
SIAM J. OPTIM. c© 2015 Society for Industrial and Applied Mathematics
Vol. 25, No. 3, pp. 1885–1911

A NONMONOTONE FILTER SQP METHOD: LOCAL
CONVERGENCE AND NUMERICAL RESULTS∗

NICHOLAS I. M. GOULD† , YUELING LOH‡ , AND DANIEL P. ROBINSON‡

Abstract. The work by Gould, Loh, and Robinson [SIAM J. Optim., 24 (2014), pp. 175–209]
established global convergence of a new filter line search method for finding local first-order solutions
to nonlinear and nonconvex constrained optimization problems. A key contribution of that work
was that the search direction was computed using the same procedure during every iteration from
subproblems that were always feasible and computationally tractable. This contrasts previous filter
methods that require a separate restoration phase based on subproblems solely designed to reduce
infeasibility. In this paper, we present a nonmonotone variant of our previous algorithm that inherits
the previously established global convergence property. In addition, we establish local superlinear
convergence of the iterates and provide the results of numerical experiments. The numerical tests
validate our method and highlight an interesting numerical trade-off between accepting more (on
average lower quality) steps versus fewer (on average higher quality) steps.

Key words. filter, restoration, penalty function, sequential quadratic programming, nonlinear
programming, nonconvex

AMS subject classifications. 49M05, 49M15, 65K05, 65K10, 65K15

DOI. 10.1137/140996677

1. Introduction. In this paper, we present a new algorithm for finding local
solutions of nonconvex optimization problems of the form

(1.1) minimize
x∈Rn

f(x) subject to c(x) ≥ 0,

where the objective function f : Rn → R and the constraint function c : Rn → R
m

are assumed to be twice continuously differentiable. Many algorithms have been
developed for this task and include interior-point [13, 45, 46, 42, 47], augmented La-
grangian [1, 6, 7, 10, 34], primal-dual penalty [15, 23, 48], and sequential quadratic
optimization (SQO) methods [2, 9, 11, 17, 18, 19, 22, 28, 29, 30, 38, 39] (commonly
called sequential quadratic programming (SQP) methods). Each class of methods has
advantages and disadvantages. Interior-point methods may be used to solve very-
large-scale sparse problems since the predominate cost per iteration is a single sym-
metric indefinite matrix factorization. However, interior-point methods are currently
ineffective at utilizing a good initial estimate of a solution, i.e., at being warm-started.
Augmented Lagrangian methods may be warm-started and implemented matrix-free
and thus may be applied to extreme-scale problems. Unfortunately, too frequently
they are ineffective/inefficient at identifying those inequality constraints satisfied as
equalities at a local solution, i.e., an optimal active-set. SQO methods are celebrated
for their optimal active-set identification and warm-start abilities but are practical
only on medium- to large-scale problems. In summary, each class of algorithms serves
a distinct and vital role in solving real-life optimization problems.

∗Received by the editors November 21, 2014; accepted for publication (in revised form) July 27,
2015; published electronically September 22, 2015. This research was supported by the National
Science Foundation grant DMS-1217153 and EPSRC grant EP/I013067/1.

http://www.siam.org/journals/siopt/25-3/99667.html
†Scientific Computing Department, Rutherford Appleton Laboratory, Chilton, OX11-0QX, UK

(nick.gould@stfc.ac.uk).
‡Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD

21218 (yueling.loh@jhu.edu, daniel.p.robinson@gmail.com).

1885

http://www.siam.org/journals/siopt/25-3/99667.html
mailto:nick.gould@stfc.ac.uk
mailto:yueling.loh@jhu.edu
mailto:daniel.p.robinson@gmail.com

1886 N. I. M. GOULD, Y. LOH, AND D. P. ROBINSON

Each class of methods discussed in the previous paragraph contains a variety of
algorithms that may be distinguished by their details. For example, some of these
variations include whether a line search or trust region is used or whether globalization
is attained via the use of a merit function, a filter, or a step classification scheme.
It is no surprise that each of these variants has advantages and disadvantages and
serves a vital role in optimization. In this paper, we address some of the weaknesses
of previous filter methods, which will be presented in the context of a new filter line
search SQO algorithm. We note, however, that the ideas and philosophies presented
in this paper may be used (to various degrees) by future filter-based algorithms.

The new SQO algorithm is a nonmonotone variant of the method that we pre-
sented in [26]. (Nonmonotone strategies are commonly used by SQO-like algorithms
to avoid the Maratos effect [37] and ultimately for proving superlinear convergence
of the iterates.) The motivation for that work was to overcome the dissatisfying fact
that previous filter methods require a special restoration phase to handle various sce-
narios that would otherwise lead to failure. For example, some methods formulate
subproblems that may be infeasible [18, 19, 46], while others may fail as a result of
an ineffective line search [46]. In all of these cases, the restoration phase temporar-
ily ignores the object function and iterates toward the feasible region until the issue
that triggered the restoration phase is resolved. Since the objective function is ig-
nored during these iterations, a significant decrease in performance is often observed
on problems for which restoration plays a notable role. In contrast, the filter line
search method developed in [26] computes a search direction from the same proce-
dure during every iteration, uses a practical penalty phase in lieu of a traditional
restoration phase, incorporates an improved definition for the filter margin, and is
globally convergent.

Here, we present a nonmonotone variant (section 2) of our previously introduced
algorithm [26] that inherits the global convergence property (section 3) previously
established. We also show that no additional mechanism, e.g., a shadow/nonmonotone
filter [31, 40, 41], is needed to establish local superlinear convergence (section 4) of
the iterates. Finally, we provide numerical results (section 5) on problems from the
CUTEst [25] test set.

Before proceeding, we briefly describe aspects of some closely related algorithms.
The nonmonotone (sometimes called watchdog) approach that we use is a common
way for exact penalty and filter methods to address the Maratos effect (e.g., see [31,
41, 40]) and thereby establish superlinear convergence under standard assumptions.
Interestingly, the second of two consecutive steps in a nonmonotone approach is an
example of a second-order correction step. Second-order correction steps, such as
those used by Wächter and Biegler [44], are computed from systems of linear equations
defined from quantities that the user is free to choose, subject to satisfying certain
conditions. Consequently, the sum of two consecutive trial steps in our nonmontone
approach is equivalent to the sum of their trial and second-order correction step for one
particular choice of the correction step. In terms of the definition of the filter, we use
the same one, although in our case acceptability is based on weaker conditions. In [40],
Shen, Leyffer, and Fletcher used a nonmonotone filter to establish local convergence,
while a standard filter is used to prove global convergence. In particle, they show
that a point acceptable to the local filter is obtained after a constant number of
nonmonotone steps. Another approach for establishing local convergence and avoiding
the Maratos effect is to use the Lagrangian as an element of the filter in place of the
objective function [43]. We note that all of these related methods require a traditional
restoration phase.

A NONMONOTONE FILTER METHOD 1887

1.1. Notation and preliminaries. We use R+ to denote the set of nonnegative
real numbers. Given vectors a and b with the same dimension, the vector with ith
component aibi is denoted by a · b. Similarly, min{a, b} is a vector with components
min{ai, bi}, and [a]− is a vector with components max{−a, 0} with the maximum
taken componentwise. The ith component of a vector labeled with a subscript will
be denoted by [·]i, e.g., [v]i is the ith component of the vector v. The subvector
of components with indices in the index set S is denoted by [·]S , e.g., [v]S is the
vector with components vi for i ∈ S. The vector g(x) is used to denote ∇f(x), the
gradient of f(x). The matrix J(x) denotes the m× n constraint Jacobian, which has
ith row ∇ci(x)T , the gradient of the ith constraint function ci(x). The Lagrangian
function associated with problem (1.1) is L(x, y) := f(x) − c(x)Ty, where y is an m-
vector of dual variables associated with the inequality constraints. The Hessian of the
Lagrangian with respect to x is denoted by H(x, y) := ∇2

xxf(x) −
∑m

i=1 yi∇2
xxci(x).

The vector pair (xk, yk) denotes the kth primal-dual estimate of a solution to (1.1).
For convenience, we use fk := f(xk), gk := g(xk), ck := c(xk), and Jk := J(xk).
Finally, for any ε > 0 and vector v ∈ R

n, we let Bε(v) := {x ∈ R
n : ‖x− v‖2 < ε}

denote the open ball of radius ε centered at v. We say that x is a KKT point for
problem (1.1) with associated Lagrange multiplier vector y if and only if

(1.2) FKKT(x, y) :=

(
g(x)− J(x)Ty
min

{
c(x), y

}) =

(
0
0

)
,

and we say that (x, y) is a KKT pair. The primary goal of most optimization algo-
rithms is to find a KKT pair. Our trial step computation uses the �1-penalty function

(1.3) φ(x;σ) := f(x) + σv(x) with v(x) :=
∥∥[c(x)]−∥∥

1
and σ > 0,

where σ is called the penalty parameter.

2. A nonmonotone filter SQO method. In this section, we present our non-
monotone line search filter SQO method. We begin with an overview of the algorithm
in section 2.1, give details of the search direction in section 2.2, discuss step acceptance
in section 2.3, and formally state the complete algorithm in section 2.4.

2.1. Algorithm overview. Our method is a line search algorithm. During
the kth iteration, a search direction sk is computed and used within a backtracking
line search procedure. Although the direction sk is sufficient to guarantee global
convergence, we also allow for the computation of an additional search direction sak
that promotes faster convergence; in fact, we establish (under common assumptions)
the local superlinear convergence of the iterates. Our algorithm is not typical since we
perform a backtracking line search along both sk and sak (in parallel) with preference
given to sak.

Every line search algorithm terminates when some specified set of conditions
is satisfied. In our case, the precise conditions used depend on the current mode
of our algorithm; we utilize a filter mode and a penalty mode. The filter mode is
similar to that used by previous filter methods, although some new enhancements
will be introduced. The penalty mode is based on the penalty function (1.3) and used
in lieu of a traditional restoration phase, which we find appealing from a practical
perspective. Importantly, the calculations performed to obtain the search directions
sk and sak are exactly the same for both modes.

In filter mode, there are three sets of conditions that can trigger the line search
to terminate. Which of these sets of conditions are satisfied determines whether

1888 N. I. M. GOULD, Y. LOH, AND D. P. ROBINSON

we call that iterate an o-, a v-, or a b-iterate; the precise conditions will be given
in section 2.3. The conditions that define o- and v-iterates are similar in spirit to
previous filter methods, but with some enhancements. By contrast, the conditions
that define a b-iterate indicate progress toward solving (1.1) and, in addition, that a
penalty mode should be entered. Roughly, the properties of a b-iterate are that (i)
the conditions that define a v- and an o-iterate are not satisfied, (ii) the constraint
violation is decreased, and (iii) the penalty function is decreased. This is a situation
that commonly occurs when the entries that define the filter (to be discussed in
section 2.3) are blocking additional progress and would typically trigger a restoration
phase. Therefore, one may view our penalty mode as a replacement for a traditional
restoration phase that is triggered by intuitive conditions.

In penalty mode, a single set of conditions is used to terminate the line search.
The iterates computed to satisfy those conditions are called p-iterates since they
obtain sufficient decrease in the penalty function. We choose to return to filter mode
as soon as any iterate is computed that is acceptable to the filter. (See section 2.3 for
additional details.) Again, the calculations of each trial step in the penalty mode are
precisely the same as those performed in the filter mode.

The search direction sk is computed from subproblems that are always feasible
and promote convergence to the feasible region in an efficient manner. When xk

is infeasible, the direction sk is constructed to be a descent direction for v at xk.
Moreover, the penalty parameter is adjusted to make sk a descent direction for φ at
xk. These key properties associated with sk ensure that the line search will terminate
finitely with a point that decreases both the constraint violation and penalty function,
i.e., with a b-iterate, when xk is infeasible. If xk is feasible, finite termination of the
line search will be guaranteed by the conditions that define an o-iterate. Importantly,
unlike some algorithms [46], we do not use a heuristic for recognizing failure of the
line search as a trigger to enter restoration (or penalty) mode.

