EIGENC 2652 2652 2652 0
BDVALUES 10002 10000 10000 0 INTEGREQ 1002 1000 1000 0
BRATU2D 123904 | 122500 | 122500 0 MSQRTA 4900 4900 4900 0
BRATU2DT 23104 22500 22500 0 MSQRTB 4900 4900 4900 0
BRATU3D 4913 3375 3375 0 POROUS1 5184 4900 4900 0
BROWNALE 1000 1000 1000 0 PORQOUS2 5184 4900 4900 0
BROYDN3D | 100000 | 100000 | 100000 0 SEMICN2U 5002 5000 5000 0
BROTDNBD | 100000 | 100000 | 100000 0 SPMSQRT 27001 27001 44999 0
CBRATU2D 7200 6728 6728 0 WOODSNE 80000 80000 60001 +
CBRATU3D 16000 11664 11664 0 YATP1SQ 123200 | 123200 | 123200 0
CHANDHEU 500 500 500 0 YATP2SQ 123200 | 123200 | 123200 0
CHANNEL 19200 19198 19198 0

names and dimensions of the test problems considered. The columns ||f.| in this
table indicate whether the residual at the solution is zero (0) or positive (+). As is
apparent from this table, the test set includes a fair mix of problems sizes and over-
or underdetermined cases. All experiments reported in this section were run with the
current version of the Fortran 95 FILTRANE package (see Gould and Toint [16]) on a
Dell Latitude C840 portable computer (1.6 MHz, 1 Gbyte RAM) under the Fujitsu
frt Fortran compiler with default optimization. The values 7y = 0.625, v; = 0.25,
Y2 =2, n1 = 0.01, no = 0.9, and

1
Yo = min |0.001, ]
[ 2vp
were used.
In what follows, we compare several variants of the algorithm discussed above for
reliability and efficiency. All variants discussed use the Euclidean norm to define the
trust region (in (2.6)) and

S(I0eI1, 1651) = 16,71

This latter choice was made because it simplifies the removal of strongly dominated
filter entries (see (2.5)).

Efficiency comparisons are made using the performance profiles introduced by
Dolan and Moré [6]. Suppose that a given algorithmic variant ¢ from a set A reports
a statistic s;; > 0 when run on example j from our test set 7, and suppose that the
smaller this statistic, the better the variant is considered. Let

.« 1 if s<os,
k(s,s*,0) = {0 otherwise.

Then, the performance profile of algorithm 7 is the function

> er k(sij, 85,0)
P == ez,
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where s} = min;e 4 5;5. (s;5 is defined as infinity if variant ¢ failed on problem j, which
then implies that £ = 0.) Thus p;(1) gives the fraction of the number of examples for
which algorithm ¢ was the most effective (according to statistics s;;), p;(2) gives the
fraction of the number for which algorithm ¢ is within a factor of 2 of the best, and
lim, o pi(0) gives the fraction of the examples for which the algorithm succeeded.
We consider such a profile to be a very effective means of comparing the relative
merits of our algorithmic variants.

We have chosen to compare unpreconditioned versions of the new methods,
NITSOL and LANCELOT-B (see section 4.5), as no preconditioning was reasonably suc-
cessful on our test problems and also because the CUTEr interface to NITSOL only
allows for its use without a preconditioner. It must be noted, however, that all tested
methods provide facilities for preconditioning, which would typically be required to
solve more difficult problems. We ran additional tests with our new technique using
diagonal and band preconditioners, which confirm the findings reported below for the
unpreconditioned case.

4.2. Filter versus trust region and pure Newton. We start by examining
the most obvious question, namely, that of the potential added value of the filter tech-
nique compared to the more traditional trust-region approach. We therefore consider
the following algorithmic variants.

