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Abstract. We present a filter line search method for solving general nonlinear and nonconvex
optimization problems. The method is of the filter variety but uses a robust (always feasible) sub-
problem based on an exact penalty function to compute a search direction. This contrasts traditional
filter methods that use a (separate) restoration phase designed to reduce infeasibility until a feasible
subproblem is obtained. Therefore, an advantage of our approach is that every trial step is com-
puted from subproblems that value reducing both the constraint violation and the objective function.
Moreover, our step computation involves subproblems that are computationally tractable and utilize
second derivative information when it is available. The formulation of each subproblem and the
choice of weighting parameter is crucial for obtaining an efficient, robust, and practical method. Our
strategy is based on steering methods designed for exact penalty functions but is fortified with a
trial step convexification scheme that ensures that a single quadratic optimization problem is solved
per iteration. Moreover, we use local feasibility estimates that emerge during the steering process
to define a new and improved margin (envelope) of the filter. Under common assumptions, we show
that the iterates converge to a local first-order solution of the optimization problem from an arbitrary
starting point.
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1. Introduction. This paper considers the general nonlinear optimization
problem

(1.1) minimize
x∈Rn

f(x) subject to c(x) ≥ 0,

where both the objective function f : Rn → R and the constraint function c : Rn →
R

m are assumed to be twice continuously differentiable. We seek a first-order KKT
point (x, y) that satisfies

(1.2) FKKT(x, y) :=

(
g(x)− J(x)Ty
min

[
c(x), y

] ) =

(
0
0

)
,

where g(x) := ∇f(x) ∈ R
n is the gradient of the objective function, J(x) := ∇c(x) ∈

R
m×n is the Jacobian of the constraint function, y is the Lagrange multiplier vector,

and the minimum is taken componentwise. Our algorithm may easily handle con-
straints with general lower/upper bounds and handle equality constraints directly,
i.e., it does not replace them with pairs of inequality constraints. Problems of this
type arise naturally in many areas, including optimal control [2, 3, 6, 25, 32], resource
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allocation [1, 31], solution of equilibrium models [20, 38], and structural engineer-
ing [5, 34].

Popular methods for solving (1.1) can broadly be characterized as interior-point or
active-set methods. Interior-point algorithms [44, 46, 47] offer polynomial-time com-
plexity bounds in many cases and readily scale up to problems involving millions of
variables. Their main disadvantage is the inability to use effectively a good initial esti-
mate of a solution. In fact, many interior-point methods immediately move the initial
guess into the strict interior of the feasible region. It is from this interior location that
future iterates are forced to remain and it justifies the name “interior-point” methods;
more modern “infeasible” interior-point methods avoid this defect to some degree.

Active-set methods [10, 16, 27, 28, 29, 30, 37, 39] complement interior-point meth-
ods since they naturally utilize information derived from a good estimate of a solution.
In fact, if the optimal active set (the set containing those constraints satisfied as equal-
ities at a solution) was known in advance, then problem (1.1) could be solved as an
equality constrained problem and its combinatorial nature would be eliminated. It is
precisely this property that makes active-set methods widely used to solve the pre-
viously mentioned class of problems. The main weakness of active-set algorithms is
that each subproblem typically requires the solution of a linear or quadratic program,
which is often expensive when compared to interior-point methods that require a
single linear system solve per iteration.

In this paper we describe an active-set method that generates a sequence of it-
erates from the solutions of subproblems defined by local models of the nonlinear
problem functions. The subproblems are always feasible since they are based on an
exact penalty function. To ensure that these models result in productive steps, we use
steering techniques [11] to adaptively adjust the weighting (penalty) parameter. In
contrast to original steering methods, we use a step convexification procedure similar
to [7, 18] to avoid solving multiple quadratic programs during each iteration.

To provide convergence guarantees, we must include a mechanism for determin-
ing when one point is “better” than another. A merit (penalty) function or a filter
is among the most common tools used for this purpose. A merit function combines
the objective function and a measure of constraint violation into a single function,
whereby their individual perceived importance is determined by a weighting parame-
ter. The quality of competing points is then measured by comparing their respective
merit function values. A potential weakness is that the quality of iterates depends on
the value of the weighting parameter, which can make step acceptance sensitive to its
value. In part, filter methods surfaced to mitigate this parameter dependence. In the
context of nonlinear optimization, filter methods were introduced by Fletcher, Leyffer,
and Toint [22, 23] and have since been rather popular [13, 14, 15, 21, 24, 44]. A filter
views problem (1.1) as a multicriterion optimization problem consisting of minimiz-
ing the objective function and minimizing some measure of the constraint violation,
with certain preference given to the latter. Roughly, a trial iterate is then considered
acceptable if it has a smaller value of either the objective function or the constraint
violation compared to the previously encountered points. Consequently, it is often
the case that filter methods accept more iterates and perform better. It should be
mentioned, however, that every known provably convergent filter method has a weak
dependence between these two criteria that is embedded in the step acceptance crite-
ria. In fact, this observation partly motivated the work on flexible penalty methods
by Curtis and Nocedal [19]. They describe how a single element filter is essentially
equivalent to the union of points acceptable to the �1-penalty function defined over
an interval of weighting parameter values.
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A FILTER METHOD WITH UNIFIED STEP COMPUTATION 177

A great disadvantage of filter methods is that they (traditionally) require the use
of a restoration phase. A restoration phase is (typically) entered when the subprob-
lem used to compute trial steps is infeasible; some algorithms, e.g., [46], enter the
restoration phase for additional reasons. When this situation occurs, the restoration
phase is triggered and a sequence of iterates focused on reducing the constraint vio-
lation is computed until the desired subproblem becomes feasible. During this phase,
the objective function is essentially ignored, which is highly undesirable from both a
practical and a computational perspective.

Our active-set method is globalized by using a filter but never needs to enter
a (traditional) restoration phase. This is accomplished by using subproblems that
are always feasible and, in certain instances, allow for the acceptance of iterates that
decrease both the exact penalty function and the constraint violation. In essence,
we replace an undesirable restoration phase with an attractive penalty phase. Thus,
we combine ideas from both filter and penalty methods to formulate a robust and
effective method; we believe this further builds upon the basic observations in [19].

This paper contains three main contributions. First, we present a filter method
that avoids a traditional and highly undesirable restoration phase. To this end, we
utilize subproblems based on exact penalty functions that are always feasible and
formed from models of both the objective function and constraint violation. Second,
our method incorporates second derivative information without requiring global mini-
mizers of nonconvex constrained subproblems (cf. [21]). Our step computation is most
similar to [28, 30], which was described in the context of line search and trust-region
penalty methods. Third, we use local feasibility estimates that emerge during the
steering step computation to define a new and improved margin (envelope) of the
filter. This allows us to define an adaptive and practical margin.

Our work is not the only method designed to resolve weaknesses in traditional
filter methods. Chen and Goldfarb [12] presented an interior point method that
uses two penalty functions to determine step acceptance: a piecewise linear penalty
function whose break points are essentially elements in the filter, and the �2-penalty
function. Under this scheme, a trial step is accepted if it provides sufficient reduction
for either penalty function.

The remainder of this paper is organized as follows. In section 2 we describe
the algorithm in detail, and in section 3 we prove that it is well-posed. We provide
convergence results in section 4 and conclude with final remarks in section 5.

2. A filter sequential quadratic programming method. In this section we
describe our new filter sequential quadratic programming method, FiSQP. The al-
gorithm is iterative and relies on computing trial steps from carefully constructed
subproblems. These subproblems and the resulting trial steps are explained in sec-
tions 2.1–2.6. In section 2.7 we introduce the filter construct and related terminology;
we emphasize that acceptability to the filter is only a necessary condition for accept-
ing a trial iterate. A full statement and description of the algorithm are given in
section 2.8.

Our step computation is based on the �1-penalty function

(2.1) φ(x;σ) := f(x) + σv(x),

where σ is a positive weighting parameter and the constraint violation at x is de-
fined by
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(2.2) v(x) :=
∥∥[c(x)]−∥∥

1
with [y]− := max(−y, 0)

and where the maximum is taken componentwise.
We use linear and quadratic model approximations of the objective function f

given by

�f (s;x) := f(x) + g(x)T s and

qf (s;x,M) := �f (s;x) + 1
2s

TMs = f(x) + g(x)T s+ 1
2s

TMs
(2.3)

for a given symmetric matrix M ∈ R
n×n and use a piecewise-linear approximation to

the constraint violation function v given by

�v(s;x) :=
∥∥[c(x) + J(x)s]−

∥∥
1

to form the following linear and quadratic models of φ:

�φ(s;x, σ) := �f (s;x) + σ�v(s;x) = f(x) + g(x)T s+ σ
∥∥[c(x) + J(x)s]−

∥∥
1

(2.4)

qφ(s;x,M, σ) := qf (s;x,M) + σ�v(s;x)(2.5)

= f(x) + g(x)T s+ 1
2s

TMs+ σ
∥∥[c(x) + J(x)s]−

∥∥
1
.

Using these models we may predict the change in v with the function

(2.6) Δ�v(s;x) := �v(0;x)− �v(s;x) =
∥∥[c(x)]−∥∥

1
− ∥∥[c(x) + J(x)s]−

∥∥
1
,

the change in f with the functions

Δ�f (s;x) := �f (0;x)− �f (s;x) = −g(x)T s and(2.7a)

Δqf (s;x,M) := qf (0;x,M)− qf (s;x,M)(2.7b)

= Δ�f (s;x)− 1
2s

TMs = −g(x)T s− 1
2s

TMs,

and the change in the penalty function φ with the functions

Δ�φ(s;x, σ) := �φ(0;x, σ)− �φ(s;x, σ) = Δ�f(s;x) + σΔ�v(s;x)

= −g(x)T s+ σ
(∥∥[c(x)]−∥∥

1
− ∥∥[c(x) + J(x)s]−

∥∥
1

)
(2.8)

and

Δqφ(s;x,M, σ) := qφ(0;x,M, σ)− qφ(s;x,M, σ) = Δ�φ(s;x, σ) − 1
2s

TMs

= −g(x)T s− 1
2s

TMs+ σ
(∥∥[c(x)]−∥∥

1
− ∥∥[c(x) + J(x)s]−

∥∥
1

)
.(2.9)

For the remainder of this section, let (xk, yk) denote the current estimate of a
solution to (1.1).

2.1. The steering step ssk. In order to strike a proper balance between reducing
the objective function and the constraint violation, we compute a steering step ssk as
a solution to the linear program

(2.10) minimize
(s,r)∈Rn+m

eTr subject to ck + Jks+ r ≥ 0, r ≥ 0, ‖s‖∞ ≤ δk,

where ck = c(xk), Jk = J(xk), δk ∈ [δmin, δmax], and 0 < δmin ≤ δmax < ∞. Prob-
lem (2.10) is equivalent to the nonsmooth problem

(2.11) minimize
s∈Rn

�v(s;xk) subject to ‖s‖∞ ≤ δk
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A FILTER METHOD WITH UNIFIED STEP COMPUTATION 179

since s solves (2.11) if and only if (s, r) solves (2.10), where r = max(−(ck + Jks), 0).
Since �v(0;xk) = v(xk), �

v is a convex function, and s = 0 is feasible for (2.11), it
follows from (2.6) that Δ�v(ssk;xk) ≥ 0. The quantity Δ�v(ssk;xk) is the best local
improvement in linearized constraint feasibility for steps of size δk.

All methods for nonconvex optimization may converge to an infeasible point that
is a local minimizer of the constraint violation as measured by v. Points of this type
are known as infeasible stationary points, which we now define by utilizing the steering
subproblem.

Definition 2.1 (infeasible stationary point). The vector xI is an infeasible
stationary point if v(xI) > 0 and Δ�v(sI;xI) = 0, where sI = argmins∈Rn �v(s;xI)
subject to ‖s‖∞ ≤ δ for some δ > 0.