The second search direction sak has been previously used [28, 29, 30, 38]. In
short, it accelerates convergence by using an active set estimation to form an equal-
ity constrained QP subproblem defined with exact second derivatives. Other ac-
celeration steps are possible [28] but will not be considered here. We also suspect
that a superlinear rate of convergence could be established based on the steps sk
(i.e., without computing and using accelerator steps sak) if the matrices Bk were
chosen to satisfy the Dennis–More [14] condition. However, since it is difficult to
construct such a sequence (especially in the large-scale case), we prefer to use the
accelerator step sak to achieve the same fast convergence. Also, in our experience,
the step sak often improves global performance, even though no such result can be
proved.

Finally, to ensure superlinear convergence, we must incorporate either a second-
order correction step [8, section 10.4.2] or a nonmonotone strategy [8, section 10.1.1].
Here, we choose to use a nonmonotone strategy in which we temporarily accept the
acceleration step sak even when it does not satisfy the conditions normally required to
terminate the line search. In fact, we allow this to continue for a prespecified number
of iterations in what is called a nonmonotone phase. If, unfortunately, appropriate
conditions are not satisfied within the prespecified number of iterations, we return to
the first iterate of the nonmonotone phase and perform a backtracking line search as
outlined earlier. Technically, we are not using a nonmonotone strategy since our step
acceptance is driven by a filter in which monotonicity is not typical. Thus, it is more
accurately categorized as a watchdog strategy [5, 32].

A NONMONOTONE FILTER METHOD 1889

2.2. Search direction computation. In this section, we provide a compact
description of the calculations for computing the search directions sk and sak, which
are the same as in [26, section 2].

Let xk be the current iterate. The search direction sk is defined as a convex
combination of a steering step ssk and a predictor step spk. The steering step ssk is
defined as a solution (not necessarily unique) to the convex piecewise linear steering
subproblem

(2.1) minimize
s∈Rn

�v(s;xk) :=
∥∥[ck + Jks]

−∥∥
1

subject to ‖s‖∞ ≤ δk

or the equivalent linear program

(2.2) minimize
(s,r)∈Rn+m

eTr subject to ck + Jks+ r ≥ 0, r ≥ 0, ‖s‖∞ ≤ δk,

where ck := c(xk), Jk := J(xk), δk ∈ [δmin, δmax], and 0 < δmin ≤ δmax < ∞. Once
the steering step ssk has been computed, we calculate the change in the linearized
constraint violation given by

(2.3) Δ�v(ssk;xk) := �v(0;xk)− �v(ssk;xk) =
∥∥[ck]−∥∥1 − ∥∥[ck + Jks

s
k]

−∥∥
1
,

which provides a prediction of the decrease in infeasibility that one might expect from
the step ssk. Moreover, this quantity allows us to determine whether xk is an infeasible
stationary point, i.e., an infeasible first-order minimizer of v. Specifically, if

(2.4) vk := v(xk) > 0 and Δ�v(ssk;xk) = 0,

then xk is an infeasible stationary point for v.
The computation of the predictor step spk involves the quadratic model of the

objective function

qf (s;x,M) := f(x) + g(x)T s+ 1
2s

TMs

for any symmetric matrix M , and the piecewise quadratic model of φ given by

qφ(s;x,M, σ) := qf (s;x,M) + σ�v(s;x)

≡ f(x) + g(x)T s+ 1
2s

TMs+ σ
∥∥[c(x) + J(x)s]−

∥∥
1
.

The predictor step is computed as the unique solution to one of the following strictly
convex subproblems:

spk =

⎧⎪⎨⎪⎩
argmin
s∈Rn

qf (s;xk, Bk) subject to ck + Jks ≥ 0, if Δ�v(ssk;xk) = vk,(2.5a)

argmin
s∈Rn

qφ(s;xk, Bk, σk) otherwise,(2.5b)

where σk > 0 is the kth penalty parameter value and Bk a positive-definite approxi-
mation of ∇2

xxL(xk, yk).
The search direction sk is then defined as

(2.6) sk := (1 − τk)s
s
k + τks

p
k,

where τk is the largest number on [0, 1] such that

(2.7) Δ�v(sk;xk) ≥ ηvΔ�v(ssk;xk) ≥ 0 for some ηv ∈ (0, 1).

This makes sk a descent direction for v when Δ�v(ssk;xk) > 0 (see [26, Lemma 2.6]).

1890 N. I. M. GOULD, Y. LOH, AND D. P. ROBINSON

Next, the penalty parameter σk+1 is updated so that sk is also a decent direction
for the penalty function φ (see [26, Lemma 2.10]) at xk. Specifically, if we denote

Δ�φk = Δ�φ(sk;xk, σk) and Δ�vk = Δ�v(ssk;xk), then we set

(2.8) σk+1 ←
{
σk if Δ�φk ≥ σkησΔ�vk,

max
{
σk + σinc,

−Δ�f(sk;xk)
Δ�v(sk;xk)−ησΔ�v(ssk;xk)

}
otherwise

for some σinc > 0 and 0 < ησ < ηv < 1 with ηv defined in (2.7), and where

Δ�f (sk;xk) := −gTk sk and Δ�φ(sk;xk, σk) := Δ�f (sk;xk) + σkΔ�v(sk;xk)

with gk := g(xk).
Given the search direction sk, the penalty parameter σk+1, the kth Lagrange

multiplier estimate ypk from the predictor step problem (2.5), and Hk := ∇2
xxL(xk, y

p
k),

we compute the Cauchy-f step

(2.9) scfk := αf
ksk with αf

k := argmin
0≤α≤1

qf (αsk;xk, Hk)

and the Cauchy-φ step

(2.10) scφk := αφ
ksk with αφ

k := argmin
0≤α≤1

qφ(αsk;xk, Hk, σk+1).

These Cauchy steps measure the predicted decrease in the objective function f and
penalty function φ, respectively, along the search direction sk using the quadratic
models qf and qφ defined with the exact Hessian matrix Hk. To be precise, we define
a predicted change in the objective function given by

Δqf (scfk ;xk, Hk) := qf (0;xk, Hk)− qf (scfk ;xk, Hk) = −gTk scfk − 1
2s

cf
k

T
Hks

cf
k(2.11)

and a predicted change in the merit function given by

Δqφ(scφk ;xk, Hk, σk+1)

:= qφ(0;xk, Hk, σk+1)− qφ(scφk ;xk, Hk, σk+1)

= −gTk scφk − 1
2s

cφ
k

T
Hks

cφ
k + σk+1

(∥∥[ck]−∥∥1 − ∥∥[ck + Jks
cφ
k]−

∥∥
1

)
.(2.12)

Finally, to accelerate convergence, we compute an accelerator step as

(2.13) sak := spk + sa
′

k ,

where sa
′

k is computed as

(2.14) sa
′

k := argmin
s∈Rn

qf (spk + s;xk, Hk) subject to [Jks]Ak
= 0, ‖s‖2 ≤ δa,

the set

(2.15) Ak := A(spk) := {i : [ck + Jks
p
k]i = 0}

gives a prediction of those constraints active at a solution to (1.1), and δa > 0 is a
trust-region radius.

A NONMONOTONE FILTER METHOD 1891

2.3. Step acceptance. The iterations of our algorithm consist of the disjoint
union of two types of iterations. The first type, denoted by S and called the set of
successful iterations, are those iterations for which at least one of four sets of conditions
are satisfied. (We also always include iteration zero.) These sets of conditions are
described later in this section, but were already outlined in section 2.1.

The second type, denoted by U and called the set of unsuccessful iterations, is
the complementary set consisting of the nonmonotone iterations, i.e, those iterations
during which the full trial step is accepted even though none of the sets of conditions
described below are satisfied. Note that S ∩ U = ∅ and that every iteration belongs
in either S or U .

To handle the nonmonotone nature of our algorithm, it is convenient to define
R(k) as the last successful iteration (which may in fact be k), i.e.,

R(k) := max{i : k ≥ i ∈ S}.

Consequently, if R(k) < j ≤ k, then j ∈ U and iteration j is part of a nonmonotone
sequence of iterations.

We now begin to describe the sets of conditions that determine when an iteration
is included in the set of successful iterations S. Central to this task is the concept of
a filter, which is formally defined as any finite set of points in R

+ × R. In our case,
we initialize the filter as F0 = ∅ and then update it so that at each iteration k the
filter satisfies Fk ⊆ {(vj , fj) : 0 ≤ j < k}. Whether an ordered pair is added to the
filter at the end of each iteration depends in part on whether the iterate is acceptable
to the current filter as defined next.

Definition 2.1 (acceptable to Fk). The point x is acceptable to Fk if its asso-
ciated ordered pair (v(x), f(x)) satisfies

(2.16)
v(x) ≤ max

{
vi − αiηvΔ�v(ssi ;xi), βvi

}
or

f(x) ≤ fi − γmin
{
vi − αiηvΔ�v(ssi ;xi), βvi

}
for all 0 ≤ i < k satisfying (vi, fi) ∈ Fk, where αi ∈ (0, 1] is the ith step length, and
{ηv, β, γ} ⊂ (0, 1) are some constants.

Note that the two inequalities in (2.16) provide a margin around the elements
of the filter in (v, f)-space, ensuring that the constraint violation or the objective
function at x is sufficiently smaller than at points xi whose ordered pair is in the
current filter Fk.

In certain situations, we need to know that a trial iterate is acceptable to the
filter defined by the union of Fk with an ordered pair (vj , fj) associated with some
xj that is not in the filter. This leads to the definition of being acceptable to the
augmented filter.

Definition 2.2 (acceptable to Fk augmented by xj). The point x is acceptable
to Fk augmented by xj if x is acceptable to Fk as given by Definition 2.1 and (2.16)
holds with i = j.

Acceptability to the filter is only one aspect used to define the four sets of con-
ditions that are checked during each iteration. Which sets of conditions are checked
depends on the current mode, i.e., filter or penalty mode; an overview of these two
modes was discussed in section 2.1. At this point, the reader only needs to know that
step acceptance in filter mode (section 2.3.1) is driven by acceptability to the filter,
whereas step acceptance in penalty mode (section 2.3.2) is driven by reducing the
penalty function.

1892 N. I. M. GOULD, Y. LOH, AND D. P. ROBINSON

In the following two sections, the names used to denote various pairs of the form
(α, s) for some step length α and search direction s (e.g., see Definition 2.3) are
the same as in [26]. This decision emphasizes that the definitions in this paper are
generalizations of the former that account for nonmonotonicity.

2.3.1. Step acceptance in filter mode. In filter mode, we seek to obtain a
v-(violation)-pair, an o-(objective)-pair, or a b-(blocking)-pair. The pair (αk, ŝk) for
some ŝk ∈ {sak, sk} is deemed to be a v-pair based on the following.

Definition 2.3 (v-pair). The pair (α, s) constitutes a v-pair if xk + αs is ac-
ceptable to FR(k) augmented by xR(k) and

(2.17) Δ�f (sR(k);xR(k)) < γvΔ�v(sR(k);xR(k)) for some γv ∈ (0, 1).

If (αk, ŝk) is a v-pair, we say that xR(k) is a v-iterate and set xk+1 ← xk + αkŝk.
In this case, we add k + 1 to the set of successful iterates S and (vR(k), fR(k)) to the
filter FR(k). We remain in filter mode.

The pair (αk, ŝk) for some ŝk ∈ {sak, sk} is deemed an o-pair based on the following.
Definition 2.4 (o-pair). The pair (α, s) constitutes an o-pair if xk + αs is

acceptable to FR(k),

Δ�f(sR(k);xR(k)) ≥ γvΔ�v(sR(k);xR(k)), and(2.18a)

f(xk + αs) ≤ f(xR(k))− γfαρ
f
R(k),(2.18b)

where γv ∈ (0, 1) is the same constant used to define a v-pair, γf ∈ (0, 1), and

(2.19) ρfR(k) := min
{
Δ�f (sR(k);xR(k)), Δqf (scfR(k);xR(k), HR(k))

}
.

If (αk, ŝk) is an o-pair, we say that xR(k) is an o-iterate and set xk+1 ← xk+αkŝk.
In this case, we add k + 1 to the set of successful iterates S but do not modify the
filter. We remain in filter mode. For these types of pairs, the value of the objective
function at xk+1 is significantly smaller than the value at xR(k).