GNFTR. This variant is Algorithm 2.1, where, at each iteration, the trial point
is computed by approximately minimizing m®"(x, + s) using the generalized Lanczos
trust-region algorithm of Gould et al. [12] as implemented in the GALAHAD library
[14]. This procedure is terminated at the first s for which

(4.1) [V (zx + 5)|| < min [0-1, vmax(ear, [|[Vme (@) [)| [IVm (zi),

where €,/ is the machine precision. The choice §(z) = ¢(z) is also made, which implies
that an m-dimensional filter is used. The bound (3.6) is imposed with ka = 1000 at
all iterations following the first one at which a restricted step was taken. In addition,
the condition

f(zp + s) < min(10° f(20), f(xo) + 1000)

is imposed for the trial point to be acceptable for the filter. Instead of the formal
requirement of Step 1, the algorithm stops if
(4.2) IV £l <1070V or fle(a)]le < 1075,

or if the number of iterations exceeds 1000, or if the computing time exceeds 1 hour.
Other details of the implementation are discussed in Gould and Toint [16] and do not
matter in our comparison.

GNTR. This variant is identical to GNFTR except that all trial steps are con-
sidered as unacceptable for the filter. The resulting method is therefore nothing but
a basic trust-region algorithm (Algorithm BTR in [4]).

GNDD. This is a dare-devil variant identical to GNFTR except that every trial
step is considered to be acceptable for the filter. Note that this implies that the filter
entries need not be stored, since comparisons are no longer performed. Note also that
this method does not include any mechanism for guaranteeing global convergence.

All three variants are reliable, even if they all reported failure (while still produc-
ing very good approximations to the solution) on problems ARGLBLE and ARGLCLE, two
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very ill-conditioned linear least-squares problems. GNFTR required more than 1000
iterations for DRCAVTY3. GNDD was stopped after 1 hour of CPU time on SEMICN2U
and required more than 1000 iterations on ARWHDNE. It furthermore failed on YATP2SQ
because it wandered off into a region where the Hessian of the Gauss—Newton model
is so ill-conditioned that negative curvature was erroneously reported in the course of
the conjugate-gradients iteration, causing divergence. The good reliability of GNDD
is surprising, given that Newton’s method is known to fail on some problems if not
augmented by a globalization mechanism. We therefore investigated if this behavior
could be caused by the starting points for the test problems being too close to the
problem’s solution. To test this hypothesis, we ran all test problems again, perturbing
the starting point using the transformation xy < 10xg + 1, but this gave essentially
the same results (except that fewer problems were suitable for comparison as local
minimizers of the constraints violation were found more often). Another potential
explanation of this phenomenon is simply that the CUTEr test problem collection
contains too few examples of large-scale nonlinear systems where an algorithm like
GNDD diverges,? although these test problems are derived from a number of different
application areas including nonlinear PDEs, nonlinear ODEs, nonlinear matrix equa-
tions, and general algebraic nonlinear systems. Unfortunately, we have no real means
of assessing the generality of our problem collection.? A last possible explanation of
GNDD’s remarkable reliability is that GNDD does in fact converge on a large class
on nonlinear systems but that our understanding is currently too limited to explain
this behavior.

The relative efficiency of these methods is illustrated by the performance profile
in Figures 4.1 and 4.2. The overall performance of the filter variants is impressive.
These profiles show that GNFTR is the clear winner in CPU time: the GNFTR fil-
ter variant appears to be within a factor of two of the best for approximately 95%
of the test problems (it is fastest on 74%). The dominance of the GNFTR variant
over the GNTR variants is even stronger if one considers the number of iterations
(which, in our setting, is equal to the number of constraints evaluations and approxi-
mately? equal to the number of Jacobian evaluations). The efficiency gains obtained
by augmenting the trust-region algorithm with a filter-based acceptance rule for trial
points thus appear to be very significant. It is also interesting to note that GNFTR
is very comparable to GNDD for the problems where the latter does not fail, indicat-
ing that the filter technique may have the efficiency of a “blind” Newton’s method
while preserving guaranteed convergence (in the sense of Theorem 3.4). Finally, the
dominance of GNDD over GNTR for small values of ¢ indicates that the trust-region
mechanism might impose too heavy a burden on Newton’s method to ensure its global
convergence.