2.2. The predictor step spk. The predictor step is computed as the unique
solution to one of the following strictly convex minimization problems:

spk =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

argmin
s∈Rn

fk + gTks+
1
2s

TBks subject to ck + Jks ≥ 0(2.12a)

if Δ�v(ssk;xk) = v(xk),

argmin
s∈Rn

qφ(s;xk, Bk, σk), otherwise,(2.12b)

where σk > 0 is the kth value of the penalty parameter, fk = f(xk), gk = ∇f(xk), ck =
c(xk), Jk = ∇c(xk), Bk is a positive-definite matrix that we are free to choose such
that Bk ≈ ∇2

xxL(xk, yk), and the Lagrangian L is defined by L(x, y) = f(x)− c(x)Ty.
Analogous to the steering subproblem, the nonsmooth minimization problem (2.12b)
is equivalent to the smooth problem

(2.13) minimize
s∈Rn,r∈Rn

fk + gTks+
1
2s

TBks+ σke
Tr subject to ck + Jks+ r ≥ 0, r ≥ 0,

which is the problem solved in practice. We use yP

k to denote the Lagrange multiplier
vector for the constraint ck +Jks ≥ 0 in (2.12a) and ck +Jks+ r ≥ 0 in (2.13) (equiv-
alently (2.12b)). Possible choices for the positive-define matrix include (i) the trivial
choice Bk = I, (ii) a scaled diagonal matrix based on the Barzilai–Borwein [4] method,
(iii) quasi-Newton updates such as BFGS [40] and L-BFGS [33], and (iv) modified
Cholesky factorizations [26, 43]. Moreover, relaxing the positive-definition assump-
tion on Bk may also be possible provided conditions such as those used in [18] are
enforced to ensure that sufficient descent directions are computed. Since this relax-
ation would introduce unnecessary complications into our algorithm and require the
use of an indefinite QP solver, we will assume throughout that Bk is a positive-definite
matrix.

The next result shows how convergence to KKT points may be deduced from the
predictor problem.

Lemma 2.2. Suppose that x∗ satisfies

v(x∗) = 0 and

0 = argmin
s∈Rn

f(x∗) + g(x∗)Ts+ 1
2s

TBs subject to c(x∗) + J(x∗)s ≥ 0
(2.14)

for some positive definite matrix B, and let y∗ denote the associated Lagrange multi-
plier vector. Then, it follows that (x∗, y∗) is a KKT point for problem (1.1) as defined
by (1.2).
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Proof. Since B is positive definite, s = 0 is the unique solution to the optimization
problem in (2.14). It then follows from the first-order necessary optimality conditions
at s = 0 that

g(x∗) = J(x∗)Ty∗ and min
(
c(x∗), y∗

)
= 0,

where y∗ is the Lagrange multiplier for the constraint c(x∗) + J(x∗)s ≥ 0. It now
follows from Definition 1.2 that (x∗, y∗) is a KKT point for problem (1.1).

2.3. The search direction sk. The steering direction ssk provides a measure
of local progress in infeasibility. Since we desire a search direction sk that makes
progress toward feasibility, we define

(2.15) sk := (1 − τk)s
s
k + τks

p
k,

where τk is the largest number on [0, 1] such that

(2.16) Δ�v(sk;xk) ≥ ηvΔ�v(ssk;xk) ≥ 0 for some ηv ∈ (0, 1).

The next lemma shows that τk > 0 when xk is not an infeasible stationary point.
This is important since the step sk then has a significant contribution from spk, which
was computed from a subproblem that modeled both objective and constraint func-
tions; this contrasts traditional filter methods when restoration is entered since the
subproblem formulations then focus solely on the constraint violation.

Lemma 2.3. If xk is not an infeasible stationary point as given by Definition 2.1,
then τk > 0.

Proof. If v(xk) = 0, then Δ�v(ssk;xk) = 0. It then follows from (2.12a) that
ck + Jks

p
k ≥ 0, which in turn implies that Δ�v(spk;xk) = 0. Thus, the choice τk = 1

satisfies (2.15) and (2.16).
Now suppose that v(xk) > 0 and define

s(τ) = (1 − τ)ssk + τspk

so that limτ↓0 s(τ) = ssk. It then follows from continuity of Δ�v(· ;xk) and the fact
that Δ�v(ssk;xk) > 0 since xk is not an infeasible stationary point by assumption that

lim
τ↓0

Δ�v
(
s(τ);xk

)
= Δ�v(ssk;xk) > 0.

Therefore, there exists τ ′ > 0 such that∣∣Δ�v
(
s(τ);xk

)−Δ�v(ssk;xk)
∣∣ < (1 − ηv)Δ�v(ssk;xk) for all τ ∈ [0, τ ′]

since ηv ∈ (0, 1) in (2.16) and Δ�v(ssk;xk) > 0. However, this implies that

Δ�v
(
s(τ);xk

) ≥ ηvΔ�v(ssk;xk) for all τ ∈ [0, τ ′],

which guarantees that tk ≥ τ ′ > 0.
We now proceed to show that if Δ�v(ssk;xk) > 0, then sk is a descent direction

for v(·). We require the definition of the directional derivative of a function.
Definition 2.4. The directional derivative of a function h(·) in the direction d

and at the point x is defined (when it exists) as

[Ddh](x) := lim
t↓0

h(x+ td)− h(x)

t
.
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We now show that the directional derivative is bounded by the negative of the
change in its model.

Lemma 2.5. At any point x and for any direction d, it follows that

[Ddv](x) ≤ −Δ�v(d;x),

where the function Ddv is the directional derivative of v in the direction d.
Proof. Since �v is a convex function and �v(0;x) is finite, it follows from [42,

Theorem 23.1] that

�v(td;x) − �v(0;x)

t

is monotonically nondecreasing with t, [Dd�
v](0;x) exists, and

(2.17) [Dd�
v](0;x) = inf

t>0

�v(td;x) − �v(0;x)

t
.

It then follows from [9, Lemma 3.1], (2.17), and the definition of Δ�v that

[Ddv](x) = [Dd�
v](0;x) ≤ �v(d;x)− �v(0;x) = −Δ�v(d;x),

which is the desired result.
Thus the search direction sk is a descent direction for v when our infeasibility

measure is positive.
Lemma 2.6. If Δ�v(ssk;xk) > 0, the direction sk is a descent direction for v at

the point xk, i.e.,

[Dskv](xk) ≤ −Δ�v(sk;xk) ≤ −ηvΔ�v(ssk;xk) < 0, where ηv is defined in (2.16).

Proof. It follows directly from Lemma 2.5, (2.16), and Δ�v(ssk;xk) > 0 that

[Dskv](xk) ≤ −Δ�v(sk;xk) ≤ −ηvΔ�v(ssk;xk) < 0,

which implies that sk is a descent direction for v at the point xk.
We now consider the case when our infeasibility measure is zero.
Lemma 2.7. If Δ�v(ssk;xk) = 0, then one of the following must occur:
(i) v(xk) > 0 and xk is an infeasible stationary point or

(ii) v(xk) = 0 and Δ�φ(sk;xk, σ) ≥ 1
2s

p
k
T
Bks

p
k for all 0 < σ <∞.

Proof. If v(xk) > 0, then by Definition 2.1, xk is an infeasible stationary point
which is part (i). Now, suppose that v(xk) = 0. As in the proof of Lemma 2.3, it
follows that

(2.18) Δ�v(spk;xk) = 0, τk = 1, and sk = spk.

We may then use the definition of spk in (2.12a), (2.18), and (2.7b) to conclude that

0 ≤ Δqφ(spk;xk, Bk, σk) = Δqf (spk;xk, Bk) = Δ�f (spk;xk)− 1
2s

p
k
T
Bks

p
k,

which yields Δ�f(spk;xk) ≥ 1
2s

p
k
T
Bks

p
k. Combining this with (2.8) and (2.18), we have

that

Δ�φ(sk;xk, σ) = Δ�f(sk;xk) + σΔ�v(sk;xk)

= Δ�f(sk;xk) = Δ�f(spk;xk) ≥ 1
2s

p
k
T
Bks

p
k for all finite σ,

which completes the proof.
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2.4. Updating the weighting parameter. By design, the trial step sk is a
descent direction for v when local improvement in feasibility is possible. Since the
weighting parameter provides a balance between reducing the objective function and
the constraint violation, it makes sense to adjust the weighting parameter so that sk
is also a descent direction for φ. This is accomplished by defining

(2.19)

σk+1=

{
σk if Δ�φ(sk;xk, σk) ≥ σkησΔ�v(ssk;xk),

max
{
σk + σinc,

−Δ�f (sk ;xk)
Δ�v(sk;xk)−ησΔ�v(ss

k
;xk)

}
otherwise

for some σinc > 0 and ησ satisfying 0 < ησ < ηv < 1, where ηv is defined in (2.16).
Lemma 2.8. If xk is not an infeasible stationary point, then the parameter up-

date (2.19) is well defined and ensures that

(2.20) Δ�φ(sk;xk, σk+1) ≥ σk+1ησΔ�v(ssk;xk) ≥ 0 for all k ≥ 0.

Proof. If Δ�φ(sk;xk, σk) ≥ σkησΔ�v(ssk;xk), then the desired result immediately
follows from the update σk+1 = σk. Thus, for the remainder of the proof we assume
that

(2.21) Δ�φ(sk;xk, σk) < σkησΔ�v(ssk;xk).

Suppose, for a contradiction, that Δ�v(ssk;xk) = 0. Since xk is not an infeasible sta-
tionary point by assumption, it follows that v(xk) = 0. Then, it follows from Lemma
2.7 and the fact that Bk is positive definite by assumption that Δ�φ(sk;xk, σk) ≥
1
2s

p
k
T
Bks

p
k ≥ 0, which contradicts (2.21) since Δ�v(ssk;xk) = 0. Thus, we conclude that

Δ�v(ssk;xk) > 0. Combining this with the choice 0 < ησ < ηv < 1 in (2.19) and (2.16)
we conclude that Δ�v(sk;xk) ≥ ηvΔ�v(ssk;xk) > ησΔ�v(ssk;xk) > 0, and thus

(2.22) ησΔ�v(ssk;xk)−Δ�v(sk;xk) < 0.

It then follows from (2.8), (2.21), (2.22), and the fact that σk > 0 that

(2.23)

Δ�f (sk;xk) = Δ�φ(sk;xk, σk)−σkΔ�v(sk;xk)< σk

[
ησΔ�v(ssk;xk)−Δ�v(sk;xk)

]
< 0.

Inequalities (2.22) and (2.23) imply that the penalty parameter update (2.19) is well-
defined and positive.

It now follows from (2.19) that

σk+1 ≥ −Δ�f(sk;xk)

Δ�v(sk;xk)− ησΔ�v(ssk;xk)
,

which may then be combined with (2.22) to yield

σk+1ησΔ�v(ssk;xk) ≤ Δ�f (sk;xk) + σk+1Δ�v(sk;xk) = Δ�φ(sk;xk, σk+1),

which is the desired result (2.20).
The next result will allow us to show that sk is a descent direction for φ under

certain assumptions.
Lemma 2.9. For any given value of the penalty parameter σ, point x, direction

d, and positive-definite matrix B, it follows that

[Ddφ](x;σ) ≤ −Δ�φ(d;x, σ) ≤ −Δqφ(d;x,B, σ).
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Proof. Linearity of the directional derivative, (2.7a), Lemma 2.5, (2.8), (2.9), and
the fact that Bk is positive definite by choice imply that

[Ddφ](x;σ)

= [Ddf ](x) + σ[Ddv](x) = −g(x)Td+ σ[Ddv](x) ≤ −Δ�f (d;x)− σΔ�v(d;x)

= −Δ�φ(d;x, σ) = −Δqφ(d;x,B, σ) − 1
2d

TBd ≤ −Δqφ(d;x,B, σ),

which is the desired result.
In most situations, we may now show that sk is a descent direction for the penalty

function.
Lemma 2.10. If xk is neither an infeasible stationary point nor a KKT point for

problem (1.1), then the direction sk is a descent direction for φ(x;σk+1) at the point
xk, i.e.,

[Dskφ](xk;σk+1) ≤ −Δ�φ(sk;xk, σk+1) < 0.

Proof. If Δ�v(ssk;xk) > 0, then xk cannot be an infeasible stationary point,
and it follows from Lemma 2.9, Lemma 2.8, and (2.20) that [Dskφ](xk;σk+1) ≤
−Δ�φ(sk;xk, σk+1) < 0, which is the desired result. Conversely, if Δ�v(ssk;xk) = 0,
then v(xk) = 0 since xk is not an infeasible stationary point by assumption. It now
follows from Lemma 2.9, v(xk) = 0, Lemma 2.7, the fact that Bk is positive defi-
nite, and spk 
= 0 since xk is not a KKT point for problem (1.1) by assumption (see

Lemma 2.2), that [Dskφ](xk;σk+1) ≤ −Δ�φ(sk;xk, σk+1) ≤ − 1
2s

p
k
T
Bks

p
k < 0, which

completes the proof.

2.5. The accelerator step sak. To improve performance, we compute an ad-
ditional “acceleration” step; here we consider a single (simple) possibility, but other
variants may be used [28].

Under common assumptions, the predictor step spk will ultimately correctly iden-
tify those constraints that are active at a local solution of (1.1) [41]. A prediction
based on spk is formulated by

(2.24) Ak := {i : [ck + Jks
p
k]i = 0}.