Finally, the following is used to determine whether the pair (αk, sk) is a b-pair.
Definition 2.5 (b-pair). The pair (α, s) constitutes a b-pair if

(2.20) v(xk + αs) < v(xR(k))

and

(2.21) φ(xk + αs;σk+1) ≤ φ(xR(k);σR(k)+1)− γφαρ
φ
R(k) for some γφ ∈ (0, 1),

where

(2.22) ρφR(k) := min
{
Δ�φ(sR(k);xR(k), σR(k)+1), Δqφ(scφR(k);xR(k), HR(k), σR(k)+1)

}
.

If (αk, sk) is a b-pair, we say that xR(k) is a b-iterate and set xk+1 ← xk + αksk.
In this case, we add k + 1 to the set of successful iterates S, add (vR(k), fR(k)) to the
filter Fk, and then enter penalty mode. For these pairs, the constraint violation and
penalty function at xk+1 are smaller than at xR(k). Since b-pairs will only be checked
for after the conditions of a v- and an o-pair are checked, it indicates that the current
filter entries may be blocking productive steps. Therefore, we respond by accepting
the step xk+1 and entering penalty mode. We note that this is the only scenario in
which we enter penalty mode.

A NONMONOTONE FILTER METHOD 1893

2.3.2. Step acceptance in penalty mode. If penalty mode is entered, we
have reason to believe that the current filter entries are blocking productive steps.
Thus, in penalty mode, we seek steps that decrease the penalty function but return
to filter mode as soon as is deemed appropriate. The following definition is used to
determine when the pair (αk, ŝk) for some ŝk ∈ {sak, sk} is a p-(penalty)-pair.

Definition 2.6 (p-pair). The pair (α, s) is a p-pair if (2.21) is satisfied.
If (αk, ŝk) is a p-pair, we say that xR(k) is a p-iterate, set xk+1 ← xk +αkŝk, and

add k+ 1 to the set of successful iterations S. Also, if xk + αkŝk is acceptable to the
filter FR(k), we return to filter mode but otherwise remain in penalty mode. It is clear
that in this case the value of the penalty function at iterate xk+1 is significantly less
than the value at xR(k).

2.4. The formal statement of the algorithm. Our method is stated as Al-
gorithm 1. The logical flow during each iteration depends on the value of several
parameters: fails holds the number of consecutive unsuccessful iterations that have
been performed, max fails holds the value of the maximum allowed consecutive un-
successful iterations, and P-mode is a flag that indicates whether the current mode
is penalty or filter mode. Although the parameter max fails is only required to be
nonnegative, for the rest of this section we assume that max fails > 0 so that the
algorithm is nonmonotone.

To explain the flow of logic, let us first examine the algorithm when fails ≤
max fails. In this case, the condition in line 4 tests false so that the search directions
sk and sak are computed in lines 7–15 as described in section 2.2. We now consider
two possible scenarios. First, suppose that P-mode has the value false in line 17, i.e.,
the algorithm is in filter mode (the default mode). Then, since fails ≤ max fails
and max fails > 0, we only check whether the pair (1, sak) is a v-pair, an o-pair, or
a b-pair, i.e., we only consider the full accelerator step. If (1, sak) does satisfy the
conditions that define the various pairs, we set xk+1 ← xk + sak and add iteration
k + 1 to the set of successful iterations S. Otherwise, our nonmonotone strategy
still chooses to set xk+1 ← xk + sak, to stay in filter mode, and to increase the fails
counter. Second, suppose that P-mode has the value true in line 17. Then, since
fails ≤ max fails and max fails > 0, we only check whether the pair (1, sak) is a
p-pair. If (1, sak) is a valid p-pair, we set xk+1 ← xk + sak and add iteration k +
1 to the set of successful iterations S. Otherwise, our nonmonotone strategy still
chooses to set xk+1 ← xk + sak, to stay in penalty mode, and to increase the fails
counter.

If the counter fails is ever incremented to a value larger than max fails, then
the flow of logic changes. In short, we return to the last successful iterate (see line 5)
and then perform a backtracking line search. To give more details, first suppose that
P-mode has the value false in line 17. Then, the backtracking loop starts in line 29
and proceeds until either a valid v-, o-, or b-pair is found. Note that in line 31,
the phase ŝk ∈ {sak, sk} should be interpreted as first setting ŝk to the value sak and
second setting it to the value sk. Also note that we check whether (αk, s

a
k) or (αk, sk)

are acceptable as v- or o-pairs before checking if (αk, sk) is a valid b-pair; this gives
preference to filter mode since b-pairs trigger entrance into penalty mode. Second,
suppose that P-mode has the value true in line 17. Then, the backtracking loop starts
in line 18 and proceeds until a valid p-pair is found. Once a valid p-pair (αk, ŝk) is
obtained, we immediately go to line 25 to test whether the next iterate xk + αkŝk
is acceptable to the filter Fk; if it is acceptable, we return to filter mode by setting
P-mode to false.

1894 N. I. M. GOULD, Y. LOH, AND D. P. ROBINSON

Finally, at the end of every iteration and regardless of the current mode, we choose
to increase the penalty parameter if

(2.23) Δqφ(sk;xk, Bk, σk+1) < ηφΔqφ(spk;xk, Bk, σk+1) for some ηφ ∈ (0, 1).

The satisfaction of (2.23) indicates that the contribution of spk to the definition of sk
in (2.6) is dwarfed by the contribution of the steering step ssk. This typically results
when the value of τk used in the definition of sk is very small, which is a sign (see
(2.6) and (2.7)) that the predictor step spk did not make significant progress toward
linearized feasibility. Thus, the natural course of action is to increase the penalty
parameter (see line 46) to promote linearized feasibility of the predictor step during
the next iteration.

3. Global convergence. In this section, we establish the same global conver-
gence result as in [26] under the same assumptions, which we restate here.

Assumption 3.1. The iterates {xk} lie in an open, bounded, and convex set X .
Assumption 3.2. The problem functions f(x) and c(x) are twice continuously

differentiable on X .
Assumption 3.3. The matrices Bk are uniformly positive definite and bounded,

i.e., there exist values 0 < λmin < λmax <∞ such that λmin ‖s‖22 ≤ sTBks ≤ λmax ‖s‖22
for all s ∈ R

n and all Bk.
Assumption 3.4. The matrices Hk are uniformly bounded, i.e., ‖Hk‖2 ≤ μmax for

some μmax ≥ 1.
Using these assumptions, we may state our global convergence result, which is

identical to [26, Theorem 4.1] and uses the Mangasarian–Fromovitz constraint quali-
fication (MFCQ) [36]. Since the proof is essentially the same, here we only describe
the differences that result from the nonmonotonicity of Algorithm 1.

Theorem 3.1. If Assumptions 3.1–3.4 hold, then one of the following must occur.
(i) Algorithm 1 terminates finitely with either a first-order KKT point or an

infeasible stationary point in lines 12 or 9, respectively, for problem (1.1).
(ii) Algorithm 1 generates infinitely many iterations {xk}, σk = σ̄ < ∞ for all

k sufficiently large, and there exists a limit point x∗ of {xk} that is either a
first-order KKT point or an infeasible stationary point for problem (1.1).

(iii) Algorithm 1 generates infinitely many iterations {xk}, limk→∞ σk =∞, and
there exists a limit point x∗ of {xk} that is either an infeasible stationary
point or a feasible point at which the MFCQ fails.

Proof. The proof for the monotone variant [26, Algorithm 1] hinges on guaran-
teeing sufficient progress during every iteration as measured by conditions placed on
the (α, s) pairs. In this paper, we have formulated conditions on (α, s) pairs (see
section 2.3) that generalize the conditions used in [26]. The key difference is that the
conditions in this paper are defined with respect to the last successful iteration R(k),
as opposed to the current iterate k. In this way, the sequence of successful iterates
inherits the properties of the sequence of iterates generated by the monotone algo-
rithm. Thus, from a theoretical perspective, we can essentially ignore the unsuccessful
iterations and focus our attention on the successful ones. We also note that if we set
max fails to the value zero in Algorithm 1, our method reduces to the monotone
variant analyzed in [26].

We establish global convergence of Algorithm 1 by walking the reader through
the analysis of [26] and highlighting the differences that surface.

First, note that outcome (i) can occur since it is possible to locate either an
infeasible stationary point (see (2.4)) or a KKT point in a finite number of iterations
(see lines 9 and 12 of Algorithm 1).

A NONMONOTONE FILTER METHOD 1895

Algorithm 1. A nonmonotone filter SQO algorithm.

1: Input an initial primal-dual pair (x0, y0).
2: Choose parameters {ηv , ησ, ηφ, σinc, β, γ, γv, γf , γφ, ξ} ⊂ (0, 1), 0 < δmin ≤ δmax ≤ δa <
∞, and 0 ≤ max fails ∈ N, set fails ← 0, S ← {0}, U ← ∅, k ← 0, F0 ← ∅, and
P-mode ← false, and then choose initializations σ0 > 0 and δ0 ∈ [δmin, δmax].

3: loop
4: if fails > max fails then
5: xk ← xR(k), sk ← sR(k), s

a
k ← saR(k), y

p
k ← yp

R(k), σk+1 ← σR(k)+1, Hk ← HR(k).
6: else
7: Compute ssk as a solution of (2.2), and then calculate Δ�v(ssk;xk) from (2.3).
8: if (2.4) holds then
9: return with the infeasible stationary point xk for problem (1.1).

10: Choose Bk � 0 and compute spk as the unique solution of (2.5) with multiplier yp
k.

11: if Δqφ(spk; xk, σk) = v(xk) = 0, then
12: return with the KKT point (xk, y

p
k) for problem (1.1).

13: Compute sk = (1− τk)s
s
k + τks

p
k from (2.6) such that (2.7) is satisfied.

14: Compute the new weight σk+1 from (2.8).
15: Evaluate Hk = ∇2

xxL(xk, y
p
k). Solve (2.13) and (2.14) to get sak and ya

k .

16: Compute scφk from (2.10) and then calculate Δqφ(scφk ;xk,Hk, σk+1) from (2.12).
17: if P-mode then
18: for j = 0, 1, 2, . . . do
19: αk ← ξj .
20: for ŝk ∈ {sak, sk} do
21: if (αk, ŝk) is a p-pair then
22: Fk+1 ← Fk and go to line 25. � k + 1 ∈ S
23: if fails ≤ max fails and max fails > 0 then
24: fails← fails+ 1, Fk+1 ← Fk, go to line 45. � k + 1 ∈ U
25: if xk + αkŝk is acceptable to Fk then
26: P-mode ← false.
27: else
28: Compute scfk from (2.9) and then calculate Δqf (scfk ;xk,Hk) from (2.11).
29: for j = 0, 1, 2, . . . do
30: αk ← ξj .
31: for ŝk ∈ {sak, sk} do
32: if (αk, ŝk) is a v-pair then
33: Fk+1 ← Fk ∪ {(vR(k), fR(k))}, go to line 44. � k + 1 ∈ S
34: if (αk, ŝk) is an o-pair then
35: Fk+1 ← Fk, go to line 44. � k + 1 ∈ S
36: if fails ≤ max fails and max fails > 0 then
37: if (αk, ŝk) is a b-pair then
38: P-mode ← true. � k + 1 ∈ S
39: Fk+1 ← Fk ∪ {(vR(k), fR(k))}, go to line 44.
40: else
41: fails← fails+ 1, Fk+1 ← Fk, go to line 45. � k + 1 ∈ U
42: if (αk, sk) is a b-pair then
43: Fk+1 ← Fk ∪ {(vR(k), fR(k))}, P-mode ← true, go to line 44. � k + 1 ∈ S
44: fails← 0, S ← S ∪ {k + 1}.
45: if (2.23) is satisfied then
46: σk+1 ← σk+1 + σinc.

47: xk+1 ← xk + αk ŝk, yk+1 ← ya
k , δk+1 ∈ [δmin, δmax], k ← k + 1.