Given that each filter entry is an m-dimensional vector, storing many filter entries
may impose large memory requirements. Fortunately, large filters appear to be ex-
ceptional, as can be seen in Figure 4.3, where we show the relation between m and the
maximal filter size (over all iterations and all test examples involving m equations).
With the exception of problem SEMICN2U, where 293 filter entries were required for
m = 5000, all runs required less than 45, irrespective of the value of m. The memory
requirements thus remain typically modest.

2GNDD also fails on a few small-scale problems from the CUTEr collection, like HEARTS, PFIT1,
PFIT3, PFIT4, and RSNBRNE.

3However, we are always pleased to include further problems that are brought to our attention.

4Equality does not hold because the Jacobian is not evaluated at unsuccessful iterations.
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4.3. Model choice and subproblem accuracy. We next consider the choice
of the Gauss—Newton model (2.9) and compare it to the full Newton model given
by (2.10), in each case using default (see (4.1)) and full machine accuracy for the
solution of the linear subproblem. An important feature of (2.10) is that, in contrast
with (2.9), it need no longer be convex. While this is of no consequence in the
pure trust-region context because the trust-region boundary prevents arbitrary long
steps toward unbounded minima of (2.10), this causes a problem for Algorithm 2.1.
Indeed, negative curvature of the model may be discovered when unrestricted steps
are computed. This might result in unnecessarily long steps, which have then to be
cut back, generating inefficient oscillations in the step length. We have thus added
to Algorithm 2.1 the feature that unrestricted steps for which negative curvature is
detected are automatically recomputed with RESTRICT set without even attempting
to compute the constraints values at the trial point. This can be done at minimal
cost by using the reentry facility in the GLTR package, which exploits previously
computed Krylov spaces (see Gould et al. [12] for details). We thus introduce three
new variants of Algorithm 2.1:

e NFTR is identical to GNFTR except that the model (2.10) is used instead
of (2.9) and unrestricted steps containing negative curvature are restricted
before attempting to compute the constraint values at the trial point.

e GNFTR-full is identical to GNFTR, except that (4.1) is replaced by

(4.3) IVmS (2 + )| < Veml|Vme™ (zp)|-

o NFTR-full is identical to NFTR except that (4.1) is replaced by (4.3).
Comparing the reliability of GNFTR, GNFTR-full, NFTR, and NFTR-full, we
note that, as above, all four variants stall on ARGLBLE and ARGLCLE. NFTR has not
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converged in 1000 iterations on DRCAVTY3, and this is also the case for GNFTR-full on
ARTIF and DRCAVTY3 and for NFTR-full on DRCAVTY2. The package was terminated
after 1 hour of CPU time for GNFTR-full on DRCAVTY2, MSQRTA, and MSQRTB, for
NFTR-full on BDVALUES, EIGENC, MSQRTA, MSQRTB, DRCAVTY3, SEMICN2U, and YATP2SQ.
The variants using the full Newton model therefore seem less reliable than the Gauss—
Newton ones on our test set. Furthermore, they are less efficient, as is apparent in the
performance profiles of Figures 4.4 and 4.5. But these conclusions must be tempered
by the observation that many of our test problems are actually such that |c(x.)|| = 0,
therefore implicitly favoring the Gauss—Newton model, as it is well known that the
full Newton model is typically more efficient when the solution of the problem occurs
at a point x, for which ||c(x,)]| is strictly positive.

Occasionally, however, there is considerable benefit from the Newton model. The
most extreme example in this direction is that of the ARWHDNE problem, which is also
the problem for which ||e(x,)|| is largest. It is detailed in Table 4.2.

TABLE 4.2
Detailed performance of the GNFTR, GNFTR-full, NFTR, and NFTR-full variants on problem
ARWHDNE.