It is then natural to compute an accelerator step sak as the solution to

(2.25) minimize
s∈Rn

qf (spk + s;xk, Hk) subject to [Jks]Ak
= 0, ‖s‖2 ≤ δak ,

where δak > 0 is the trust-region radius, Hk is the exact second derivative of the
Lagrangian ∇2

xxL(xk, yk), and yk is a suitable Lagrange multiplier vector such as
those from the predictor subproblem. (In fact, our global convergence analysis allows
for any symmetric bounded sequence {Hk}, but here for concreteness we simply use
Hk = ∇2

xxL(xk, yk).) We note that subproblem (2.25) may be solved, for example,
with the projected GLTR algorithm. (See [17, section 7.5.4] and the notes at the end
that describe how to cope with the affine constraints [Jks]Ak

= 0.) It can be shown
that if ck + Jks ≥ 0 is feasible, σk is sufficiently large, and xk is “close enough” to
a solution of (1.1) that satisfies certain second-order sufficient optimality conditions,
then spk + sak is the solution to

(2.26) minimize
s∈Rn

qf (s;xk, Hk) subject to ck + Jks ≥ 0,

which is the traditional SQP subproblem. However, our method of step computation
is robust, whereas the generally nonconvex subproblem (2.26) introduces many points
of contention such as multiple solutions, unboundedness, and inconsistent constraints.
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2.6. The Cauchy steps scfk and scφk . Since the matrix Bk is positive definite
by construction and the exact second derivative matrix Hk is generally an indefinite
matrix, they may differ dramatically. To account for this when assessing overall step
acceptance, we define and use a Cauchy-f step scfk and a Cauchy-φ step scφk as follows.

Given the search direction sk, we define the Cauchy-f step as

(2.27) scfk := αf
ksk, where αf

k := argmin
0≤α≤1

qf (αsk;xk, Hk).

Similarly, we define the Cauchy-φ step as

(2.28) scφk := αφ
ksk, where αφ

k := argmin
0≤α≤1

qφ(αsk;xk, Hk, σk+1).

The step size αφ
k may be found efficiently by examining the piecewise quadratic func-

tion qφ(αsk;xk, Hk, σk+1) segment by segment between each derivative discontinuity.

2.7. The filter. The global convergence proof for our method is driven by main-
taining/updating a filter Fk during each iteration. A filter is defined as follows, where
R

+ denotes the positive real numbers.
Definition 2.11 (filter). A filter is any finite set of points in R

+ × R.
The initial filter is defined to be F0 = ∅ and then sequentially updated in a

manner that guarantees that Fk ⊆ {(vj , fj) : 0 ≤ j < k}. The decision to add certain
ordered pairs to the filter depends on the concept of trial points being acceptable to
the filter, which we now define.

Definition 2.12 (acceptable to Fk). We say that the point x is acceptable to
Fk if its associated ordered pair

(
v(x), f(x)

)
satisfies

v(x) ≤ max
{
vi − αiηvΔ�v(ssi ;xi), βvi

}
or(2.29)

f(x) ≤ fi − γmin
{
vi − αiηvΔ�v(ssi ;xi), βvi

}
for all 0 ≤ i < k such that (vi, fi) ∈ Fk and some constants {ηv, β, γ} ⊂ (0, 1).

The first inequality in (2.29) ensures that the constraint violation has been suffi-
ciently reduced. We note that previous filter methods have not used the first quantity
in the max on the right-hand side. Our improved condition takes advantage of the
information supplied by the steering steps ssk. Previous filter methods may easily have
requested a decrease in the constraint violation that was unreasonable. In these cir-
cumstances, the trust-region radius would be decreased until the subproblem became
infeasible and then a feasibility restoration phase would be entered. Our modified
definition provides a practical target constraint violation based on local information
derived from the steering step ssk. The second inequality in (2.29) guarantees that the
objective function is sufficiently smaller at the point x than at points xi whose or-
dered pair is in the current filter Fk. These two conditions provide a so-called margin
around the elements of the filter.

Note that Definition 2.12 does not require and does not imply that the current
vector xk is in Fk when determining acceptability. During our search for an improved
estimate of a solution to (1.1), it often does not make sense to accept a new point
unless it is acceptable to the current filter and better than the current point xk. This
leads to the following definition.

Definition 2.13 (acceptable to Fk augmented by xk). We say that x is ac-
ceptable to Fk augmented by xk if x is acceptable to Fk as given by Definition 2.12
and (2.29) holds with i = k.
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In the next section we present our main filter SQP method. Each iteration requires
the search for a new point that must satisfy a subset of specified conditions. We stress
that the updated point xk+1 is not necessarily acceptable to Fk. Moreover, the vector
xk+1 being acceptable to Fk (possibly augmented by xk) is a necessary, but not
sufficient, condition for adding the ordered pair (vk+1, fk+1) to the filter Fk. Details
of how we update Fk are described in the next section.

2.8. The algorithm. Our method is formally stated as Algorithm 1. Every
iteration begins by computing the set of trial steps {sak, sk} as described in sections 2.5
and 2.3. Once these trial steps are computed, we seek a step length αk such that for
some ŝk ∈ {sak, sk} the step xk + αkŝk satisfies one of four possible sets of conditions.
Which sets of conditions we seek to satisfy depends on whether the algorithm is in
filter mode (roughly a traditional filter strategy) or penalty mode (our alternative to
a traditional restoration phase). We now discuss these two modes in detail.

In filter mode, we perform a backtracking line search until we find a pair (αk, ŝk)
with ŝk ∈ {sk, sak} that forms a v-pair or an o-pair, or a pair (αk, sk) that forms a
b-pair. We discuss these in turn.

A v-pair is defined as follows.
Definition 2.14 (v-pair). The pair (α, s) constitutes a v-pair if xk + αs is

acceptable to Fk augmented by xk and

(2.30) Δ�f (sk;xk) < γvΔ�v(sk;xk) for some γv ∈ (0, 1).

A v-pair (αk, ŝk) earns its name since the step xk + αkŝk is acceptable to the
current filter augmented by xk, but the step sk did not predict sufficient decrease in
f as measured by (2.30); we say that k is a v-iterate since the focus of the iteration is
on reducing the constraint violation v. In this case, we choose to add the pair (vk, fk)
to the filter Fk.

An o-pair is characterized as follows.
Definition 2.15 (o-pair). The pair (α, s) constitutes an o-pair if xk + αs is

acceptable to Fk,

Δ�f (sk;xk) ≥ γvΔ�v(sk;xk) and(2.31a)

f(xk + αs) ≤ f(xk)− γfαρ
f
k ,(2.31b)

where γv ∈ (0, 1) is the same constant used to define a v-pair, γf ∈ (0, 1), and

(2.32) ρfk := min
[
Δ�f (sk;xk), Δqf (scfk ;xk, Hk)

]
.

An o-pair (αk, ŝk) is so designated since xk + αkŝk is acceptable to the filter, sk
predicts decrease in the objective function as measured by (2.31a), and a sufficient
decrease in the objective is realized as given by (2.31b); we say that k is an o-iterate
since progress has been made on decreasing the objective function. In this case we do
not add any new entries to the filter.

The definitions of v- and o-pairs are natural in light of the mechanism of the
filter and are similar in spirit to conditions used by previous methods [13, 15, 21,
22, 24, 46]. As for these methods, these two sets of conditions are not sufficient
for ensuring convergence since previously added filter entries may prevent (block)
additional progress. In this situation, other filter algorithms typically decrease the
trust-region radius or perform backtracking until a restoration phase is triggered. To
prevent this undesirable situation we introduce the following definition of a b-pair.
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Algorithm 1. Filter sequential quadratic programming algorithm.

1: Input an initial primal-dual pair (x0, y0).
2: Choose {ηv, ησ, ηφ, σinc, β, γ, γv, γf , γφ, ξ} ⊂ (0, 1) and 0 < δmin ≤ δmax <∞.
3: Set k ← 0, F0 ← ∅, P-mode ← false, and choose σ0 > 0 and δ0 ∈ [δmin, δmax].
4: loop
5: Compute ssk as a solution of (2.10), and then calculate Δ�v(ssk;xk) from (2.6).
6: if Δ�v(ssk;xk) = 0 and v(xk) > 0, then
7: return with the infeasible stationary point xk for problem (1.1).

8: Choose Bk � 0 and compute spk as the solution of (2.12) with multiplier ypk.
9: if Δqφ(spk;xk, σk) = v(xk) = 0, then

10: return with the KKT point (xk, y
p
k) for problem (1.1).

11: Compute sk = (1− τk)s
s
k + τks

p
k from (2.15) such that (2.16) is satisfied.

12: Compute the new weight σk+1 from (2.19).
13: Choose δak > 0 and then compute sak as an (approximate) solution of (2.25).

14: Compute scφk from (2.28) and then calculate Δqφ(scφk ;xk, Hk, σk+1) from (2.9).
15: if P-mode then
16: for j = 0, 1, 2, . . . do
17: Set αk ← ξj .
18: for ŝk ∈ {sak, sk} do
19: if (αk, ŝk) is a p-pair then
20: Set Fk+1 ← Fk and go to line 21. 
 p-iterate

21: if xk + αkŝk is acceptable to Fk then
22: Set P-mode ← false.
23: else
24: Compute scfk from (2.27) and then calculate Δqf (scfk ;xk, Hk) from (2.7b).
25: for j = 0, 1, 2, . . . do
26: Set αk ← ξj .
27: for ŝk ∈ {sak, sk} do
28: if (αk, ŝk) is a v-pair then
29: Set Fk+1 ← Fk ∪ {(vk, fk)} and go to line 34. 
 v-iterate

30: if (αk, ŝk) is an o-pair then
31: Set Fk+1 ← Fk and go to line 34. 
 o-iterate

32: if (αk, sk) is a b-pair then
33: Set Fk+1 ← Fk ∪ {(vk, fk)}, P-mode ← true, and go to line 34.


 b-iterate
34: if (2.36) is satisfied then
35: Set σk+1 ← σk+1 + σinc.

36: Set xk+1 ← xk + αkŝk, yk+1 ← yP

k , δk+1 ∈ [δmin, δmax], and k ← k + 1.

Definition 2.16 (b-pair). The pair (α, s) constitutes a b-pair if

(2.33) v(xk + αs) < v(xk)

and

(2.34) φ(xk + αs;σk+1) ≤ φ(xk;σk+1)− γφαρ
φ
k for some γφ ∈ (0, 1),

where

(2.35) ρφk := min
[
Δ�φ(sk;xk, σk+1), Δqφ(scφk ;xk, Hk, σk+1)

]
.
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An iterate xk+αksk associated with a b-pair (αk, sk) decreases both the constraint
violation and the penalty function; we say that k is a b-iterate since the conditions
that define a b-pair suggest that one or more filter entries are blocking a productive
step. In this case, we choose to accept the trial point, add (vk, fk) to the filter,
and enter what we will refer to as a penalty mode. We view penalty mode as an
alternative to a traditional restoration phase. Moreover, since steps are always tested
for acceptability based on the filter criteria, i.e., o- and v-pairs, before checking for
decrease in the constraint violation and penalty function as stipulated by b-pairs, we
give clear preference to staying in filter mode.

In penalty mode, we calculate a new iterate by perform a backtracking line search
until we find a pair (αk, ŝk) for some ŝk ∈ {sak, sk} that satisfies the following condi-
tions that define a p-pair.

Definition 2.17 (p-pair). The pair (α, s) constitutes a p-pair if (2.34) is
satisfied.

If (αk, ŝk) is a p-pair, thenφ(xk+αkŝk;σk+1) is sufficiently smaller thanφ(xk;σk+1);
we say that k is a p-iterate since the penalty function has been decreased. In addition,
if xk + αkŝk is acceptable to the current filter, we return to filter mode; otherwise, we
remain in penalty mode.

Finally, after a new trial step is computed, we choose to increase the penalty
parameter if

(2.36) Δqφ(sk;xk, Bk, σk+1) < ηφΔqφ(spk;xk, Bk, σk+1) for some ηφ ∈ (0, 1),

since this indicates that τk is very small and the search direction sk does not ade-
quately reflect the decrease predicted by spk in the penalty function.

For future reference we define the following index sets based on the different types
of pairs:

Sv = {k : k is a v-iterate }, So = {k : k is an o-iterate },
Sp = {k : k is a p-iterate }, Sb = {k : k is an b-iterate }.

We complete this section by summarizing the computational complexity of each
iteration of Algorithm 1, which requires the calculation of multiple directions. Specifi-
cally, each iteration requires the solution of a linear program to obtain the steering step
(see (2.10)), a strictly convex quadratic program to get the predictor step (see (2.12)),
a single matrix-vector multiplication to solve the one-dimensional optimization prob-
lem for the Cauchy-f step (see (2.27)), a one-dimensional search along a piecewise
linear path to obtain the Cauchy-φ step (see (2.28)), and an approximate solution
to an equality-constrained quadratic problem for the an accelerator step (see (2.25)).
Therefore, the predominant computational cost for each iteration is the calculation of
the steering and predictor steps.