1896 N. I. M. GOULD, Y. LOH, AND D. P. ROBINSON

If outcome (i) does not happen, then it is possible that outcome (iii) occurs so that
the penalty parameter converges to infinity. For this case, we can follow the proofs
in [26] since they only depend on Assumptions 3.1–3.4, the manner in which the trial
steps are computed, and the properties of their associated subproblems. Since these
aspects have not changed from the monotone algorithm in [26], we may again deduce
that [26, Lemmas 4.19 and 4.20, Theorem 4.21] still hold, which proves outcome (iii).

Finally, suppose that outcomes (i) and (iii) do not occur so that infinitely many
iterations are performed and the penalty parameter is fixed for all k sufficiently large.
We may then establish that outcome (ii) holds by using the proofs in [26] with minor
modifications that we now describe.

The first difference is related to the definition of v-iterates and the associated
v-pairs. The conditions that define them are stated as [26, Definition 2.14] but
are restated here: xk + αs is acceptable to the filter Fk augmented by xk, and
Δ�f (sk;xk) < γvΔ�v(sk;xk). In our nonmonotone Algorithm 1, there is no guar-
antee that xk is acceptable to the filter, let alone that it satisfies any additional
conditions. Thus, to handle the nonmonotonicity, we use in place of xk the last suc-
cessful iterate xR(k) since we know that it satisfies the same conditions required in
the monotone algorithm. It is then natural to use Definition 2.3 to define a v-pair
in the nonmonotone setting. The v-iterates are also used to update the filter. In the
monotone algorithm, after a v-pair was found, the pair (vk, fk) was added to the filter.
In our nonmonotone Algorithm 1, we add the pair (vR(k), fR(k)), which maintains the
same properties of the filter. For instance, using the filter inequalities in (2.16), it can
be shown that if infinitely many entries are added to the filter, then some subsequence
of the iterates converges to a first-order minimizer of the constraint violation (see [26,
Lemma 4.16]).

The second difference arises in the definition of o-iterates and the associated o-
pairs. In the monotone algorithm [26], a pair (α, s) constituted an o-pair at iteration
k if the following conditions (see [26, Definition 2.15]) were satisfied: xk + αs is
acceptable to the filter Fk; Δ�f (sk;xk) ≥ γvΔ�v(sk;xk); and f(xk + αs) ≤ f(xk) −
γfαρ

f
k , where {γv, γf} ⊂ (0, 1) and ρfk = min

{
Δ�f(sk;xk), Δqf (scfk ;xk, Hk)

}
. In this

case for the monotone algorithm, the trial point xk + αs has sufficiently reduced the
objective function from the current point xk. For the nonmonotone Algorithm 1, we
again use the last successful iterate xR(k), which leads to our Definition 2.4. Now, the
trial point xk + αs associated with an o-pair (α, s) sufficiently reduces the objective
function when compared to the iterate xR(k). This is the key property needed to show
that if all sufficiently large successful iterates are o-iterates, then the sequence of
successful iterates converges to a first-order minimizer of the constraint violation [26,
Lemma 4.12] and the penalty function [26, Lemma 4.13].

The third difference is the definition of b-pairs. In the monotone algorithm, the
conditions for that define a b-pair (see [26, Definition 2.16]) are that v(xk + αs) <

v(xk) and φ(xk + αs;σk+1) ≤ φ(xk;σk+1) − γφαρ
φ
k , where γφ ∈ (0, 1) and ρφk =

min
{
Δ�φ(sk;xk, σk+1), Δqφ(scφk ;xk, Hk, σk+1)

}
. A b-pair (α, s) therefore defined an

iterate xk + αs that reduced the constraint violation and sufficiently reduced the
penalty function. Again, we adjust our conditions to be based on the last successful
iterate R(k) as given by Definition 2.5. When a b-pair is found, we add the entry
(vR(k), fR(k)) to the filter to preserve the required relationships between the filter entries
as used in the monotone algorithm. In particular, if infinitely many b-iterates are
found so that infinitely many entries are added to the filter, then a subsequence of
the iterates converges to a first-order solution of the penalty function [26, Lemma
4.17(ii)].

A NONMONOTONE FILTER METHOD 1897

The fourth difference is the definition of a p-pair. In the monotone algorithm, the
condition that defines a p-pair (see [26, Definition 2.17]) is that φ(xk + αs;σk+1) ≤
φ(xk;σk+1) − γφαρ

φ
k , where γφ ∈ (0, 1) is a chosen fixed constant and we defined

ρφk := min
{
Δ�φ(sk;xk, σk+1), Δqφ(scφk ;xk, Hk, σk+1)

}
. This condition ensured that

the penalty function was sufficiently reduced. In the nonmonotone Algorithm 1, we
have again adjusted our conditions to be based on the last successful iterate R(k)
as given by Definition 2.6. This condition maintains the important property that
the penalty function is sufficiently reduced, but this time between consecutive suc-
cessful iterations. Using this property, it now follows as in [26, Lemma 4.10 and
Theorem 4.11] that if all sufficiently large successful iterates are p-iterates, then there
exists a limit point of the sequence of iterates that is an infeasible stationary point
(see (2.4)).

A fifth difference is that the monotone algorithm only searches along the direction
sk for a b-pair, whereas our nonmonotone Algorithm 1 additionally checks whether
(1, sak) is a b-pair in line 37. This impacts the proof of [26, Lemma 4.8(iii)], which
is described only for the step sk. In turn, [26, Lemma 4.8(iii)] is used in the proofs
of [26, Lemmas 4.13 and 4.17(ii)] to show that αk is uniformly bounded away from
zero along a certain subsequence. Since αk = 1 when a b-pair is found in line 37 of
Algorithm 1, the lower bound on αk remains intact.

The final difference also involves the step length calculation. Specifically, in our
nonmonotone algorithm, αk is either equal to one (the unit step) during a nonmono-
tone phase or obtained through a line search procedure, the latter of which is the
computation used during every iteration of the monotone algorithm. It is clear, how-
ever, that this difference has no effect on the lower bounds derived for the step lengths
(e.g., [26, Lemma 4.8]).

4. Local convergence. We show that Algorithm 1 is Q-quadratically conver-
gent by making use of the following additional assumption.

Assumption 4.1. Algorithm 1 generates an infinite sequence of iterates {xk} that
converges to a KKT-point x∗ for problem (1.1) with an associated Lagrange multi-
plier vector y∗ such that (x∗, y∗) satisfies the following strong second-order sufficient
optimality conditions:

(i) there exists λmin > 0 such that sTH∗s ≥ λmin ‖s‖22 for all s satisfying JA∗s = 0,
where H∗ := H(x∗, y∗), A∗ := {i : c(x∗) = 0}, and JA∗ := [J(x∗)]A∗ denotes
the active rows of the Jacobian;

(ii) strict complementarity holds, i.e., [y∗]A∗ > 0; and
(iii) the linear independent constraint qualification (LICQ) holds, i.e., JA∗ has

full row rank.
Note that λmin is, without loss of generality, the same value used in Assump-

tion 3.3.
To show that the iterates {xk} converge to x∗ at a Q-superlinear rate, we first

show that under the above assumptions and for penalty parameter sufficiently large,
the accelerator step sak is equivalent to the traditional SQP step. We then show that
for all sufficiently large k ∈ S, either xk+1 = xk + sak or xk+2 = xk + sak + sak+1 is
accepted by Algorithm 1, by considering the filter and penalty mode separately. In
particular, if P-mode = false during iteration k, we show that at least one of the
above two points is acceptable to the augmented filter. We then show that it must
also satisfy conditions that make it either a v-iterate, an o-iterate, or a b-iterate. On
the other hand, if P-mode = true during iteration k, we show that one of the two
points must be a p-iterate. Theorem 4.7 ties all of these facts together.

1898 N. I. M. GOULD, Y. LOH, AND D. P. ROBINSON

We begin by first showing that under Assumption 4.1, the penalty parameter is
bounded and that infinitely many iterations occur in filter mode.

Lemma 4.1. If Assumption 4.1 holds, then (i) the penalty parameter σk = σ̄ <∞
for all k sufficiently large, and (ii) P-mode = false along an infinite subsequence of
iterates.

Proof. Since (x∗, y∗) is a KKT pair and the LICQ holds at x∗ (which implies
that the MFCQ holds), it follows from [26, Theorem 4.21] that σk = σ̄ <∞ for all k
sufficiently large, which proves part (i). Moreover, since (i) has been established, it
follows as in [26, Lemma 4.10 and Theorem 4.11] that if all sufficiently large successful
iterations are p-iterates, then x∗ is an infeasible stationary point (see (2.4)). This
contradicts the fact that x∗ is a KKT point (in particular that it is feasible), and
therefore we must conclude that there exists an infinite number of successful v-, o-, or
b-iterates. This completes the proof of part (ii) since v-, o-, and b-iterates only occur
in filter mode, i.e., when P-mode has the value false.

We next show that the penalty parameter is eventually at least as large as the
infinity norm of the Lagrange multiplier vector y∗. To understand the relevance of
this result, see [8, Theorem 14.5.1].

Lemma 4.2. If Assumptions 3.3 and 4.1 hold, then σk ≡ σ̄ ≥ ‖y∗‖∞ for all
sufficiently large k.

Proof. By Lemma 4.1, we know that σk ≡ σ̄ for all sufficiently large k. To reach a
contradiction, let us suppose that σ̄ < ‖y∗‖∞. It then follows from [8, Theorem 14.5.2]
and the fact that (x∗, y∗) is a first-order KKT pair for problem (1.1) that x∗ is not a
local minimizer of φ(x; σ̄).

Since x∗ is a KKT-point, we know from [26, Theorem 4.11] that not all iterations
are p-iterates for sufficiently large k. It then follows from [26, Theorem 4.9] that either
all iterates are o-iterates for sufficiently large k, there are infinitely many v- iterates,
or there are infinitely many b-iterates. In the first case, let K1 be the subsequence
of o-iterates; in the second case, let K1 be the subsequence of v-iterates; and in the
third case, let K1 be the subsequence of b-iterates. We may now use Assumption 3.3
to declare the existence of a subsequence K ⊆ K1 ⊆ N and positive-definite matrix
B∗ such that limk∈K Bk = B∗.

We next establish that the predictor step is computed from (2.5a) for all k suf-
ficiently large. Since limk→∞ xk = x∗ and x∗ is a KKT-point, we know that there
exists a constant ε > 0 such that [ck]i ≥ ε for all i /∈ A∗ and sufficiently large k.
On the other hand, we have from Assumption 4.1(iii) that [ck + Jks]A∗ = 0 is fea-
sible for all k sufficiently large and that the least-length solution converges to zero
since limk→∞[ck]A∗ = 0. Combining these observations shows that the linear in-
equality ck + Jks ≥ 0 will have a solution with ‖s‖∞ ≤ δmin ≤ δk (see (2.1)) for all
k sufficiently large; therefore, Δ�v(ssk;xk) = vk and the predictor step is computed
from (2.5a) as claimed.

Let sp∗ be the unique minimizer of qf (s;x∗, B∗) subject to c∗ + J∗s ≥ 0. Since
x∗ is not a local minimizer of φ(x; σ̄), we know from [4, Theorem 3.2(a)] that sp∗ �=
0. Using this fact, that spk is computed from (2.5a) for all sufficiently large k, and
Assumptions 3.2 and 4.1, we know that limk∈K spk = sp∗ �= 0, and therefore we have that
limk∈K Δqφ(spk;xk, Bk, σ̄) �= 0. In the first case above, i.e., iterates are o-iterates for
sufficiently large k, this contradicts [26, Lemmas 4.13]; in the second, this contradicts
[26, Lemmas 4.17(i)]; and in the third, this contradicts [26, Lemmas 4.17(ii)].

We have shown that σk ≡ σ̄ ≥ ‖y∗‖∞ for all sufficiently large k, but our local
analysis requires this to hold as a strict inequality. This is stated as an assumption.

Assumption 4.2. For all sufficiently large k, we have σk ≡ σ̄ > ‖y∗‖∞.