CPU(s) | iter. | CG iter.
GNFTR 0.2 178 240
GNFTR-full 0.2 179 273
NFTR 0.1 6 11
NFTR-full 0.1 6 12

Adaptive procedures to choose between the Gauss—Newton and the Newton model
have been studied (see Dennis, Gay, and Welsch [5], Toint [22], or Luksan [19], for
instance), but their application to our framework is beyond the scope of this paper
and is postponed to [16].

4.4. Equation grouping. We finally examine the impact of varying p, the di-
mension of the filter space, by defining sets of equations as explained in the introduc-
tion. We have chosen to compare our initial GNFTR variant (in which every equation
has its own subset) with three different alternative strategies for grouping equations
in k disjoint subsets (groups), with & = n/10, 10, and 1. In our experiments, we
simply assigned the ith equation to the group

(i) = mod(i, k)  if mod(i, k) > 0,
STk otherwise.

Observe that if all equations are merged into a single group, (2.1) and (2.3) reduce to

lle(I < le(@eqy)ll,

1
L+
where ¢(k) is the last entry added to the filter before or at iteration k. It follows
from the design of the algorithm that every successful iteration between £(k) and k
must produce a successful trust-region step, since otherwise the corresponding trial
step would have been added to the filter in Step 4. This method may thus be seen
as a particular nonmonotone filter-trust-region strategy with variable memory, in the
spirit of the proposals by Ke and Han [18], Xiao and Chu [26], and Toint [23].

Not surprising, all variants fail on the ill-conditioned problems ARGLBLE and
ARGLCLE. The computation was terminated after 1000 iterations on ARWHDNE for the
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case of 10 groups, while it was terminated after 1 hour of CPU time on DRCAVTY3 for
the cases of 1, 10, and n/10 groups.

The performance profiles in Figures 4.6 and 4.7 show that the variants differ, but
to a lesser degree than in the comparisons discussed above.

For each of the three criteria, we note that a higher number of groups (a higher
value of p) seems to result in better performance. This effect is mostly due to the
fact that the set of unacceptable values in a higher dimensional filter space is typically
smaller than for a low filter dimension, which then allows more iterates to be accepted.

It is interesting to note, in Figure 4.8, that the size of the filter tends to decrease
with the number of groups, mostly because more filter entries are removed from the
filter (using (2.5)) when there are fewer groups and thus fewer filter dimensions. Thus
the memory requirements for storing the filter entries decrease even faster than simply
implied by the reduction in the dimension of each filter entry.

We finally observe that the performance of GNFTR with a single group remains
excellent, which indicates that a unidimensional filter may provide an attractive al-
ternative to other nonmonotone trust-region methods.

We also attempted to partition the equations in different groups such that the
0;(xo) are balanced in size, but this strategy did not produce results significatively
different from those obtained without balancing.

4.5. Comparison with NITSOL and LANCELOT-B. Finally, we attempted
to compare GNFTR with two existing packages for solving nonlinear equations. We
considered NITSOL (see Pernice and Walker [21]) and LANCELOT-B (see Conn,
Gould, and Toint [3] and Gould, Orban, and Toint [14]), a program available in
the GALAHAD library.

NITSOL uses a truncated GMRES iterative method to solve Newton’s equations

J(l‘k)sk +c =0,

followed by a backtracking linesearch to ensure global convergence. LANCELOT-B is
a nonmonotone trust-region method. (See [23] for a description of the algorithm.)
Although principally intended for the solution of nonlinear optimization problems, it
can nevertheless be used to solve nonlinear systems of equations. In that case, it uses
a truncated conjugate gradient method on the full Newton model (2.10), which makes
it very similar in spirit to NFTR.