3. Well-posedness. In this section we verify that every step of the method is
well-posed under the following assumption, which we do not explicitly state for each
result.

Assumption 3.1. The functions f and c are both differentiable with Lipschitz
continuous derivatives in the neighborhood of the point xk.

We begin by observing that the steering problem (2.11) is convex and always
feasible, and the objective function is bounded below by zero, i.e., it is well-defined.
If v(xk) > 0 and Δ�v(ssk;xk) = 0, then xk is an infeasible stationary point and we
exit in line 7 of Algorithm 1. Otherwise, xk is not an infeasible stationary point and
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we proceed to compute a predictor step from problem (2.12), which we now argue is
well-defined. This is obvious when Δ�v(ssk;xk) 
= v(xk) since then the strictly convex
problem (2.12b) is always feasible. On the other hand, if Δ�v(ssk;xk) = v(xk), then
it follows that ||[c(xk) + J(xk)s

s
k]

−||1 = 0, which implies that ck + Jks
s
k ≥ 0. Thus,

s = ssk is feasible for (2.12a), and the predictor problem is well-defined. Lemma 2.3
shows that τk > 0 and Lemma 2.8 shows that the update to the weighting parameter
is well-defined. The accelerator problem (2.25) does not cause difficulties since by
construction it is feasible, has bounded solutions, and may be solved (approximately)
as noted in section 2.5. It is also easy to see that both Cauchy step problems (2.27)
and (2.28) are well-defined.

We now proceed to show that the line search terminates finitely. To this end, we
first show that feasible iterates are never added to the filter.

Lemma 3.1. Algorithm 1 ensures that if (vk, fk) is added to the filter, then
vk > 0.

Proof. For a proof by contradiction, suppose that v(xk) = 0. It follows from
v(xk) = 0 and the fact that �v is a convex function that Δ�v(ssk, xk) = 0, and we may
then use (2.12a), (2.15), (2.16), and the fact that xk is not a KKT point for (1.1)
(otherwise we would already have exited on line 10 of Algorithm 1) to show that

(3.1) τk = 1, sk = spk 
= 0, and Δ�v(sk;xk) = Δ�v(spk;xk) = 0.

It then follows from (3.1), (2.8), Lemma 2.7, v(xk) = 0, and the fact that Bk � 0 that

(3.2)

Δ�f (sk;xk) = Δ�f (spk;xk) = Δ�φ(spk;xk, σk+1) = Δ�φ(sk;xk, σk+1) ≥ 1
2s

p
k
T
Bks

p
k > 0.

Since (vk, fk) was added to the filter, it follows from the construction of Algorithm 1
that either (αk, ŝk) is a v-iterate or (αk, sk) is a b-pair, which implies that at least one
of v(xk + αksk) < v(xk) or Δ�f (sk;xk) < γvΔ�v(sk;xk) holds, among other require-
ments. However, since v(xk + αksk) < v(xk) = 0 is not possible, we conclude that
Δ�f (sk;xk) < γvΔ�v(sk;xk) = 0, where we have also used (3.1); this contradicts (3.2)
and proves the result.

The next two results show that our line search procedure terminates any time
P-mode has the value false at the beginning of the kth iteration. We first consider
the case when xk is feasible.

Lemma 3.2. If P-mode = false at the beginning of the kth iteration, v(xk) = 0,
and xk is not a first-order solution to problem (1.1), then the pair (α, sk) is an o-pair
for all α > 0 sufficiently small. Moreover, k ∈ So.

Proof. As in the proof of Lemma 3.1, it follows that v(xk) = Δ�v(ssk;xk) = 0.
This may be combined with the fact that xk is assumed to not be a first-order solution
to (1.1), (2.12a), (2.15), (2.16), Lemma 2.7, the fact that Bk is positive definite, and
the definition of Δ�φ to conclude that

sk = spk 
= 0, ck + Jksk ≥ 0, and

Δ�f (sk;xk) = Δ�φ(sk;xk, σk+1) > 0 = γvΔ�v(sk;xk).
(3.3)

Next, v(xk) = 0 and (3.3) imply that ck+αJksk ≥ 0 for all α ∈ [0, 1]. Combining
this fact with Taylor’s theorem, Assumption 3.1, and (3.3) yields

(3.4)

v(xk +αsk) =
∥∥[c(xk + αsk)]

−∥∥
1
=

∥∥[ck + αJksk +O(α2)]−
∥∥
1
≤ O(α2) for α ∈ [0, 1].
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Since Lemma 3.1 implies that vi > 0 for all (vi, fi) ∈ Fk, we may conclude from (3.4)
that

v(xk + αsk) ≤ min
(vi,fi)∈Fk

βvi for all α > 0 sufficiently small,

where β ∈ (0, 1) is defined in (2.29), so that

(3.5) xk + αsk is acceptable to the filter for all α > 0 sufficiently small.

Next, Taylor’s theorem, Assumption 3.1, the definition of Δ�f , and (3.3) imply
that

f(xk + αsk) = fk + αgTk sk +O(α2) = fk − αΔ�f (sk;xk) +O(α2)

≤ fk − γfαΔ�f (sk;xk) for all α > 0 sufficiently small,(3.6)

where γf ∈ (0, 1) is defined in (2.31b). It follows from (3.3), (3.5), and (3.6) that
(α, sk) is an o-pair for all α > 0 sufficiently small, which proves the first result of this
lemma.

We just proved that the for loop on line 25 in Algorithm 1 always terminates.
Moreover, it cannot terminate on line 28 since (3.3) holds. Also, it can never terminate
as a result of the if on line 32 since v(xk + αsk) < v(xk) = 0 is impossible for all α.
Therefore, the line search must terminate with an o-pair (αk, ŝk), which implies that
k ∈ So.

We now consider the case when xk is infeasible.
Lemma 3.3. If P-mode = false at the beginning of iteration k, v(xk) > 0, and xk

is not an infeasible stationary point, then (α, sk) is a b-pair for all α > 0 sufficiently
small.

Proof. It follows from the assumptions of this lemma and Lemma 2.10 that

(3.7) [Dskφ](xk;σk+1) ≤ −Δ�φ(sk;xk, σk+1) < 0

so that the direction sk is a strict descent direction for φ at xk with penalty parameter
σk+1. Using the definition of the directional derivative, (3.7), γφ ∈ (0, 1) defined
in (2.34), and (2.35) we conclude that

φ(xk + αsk;σk+1) ≤ φ(xk;σk+1) + αγφ[Dskφ](xk;σk+1)(3.8)

≤ φ(xk;σk+1)− αγφΔ�φ(sk;xk, σk+1)

≤ φ(xk;σk+1)− αγφρ
φ
k for all α > 0 sufficiently small.

Since v(xk) 
= 0 and xk is not an infeasible stationary point, we know that
Δ�v(ssk;xk) > 0. Lemma 2.6 then implies that

[Dskv](xk) ≤ −Δ�v(sk;xk) ≤ −ηvΔ�v(ssk;xk) < 0

so that sk is a descent direction for v at xk. An argument similar to the one that lead
to (3.8) yields

(3.9) v(xk + αsk) < v(xk) for all α > 0 sufficiently small.

It follows from (3.8) and (3.9) that (α, sk) is a b-pair for all α > 0 sufficiently
small.

The next lemma considers the case when P-mode is true at the beginning of
the kth iteration and shows that successful trial iterates may be obtained through
backtracking as performed in Algorithm 1.
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Lemma 3.4. If P-mode = true at the beginning of the kth iteration and xk is
neither an infeasible stationary point nor a first-order solution to problem (1.1), then
(α, sk) is a p-pair for all α > 0 sufficiently small.

Proof. The proof follows exactly as in the first part of Lemma 3.3.
We now combine these results to prove that Algorithm 1 is well-posed.
Theorem 3.5. Algorithm 1 is well-posed.
Proof. As described in the first paragraph of section 3, every subproblem and step

computation is well defined, and Lemma 2.8 ensures that the update to the weighting
parameter is well defined.

All that remains is to prove that the line search terminates. First, if P-mode
has the value false at the beginning of iteration xk and v(xk) = 0, then Lemma 3.2
guarantees finite termination and that k ∈ So. Second, if P-mode has the value
false and v(xk) > 0, then Lemma 3.3 ensures that the backtracking line search will
terminate finitely. Finally, suppose that P-mode has the value true at the beginning
of iteration k. It then follows from Lemma 3.4 that the backtracking terminates
finitely.

4. Global convergence. In this section we prove that limit points of the iterates
generated by Algorithm 1 have desirable properties. To this end, we use the following
common assumptions.

Assumption 4.1. The iterates {xk} lie in an open, bounded, convex set X .
Assumption 4.2. The problem functions f(x) and c(x) are twice continuously

differentiable on X .
Assumption 4.3. The matrices Bk are uniformly positive definite and bounded,

i.e., there exists values 0 < λmin < λmax <∞ such that λmin ‖s‖22 ≤ sTBks ≤ λmax ‖s‖22
for all s ∈ R

n and all Bk.
Assumption 4.4. The matrices Hk are uniformly bounded, i.e., ‖Hk‖2 ≤ μmax for

some μmax ≥ 1.
For clarity and motivational purposes, we immediately state our main conver-

gence theorem, which makes use of the Mangasarian–Fromovitz constraint qualifica-
tion (MFCQ) [35].

Theorem 4.1. If Assumptions 4.1–4.4 hold, then one of the following must occur:
(i) Algorithm 1 terminates finitely with either a first-order KKT point or an

infeasible stationary point in lines 10 or 7, respectively, for problem (1.1).
(ii) Algorithm 1 generates infinitely many iterations {xk}, σk = σ̄ < ∞ for all

k sufficiently large, and there exists a limit point x∗ of {xk} that is either a
first-order KKT point or an infeasible stationary point for problem (1.1).

(iii) Algorithm 1 generates infinitely many iterations {xk}, limk→∞ σk =∞, and
there exists a limit point x∗ of {xk} that is either an infeasible stationary
point or a feasible point at which the MFCQ fails.

Proof. The result follows from the following analysis that considers the various
cases that can occur. In particular, it follows from Theorems 4.11, 4.14, 4.18, and
4.21 and the construction of Algorithm 1.

We now present a sequence of lemmas that will be useful in the convergence
analysis. The first result is adapted from [9, Theorem 3.6] and provides a bound on
the trial step sk.

Lemma 4.2. If Assumptions 4.1–4.3 hold and xk and sk are generated by Algo-
rithm 1, then

(4.1) ‖sk‖2 ≤ max

{
1,

2

λmin

[ ‖gk‖2 + σkv(xk)
]
,
√
nδmax

}
.
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Furthermore, if {σk} is bounded, then there exists a constant Ms > 0 such that
‖sk‖2 ≤Ms for all k.

Proof. First, we claim that the predictor step spk must satisfy

(4.2) ‖spk‖2 ≤ max

{
1,

2

λmin

[ ‖gk‖2 + σkv(xk)
]}

,

which can be seen as follows. Suppose that (4.2) is not satisfied so that

(4.3) ‖spk‖2 > 1 and 1
2λmin ‖spk‖2 > ‖gk‖2 + σkv(xk).

It then follows from the definitions of Δqφ and �v, the Cauchy–Schwarz inequality,
Assumption 4.3, and (4.3) that

Δqφ(spk;xk, Bk, σk) = −gTkspk − 1
2s

p
k
T
Bks

p
k + σk

(
�v(0;xk)− �v(spk;xk)

)
≤ ‖gk‖2 ‖spk‖2 − 1

2λmin ‖spk‖22 + σkv(xk)

≤ ‖gk‖2 ‖spk‖2 − 1
2λmin ‖spk‖22 + ‖spk‖2 σkv(xk)

= ‖spk‖2
(
‖gk‖2 − 1

2λmin ‖spk‖2 + σkv(xk)
)
< 0,

which contradicts the fact that spk is the unique global minimizer to the strictly convex
predictor problem. Thus, (4.2) must hold and when combined with (2.15), the use of
the triangle inequality, and the use of the trust-region radius δk ∈ [δmin, δmax] in the
steering problem implies that

(4.4) ‖sk‖2 ≤ max

{
1,

2

λmin

[ ‖gk‖2 + σkv(xk)
]
,
√
nδmax

}
,

which proves (4.1). Since gk and v(xk) are uniformly bounded as a result of Assump-
tions 4.1 and 4.2, it is clear that if {σk} is bounded, then there exists Ms <∞ such
that ‖sk‖2 ≤Ms for all k.

The following result provides a relationship between the predicted change in the
linear model and the change achieved in the line search process for both the objective
function and the constraint violation.