A NONMONOTONE FILTER METHOD 1899

Next, we present some key results from [29].
Lemma 4.3. Let w∗ = (x∗, y∗) be the minimizer for problem (1.1) that satisfies

Assumption 4.1, let Assumptions 3.3 and 4.2 hold, and let γcφ ∈
(
max{γf , γφ}, 1

)
with γf and γφ defined in Definitions 2.4 and 2.5. Then, there exists positive number
δ > 0 such that if k ∈ S and wk = (xk, yk) ∈ Bδ(w∗), then
(i) Ak(s

p
k) = A∗ (see (2.15) and Assumption 4.1);

(ii) sak is the minimum norm solution to

(4.1) minimize
s∈Rn

gTks+
1
2s

THks subject to ck + Jks ≥ 0,

which is the traditional SQP subproblem; and
(iii) Δqφ(sak;xk, Hk, σ̄) ≥ γcφΔqφ(scφk ;xk, Hk, σ̄).

Proof. Many results from [29] directly apply here since the step computation
is the same. In particular, part (i) is equivalent to [29, Lemma 3.7(ii)], part (ii) is
established by [29, proof of Theorem 3.12], and part (iii) follows from [29, proof of
Theorem 3.12 and equations (2.7) and (2.9)].

We now give an asymptotic property of the accelerator steps associated with
successful iterates.

Lemma 4.4. Let Assumptions 3.3, 4.1, and 4.2 hold and define

S2 = {k ∈ S : xk+1 = xk + sak and k + 1 /∈ S}.

Then, either the set S2 is finite or

(4.2) lim
k∈S2→∞

φ(xk; σ̄)− φ(xk + sak + sak+1; σ̄)

Δqφ(sak;xk, Hk, σ̄)
= 1

with Δqφ(sak;xk, Hk, σ̄) > 0 for all k ∈ S sufficiently large.
Proof. The limit in (4.2) follows from [8, Theorem 15.3.7] and from the fact that

Δqφ(sak;xk, Hk, σ̄) > 0 for all k ∈ S sufficiently large can be found in the first line of
the proof of [8, Theorem 15.3.7].

The next result gives some properties of the iteration following a specific feasible
successful iteration.

Lemma 4.5. Let w∗ = (x∗, y∗) be the minimizer for problem (1.1) that satisfies
Assumption 4.1. Also, let Assumptions 3.3 and 4.2 hold, and γcφ and δ > 0 be
as defined in Lemma 4.3. It follows that if max fails > 0, P-mode = false at the
beginning of iteration k, k ∈ S is sufficiently large, k+1 /∈ S, wk = (xk, yk) ∈ Bδ(w∗),
and v(xk) = 0, then xk+1 = xk + sak and both (2.18a) and (2.18b) are satisfied, with
k replaced by k + 1, by the pair (1, sak+1).

Proof. Since k ∈ S, Algorithm 1 starts iteration k + 1 with fails = 0, and thus
xk+1 = xk + sak as max fails > 0, which is the first result. We also note that since
k + 1 /∈ S, R(k + 1) = k.

It follows from (2.7), v(xk) = 0, and the definition of ssk that 0 = v(xk) =
Δ�v(ssk;xk) = Δ�v(sk;xk). We also have from [26, Lemma 2.7(ii)] the inequalities

Δ�φ(sk;xk, σ̄) ≥ 1
2s

p
k
T
Bks

p
k ≥ 0, which combined show that

Δ�f (sk;xk) = Δ�φ(sk;xk, σ̄) ≥ 0 = γvΔ�v(sk;xk),

where we used Δ�v(sk;xk) = 0 to obtain the first equation. This shows that (2.18a)
is satisfied with k replaced by k + 1 since R(k + 1) = k.

1900 N. I. M. GOULD, Y. LOH, AND D. P. ROBINSON

Next, note that v(xk) = Δ�v(ssk;xk) = 0 implies that problem (2.5a) is solved
during iteration k and therefore ck + Jks

p
k ≥ 0. Using this and ck ≥ 0 allows us to

conclude that ck+αJks
p
k ≥ 0 for all α ∈ [0, 1]. Combining this fact with sk = spk (since

τk = 1 in (2.6)) shows that scfk and scφk are also linearly feasible, i.e., ck + Jks
cf
k ≥ 0

and ck + Jks
cφ
k ≥ 0.

Pick κ ∈ (γf/γcφ, 1), which is possible since 0 < γf < γcφ < 1 by definition of γcφ
(see Lemma 4.3). Then, it follows from definition of φ, xk+1 = xk + sak, v(xk) = 0,

v(xk+1 + sak+1) ≥ 0, Lemmas 4.4 and 4.3(iii), the definitions of scφk and scfk , the

definition of Δqφ, the fact that scfk is linearly feasible, and our selection of κ that

f(xk)− f(xk+1 + sak+1) = φ(xk; σ̄)− φ(xk+1 + sak+1; σ̄)− σ̄
(
v(xk)− v(xk+1 + sak+1)

)
≥ φ(xk; σ̄)− φ(xk+1 + sak+1; σ̄)

≥ κΔqφ(sak;xk, Hk, σ̄)

≥ κγcφΔqφ(scφk ;xk, Hk, σ̄) ≥ κγcφΔqφ(scfk ;xk, Hk, σ̄)

= κγcφΔqf (scfk ;xk, Hk) + κγcφσ̄
(
v(xk)−

∥∥[ck + Jks
cf
k

]−∥∥
1

)
≥ γfΔqf (scfk ;xk, Hk)

≥ γf min
{
Δ�f(sk, xk),Δqf (scfk ;xk, Hk)

}
for k sufficiently large. This is equivalent to (2.18b), with k replaced by k + 1, since
R(k + 1) = k.

By contrast, we now consider properties of the pair of iterations following a specific
infeasible successful iteration.

Lemma 4.6. Let w∗ = (x∗, y∗) be the minimizer for problem (1.1) that satisfies
Assumption 4.1. Also, let Assumptions 3.3 and 4.2 hold and γcφ and δ > 0 be defined
as in Lemma 4.5. Furthermore, suppose that max fails > 0, P-mode = false at the
beginning of iteration k, k ∈ S is sufficiently large, k+1 /∈ S, wk = (xk, yk) ∈ Bδ(w∗),
and v(xk) > 0. It follows that if (2.18a) is satisfied and (2.18b) is violated (both with
k replaced by k + 1) by the pair (1, sak+1), then xk+1 = xk + sak, (1, s

a
k+1) is a b-pair

during iteration k + 1, k + 2 ∈ S, and xk+2 = xk + sak + sak+1.
Proof. The first result follows (as in the previous proof) as Algorithm 1 sets

xk+1 = xk + sak because k ∈ S and max fails > 0, and R(k+ 1) = k since k+1 /∈ S.
We first show that (2.21) is satisfied, with k replaced by k+1, by the pair (1, sak+1).

It follows from Lemmas 4.4 and 4.3(iii), the choice of κ, and (2.22) that

φ(xk; σ̄)− φ(xk+1 + sak+1; σ̄) ≥ κΔqφ(sak;xk, Hk, σ̄)

≥ κγcφΔqφ(scφk ;xk, Hk, σ̄) ≥ γφρ
φ
k(4.3)

for sufficiently large k, which shows that (2.21), with k replaced by k + 1, is satisfied
by (1, sak+1).

We next show that (2.20) is satisfied, with k replaced by k + 1, by the pair
(1, sak+1). Define G = {i : ci(xk) < 0} and H = {i : ci(xk) ≥ 0} and observe
that Lemma 4.3(i)–(ii) and the definition of sak (see (2.13) and (2.14)) imply that
ck+Jks

p
k ≥ 0. We also know that sk = spk since τk = 1 (see (2.6)) so that ck+Jksk ≥ 0.

It then follows that ci(xk) + α∇ci(xk)
Tsk ≥ 0 for all i ∈ H and α ∈ [0, 1] and

that ∇ci(xk)
Tsk ≥ −ci(xk) > 0 for all i ∈ G. Combining these conditions together

shows that [ci(xk)]
− − [

ci(xk) + α∇ci(xk)
Tsk

]− ≥ 0 for all i and α ∈ [0, 1], and after

A NONMONOTONE FILTER METHOD 1901

summing over all the constraints and using the definition of scfk , leads to

(4.4) Δ�v(scfk ;xk) =
∥∥ [ck]− ∥∥

1
− ∥∥[ck + Jks

cf
k

]−∥∥
1
≥ 0.

Now, choose any κ ∈ (max{γf , γφ}/γcφ, 1), which is possible since max{γf , γφ} <
γcφ < 1 by the definition of γcφ in Lemma 4.3. Note that Δqf (scfk ;xk, Hk) ≥ 0 by
construction, We consider two cases.

Case 1. Δqf (scfk ;xk, Hk) > 0. We may use the definition of φ, Lemma 4.4, the
supposition that (2.18b) is violated (with k replaced by k + 1) by the pair (1, sak+1),

R(k + 1) = k, Lemma 4.3(iii), the definitions of ρfk , s
cφ
k , scfk , and Δqφ, (4.4), the

selection of κ, and Δqf (scfk ;xk, Hk) > 0 to conclude that

σ̄
(
v(xk)− v(xk+1 + sak+1)

)
= φ(xk; σ̄)− φ(xk+1 + sak+1; σ̄)−

(
f(xk)− f(xk+1 + sak+1)

)
≥ κΔqφ(sak;xk, Hk, σ̄)− γfρ

f
k

≥ κγcφΔqφ(scφk ;xk, Hk, σ̄)− γfΔqf (scfk ;xk, Hk)

≥ κγcφΔqφ(scfk ;xk, Hk, σ̄)− γfΔqf (scfk ;xk, Hk)

≥ κγcφ

(
Δqf (scfk ;xk, Hk) + σ̄Δ�v(scfk ;xk)

)
− γfΔqf (scfk ;xk, Hk)

≥ (κγcφ − γf)Δqf (scfk ;xk, Hk) > 0 for all sufficiently large k,

so that (2.20) is satisfied, with k replaced by k + 1, by the pair (1, sak+1).

Case 2. Δqf (scfk ;xk, Hk) = 0. Since v(xk) > 0 by assumption, we know that
Δ�v(ssk;xk) > 0 because otherwise Algorithm 1 would have exited in line 9. It then
follows from the definition of φ, the fact that we have already shown that (2.21) (with
k replaced by k+1) is satisfied by (1, sak+1), R(k+1) = k, the assumption that (2.18b)

is violated (with k replaced by k+ 1) by the pair (1, sak+1), Δqf (scfk ;xk, Hk) = 0, the

definition of ρφk , [26, Lemma 2.8], Δ�v(ssk;xk) > 0, and (2.10) that

σ̄
(
v(xk)− v(xk+1 + sak+1)

)
= φ(xk; σ̄)− φ(xk+1 + sak+1; σ̄)−

(
f(xk)− f(xk+1 + sak+1)

)
≥ γφρ

φ
k − γfρ

f
k ≥ γφρ

φ
k = γφ min

{
Δ�φ(sk;xk, σ̄), Δqφ(scφk ;xk, Hk, σ̄)

}
> 0

so that (2.20) is again satisfied, with k replaced by k + 1, by the pair (1, sak+1).
Since we have shown that (2.20) and (2.21) (with k replaced by k+1) are satisfied

by (1, sak+1), and we know from assumption that (2.18a) is satisfied and (2.18b) is

violated (both with k replaced by k + 1) by the pair (1, sak+1), we may conclude that
(1, sak+1) is a b-pair during iteration k + 1, as claimed. It then follows immediately
from the construction of Algorithm 1 that k + 2 ∈ S and that xk+2 = xk+1 + sak+1,
which completes the proof since xk+1 = xk + sak.

We may now state our local convergence result.
Theorem 4.7. Let w∗ = (x∗, y∗) be the minimizer for problem (1.1) that satisfies

Assumption 4.1. Furthermore, let Assumptions 3.3 and 4.2 hold, δ > 0 be given as in
Lemma 4.5, and max fails > 0. Then, the iterates {xk} and {yk} converge to x∗ and
y∗ at a Q-superlinear and R-superlinear rate, respectively. Moreover, if ∇2

xxL(x, y) is
Lipschitz continuous in a neighborhood of (x∗, y∗), then they converge at a Q-quadratic
and R-quadratic rate, respectively.