Comparing different software packages is always difficult. To make the exercise
as fair as possible, we modified the default stopping criterion of NITSOL to reflect
the factor y/n used in our new code (see (4.2)) and we set the maximum number
of iterations to 1000 and the maximum allowed number of GMRES iterations to
100,000. We believe that this makes NITSOL’s performance very comparable to that
of our new method. However, because NITSOL requires that problems be square
(i.e., m = n), we removed problems ARGLALE, ARGLBLE, ARGLCLE, ARWHDNE, SPMSQRT,
and WOODSNE from the comparisons. We also set the maximum number of iterations
to 1000 for LANCELOT-B, but we could not ensure a strictly comparable stopping
criterion, as LANCELOT-B terminates when each component of the gradient is below
the convergence threshold. This is slightly more restrictive than (4.2), which requires
that their average is below that threshold.

NITSOL reported that no further progress was possible and stopped away from
the solution for problems BROYDNBD, EIGENB, EIGENC, MSQRTA, MSQRTB, POROUS1,
POROUS2, DRCAVTY3, EIGENAU, and YATP2SQ. LANCELOT-B reported the same di-
agnostic for POROUS1 and POROUS2, although it reduced the norm of the constraints



A MULTIDIMENSIONAL FILTER ALGORITHM

0.9 T

0.7} o g
06| |

0.5F b

p(o)

0.4} b

0.2 4

GNFTR

0.1F GNFTR, n/10 groups [

= = GNFTR, 10 groups
GNFTR, 1 group

0 1 1 1 1

0 0.1 0.2 0.3 0.4 05
log(o)

Fic. 4.6. CPU time performance profile for GNFTR according to the number of groups.

0.8 . g
07f g

0.6 b

o

0.3 4

GNFTR

0.1} GNFTR, n/10 groups [

= = GNFTR, 10 groups
GNFTR, 1 group

1 I I
0 0.2 0.4 0.6 0.8
log(o)

F1a. 4.7. Iterations performance profile for GNFTR according to the number of groups.



34

N. I. M. GOULD, S. LEYFFER, AND PH. L. TOINT

4
0.9 — 7
L e | S I
_:__,T _________

0.8F I___.'_r. g

P
0.7} fmmTT T — g
R ——

0.6 i
©ocsl i
=05

041 B

0.3F B

0.2 i

- GNFTR
0.1 GNFTR, n/10 groups [
= = GNFTR, 10 groups
'+ GNFTR, 1 group
0 1 1 1 1 1 1
0 0.2 04 0.6 0.8 1 1.2 1.4
log(c)

Fic. 4.8. Mazimal filter size performance profile GNFTR according to the number of groups.

o4 LY 1
; -
1= -
0.3f * S B
02f. ..+ B
— GNFTR
0.1 NFTR H
- - LANCELOTB
- NITSOL
0 1 1 1 1 1 1 I I
0 05 1 15 2 25 3 35 4
log(o)

F1c. 4.9. CPU time performance profile for GNFTR, LANCELOT-B, and NITSOL.



A MULTIDIMENSIONAL FILTER ALGORITHM 35

0.7 - 7

06F : |

0.4
0.3}r E 4

02 .

i GNFTR
0.1 - NFTR -
‘ - - LANCELOTB
NITSOL
1

0 : I I I I I I I
0 1 2 3 4 5 6 7 8

log(c)

Fic. 4.10. Iterations performance profile for GNFTR, LANCELOT-B, and NITSOL.

violation to approximately 10~'6. The runs were terminated after 1 hour of CPU time
on problems ARTIF, BRATU2D, and BRATU2DT for NITSOL and on problems ARTIF,
BDVALUES, DRCAVTY1, DRCAVTY2, DRCAVTY3, and YATP2SQ for LANCELOT-B.

Figures 4.9 and 4.10 give the CPU time and iteration performance profiles for the
comparison. GNFTR clearly dominates LANCELOT-B and NITSOL on our test set,
both in reliability and efficiency. The comparison between NFTR and LANCELOT-B
is less clear, the former dominating for small values of o and the latter for larger ones.