Lemma 4.3 (equivalent to [45, Lemma 3]). Suppose that Assumptions 4.1 and 4.2
hold. Then, there exist constants {Cf , Cv} > 0 such that for all k and α ∈ (0, 1], we
have

(4.5) f(xk + αs) ≤ f(xk)− αΔ�f (s;xk) + α2Cf ‖s‖22
and

(4.6) v(xk + αs) ≤ v(xk)− αΔ�v(s;xk) + α2Cv ‖s‖22 .

Proof. Inequality (4.5) is a direct result of Taylor’s theorem and Assumption 4.2.

For (4.6), it follows from the integral mean-value theorem, Assumptions 4.1
and 4.2, and the implied Lipschitz continuity of J(x), the triangle inequality, and
the convexity of �v, that for some constant Lipschitz constant C,
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v(xk + αs)

=
∥∥[c(xk + αs)]−

∥∥
1
=

∥∥∥∥∥
[
c(xk) + αJks+ α

∫ 1

0

[J(xk + θαs)− J(xk)]sdθ

]−∥∥∥∥∥
1

≤ ∥∥[c(xk) + αJks]
−∥∥

1
+ α2

√
nC ‖s‖22

≤ (1− α)
∥∥[c(xk)]

−∥∥
1
+ α

∥∥[c(xk) + Jks]
−∥∥

1
+ α2√nC ‖s‖22

= v(xk)− αΔ�v(s;xk) + α2
√
nC ‖s‖22 for all α ∈ (0, 1].

This proves (4.6) by defining Cv :=
√
nC.

The next two lemmas provide a relationship between the predicted linear decrease
in the objective function and the quantity ρfk defined by (2.32).

Lemma 4.4. If Assumption 4.4 holds and Δ�f (sk;xk) ≥ 0, then

(4.7) Δqf (scfk ;xk, Hk) ≥ 1
2Δ�f (sk;xk)min

{
Δ�f (sk;xk)

μmax ‖sk‖22
, 1

}
.

Proof. If Δ�f (sk;xk) = 0, then the result follows immediately from the definition

of scfk in (2.27).
Now, suppose that Δ�f (sk;xk) > 0. It follows from (2.27) and the definition of

Δqf that

Δqf (scfk ;xk, Hk) ≥ Δqf (αsk;xk, Hk) = −αgTksk − 1
2α

2sTkHksk for all 0 ≤ α ≤ 1.

The right-hand side of the previous equation may be written as

q(α) = aα2 + bα, where a = − 1
2s

T
kHksk and b = Δ�f (sk;xk) = −gTksk > 0.

We wish to maximize q on the interval [0, 1] so we differentiate q(α) with respect to
α and set the result to zero to obtain a stationary point at − b

2a . Now, consider three
cases.

Case 1 (a < 0 and − b
2a ≤ 1). The maximum of q(α) on the interval [0, 1] is

achieved at α = − b
2a . Note that α > 0, since b = Δ�f (sk;xk) > 0 by assumption.

Then, we have

q

(
− b

2a

)
= a

b2

4a2
− b

b

2a
= − b2

4a
.

It follows from the definition of a and b, the Cauchy–Schwarz inequality, and Assump-
tion 4.4 that

q

(
− b

2a

)
=

Δ�f (sk;xk)
2

2sTkHksk
≥ Δ�f(sk;xk)

2

2 ‖Hk‖2 ‖sk‖22
≥ Δ�f(sk;xk)

2

2μmax ‖sk‖22
.

Case 2 (a < 0 and − b
2a > 1). The maximum of q(α) on the interval [0, 1] is

achieved at α = 1, where

q(1) = a+ b > − 1
2b+ b = 1

2b =
1
2Δ�f (sk;xk).

Case 3 (a ≥ 0). The maximum of q(α) on the interval [0, 1] is achieved at α = 1
so that

q(1) = a+ b > b > 1
2b =

1
2Δ�f (sk;xk).
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Finally, combining all three cases and defining α′ = argmaxα∈[0,1] q(α), it follows
that

Δqf (scfk ;xk, Hk) = q(α′) ≥ min

{
Δ�f (sk;xk)

2

2μmax ‖sk‖22
, 1

2Δ�f(sk;xk)

}

= 1
2Δ�f (sk;xk)min

{
Δ�f(sk;xk)

μmax ‖sk‖22
, 1

}

as desired.
Lemma 4.5. Suppose that Assumptions 4.1–4.4 are satisfied and that {σk} is

bounded. Then, there exists a constant Cρ > 0 such that whenever Δ�f (sk;xk) ≥ 0,
it follows that

(4.8) ρfk ≥ min
[
CρΔ�f(sk;xk)

2, 1
2Δ�f (sk;xk)

]
.

Proof. It follows from (2.32), Lemma 4.4, Lemma 4.2, and the assumption
Δ�f (sk;xk) ≥ 0 that

ρfk = min
[
Δ�f (sk;xk), Δqf (scfk ;xk, Hk)

]

≥ min

[
Δ�f(sk;xk), min

{
Δ�f (sk;xk)

2

2μmax ‖sk‖22
, 1

2Δ�f (sk;xk)

}]

≥ min

[
Δ�f(sk;xk)

2

2μmax ‖sk‖22
, 1

2Δ�f (sk;xk)

]
≥ min

[
Δ�f (sk;xk)

2

2μmaxM2
s

, 1
2Δ�f(sk;xk)

]
,

where {Ms, μmax} ⊂ (0,∞) are defined in (4.1) and Assumption 4.4, respectively. The
result now follows by defining Cρ := 1/(2μmaxM

2
s ).

The next two results provide a relationship between the predicted linear change
in the penalty function and the quantity ρφk defined by (2.35).

Lemma 4.6. If Assumption 4.4 holds and xk is not an infeasible stationary point,
then

(4.9) Δqφ(scφk ;xk, Hk, σk+1) ≥ 1
2Δ�φ(sk;xk, σk+1)min

{
Δ�φ(sk;xk, σk+1)

μmax ‖sk‖22
, 1

}
.

Proof. Since xk is not an infeasible stationary point by assumption, it follows
from Lemma 2.8 that Δ�φ(sk;xk, σk+1) ≥ 0. If Δ�φ(sk;xk, σk+1) = 0, then the
result follows immediately. Therefore, for the remainder of the proof we assume that
Δ�φ(sk;xk, σk+1) > 0.

It follows from (2.28), the convexity of �v(·), and simple algebra that

Δqφ(scφk ;xk, Hk, σk+1)

≥ Δqφ(αsk;xk, Hk, σk+1)

= −αgTksk − 1
2α

2sTkHksk + σk+1

(∥∥[ck]−∥∥1
− ∥∥[ck + αJksk]

−∥∥
1

)
≥ −αgTksk − 1

2α
2sTkHksk + σk+1

(∥∥[ck]−∥∥1
− α

∥∥[ck + Jksk]
−∥∥

1
− (1− α)

∥∥[ck]−∥∥1

)
= −αgTksk − 1

2α
2sTkHksk + ασk+1

(∥∥[ck]−∥∥1 − ∥∥[ck + Jksk]
−∥∥

1

)
= αΔ�φ(sk;xk, σk+1)− 1

2α
2sTkHksk for all α ∈ [0, 1].
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The right-hand side of the equation is a quadratic function of α:

q(α) = aα2 + bα, where a = − 1
2s

T
kHksk and b = Δ�φ(sk;xk, σk+1) > 0.

Analysis similar to that used in the proof of Lemma 4.4 yields

(4.10) Δqφ(scφk ;xk, Hk, σk+1) ≥ min

{
Δ�φ(sk;xk, σk+1)

2

2μmax ‖sk‖22
, 1

2Δ�φ(sk;xk, σk+1)

}
,

where μmax is from Assumption 4.4, as desired.
Lemma 4.7. Suppose that Assumptions 4.1–4.4 are satisfied, that Algorithm 1

never encounters an infeasible stationary point, and that {σk} is bounded. Then, there
exists a constant Cρ ∈ (0,∞) such that

ρφk ≥ min
[
CρΔ�φ(sk;xk, σk+1)

2, 1
2Δ�φ(sk;xk, σk+1)

]
for all k ≥ 0.

Proof. The proof follows exactly as in Lemma 4.5.

4.1. Convergence analysis under bounded weighting parameter. In this
section we study Algorithm 1 under the assumption that the weighting parameter
stays bounded. It follows from this assumption and Lemma 4.2 that there exists
some k′ and σ̄ <∞ such that

(4.11) ‖sk‖2 ≤Ms <∞ and σk = σ̄ <∞ for all k ≥ k′.

Part (iii) of Theorem 4.1 implies that this scenario is guaranteed to occur, for example,
when all limit points are neither infeasible stationary points nor feasible points at
which the MFCQ fails.

We begin by showing that the line search step length is bounded away from zero
in certain situations.

Lemma 4.8. If Assumptions 4.1–4.3 and (4.11) hold and ε > 0, then the following
hold:

(i) There exists a constant αP > 0 such that αk ≥ αP > 0 for all k ∈ KP , where

KP = {k ∈ Sp : k ≥ k′ and Δ�φ(sk;xk, σ̄) ≥ ε}.

(ii) There exists a constant αF > 0 such that αk ≥ αF > 0 for all k ∈ KF , where

KF = {k ∈ Sv ∪ So ∪ Sb : k ≥ k′ and Δ�v(ssk;xk) ≥ ε}.

(iii) There exists a constant αf > 0 such that (α, s) = (α, sk) satisfies (2.31b) for
all 0 < α ≤ αf and all k ∈ Kf , where

Kf = {k ≥ k′ : Δ�f(sk;xk) ≥ ε}.

Proof. From [8, Lemma 3.4], there exists some positive constant Cφ such that

(4.12)
∣∣φ(xk + αsk; σ̄)− �φ(αsk;xk, σ̄)

∣∣ ≤ Cφ ‖αsk‖22 for all k ≥ k′ and α ∈ [0, 1].

We first prove part (i). Suppose that α satisfies

(4.13) 0 ≤ α ≤ (1− γφ)ε

CφM2
s

,
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where γφ ∈ (0, 1) is set in Algorithm 1 and Ms is defined in (4.11). We then use
φ(xk; σ̄) = �φ(0;xk, σ̄), the convexity of �φ( · ;xk, σ̄), (4.12), Δ�φ(sk;xk, σ̄) ≥ ε for
k ∈ KP , (4.11), (4.13), and (2.35) to conclude that

φ(xk; σ̄)− φ(xk + αsk; σ̄)

=
[
�φ(0;xk, σ̄)− �φ(αsk;xk, σ̄)

] − [
φ(xk + αsk; σ̄)− �φ(αsk;xk, σ̄)

]
≥ [

�φ(0;xk, σ̄)− α�φ(sk;xk, σ̄)− (1− α)�φ(0;xk, σ̄)
]− Cφα

2 ‖sk‖22
= α

[
�φ(0;xk, σ̄)− �φ(sk;xk, σ̄)

] − Cφα
2 ‖sk‖22

= γφαΔ�φ(sk;xk, σ̄) + (1− γφ)αΔ�φ(sk;xk, σ̄)− Cφα
2 ‖sk‖22

≥ γφαΔ�φ(sk;xk, σ̄) + (1− γφ)αε − Cφα
2 ‖sk‖22

≥ γφαΔ�φ(sk;xk, σ̄) ≥ γφαρ
φ
k for all k ∈ KP ,

which with (2.34) implies that (α, sk) is a p-pair. Thus, Algorithm 1 must select an
αk that satisfies

(4.14) αk ≥ min

{
ξ(1− γφ)ε

CφM2
s

, 1

}
=: αP,

where ξ ∈ (0, 1) is the backtracking parameter in Algorithm 1, which completes the
proof of part (i).

We now prove part (ii). It follows from (2.20) that

(4.15) Δ�φ(sk;xk, σ̄) ≥ σ̄ησΔ�v(ssk;xk) ≥ σ̄ησε for k ∈ KF .

If α satisfies

(4.16) α < min

[
(1− γφ)σ̄ησε

CφM2
s

,
ηvε

CvM2
s

]
,

where Cv is defined in (4.6) and ηv is defined in (2.16), then we may use (4.15) and
proceed as in the proof of part (i) to conclude that (2.34) holds. Moreover, we have
from Lemma 4.3, (2.16), (4.16), Δ�v(ssk;xk) ≥ ε for k ∈ KF , and (4.11) that

v(xk + αsk)− v(xk)(4.17)

≤ −αΔ�v(sk;xk) + α2Cv ‖sk‖22 < −αηvΔ�v(ssk;xk) + α
ηvε

CvM2
s

Cv ‖sk‖22
≤ −αηvε+ αηvε = 0 for all k ∈ KF ,

where the strict inequality holds since sk 
= 0 as a result of (4.15). Combining (4.17)
with (2.34) implies that (α, sk) is a b-pair. Thus, we conclude from the structure of
Algorithm 1 that

(4.18) αk ≥ min

{
ξ(1− γφ)σ̄ησε

CφM2
s

,
ξηvε

CvM2
s

, 1

}
=: αF > 0 for all k ∈ KF ,

where ξ ∈ (0, 1) is the backtracking parameter used in Algorithm 1.
Part (iii) is a standard result used in continuous unconstrained optimization that

follows since Δ�f (sk;xk) ≥ ε is equivalent to g(xk)
T sk ≤ −ε < 0 and sk is uniformly

bounded by (4.11).
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The next lemma justifies the three cases that we consider when analyzing Algo-
rithm 1.