1902 N. I. M. GOULD, Y. LOH, AND D. P. ROBINSON

Proof. We first show that for all sufficiently large k ∈ S such that P-mode = false
during iteration k, we have xk+1 = xk + sak and either (i) k + 1 ∈ S or (ii) k + 2 ∈ S
and xk+2 = xk+sak+sak+1. The fact that xk+1 = xk+sak follows from k ∈ S, fails = 0,
max fails > 0, and the structure of Algorithm 1. To prove the rest, we suppose that
(i) does not hold and proceed to prove that (ii) holds.

So, suppose that (i) does not hold, i.e., that k + 1 /∈ S. Our first goal is to use
[44, Lemmas 4.5 and 4.6, Theorem 4.7] to establish that xk + sak + sak+1 is acceptable
to the augmented filter. We may use these results since the conditions that define
our filter are weaker in comparison to the conditions that define the filter in [44].
Specifically, if a point is acceptable to the filter given by [44, equation (10)], then it
is also acceptable to our filter given by Definition 2.1. This is easy to see since the
inequalities in Definition 2.1 use max/min terms based on quantities derived from the
steering subproblem to formulate weaker, and more practical, conditions that define
the filter. With this observation, one may now follow the proofs of [44, Lemmas 4.5
and 4.6, Theorem 4.7] to show that xk + sak + sak+1 is acceptable to the augmented
filter under the current assumptions.

We now consider three cases.
Case 1. Condition (2.18a) is not satisfied at iteration k + 1. Since (2.17) holds

and we already proved that xk + sak + sak+1 is acceptable to the augmented filter,
we may conclude that (1, sak+1) is a v-pair during iteration k + 1, k + 2 ∈ S, and
xk+2 = xk+1 + sak + sak+1, as claimed.

Case 2. Conditions (2.18a) and (2.18b) are both satisfied at iteration k + 1.
Combining this with the fact that we already proved that xk+sak+sak+1 is acceptable
to the augmented filter, we may conclude that (1, sak+1) is an o-pair during iteration
k + 1, k + 2 ∈ S, and xk+2 = xk+1 + sak + sak+1, as claimed.

Case 3. Condition (2.18a) holds, but condition (2.18b) is violated at iteration
k + 1. Under the current assumptions, it follows from Lemma 4.5 that v(xk) > 0, or
else there would be a contradiction. We may now use Lemma 4.6 to conclude that
(1, sak+1) is a b-pair during iteration k + 1, k + 2 ∈ S, and xk+2 = xk+1 + sak + sak+1,
as claimed.

Since one of the above three cases must occur, we have established that part (ii)
holds. To summarize, we have shown that for all sufficiently large k ∈ S such that
P-mode = false at the beginning of iteration k, we have xk+1 = xk + sak and either
(i) k + 1 ∈ S or (ii) k + 2 ∈ S and xk+2 = xk + sak + sak+1.

Next, we show that a similar result holds when P-mode = true at the beginning
of iteration k. Specifically, we show that for all sufficiently large k ∈ S such that
P-mode = true at the beginning of iteration k, we have xk+1 = xk + sak and either
(i) k+1 ∈ S or (ii) k+2 ∈ S and xk+2 = xk+sak+sak+1. The fact that xk+1 = xk+sak
follows from k ∈ S, max fails > 0, and the structure of Algorithm 1. To prove the
rest, we suppose that (i) does not hold and proceed to prove that (ii) holds. When
(i) does not hold, then the same argument that led to (4.3) may again be used to
show that (1, sak+1) is a p-pair during iteration k + 1 and therefore k + 2 ∈ S and
xk+2 = xk+1 + sak + sak+1, as claimed.

We have shown that xk+1 = xk + sak for all k sufficiently large. In light of (4.1),
this means that Algorithm 1 accepts the traditional SQP step at (xk, yk) for all
k sufficiently large. Since this was the precise condition required to establish [29,
Theorem 3.12], we have the same conclusions as in that theorem, which completes the
proof of Theorem 4.7.

5. Numerical results. We present numerical experiments performed with a
basic MATLAB implementation of Algorithm 1 (henceforth called FiSQO) on the

A NONMONOTONE FILTER METHOD 1903

set of low-dimensional CUTEst [25] problems. We comment up front that we do not
compare FiSQO to methods that use a feasibility restoration phase. This decision was
made for a variety of reasons. First, different filter methods use different formulations
of the restoration phase, which makes it difficult, if not impossible, to make any general
statements about them. Second, the implementation of a restoration phase often, if
not always, includes heuristics that are designed to improve the general performance.
Finally, a key motivation for our work is the design of a filter method that does not
use a restoration phase since it is generally accepted that it is the most dissatisfying
aspect of such filter-based methods.

With the previous remarks in mind, we now mention that the purpose of our
numerical experiments is to validate the general effectiveness of FiSQO and to in-
vestigate any numerical anomalies associated with b-pairs. We focus on such pairs
since, roughly, they serve as our alternative to feasibility restoration. With respect
to both goals, we find it instructive to compare FiSQO to our own implementation
of a penalty SQO line search method (henceforth referred to as PenSQO). Since we
have complete control over both algorithms, we are able to isolate any aspect of inter-
est (e.g., the influence of b-pairs), design and perform revealing numerical tests, and
confidently present the numerical results. As described in the next section, the only
difference between the two methods is in the step acceptance criteria.

5.1. Implementation details. During each iteration, FiSQO requires the solu-
tion of a linear and a quadratic subproblem in order to obtain the steering step ssk and
the predictor step spk in lines 7 and 10, respectively. In our implementation, they were
obtained by using the primal simplex active-set solver in Cplex [33], which we gener-
ally found to be reliable. The formulation of the predictor subproblem (2.5) required
a positive-definite matrix Bk, which we obtained by a modified Newton strategy as
follows. First, we computed the spectral decomposition of Hk, i.e., Hk = VkDkV

T
k ,

where Vk is an orthogonal set of eigenvectors and Dk is a diagonal matrix of eigenval-
ues for Hk. Second, we set ε = 1 if Hk = 0, and ε = ‖Hk‖2 /108 otherwise. We then

obtained the desired positive-definite matrix as Bk = VkD̂kV
T
k , where the diagonal

entries of the diagonal matrix D̂k were given as

[D̂k]ii =

⎧⎪⎨⎪⎩
[Dk]ii if [Dk]ii ≥ ε,

−[Dk]ii if [Dk]ii ≤ −ε,
ε otherwise.

It is not difficult to see that the matrix Bk is positive definite with a condition number
bounded by 108. We note that this strategy was chosen for simplicity and that it is
not suitable for large-scale problems. In the large-scale setting, choosing Bk based
on limited-memory quasi-Newton updates, e.g., L-BFGS [35], would be appropriate.
Nonetheless, we remain satisfied with this simple choice since it was used by both
FiSQO and PenSQO in our experiments.

The value of τk needed in line 13 was obtained by performing backtracking (start-
ing with an initial guess of τk = 1) until condition (2.7) was satisfied. We note that
although Algorithm 1 states that τk should be computed as the largest value on [0, 1]
that satisfies (2.7), this is not necessary. The simple backtracking procedure that we
implemented ensures that the sequence {τk} possesses the properties required to ob-
tain the global and local convergence results established in this paper (e.g., using an
initial guess of τk = 1). The final aspect of the search direction was the computation
of an accelerator step sak in line 15. We defined sak via (2.13), where sa

′
k was computed

1904 N. I. M. GOULD, Y. LOH, AND D. P. ROBINSON

Table 1

Control parameters and initial values required by FiSQO and PenSQO.

Parameter Value Parameter Value Parameter Value Parameter Value

ηv 10−3 ησ 10−6 ηφ 10−3 σinc 5

γ 10−3 γv 10−3 γf 10−4 γφ 10−4

β 0.99 ξ 0.5 δmin 1 δmax 10+4

δa 10+2 σ0 10 δ0 10+2 τstop 10−5

from subproblem (2.14) in the following way. We first used the backslash operator in
MATLAB in an attempt to solve the linear system

(5.1)

(
Hk [Jk]

T
Ak

[Jk]Ak
0

)(
sa

′
k

−[yk]Ak

)
= −

(
gk +H(xk, y

p
k)s

p
k

0

)
,

where Ak is defined by (2.15). The motivation for considering this particular linear
system is that if [Jk]Ak

has full row rank, Hk is positive definite when restricted to the
null space of [Jk]Ak

, and δa is sufficiently large, then sa
′

k will, in fact, be the unique
minimizer to (2.14). Of course, a solution to (5.1) may not exist, and even when it
does exist, it is a solution to (2.14) only when Hk is positive definite when restricted to
the null space of [Jk]Ak

and δa is sufficiently large. Therefore, if MATLAB returned
a “NaN” in any component of sa

′
k or [yk]Ak

, we reset both of them to zero and

continued with the iteration. Otherwise, we proceeded to perform a scaling of sa
′

k to
make it have a norm bounded by δa, i.e., to make it satisfy the trust-region constraint
in (2.14), but we did not scale the associated Lagrange multiplier estimate [yk]Ak

.
This procedure may result in a step sa

′
k that does not solve (2.14) but nonetheless is a

reasonable strategy for calculating an approximate solution in a cost-efficient manner.
We also comment that, since the purpose of the accelerator step is to accelerate local
convergence, this change has no effect on the global convergence properties of FiSQO.
Moreover, since the predictor step ultimately predicts via Ak the constraints that are
active at a local minimizer (under Assumption 4.1), our procedure for computing sa

′
k

will asymptotically give the unique minimizer to problem (2.14). In particular, this
means that our local convergence theory remains valid.

The computations just described, as well as most of the other steps in FiSQO,
use control parameters and require the choice of initial values; we used the values
in Table 1. These choices were made based on our experience of developing other
nonlinear optimization algorithms, and no fine-tuning of our choices was attempted for
this basic implementation. Although not stated in Algorithm 1, in our implementation
we imposed an iteration limit of 10,000 iterations and a CPU time limit of 10 minutes.

Finally, we discuss the termination tests used by both FiSQO and PenSQO. First,
we declared xk to be an infeasible stationary point, as predicated by line 9 of Algo-
rithm 1, if it satisfied

(5.2) vk ≥ 100 τstop and Δ�v(ssk;xk) ≤ 10−12,

where the value of the termination tolerance τstop is given in Table 1. It is clear that
these conditions were motivated by (2.4) but designed to account for numerical error.
Finally, we concluded that xk is a solution to (1.1) in line 12 if

(5.3) vk ≤ τstop and Δqφ(spk;xk, σk) ≤ 10−12

were satisfied or if the primal-dual pair (xk, yk) satisfied the approximate KKT

A NONMONOTONE FILTER METHOD 1905

 0

0.2

0.4

0.6

0.8

 1

 1 2 4 8 16 32 64

FiSQP
PenSQP

 0

0.2

0.4

0.6

0.8

 1

 1 2 4 8 16 32 64

FiSQP
PenSQP

Fig. 1. Performance profiles on the CUTEst problems with m ≥ 1 and max{m,n} ≤ 100 for
the number of iterations (left) and function evaluations (right).

condition

(5.4) ‖FKKT(xk, yk)‖∞ ≤ τstop.

In our implementation, we set yk ← ypk if ‖FKKT(xk, y
p
k)‖∞ < ‖FKKT(xk, y

a
k)‖∞, and

yk ← yak otherwise. Also, although we did not explicitly check for unboundedness, it
did not seem to affect our numerical results. Nonetheless, production quality software
should include such a check since it is a possible outcome.

Our penalty-SQO algorithm PenSQO was obtained by making two simple modi-
fications to FiSQO. First, P-mode was initialized to the value true. Second, anytime
the condition in line 25 tested true, P-mode was not set to the value false. In short,
our modification forced P-mode to always have the value true. Consequently, the only
difference between FiSQO and PenSQO is in the step acceptance criteria.