5. Further comments and perspectives. We have presented a new algorithm
for nonlinear equations and nonlinear least squares that blends filter and trust-region
ideas. We have proved, under reasonable assumptions, that every limit point of the
sequence of iterates must be a first-order stationary point of the Euclidean norm
merit function. From the preliminary numerical experience presented, it appears
that its efficiency is remarkably good, both in computing time and in the number
of iterations and function calls. Its reliability is globally satisfying, but further work
on the algorithmic heuristics is expected to bring improvements. Of course, these
conclusions depend on the test problem set used, and the authors are well aware that
only continued numerical investigation can confirm the suggested gains in the longer
term. A Fortran 95 module, called FILTRANE [16], has just been introduced into the
GALAHAD library of optimization algorithms [14] and should facilitate a wider use of
the filter-trust-region algorithm.

While the analysis discussed above is highly encouraging, it represents only the
first steps in the area of research that is opened by the combination of the classical
trust-region method and multidimensional filters. Numerous extensions and further
developments are possible, in both theory and practice. A first idea would be to
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consider the values of the ¢(x) themselves for inclusion in the filter, instead of their
absolute values, whenever each set Z; contains only a single index. The filter is
then no longer restrained to the positive orthant and possibly more iterates can be
accepted. Interestingly, the extension of our theory to this case is straightforward. Its
efficiency is under investigation. Another possibility for allowing even more iterates
to be potentially acceptable is to introduce nonmonotone filter techniques similar to
those discussed in Gould and Toint [15] or by modifying Algorithm 2.1 to accept xﬁ
at the next iterate if it produces a decrease in the merit function which can be judged
sufficient irrespective of the step size. We could, for example, choose to accept xz
whenever

flax) = f(z}f) > min (e, K[f (24)]*)

for some positive €, k, and a. The convergence theory presented above directly extends
to cover this additional condition, but its practical use remains to be explored in detail.
It may also be interesting to consider norms other than the Euclidean to construct
the merit function f(x), the ¢; and ¢, norms being obvious candidates. In this case,
the subproblems consist of (approximately) solving linear programs, which, although
feasible in principle, requires further research to define suitable subproblem truncation
procedures.

The possibility of handling linear or nonlinear inequalities, in conjunction with
equalities or alone, is also a natural development. Its theoretical aspects directly
result from the present paper, since it is enough to redefine

0;(x) = || ez, ()4 ||,

where the symbol [¢x(x)]+ simply measures the violation of the kth constraint at x.
The analysis of section 3 applies without any modification to this more general case.
Practical aspects of this development are described in [16].

Finally, several strategies come to mind for coping with the (so far hypothetical)
case where the memory requirements for the storage of filter entries are excessive. The
first, obviously, is to use out-of-core storage. The second is to impose an upper bound
on the number of filter entries and to fall back on the pure trust-region algorithm if
this maximum is reached. A more sophisticated technique would be to reduce the
filter space dimension by decreasing the number of equation subsets. For instance, if
equations of index i € M are to be merged into a new subset, the components of each
filter entry whose index is M at iteration k, i.e., {6; }icm, can be replaced by the

single component
> o
ieM

The discussion above then suggests that the reduction in memory requirement could
exceed |F| x (|[M| — 1), as the merging process may create strongly dominated filter
entries, which can then be removed. It also suggests that the deterioration in perfor-
mance would remain moderate. One might also consider selectively removing filter
entries that are not strongly dominated, but this last idea needs to be investigated in
more detail as it is not compatible with our current proof of global convergence.

An adequate definition of equation subsets remains an interesting open question.
One could, for instance, base this definition on some domain decomposition if the
problem at hand arises from discretization, or one could assign different subsets to
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residuals of coupled equations, if the problem has this form. Many other strategies
are possible and further research is necessary to identify the better ones.

We conclude by noting that the ideas presented in this paper immediately suggest
other uses for the same techniques, like the introduction of multidimensional filters
in nonlinear programming (where current state-of-the-art methods use only a two-
dimensional filter space) or filter techniques for the solution of nonlinear equilibrium
problems (where the complementarity residual is a separate filter entry).
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