Lemma 4.9. If Algorithm 1 does not terminate finitely, then one of the following
scenarios occurs:

Case 1. k ∈ Sp for all k sufficiently large,
Case 2. k ∈ So for all k sufficiently large, or
Case 3. |Sv ∪ Sb| =∞.
Proof. We proceed by contradiction and assume that none of the cases occurs. In

particular, since Case 3 does not hold it follows that k ∈ Sp ∪ So for all k sufficiently
large. Combining this with the fact that Cases 1 and 2 do not hold implies that the
iterates must oscillate between p- and o-iterates. However, this is not possible since
there is no mechanism in Algorithm 1 that allows for iterate k+1 to be a p-iterate if
iterate k is an o-iterate.

We now analyze Algorithm 1 for each of the three possible scenarios stated in the
previous result.

Case 1: k ∈ Sp for all k sufficiently large. In this case, there exists k′′ such that

(4.19) k ∈ Sp for all k ≥ k′′ ≥ k′,

where k′ is defined in (4.11). We first show that our measure of feasibility converges
to zero.

Lemma 4.10. If Assumptions 4.1–4.4, (4.11), and (4.19) hold, then
limk→∞ Δ�v(ssk;xk) = 0.

Proof. For a proof by contradiction, suppose that there exists an infinite subse-
quence

S ′′ := {k ≥ k′′ : Δ�v(ssk;xk) ≥ ε′′}
for some constant ε′′ > 0. It follows from (4.19), (2.20), (4.11), and the definition of
S ′′ that
(4.20) Δ�φ(sk;xk, σ̄) ≥ σ̄ησΔ�v(ssk;xk) ≥ σ̄ησε

′′ =: ε > 0 for all k ∈ S ′′,
which implies with (4.19) that

S ′′ ⊆ KP := {k ∈ Sp : k ≥ k′ and Δ�φ(sk;xk, σ̄) ≥ ε > 0}.
Combining KP with Lemma 4.8 implies the existence of a positive αP such that
αk ≥ αP > 0 for all k ∈ S ′′, which used with the definitions of S ′′ and Sp, (4.19),
Lemma 4.7, and (4.20) yields

φ(xk; σ̄)− φ(xk + αkŝk; σ̄) ≥ γφαkρ
φ
k(4.21)

≥ γφαk min
[
CρΔ�φ(sk;xk, σ̄)

2, 1
2Δ�φ(sk;xk, σ̄)

]
≥ γφαP min

[
Cρε

2, 1
2ε
]
> 0 for all k ∈ S ′′.

Now, for k′′ ≤ k ∈ Sp \ S ′′, it follows from (2.34), (2.20), and (2.28) that
(4.22)

φ(xk; σ̄)− φ(xk + αkŝk; σ̄) ≥ γφαk min
[
Δ�φ(sk;xk, σ̄), Δqφ(scφk ;xk, Hk, σ̄)

]
≥ 0.

It is now easy to see from (4.21), (4.22), and (4.19) that limk→∞ φ(xk; σ̄) = −∞,
which contradicts Assumptions 4.1 and 4.2. Thus, we conclude that
limk→∞ Δ�v(ssk;xk) = 0.
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We now show that all limit points are infeasible stationary points for prob-
lem (1.1).

Theorem 4.11. Suppose that Assumptions 4.1–4.4, (4.11), and (4.19) hold. If
x∗ is any limit point of the sequence {xk} generated by Algorithm 1, then x∗ is an
infeasible stationary point for problem (1.1).

Proof. Let vmin := min{vj : (vj , fj) ∈ Fk′′} ≡ min{vj : (vj , fj) ∈ Fk and k ≥
k′′}, where the second equality holds since by assumption k ∈ Sp for all k ≥ k′′ and
the filter is never expanded when k ∈ Sp. It follows from Lemma 3.1 that vmin > 0.
But then if there was a feasible limit point x∗, there must be iterates xk, k > k′′ that
are arbitrarily close to feasibility and thus ultimately one such that xk is acceptable to
Fk. Thus line 21 of Algorithm 1 implies that there will be an iterate k > k′′ for which
k /∈ Sp, which contradicts (4.19). Thus, all limit points are infeasible. It follows from
this fact, Lemma 4.10, and Lemma 2.1 that all limit points are infeasible stationary
points.

Importantly, the previous result shows that our algorithm remains in penalty
mode for all k sufficiently large only when all limit points are infeasible stationary
points.

Case 2: k ∈ So for all k sufficiently large. In this case, there exists k′′ such that

(4.23) k ∈ So for all k ≥ k′′ ≥ k′,

where k′ is defined in (4.11). We begin by showing that our feasibility measure
converges to zero.

Lemma 4.12. If Assumptions 4.1–4.4, (4.11), and (4.23) hold, then
limk→∞ Δ�v(ssk;xk) = 0.

Proof. For a contradiction, suppose that there exists ε′′ > 0 and an infinite
subsequence

S ′′ := {k ≥ k′′ : Δ�v(ssk;xk) ≥ ε′′} ⊆ So,
where we have used k′′ defined in (4.23). It then follows from the definition of So, the
o-pair (αk, ŝk) selected in Algorithm 1, (2.31b), (4.11), Lemma 4.5, (2.31a), (2.16),
and part (ii) of Lemma 4.8 that

f(xk)− f(xk + αkŝk) ≥ γfαkρ
f
k

≥ γfαk min
{
CρΔ�f (sk;xk)

2, 1
2Δ�f (sk;xk)

}
≥ γfαk min

{
Cρ

[
γvΔ�v(sk;xk)

]2
, 1

2γvΔ�v(sk;xk)
}

≥ γfαk min
{
Cρ

[
γvηvΔ�v(ssk;xk)

]2
, 1

2γvηvΔ�v(ssk;xk)
}

≥ γfαF min
{
Cρ

[
γvηvε

′′]2, 1
2γvηvε

′′
}

for all k ∈ S ′′

for some αF > 0. Similarly, for k′′ ≤ k ∈ So \ S ′′, it follows from (2.31), (2.16),
and (2.27) that

f(xk)− f(xk + αkŝk) ≥ γfαkρ
f
k ≥ γfαk min

{
γvΔ�v(sk;xk), Δqf (scfk ;xk, Hk)

}
≥ 0.

Combining the two previous inequalities with the definition of k′′ yields limk→∞ f(xk)=
−∞, which contradicts the fact that f is bounded as a consequence of Assumptions 4.1
and 4.2. This proves the result.
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We now show that feasible limit points are also first-order solutions of the penalty
function.

Lemma 4.13. Suppose that Assumptions 4.1–4.4, (4.11), and (4.23) hold. If x∗ =
limk∈S xk for some subsequence S and v(x∗) = 0, then limk∈S Δqφ(spk;xk, Bk, σ̄) = 0.

Proof. Suppose that there exists a constant ε′′ > 0 and an infinite subsequence

S ′′ := {k ∈ S : k ≥ k′′ : Δqφ(spk;xk, Bk, σ̄) ≥ ε′′},

where k′′ is defined in (4.23). It follows from line 34 of Algorithm 1, (4.11), and (4.23)
that

(4.24) Δqφ(sk;xk, Bk, σ̄) ≥ ηφΔqφ(spk;xk, Bk, σ̄) ≥ ηφε
′′ for k ∈ S ′′.

From (2.6) and (2.16), we know that v(xk) ≥ Δ�v(sk;xk) ≥ ηvΔ�v(ssk;xk) ≥ 0 for all
k, which may be combined with limk∈S v(xk) = v(x∗) = 0 (holds by assumption) to
conclude that

(4.25) Δ�v(sk;xk) ≤ ηφε
′′

σ̄ + γv
for k ∈ S sufficiently large,

where γv ∈ (0, 1) is defined in (2.31a). It follows from (2.8), (2.9), (4.24), Bk � 0,
and (4.25) that

Δ�f (sk;xk)(4.26)

≥ 1
2s

T
kBksk − σ̄Δ�v(sk;xk) + ηφε

′′ > ηφε
′′ − σ̄Δ�v(sk;xk)

≥ ηφε
′′ − σ̄

ηφε
′′

σ̄ + γv
=

γvηφε
′′

σ̄ + γv
=: εf > 0 for k ∈ S ′′ sufficiently large.

Combining this with part (iii) of Lemma 4.8, we know that there exists some αf > 0
such that (α, sk) satisfies (2.31b) for all k ∈ S ′′ sufficiently large and α ∈ (0, αf ], since
by assumption So = Sv ∪ So ∪ Sb for k ≥ k′′.

Next, we define

(4.27) Φk := min
(vi,fi)∈Fk

{
max

[
vi − αiηvΔ�v(ssi ;xi), βvi

] }
> 0,

where Fk is the kth filter. The fact that Φk > 0 follows since vi > 0 for all (vi, fi) ∈ Fk

as a consequence of Lemma 3.1. Moreover, it follows from (4.23) that Fk ≡ Fk′′ for
all k ∈ S ′′ so that Φk ≡ Φk′′ > 0 for all k ∈ S ′′. Now, pick εv > 0 such that
Φk′′ − CvM

2
s ≤ εv < Φk′′ and consider α such that

(4.28) 0 < α ≤ Φk′′ − εv

CvM2
s

≤ 1.

It then follows from Lemma 4.3, the fact that limx∈S v(xk) = 0, (2.16), (4.23), and
(4.28) that

v(xk + αsk)

≤ v(xk)− αΔ�v(sk;xk) + α2Cv ‖sk‖22 ≤ εv + α2CvM
2
s

≤ εv + αCvM
2
s ≤ εv +

Φk′′ − εv

CvM2
s

CvM
2
s = Φk′′ for all k ∈ S ′′ sufficiently large.
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Thus, xk + αsk is acceptable to Fk ≡ Fk′′ for all α satisfying (4.28) and k ∈ S ′′
sufficiently large.

Combining the above, (4.23), and the structure of Algorithm 1, we conclude that

(4.29) αk ≥ min

{
ξ
Φk′′ − εv

CvM2
s

, ξαf , 1

}
=: αmin > 0 for all k ∈ S ′′ sufficiently large,

where ξ ∈ (0, 1) is the backtracking parameter used in Algorithm 1. It then follows
from (4.23), (2.31b), (2.16), Lemma 4.5, (2.31a), (4.29), and (4.26) that

f(xk)− f(xk + αkŝk)(4.30)

≥ γfαkρ
f
k ≥ γfαk min

[
CρΔ�f (sk;xk)

2, 1
2Δ�f (sk;xk)

]
≥ γfαmin min

[
Cρ

(
εf
)2
, 1

2ε
f
]
> 0 for all k ∈ S ′′ sufficiently large.

However, for all k ∈ So, it follows from (2.31b), (2.31a), (2.16), and (2.27) that f(xk)−
f(xk+αkŝk) ≥ 0. This observation combined with (4.30) implies that limk→∞ f(xk) =
−∞, which contradicts the fact that f is bounded as a consequence of Assumptions 4.1
and 4.2. This completes the proof.

We now show that limit points are either infeasible stationary points or KKT
points for problem (1.1).

Theorem 4.14. Suppose that Assumptions 4.1–4.4, (4.11), and (4.23) hold. If
x∗ is a limit point of {xk}, then either

(i) x∗ is an infeasible stationary point or
(ii) x∗ is a KKT point for problem (1.1).
Proof. Suppose that limk∈S xk = x∗ for some subsequence S. It follows from

Lemma 4.12 that limk→∞ Δ�v(ssk;xk) = 0, so that if v(x∗) > 0, then x∗ is an infea-
sible stationary point (see Definition 2.1). Otherwise, we have that v(x∗) = 0. In
this case, it follows from Lemma 4.13 and (4.11) that limk∈S Δqφ(spk;xk, Bk, σ̄) = 0.
It follows from this fact, v(x∗) = 0, and Lemma 2.2 that x∗ is a KKT point for
problem (1.1).

Case 3: |Sv ∪ Sb| = ∞. The next result shows that if P-mode = false at the
beginning of the kth iteration, then xk is acceptable to the filter Fk.

Lemma 4.15. If P-mode = false at the beginning of iteration k, then xk is
acceptable to Fk.

Proof. The result immediately follows from the construction of Algorithm 1 and
consideration of the possible outcomes associated with iteration k − 1.