5.2. Collection of CUTEst test problems. We tested our MATLAB imple-
mentations of FiSQO and PenSQO on two subsets of problems from the CUTEst [25]
collection. The first subset was obtained by first identifying those CUTEst problems
with at least one general constraint (i.e., m ≥ 1) and at most 100 variables and con-
straints (i.e., max{m,n} ≤ 100). From this set, we removed problems deconvc, discs,
hs99exp, lakes, tr04x4, tr06x2, truspyr1, and truspyr2 since the Cplex solver “hung”
and prevented the algorithms from continuing, which left us with a total of 301 test
problems. A detailed presentation of the results on a problem-by-problem basis may
be found in our accompanying technical report [27, Appendix, Tables 1.3 and 1.4].

Here, to illustrate the performance of our software, we use performance profiles
as introduced by Dolan and Moré [16] to give visual comparisons of numerical per-
formance. Consider a performance profile that measures performance in terms of the
number of iterations until successful termination. In this case, if the graph associated
with an algorithm passes through the point (α, 0.β), then it means that on β% of
the problems, the number of iterations required by the algorithm was less than α
times the number of iterations required by the algorithm that required the fewest.
Therefore, an algorithm with a higher value on the vertical axis may be considered
more efficient, whereas an algorithm on top at the far right may be considered more
reliable. We note that for every profile, a problem was considered to be successfully
solved if an approximate infeasible stationary point satisfying (5.2) or an approximate
KKT pair (xk, yk) satisfying either (5.3) or (5.4) was found.

Figure 1 shows the results for the two line search algorithms FiSQO and Pen-
SQO. We note, however, that these profiles were created after we removed additional

1906 N. I. M. GOULD, Y. LOH, AND D. P. ROBINSON

 0

0.2

0.4

0.6

0.8

 1

 1 2 4 8 16 32 64

FiSQP
PenSQP

 0

0.2

0.4

0.6

0.8

 1

 1 2 4 8 16 32 64

FiSQP
PenSQP

Fig. 2. Performance profiles on the CUTEst problems with m ≥ 1 and 100 < max{m,n} ≤ 1000
for the number of iterations (left) and function evaluations (right).

problems from the test set. Specifically, we removed all (two in this case) problems
for which at least one of FiSQO or PenSQO returned a value indicating a failure in
the subproblem solver or a value signaling a function evaluation error since they did
not necessarily give any useful information about the algorithms. This left us with a
total of 299 test problems used in the performance profiles. By inspecting the right-
hand side of the graphs, we can see that FiSQO and PenSQO are similar in terms
of robustness, with a slight edge going to FiSQO. Taken in tandem, the two graphs
indicate that the number of function evaluations are significantly less for FiSQO than
for PenSQO, while the difference in the number of iterations (equivalently, the num-
ber of gradient evaluations) is less significant. This phenomenon makes sense because
acceptance based on the combination of v-, o-, b-, and p-pairs is more relaxed when
compared to acceptance based on the penalty function alone, which translates into
substantially fewer (overall) function evaluations during the line search. However,
since the difference in the number of iterations is less significant, we may conclude
that, although more trial steps are accepted by FiSQO, many of them make less
(overall) progress toward a solution when compared to PenSQO.

A few additional comments concerning these results are in order. First, we believe
it is interesting to see the numerical trade-off between accepting more (on average
lower quality) steps versus fewer (on average higher quality) steps; perhaps this should
not have been a surprise. Second, these results indicate that our implementation of
FiSQO appears to be fairly robust and at least as efficient as PenSQO. Third, we could
probably further improve the FiSQO results by using (when P-mode has the value of
true) a flexible penalty approach [12, 20, 21, 24], which would require a modification
to the definition of a p-pair. It is important to emphasize that we are not claiming
that FiSQO is better than a flexible penalty-SQO approach but rather that FiSQO
appears to be better than a standard penalty-SQO approach.

The second subset of test problems was the CUTEst problems with m ≥ 1 and
100 < max{m,n} ≤ 1000. As for the previous test set, we removed problems for which
Cplex “hung,” which included a4x12, mss2, steenbrd tr011x3 tr05x5, and yorknet.
This resulted in a subset of 68 CUTEst test problems. (See [27, Appendix, Tables 1.5
and 1.6] for a detailed presentation of the results on a problem-by-problem basis.)

Figure 2 shows the results for algorithms FiSQO and PenSQO. As for the previous
profiles, they were created after removing all (in this case 11) problems for which
at least one of FiSQO or PenSQO returned a value indicating a failure in solving
the subproblem, which left us with a total of 57 problems. Viewed together, they

A NONMONOTONE FILTER METHOD 1907

led us to the same conclusion as for the previous test set, which was comprised of
smaller problems: FiSQO needed significantly fewer function evaluations compared
to PenSQO, but the difference in the number of iterations (equivalently, the number
of gradient evaluations) was less significant.

To summarize, we believe that the numerical results presented in this section val-
idate the effectiveness of FiSQO. Its ability to accept more steps significantly reduces
the number of function evaluations needed by the line search procedure, while the
decrease in the number of iterations/gradient evaluations is mild.

5.3. Gauging the influence of b- and p-pairs. Most filter algorithms have
multiple sets of conditions that trigger feasibility restoration. For example, most (if
not all) filter trust-region methods enter feasibility restoration if the trust-region sub-
problem is infeasible. Since our research has focused on avoiding such traditional
restoration phases, we were careful about how our trial steps were calculated (e.g.,
the subproblems used in FiSQO are always feasible). Consequently, one might ex-
pect that if our particular trial step computation was used within a traditional filter
method, then the frequency with which feasibility restoration would be needed would
be reduced. (For this discussion, we are ignoring the fact that it is unclear how global
convergence of this fictitious algorithm would be established.) Thus, it is natural
to wonder how important b- and p-pairs (essentially, our replacement for feasibility
restoration) are to the overall success of FiSQO; that is the topic of this section.

We first consider the frequency with which b- and p-pairs occur. We may observe
from [27, Appendix, Tables 1.3 and 1.5] that for (32 + 11)/(301 + 66) ≈ 12% of the
problems, b-pairs (consequently, also p-pairs) were computed. For these problems
(i.e., those for which at least one b-pair was computed), it is also clear from [27,
Appendix, Tables 1.3 and 1.5] that the number of p-pairs is typically very small;
notable exceptions are problems allinita, hatfldf, mss1, and table7, none of which
were successfully solved.

We have now seen that the number of problems for which FiSQO used at least
one b-pair is significant. To investigate their importance, we first identified the prob-
lems for which FiSQO required at least one b-pair during the solution process. We
then modified our MATLAB implementation of FiSQO so that it never allowed the
acceptance of a b-pair, which, as a consequence, meant that p-pairs were never ac-
cepted (i.e., we only accepted v- and o-pairs). We stress that this modified algorithm
(henceforth referred to as modFiSQO) does not enjoy the global convergence results
established for FiSQO. Nonetheless, we are interested in the outcome of this experi-
ment as it gives us additional insight into the potential importance of b-pairs.

We ran modFiSQO on the problems identified in the previous paragraph and the
results are presented in Table 2. (We included only those problems for which a solution
was successfully obtained by at least one of FiSQO or modFiSQO, which left us with
a total of 32 out of the 43 originally identified problems.) The values under “Status”
(a value of 0 indicates that optimality was achieved, while a value of 1 means that the
maximum number of iterations was reached), “Iters” (number of iterations), “Fevals”
(number of function evaluations), and “σ” (final penalty parameter) are given in the
format a/b with a the value for FiSQO and b the value for modFiSQO. The column
“status” shows that the modified algorithm modFiSQO solved the problems with the
exception of haldmads. The two measures of efficiency (number of iterations and func-
tion evaluations), however, tell a different story. FiSQO required more iterations on
only 4/32 of the problems, three of which (himmelp2, hs111lnp, and hs27) required a
single extra iteration and one of which (hs92) required 5 additional iterations. We also

1908 N. I. M. GOULD, Y. LOH, AND D. P. ROBINSON

Table 2

Results for FiSQO/modFiSQO on the CUTEst problems of size 1≤m≤max{m,n}≤ 1000 for
which at least one b-pair was needed.

Problem m n Status Iters Feval σ

ACOPP14 68 38 0/0 5/6 42/11 1.2e+03/7.3e+02

ACOPR14 82 38 0/0 7/16 45/57 1.4e+02/2.0e+01

BT11 3 5 0/0 7/8 9/21 1.0e+01/1.0e+01

BT12 3 5 0/0 3/4 4/6 1.0e+01/1.0e+01

BT2 1 3 0/0 11/11 13/16 1.0e+01/1.0e+01

BT7 3 5 0/0 26/32 106/77 4.7e+02/2.1e+03

HALDMADS 42 6 0/1 215/6001 423/490438 1.0e+01/1.0e+01

HIMMELP2 1 2 0/0 15/14 23/23 1.0e+01/1.0e+01

HS101 5 7 0/0 27/149 72/1879 5.1e+03/5.3e+11

HS102 5 7 0/0 26/39 38/200 1.3e+04/2.9e+03

HS103 5 7 0/0 18/40 24/92 1.3e+03/5.3e+04

HS111LNP 3 10 0/0 18/17 21/21 2.0e+01/2.0e+01

HS27 1 3 0/0 22/21 150/155 1.0e+01/1.0e+01

HS29 1 3 0/0 6/7 11/13 1.0e+01/1.0e+01

HS61 2 3 0/0 6/7 8/18 1.0e+01/1.0e+01

HS77 2 5 0/0 9/9 13/14 1.0e+01/1.0e+01

HS88 1 2 0/0 16/19 24/69 1.1e+03/1.3e+03

HS89 1 3 0/0 16/25 29/54 1.9e+03/2.1e+03

HS92 1 6 0/0 21/16 56/62 1.3e+03/1.1e+03

PFIT2 3 3 0/0 131/132 1720/1730 1.7e+39/3.4e+39

SYNTHES1 6 6 0/0 4/5 6/14 1.0e+01/1.0e+01

TENBARS1 9 18 0/0 45/64 76/525 4.0e+01/6.5e+01

TENBARS2 8 18 0/0 49/89 98/945 2.0e+01/7.1e+01

TENBARS3 8 18 0/0 46/82 104/967 1.0e+01/1.2e+02

WATER 10 31 0/0 10/18 11/86 3.5e+02/3.5e+02

ACOPR57 331 128 0/0 7/22 16/101 3.8e+03/3.8e+03

GMNCASE1 300 175 0/0 1/2 3/5 1.0e+01/1.0e+01

LEUVEN7 946 360 0/0 2/3 3/23 1.0e+01/1.0e+01

QPCBOEI1 351 384 0/0 12/13 17/16 9.5e+05/9.5e+05

QPCSTAIR 356 467 0/0 9/10 28/12 6.5e+04/6.5e+04

QPNBOEI2 166 143 0/0 23/25 45/39 1.1e+05/1.1e+05

ZAMB2-8 48 138 0/0 11/23 19/43 1.0e+01/1.0e+01

note that for those 4 problems, FiSQO did not require more function evaluations
compared to modFiSQO. Over the entire set of problems, FiSQO required more func-
tion evaluations on 5/32 instances; acopp14 (42/11), bt7 (106/77), qpcboei1 (17/16),
qpcstair (28/12), and qpnboei2 (45/39). (Interestingly, for all 5 problems, FiSQO still
required fewer iterations.) So, although FiSQO is occasionally less efficient in terms
of the number of function evaluations, the difference was not dramatic. In contrast,
among the 27/32 problems for which FiSQO was at least as efficient as modFiSQO in
terms of the number of function evaluations, the difference was sometimes dramatic,
e.g., hs101 (72/1879), tenbars1 (76/525), and acopr57 (16/101), to name a few.

Overall, we believe that these results show the practical importance of b-pairs. On
the other hand, these results do not provide any clear evidence of their theoretical sig-
nificance. With that said, it is difficult to imagine how any global convergence theory
for modFiSQO could be established, unless additional modifications were introduced.