We first show that the feasibility measure converges to zero along Sv ∪ Sb.
Lemma 4.16. If Assumptions 4.1–4.3 hold and |Sv ∪ Sb| = ∞, then

limk∈Sv∪Sb
Δ�v(ssk;xk) = 0.

Proof. To reach a contradiction, suppose that we have the infinite subsequence

S := {k ∈ Sv ∪ Sb : Δ�v(ssk;xk) ≥ ε}
for some constant ε > 0. It follows from the definition of S, Lemma 4.15, and (2.29)
that

vk ≤ max
{
vj − αjηvΔ�v(ssj ;xj), βvj

}
or(4.31)

fk ≤ fj − γmin
{
vj − αjηvΔ�v(ssj ;xj), βvj

}
for k ∈ S and (vj , fj) ∈ Fk; note that by construction (vk, fk) ∈ Fk+1 for all k ∈ S.
Moreover, it follows from the definitions of Δ�v and S that vk ≥ Δ�v(ssk;xk) ≥ ε for
k ∈ S. Using Assumptions 4.1 and 4.2 we have a subsequence S ′ ⊆ S so that
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lim
k∈S′

Δ�v(ssk;xk) = θ� and lim
k∈S′

vk = θv for constants θv ≥ θ� ≥ ε > 0.

For any ε� ∈ (0, θ�) and εv ∈ (0, θv), it follows that

(4.32)

|Δ�v(ssk;xk)− θ�| < ε� and |vk − θv| < εv for all k ∈ S ′ ⊆ S sufficiently large.

Using (4.32), the definitions of ε�, ηv, Δ�v and S, αk ∈ (0, 1], S ′ ⊆ S, and part
(ii) of Lemma 4.8 gives

(4.33)

0≤ vk −αkηvΔ�v(ssk;xk)< vk −αFηv(θ�− ε�)≤ β2vk for all k ∈ S ′ sufficiently large

and some αF > 0, where

β2 :=
(θv + εv)− αFηv(θ� − ε�)

(θv + εv)
∈ (0, 1)

and β2 may be forced to lie in (0, 1) by choosing εv sufficiently close to zero and ε�
sufficiently close to θ�. Now define β∗ := max{β2, β} ∈ (0, 1),

ε∗ = min

{
1− β∗

1 + β∗ θv, εv

}
> 0,

and the subsequence S ′′ = {k ∈ S ′ : |vk − θv| < ε∗} so that

(4.34)
2β∗

1 + β∗ θv < vk <
2

1 + β∗ θv for all k ∈ S ′′ ⊆ S ′ sufficiently large.

Given k ∈ S ′′, define k+ ∈ S ′′ to be the successor to k in S ′′. It then follows
from (4.34), the definition of β∗, and (4.33) that

vk+ >
2β∗

1 + β∗ θv > β∗vk = max{β2, β}vk
≥ max

{
vk − αkηvΔ�v(ssk;xk), βvk

}
for all k ∈ S ′′.

Since S ′′ ⊆ S ′ ⊆ S, it follows from the previous inequality, the definition of k+, the
fact that (vk, fk) ∈ Fk+ , (4.31), the definition of Δ�v(ssk;xk), αk ∈ (0, 1], ηv ∈ (0, 1),
β ∈ (0, 1), γ ∈ (0, 1), θv > εv ≥ ε∗, and the definition of S ′′ that
fk − fk+ ≥ γmin

{
vk − αkηvΔ�v(ssk;xk), βvk

}
= γmin

{
(1 − αkηv)vk + αkηv

∥∥[c(xk) + J(xk)s
s
k]

−∥∥
1
, βvk

}
≥ γmin{1− αkηv, β}vk ≥ γmin{1− ηv, β}(θv − ε∗) > 0 for all k in S ′′.

Summing over k ∈ S ′′, we deduce that limk∈S′′ f(xk) = −∞, which contradicts
Assumptions 4.1 and 4.2.

We now prove that our optimality measure for φ converges to zero along a certain
subsequence.

Lemma 4.17. Suppose that Assumptions 4.1–4.4 and (4.11) hold and that |Sv ∪
Sb| =∞.

(i) If |Sv| =∞ and limk∈Sv xk = x∗ for some x∗ satisfying v(x∗) = 0, then

lim
k∈Sv

Δqφ(spk;xk, Bk, σ̄) = 0.
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(ii) If |Sv| <∞ and limk∈Sb
xk = x∗ for some x∗ satisfying v(x∗) = 0, then

lim inf
k∈Sb

Δqφ(spk;xk, Bk, σ̄) = 0.

Proof. We first prove part (i). To obtain a contradiction, suppose that there
exists the subsequence

S ′ := {k ∈ Sv : k ≥ k′ and Δqφ(spk;xk, Bk, σ̄) ≥ ε′}
for some constant ε′ > 0 and k′ defined in (4.11). It then follows from line 34 of
Algorithm 1 that

(4.35) Δqφ(sk;xk, Bk, σ̄) ≥ ηφΔqφ(spk;xk, Bk, σ̄) ≥ ηφε
′ for k ∈ S ′.

Then, since v(x∗) = 0 by assumption, we may use (4.35) (analogous to (4.24)) and
follow the same steps that led to (4.26) to show that

Δ�f(sk;xk) ≥ εf ≥ γvΔ�v(sk;xk) for k ∈ S ′ sufficiently large and some εf > 0,

where the second inequality follows from limk∈Sv xk = x∗, v(x∗) = 0, and the def-
inition of Δ�v. Thus, (2.30) does not hold, which implies that k /∈ Sv. This is a
contradiction and proves part (i).

We now prove part (ii), where |Sv| < ∞ = |Sb|. To obtain a contradiction,
suppose that

Δqφ(spk;xk, Bk, σ̄) ≥ ε′ for k ∈ Sb sufficiently large

and some constant ε′ > 0. It then follows from line 34 of Algorithm 1 that

(4.36)

Δqφ(sk;xk, Bk, σ̄) ≥ ηφΔqφ(spk;xk, Bk, σ̄) ≥ ηφε
′ for k ∈ Sb sufficiently large.

Since (4.36) is analogous to (4.35), we may again conclude as above that

(4.37)

Δ�f(sk;xk) ≥ εf ≥ γvΔ�v(sk;xk) for k ∈ Sb sufficiently large and some εf > 0.

Using (4.37), limk∈Sb
v(xk) = v(x∗) = 0, and part (iii) of Lemma 4.8, we may conclude

that there exists αf > 0 such that (α, sk) satisfies (2.31b) for all α ∈ (0, αf ] and k ∈ Sb
sufficiently large. Now, if αk → 0 along some subsequence S ′b ⊆ Sb, then it follows
from the previous sentence and (4.37) that (αk, sk) satisfies (2.31a) and (2.31b) for
all k ∈ Sb sufficiently large. We now show that xk + αksk is also acceptable to the
filter Fk for all k ∈ S ′b sufficiently large.

To this end, let (vi, fi) ∈ Fk for some k ∈ S ′b. It then follows from Lemma 4.15
that either vk ≤ max

{
vi−αiηvΔ�v(ssi ;xi), βvi

}
or fk ≤ fi−γmin

{
vi−αiηvΔ�v(ssi ;xi),

βvi
}
. In this first case, it follows from the definition of a b-pair that v(xk + αksk) ≤

vk ≤ max
{
vi−αiηvΔ�v(ssi ;xi), βvi

}
for all k ∈ Sb. In the second case, we have from

the fact that (2.31b) holds for k ∈ S ′b sufficiently large (recall that αk → 0 on S ′b),
(4.37), and Lemma 4.5 that f(xk+αksk) ≤ fk ≤ fi−γmin

{
vi−αiηvΔ�v(ssi ;xi), βvi

}
.

Thus, in either case we have that
(
v(xk+αksk), f(xk+αksk)

)
is acceptable to the sin-

gle element filter {(vi, fi)} for all k ∈ S ′b sufficiently large. Since this element (vi, fi)
of the filter Fk was arbitrary, we may conclude that

(
v(xk + αksk), f(xk + αksk)

)
is,

in fact, acceptable to the filter Fk for all k ∈ S ′b sufficiently large.
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To summarize, we have shown that (αk, sk) is an o-pair for k ∈ S ′b sufficiently
large. This is a contradiction since Algorithm 1 would have labeled such an iterate
as an o-iterate, not a b-iterate. Thus, there exists αb such that αk ≥ αb > 0 for all
k ∈ Sb sufficiently large. Combining this with (2.1), (2.34), v(·) ≥ 0, Lemma 4.7,
(2.8), (2.16), and (4.37) gives

f(xk)− f(xk + αkŝk)

(4.38)

= φ(xk; σ̄)− φ(xk + αkŝk; σ̄)− σ̄
(
v(xk)− v(xk + αkŝ)

) ≥ γφαkρ
φ
k − σ̄v(xk)

≥ γφαb min
[
CρΔ�φ(sk;xk, σ̄)

2, 1
2Δ�φ(sk;xk, σ̄)

]− σ̄v(xk)

= γφαb min
[
Cρ

(
Δ�f(sk;xk)

2 + 2σ̄Δ�f(sk;xk)Δ�v(sk;xk) + σ̄2Δ�v(sk;xk)
2
)
,

1
2

(
Δ�f (sk;xk) + σ̄Δ�v(sk;xk)

)]− σ̄v(xk)

≥ γφαb min
[
CρΔ�f (sk;xk)

2, 1
2Δ�f (sk;xk)

] − σ̄v(xk)

≥ γφαb min
[
Cρ

(
εf
)2
, 1

2ε
f
]
− σ̄v(xk) for k ∈ Sb sufficiently large.

Since |Sb| = ∞ > |Sv|, we may define k+ as the first iteration greater than k such
that k+ ∈ Sb∪So. It then follows from the construction of Algorithm 1 and |Sv| <∞
that

if k ∈ Sb is sufficiently large, then k+ ∈ Sb ∪ So and l ∈ Sp for all k < l < k+.

Using (2.34), αi ≥ 0, (2.20), and (2.28) we conclude that

φ(xk+1; σ̄)− φ(xk+ ; σ̄) =

k+−1∑
i=k+1

φ(xi; σ̄)− φ(xi + αiŝi; σ̄) ≥
k+−1∑
i=k+1

γφαiρ
φ
i

=

k+−1∑
i=k+1

γφαi min
[
Δ�φ(si;xi, σ̄), Δqφ(scφi ;xi, Hi, σ̄)

]
≥ 0 for k ∈ Sb sufficiently large,

which may be combined with (2.1), v(·) ≥ 0, and (2.33) to conclude that

f(xk+1)− f(xk+) ≥ σ̄
(
v(xk+)− v(xk+1)

)
(4.39)

≥ −σ̄v(xk+1) > −σ̄v(xk) for k ∈ Sb sufficiently large.

It then follows from (4.38) and (4.39) that

f(xk)− f(xk+) =
(
f(xk)− f(xk + αkŝk)

)
+
(
f(xk+1)− f(xk+)

)
> γφαb min

[
Cρ

(
εf
)2
, 1

2ε
f
]
− 2σ̄v(xk) for k ∈ Sb sufficiently large.(4.40)

Next, since limk∈Sb
v(xk) = 0 we know that

v(xk) ≤ 1

4σ̄
γφαb min

[
Cρ

(
εf
)2
, 1

2ε
f
]

for k ∈ Sb sufficiently large,

which may be combined with (4.40) to deduce that

(4.41)

f(xk)− f(xk+) > 1
2γφαb min

[
Cρ

(
εf
)2
, 1

2ε
f
]
=: εv > 0 for k ∈ Sb sufficiently large.
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If we define k̂+ to be the first b-iteration greater than k (thus, k̂+ ≥ k+), it follows
from (4.41), the fact that Algorithm 1 does not allow further p-iterations until it has
its next b-iteration, and the fact that the objective f is decreased during o-iterations
that f(xk)−f(xk̂+) > εv for k ∈ Sb sufficiently large. Since |Sb| =∞, this implies that
limk∈Sb

f(xk) = −∞, which contradicts the fact that f is bounded as a consequence
of Assumptions 4.1 and 4.2. This proves the result.

We now show that limit points of {xk}Sv∪Sb
are infeasible stationary or KKT

point for problem (1.1).

Theorem 4.18. Suppose that the Assumptions 4.1–4.4, (4.11), and |Sv∪Sb| =∞
hold. Then, there exists a limit point x∗ of {xk}Sv∪Sb

such that either

(i) x∗ is a KKT point of problem (1.1) or
(ii) x∗ is an infeasible stationary point.

Proof. From Assumptions 4.1 and 4.2 we know that there exists a limit point x∗
of {xk}Sv∪Sb

. First, if v(x∗) > 0, then it follows from Lemma 4.16 and Lemma 2.1
that x∗ is an infeasible stationary point, which is part (ii) of this theorem. Second, if
v(x∗) = 0 and |Sv| =∞, then it follows from part (i) of Lemma 4.17 and Lemma 2.2
that x∗ is a KKT point of problem (1.1). This is case (i) of this theorem. Finally,
if v(x∗) = 0 and |Sv| < ∞ (so that |Sb| = ∞), then it follows from part (ii) of
Lemma 4.17 and Lemma 2.2 that x∗ is a KKT point of problem (1.1), which once
again is case (i) of the theorem.

4.2. Convergence analysis under unbounded weighting parameter. We
now consider the situation when the weighting parameter increases without bound,
i.e., that

(4.42) lim
k→∞

σk =∞.

Our analysis begins with the following lemma, which is similar to [9, Lemma 3.8].

Lemma 4.19. Suppose that Assumptions 4.1–4.4 are satisfied, (4.42) holds, x∗
is a limit point of {xk} satisfying v(x∗) > 0, and Δ�v(ss∗;x∗) > 0, where ss∗ is the
solution to

minimize
(s,r)∈Rn+m

eTr subject to c(x∗) + J(x∗)s+ r ≥ 0, r ≥ 0, ‖s‖∞ ≤ δ,

for some δ ∈ [δmin, δmax]. Then, along any subsequence {xk}k∈K that converges to x∗,
the weighting parameter is updated only a finite number of times.

Proof. We begin by defining

(4.43) sφk(σ) := argmin
s∈Rn

qφ(s;xk, Bk, σ)

and

(4.44) μ := μ(σ) :=

(
1− ησ

ηv

)
σ < σ,

where we used the fact that 0 < 1− ησ/ηv < 1 holds since 0 < ησ < ηv < 1 is defined
in (2.19).

Using the fact that Δqφ(sφk(μ);xk, Bk, μ) ≥ 0, (2.9), and the definition of μ =
μ(σ), we can see that
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Δqφ(sφk(μ);xk, Bk, μ)

= Δqf (sφk (μ);xk, Bk) +

(
1− ησ

ηv

)
σΔ�v(sφk (μ);xk)

= Δqφ(sφk (μ);xk, Bk, σ)− ησ
ηv

σΔ�v(sφk(μ);xk) ≥ 0 for μ = μ(σ) and all σ > 0,

which implies that

(4.45) Δqφ(sφk(μ);xk, Bk, σ) ≥ ησ
ηv

σΔ�v(sφk(μ);xk) for μ = μ(σ) and all σ > 0.

Since Δ�v(ss∗;x∗) > 0 and limk∈K xk = x∗ by assumption, it follows from [17,
Theorem 3.2.8] that there exists ε ∈ (0, 1) and k′ such that

(4.46) Δ�v(ssk;xk) > ε for all k′ ≤ k ∈ K.

Moreover, since the Newton step −B−1
k gk minimizes qf (s;xk, Bk), it follows from

Assumption 4.3 that

qf (sφk(σ);xk, Bk) ≥ qf (−B−1
k gk;xk, Bk) = fk − 1

2gk
TB−1

k gk(4.47)

≥ fk − ‖gk‖
2
2

2λmin

for all σ > 0.

Next, it follows from (2.10), the choice δk ∈ [δmin, δmax], norm inequalities, and As-
sumption 4.3 that

(4.48) qf (ssk;xk, Bk) ≤ fk + ‖gk‖2 δmax +
1
2λmaxδ

2
max

.

Then, (4.47), (4.48), and Assumptions 4.1 and 4.2 imply the existence of a constant
Cqf > 0 such that

(4.49) qf (ssk;xk, Bk)− qf (sφk(σ);xk, Bk) ≤ Cqf for all σ > 0.

We now define

σcrit :=
Cqf

ε(1− ηv)
(
1− ησ

ηv

) > μ (σcrit) =
Cqf

ε(1− ηv)
> 0,(4.50)

and the associated infinite subsequence

(4.51) S ′ = {k ∈ K : k ≥ k′ and σk ≥ σcrit}.

It follows from the fact that Δqφ(sφk (σ);xk, Bk, σ) ≥ Δqφ(ssk;xk, Bk, σ) (by the defi-

nition of sφk(σ)), (2.9), (4.49), (4.46), and (4.50) that

Δ�v(sφk(σ);xk) ≥ Δ�v(ssk;xk)− 1

σ

(
qf (ssk;xk, Bk)− qf (sφk(σ);xk, Bk)

)
(4.52)

≥ Δ�v(ssk;xk)− 1

σ
Cqf = Δ�v(ssk;xk)

(
1− Cqf

σΔ�v(ssk;xk)

)
≥ ηvΔ�v(ssk;xk) for σ ≥ μ(σcrit) and k′ ≤ k ∈ K.
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We may now use the definition of S ′, (4.52), the fact that sφk(σk) ≡ spk, (2.15),
and (2.16) to show that

(4.53)

τk = 1, sk = spk, and Δqφ(sk;xk, Bk, σk+1) ≥ ηφΔqφ(spk;xk, Bk, σk+1) for k ∈ S ′

since ηφ ∈ (0, 1) in Algorithm 1. Next, it follows from (4.53), (2.9), Bk � 0, the fact

that spk ≡ sφk(σk) and spk minimizes qφ(s;xk, Bk, σk), (4.45), the fact that μ(σk) ≥
μ(σcrit) for k ∈ S ′, and (4.52) that

Δ�φ(sk;xk, σk) ≥ Δqφ(spk;xk, Bk, σk) ≥ Δqφ(sφk
(
μ(σk)

)
;xk, Bk, σk)(4.54)

≥ ησ
ηv

σkΔ�v(sφk
(
μ(σk)

)
;xk)

≥ ησ
ηv

σk

(
ηvΔ�v(ssk;xk)

)
= σkησΔ�v(ssk;xk) for k ∈ S ′.

We now conclude from (4.53), (4.54), (2.19), and the fact that the weighting parameter
is only increased in lines 12 and 34 of Algorithm 1 that σk is increased a finite number
of times on K.

We now consider feasible limit points at which the MFCQ [35] holds.
Lemma 4.20. Suppose that Assumptions 4.1–4.4 are satisfied, (4.42) holds, x∗ is a

limit point of {xk} at which v(x∗) = 0, and the MFCQ holds. Then, the following hold
for all xk sufficiently close to x∗ and σk sufficiently large: (i) Δ�v(spk;xk) = v(xk);
(ii) sk = spk; and (iii) σk is not increased during iteration k.

Proof. We may use [9, Lemmas 3.12 and 3.13] since the proofs only used the
properties of the MFCQ, the continuity of the problem functions f and g, and the
convexity of their penalty and steering subproblems. Their subproblem [9, equa-
tions 2.7(a–d)] is equivalent to our predictor subproblem (2.12) and both methods
minimize the same quadratic model of the penalty function. A small difference is that
our predictor subproblem is designed so that if �v(ssk;xk) = 0, then �v(spk;xk) = 0 as
well; they satisfy this requirement by increasing their penalty parameter in Step 4a
of [9, equation 2.11] and re-solving for a new step. Their steering subproblem [9,
equations 2.9(a–e)] is equivalent to (2.10).

The assumptions of this lemma and [9, Lemma 3.12] imply the existence of r > 0
and k′ ≥ 0 so that

(4.55) �v(spk, xk) = v(xk) for all k ∈ S ′,
where S ′ := {k : ‖xk − x∗‖ ≤ r and k ≥ k′}, which proves part (i). The inequality
Δ�v(ssk;xk) ≥ 0, (4.55), and the definition of Δ�v imply

Δ�v(spk;xk) ≥ v(xk)− �v(ssk;xk) = Δ�v(ssk;xk) ≥ ηvΔ�v(ssk;xk) for k ∈ S ′,
where ηv ∈ (0, 1) is defined in (2.16). Thus, we conclude from (2.16) that τk = 1 and
sk = spk for k ∈ S ′, which proves part (ii). Finally, it follows from [9, Lemma 3.13]
and the assumptions of this lemma that

(4.56) Δqφ(spk;xk, Bk, σk) ≥ σkησv(xk) ≥ σkησΔ�v(ssk;xk) for k ∈ S ′,
where the last inequality follows from the definition of Δ�v. It then follows from part
(ii) of this lemma, (2.9), Bk � 0, and (4.56) that

Δ�φ(sk;xk, σk) = Δ�φ(spk;xk, σk)≥Δqφ(spk;xk, Bk, σk) ≥ σkησΔ�v(ssk;xk) for k ∈ S ′.
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Wemay conclude from this inequality, (2.19), and the fact that σk will not be increased
on line 34 as a result of part (ii) of this lemma that σk+1 = σk for k ∈ S ′, which proves
part (iii).

Theorem 4.21. If Assumptions 4.1–4.4 and (4.42) hold, there is a limit point
x∗ such that either

(i) x∗ is an infeasible stationary point or
(ii) x∗ is feasible, but the MFCQ does not hold.

Proof. Let D to be the infinite index set consisting of the iterations for which the
weighting parameter is increased. Then, let x∗ be a limit point of {xk}k∈D, which
must exist as a consequence of Assumptions 4.1 and 4.2. First, suppose that v(x∗) > 0.
It then follows from Lemma 4.19 that if Δ�v(ss∗;x∗) > 0 (ss∗ is defined in Lemma 4.19),
then the weighting parameter is updated only a finite number of times along D, which
is a contradiction. Therefore, we deduce that Δ�v(ss∗;x∗) = 0 and consequently that
x∗ is an infeasible stationary point. Second, suppose that v(x∗) = 0. It then follows
from Lemma 4.20 that if the MFCQ holds at x∗, then σk will be increased only a
finite number of times along D. This is a contradiction and, therefore, the MFCQ
does not hold at x∗.

5. Conclusions. In this paper, we presented a new filter line search method
that replaced the traditional restoration phase with a penalty mode that systemat-
ically decreased an exact penalty function. Importantly, we solved a single strictly
convex quadratic program subproblem during each iteration that was always feasible.
Each search direction was defined as a convex combination of a steering step (a solu-
tion of a linear program) that represented the best local improvement in constraint
violation and a predictor step that reduced our strictly convex quadratic model of the
exact penalty function. We also allowed for the computation of an accelerator step
defined as a solution to a simple equality constrained quadratic program (plus trust-
region constraint) to promote fast local convergence. In this manner, the trial step
always incorporated information from both the objective function and constraint vi-
olation. To further promote step acceptance, we utilized second-order information in
the computation of Cauchy steps that provided realistic measurements of the decrease
one might expect from the nonlinear problem functions. By using local feasibility es-
timates that emerged during the steering process, we defined a new and improved
margin (envelope) of the filter. This new definition encouraged the acceptance of
steps that made reasonable progress but might be considered inadmissible by a tra-
ditional filter. Under standard assumptions, we proved global convergence of our
algorithm.

The fact that every subproblem of our method is feasible has an interesting (fa-
vorable) consequence when compared to previous SQP filter methods. Those methods
trigger a restoration phase in multiple situations, the most common being when the
traditional SQP subproblem is infeasible. In this case, the primary role of the restora-
tion phase is to obtain a new feasible subproblem. This undesirable situation is not
encountered in our method since all subproblems are feasible. Our method still may
enter a penalty phase, but only when overwhelming evidence indicates that previously
added filter entries are blocking progress. We believe this feature of our method is far
more attractive and practical in comparison to previous filter methods.

Local convergence issues have not been considered in this paper and are currently
under investigation. It is evident that our method—like filter methods and SQP meth-
ods based on exact penalty functions—may experience the Maratos effect [36], i.e.,
reject the unit step (the traditional SQP step) when the current iterate is arbitrarily
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close to a minimizer. We remain optimistic, however, that superlinear convergence
may be established if we make common second-order optimality assumptions on the
minimizer and include either a second-order correction strategy or a nonmonotone
approach [17, section 15.3.2.3].

Simple and straightforward modifications to our method allow for the solution of
problems defined by a mixture of inequality and equality constraints. For instance, the
definition of the constraint violation would be augmented to represent an �1 measure
of infeasibility for both inequality and equality constraints. Each key subproblem
must also be modified. For example, (2.13) would additionally include the linearized
equality constraints augmented by a pair of nonnegative elastic variables. Otherwise,
the algorithm remains unchanged.

We are currently implementing our algorithm. Once a robust and well-tested
code is obtained, we will investigate many interesting practical questions related to
our method. These questions include (i) computing the frequency with which our
method enters a penalty mode relative to a traditional restoration phase; (ii) evaluat-
ing the benefits and possible disadvantages of our penalty mode versus a traditional
restoration phase on test problems that trigger such phases; (iii) studying the stabil-
ity and quality of the iterations typically generated by a traditional restoration phase
and our penalty mode; and (iv) investigating the practical benefits of defining our
filter margin adaptively based on local estimates. However, such tests should only
be performed after a polished implementation is obtained so that reliable conclusions
may be obtained.
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