A NONMONOTONE FILTER METHOD 1909

6. Conclusions and discussion. This paper considered the local convergence
properties and numerical performance of FiSQO: a nonmonotone variant of the filter
line search algorithm proposed in [26] for which (in contrast to most filter meth-
ods) every subproblem is feasible. We proved, under standard assumptions, that the
iterates computed by FiSQO converge superlinearly to a local minimizer. To accom-
pany the theoretical results, we presented numerical results on subsets of the CUTEst
problems. These results showed that FiSQO was more efficient than a penalty-SQO
algorithm that used exactly the same step calculation procedure. In this manner,
we were able to isolate the influence that our new step acceptance criteria had on
numerical performance. The results were quite clear. First, our acceptance criteria
based on o-, v-, b-, and p-pairs typically accepted more trial steps, which had the
effect of significantly reducing (overall) the number of required function evaluations.
Second, the number of iterations (equivalently, the number of gradient evaluations)
was also reduced, but the difference was not as dramatic. We found it interesting to
see the numerical trade-off between accepting more (on average lower quality) steps
versus fewer (on average higher quality) steps. To further understand the importance
of b- and p-pairs (essentially, our substitute for feasibility restoration), we performed
the following experiment. We first identified the test problems for which FiSQO used
at least one b-pair during the solution process. Next, we solved those problems with
a modified variant of FiSQO, called modFiSQO, that differed by not allowing b-pairs
to be accepted during the line search. The results clearly showed that modFiSQO
performed substantially worse (in general), which validated the numerical importance
of b-pairs. Since modFiSQO solved all except one of the problems, there was no
clear numerical evidence to suggest a theoretical advantage (in terms of convergence
guarantees) for FiSQO.

We did not compare FiSQO to methods that use a feasibility restoration phase.
This decision was made for a variety of reasons. First, different filter methods use
different formulations of the restoration phase, which makes it difficult to make any
general statements about them. Second, the implementation of a restoration phase
often includes heuristics that are designed to improve the general performance. Third,
a key motivation for our work is the design of a filter method that does not use a
restoration phase since it is generally considered to be the most dissatisfying aspect
of such filter-based methods.

It is interesting to note that there was little numerical difference between our
monotone and nonmonotone algorithms. This contrasts the typical difference be-
tween monotone and nonmonotone penalty function methods, for which nonmonotone
variants routinely outperform their monotone counterparts. Our monotone method
appears to be less susceptible to the Maratos effect because of our carefully integrated
filter and penalty function acceptance tests. Of course, the Maratos effect can still
affect our monotone variant, but in this paper we have established that this is not a
concern for our nonmonotone algorithm under common assumptions.

This work showed that, by pairing carefully constructed trial steps with b- and
p-pairs, it is possible to define a convergent filter method that does not require feasi-
bility restoration. We suspect that a disadvantage of our approach is that methods,
such as filter-SQP [18], would typically perform better on infeasible problems, a fea-
ture directly attributed to feasibility restoration. We believe, however, that recent
advances in feasibility detection [3] could be used within our framework and perhaps
reduce, if not entirely mitigate, this disadvantage.

1910 N. I. M. GOULD, Y. LOH, AND D. P. ROBINSON

REFERENCES

[1] E. G. Birgin, R. Castillo, and J. M. Mart́ınez, Numerical comparison of augmented La-
grangian algorithms for nonconvex problems, Comput. Optim. Appl., 31 (2005), pp. 31–55.

[2] P. T. Boggs and J. W. Tolle, Sequential quadratic programming, Acta Numer., 4 (1995),
pp. 1–51.

[3] R. H. Byrd, F. E. Curtis, and J. Nocedal, Infeasibility detection and SQP methods for
nonlinear optimization, SIAM J. Optim., 20 (2010), pp. 2281–2299.

[4] R. H. Byrd, G. Lopez-Calva, and J. Nocedal, A line search exact penalty method using
steering rules, Math. Program., 133 (2012), pp. 39–73.

[5] R. Chamberlain, M. Powell, C. Lemarechal, and H. Pedersen, The watchdog technique
for forcing convergence in algorithms for constrained optimization, in Algorithms for Con-
strained Minimization of Smooth Nonlinear Functions, Springer, New York, 1982, pp. 1–17.

[6] A. R. Conn, N. I. M. Gould, and Ph. L. Toint, A globally convergent augmented Lagrangian
algorithm for optimization with general constraints and simple bounds, SIAM J. Numer.
Anal., 28 (1991), pp. 545–572.

[7] A. R. Conn, N. I. M. Gould, and Ph. L. Toint, Numerical experiments with the LANCELOT
package (Release A) for large-scale nonlinear optimization, Math. Program., 73 (1996),
pp. 73–110.

[8] A. R. Conn, N. I. M. Gould, and Ph. L. Toint, Trust-Region Methods, SIAM, Philadelphia,
2000.

[9] F. E. Curtis, N. I. M. Gould, D. P. Robinson, and Ph. L. Toint, An Interior-Point Trust-
Funnel Algorithm for Nonlinear Optimization, preprint, RAL-P-2014-001, 2014.

[10] F. E. Curtis, H. Jiang, and D. P. Robinson, An adaptive augmented Lagrangian method for
large-scale constrained optimization, Math. Program., 151 (2015), pp. 201–245.

[11] F. E. Curtis, T. Johnson, D. P. Robinson, and A. Wächter, An inexact sequential quadratic
optimization algorithm for large-scale nonlinear optimization, SIAM J. Optim., 24 (2014),
pp. 1041–1074.

[12] F. E. Curtis and J. Nocedal, Flexible penalty functions for nonlinear constrained optimiza-
tion, IMA J. Numer. Anal., 28 (2008), pp. 749–769.

[13] F. E. Curtis, O. Schenk, and A. Wächter, An interior-point algorithm for large-scale non-
linear optimization with inexact step computations, SIAM J. Sci. Comput., 32 (2010),
pp. 3447–3475.

[14] J. Dennis and J. J. Moré, A characterization of superlinear convergence and its application
to quasi-Newton methods, Math. Comp., 28 (1974), pp. 549–560.

[15] G. Di Pillo and L. Grippo, Exact penalty functions in constrained optimization, SIAM J.
Control Optim., 27 (1989), pp. 1333–1360.

[16] E. D. Dolan and J. J. Moré, Benchmarking optimization software with performance profiles,
Math. Program., 91 (2002), pp. 201–213.

[17] R. Fletcher, An 	1 penalty method for nonlinear constraints, in Numerical Optimization 1984,
P. T. Boggs, R. H. Byrd, and R. B. Schnabel, eds., SIAM, Philadelphia, 1985, pp. 26–40.

[18] R. Fletcher and S. Leyffer, Nonlinear programming without a penalty function, Math.
Program., 91 (2002), pp. 239–269.

[19] R. Fletcher, S. Leyffer, and Ph. L. Toint, On the global convergence of a filter-SQP
algorithm, SIAM J. Optim., 13 (2002), pp. 44–59.

[20] P. E. Gill, V. Kungurtsev, and D. P. Robinson, A Stabilized SQP Method: Global Conver-
gence, Center for Computational Mathematics Report CCoM 13-04, University of Califor-
nia, San Diego, 2013.

[21] P. E. Gill, V. Kungurtsev, and D. P. Robinson, A Stabilized SQP Method: Superlinear
Convergence, Center for Computational Mathematics Report CCoM 14-01, University of
California, San Diego, 2014.

[22] P. E. Gill, W. Murray, and M. A. Saunders, SNOPT: An SQP algorithm for large-scale
constrained optimization, SIAM Rev., 47 (2005), pp. 99–131.

[23] P. E. Gill and D. P. Robinson, A primal-dual augmented Lagrangian, Comput. Optim. Appl.,
51 (2012), pp. 1–25.

[24] P. E. Gill and D. P. Robinson, A globally convergent stabilized SQP method, SIAM J. Optim.,
23 (2013), pp. 1983–2010.

[25] N. I. M. Gould, D. Orban, and Ph. L. Toint, CUTEst: A constrained and unconstrained
testing environment with safe threads for mathematical optimization, Comput. Optim.
Appl., 60 (2015), pp. 545–557.

[26] N. I. M. Gould, Y. Loh, and D. P. Robinson, A filter method with unified step computation
for nonlinear optimization, SIAM J. Optim., 24 (2014), pp. 175–209.

A NONMONOTONE FILTER METHOD 1911

[27] N. I. M. Gould, Y. Loh, and D. P. Robinson, A Nonmonotone Filter SQP Method: Local
Convergence and Numerical Results, preprint, RAL-P-2014-012R, 2014.

[28] N. I. M. Gould and D. P. Robinson, A second derivative SQP method: Global convergence,
SIAM J. Optim., 20 (2010), pp. 2023–2048.

[29] N. I. M. Gould and D. P. Robinson, A second derivative SQP method: Local convergence
and practical issues, SIAM J. Optim., 20 (2010), pp. 2049–2079.

[30] N. I. M. Gould and D. P. Robinson, A second derivative SQP method with a “trust-region-
free” predictor step, IMA J. Numer. Anal., 32 (2012), pp. 580–601.

[31] N. I. M. Gould and Ph. L. Toint, Global convergence of a non-monotone trust-region SQP-
filter algorithm for nonlinear programming, in Multiscale Optimization Methods and Ap-
plications, W. Hager and O. A. Prokopyev, eds., Kluwer Academic, Dordrecht, The Nether-
lands, 2005.

[32] L. Grippo, F. Lampariello, and S. Lucidi, A class of nonmonotone stabilization methods in
unconstrained optimization, Numer. Math., 59 (1991), pp. 779–805.

[33] IBM, ILOG CPLEX: High-Performance Software for Mathematical Programming and Opti-
mization, 2006.

[34] M. Kočvara and M. Stingl, PENNON: A generalized augmented Lagrangian method for
semidefinite programming, in High Performance Algorithms and Software for Nonlinear
Optimization, Appl. Optim. 82, Kluwer Academic, Dordrecht, The Netherlands, 2003,
pp. 303–321.

[35] D. C. Liu and J. Nocedal, On the limited memory BFGS method for large scale optimization,
Math. Program., 45 (1989), pp. 503–528.

[36] O. L. Mangasarian and S. Fromovitz, The Fritz John necessary optimality conditions in the
presence of equality and inequality constraints, J. Math. Anal. Appl., 17 (1967), pp. 37–47.

[37] N. Maratos, Exact Penalty Function Algorithms for Finite-Dimensional and Control Opti-
mization Problems, Ph.D. thesis, Department of Computing and Control, University of
London, 1978.

[38] J. Morales, J. Nocedal, and Y. Wu, A sequential quadratic programming algorithm with an
additional equality constrained phase, IMA J. Numer. Anal., 32 (2012), pp. 553–579.

[39] M. J. D. Powell and Y.-X. Yuan, A recursive quadratic programming algorithm that uses
differentiable exact penalty functions, Math. Program., 35 (1986), pp. 265–278.

[40] C. Shen, S. Leyffer, and R. Fletcher, A nonmonotone filter method for nonlinear opti-
mization, Comput. Optim. Appl., 52 (2012), pp. 583–607.

[41] K. Su and D. Pu, A nonmonotone filter trust region method for nonlinear constrained opti-
mization, J. Comput. Appl. Math., 223 (2009), pp. 230–239.

[42] M. Ulbrich, S. Ulbrich, and L. Vicente, A globally convergent primal-dual interior-point
filter method for nonlinear programming, Math. Program., 100 (2004), pp. 379–410.

[43] S. Ulbrich, On the superlinear local convergence of a filter-SQP method, Math. Program., 100
(2004), pp. 217–245.

[44] A. Wachter and L. T. Biegler, Line search filter methods for nonlinear programming: Local
convergence, SIAM J. Optim., 16 (2005), pp. 32–48.

[45] A. Wächter and L. T. Biegler, On the implementation of an interior-point filter line-search
algorithm for large-scale nonlinear programming, Math. Program., 106 (2006), pp. 25–57.

[46] A. Wächter, L. T. Biegler, Y.-D. Lang, and A. Raghunathan, IPOPT: An Interior Point
Algorithm for Large-Scale Nonlinear Optimization, http://www.coin-or.org (2002).

[47] R. Waltz, J. Morales, J. Nocedal, and D. Orban, An interior algorithm for nonlinear
optimization that combines line search and trust region steps, Math. Program., 107 (2006),
pp. 391–408.

[48] V. M. Zavala and M. Anitescu, Scalable nonlinear programming via exact differentiable
penalty functions and trust-region Newton methods, SIAM J. Optim., 24 (2014), pp. 528–
558.

http://www.coin-or.org

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

