
A linesearch algorithm with memory for

unconstrained optimization

Nicholas I. M. Gould

Rutherford Appleton Laboratory, Chilton, Oxfordshire, England

Stefano Lucidi

Dipartimento di Informatica e Sistemistica, Universit�a di Roma \La Sapienza",

Roma, Italy.

Massimo Roma

Dipartimento di Informatica e Sistemistica, Universit�a di Roma \La Sapienza",

Roma, Italy.

Philippe L. Toint

Department of Mathematics, Facult�es Universitaires ND de la Paix, Namur,

Belgium

Abstract. This paper considers algorithms for unconstrained nonlinear optimiza-

tion where the model used by the algorithm to represent the objective function

explicitly includes memory of the past iterations. This is intended to make the algo-

rithm less \myopic" in the sense that its behaviour is not completely dominated

by the local nature of the objective function, but rather by a more global view.

We present a non-monotone linesearch algorithm that has this feature and prove its

global convergence.

1. Introduction

This paper considers the unconstrained minimization problem

min

x2IR

n

f(x)

where the objective function f is a twice continuously di�erentiable

function from IR

n

into IR. If one uses a variant of Newton's method

to solve this problem, then each iteration of the algorithm uses the

�rst three terms of the Taylor's expansion of f to (locally) represent

the objective and decide on a direction in which a better approximate

solution can be found, or, at least, descent can be obtained. Such algo-

rithms are well-known and have a well-established convergence theory

(see [4], [5] and [6]) to support their typically good numerical perfor-

mances. A typical iteration of such a method determines, at a given

iterate x

k

, a search direction

d

k

= H

�1

k

g

k

; (1)



2 N. GOULD, S. LUCIDI, M. ROMA, PH. TOINT

where g

k

= r

x

f(x

k

) and H

k

is a symmetric matrix that one chooses

as a positive de�nite modi�cation of r

xx

f(x

k

). A linesearch is then

performed to obtain the next iterate

x

k+1

= x

k

+ �

k

d

k

= x

k

+ s

k

(2)

by choosing �

k

> 0 to approximately minimize f(x

k

+ �d

k

). If H

k

=

r

xx

f(x

k

), it is clear that the search direction depends purely on local

information: the values of the gradient and Hessian of the objective

at x

k

. The same is typically true if H

k

results from a modi�ed fac-

torization of the Hessian that makes H

k

positive de�nite, because the

modi�cation itself depends on r

xx

f(x

k

). In summary, the (modi�ed)

Newton iteration is memoryless, in that the information accumulated

at iterations preceding iteration k is completely disregarded.

The points which we wish to make here are that this property is not

always desirable, and also that some memory of the past can suitably be

introduced in the algorithm. Typical situations were the purely local

nature of the Newton iteration is detrimental is when the objective

function is very nonlinear, in the sense that its second-order Taylor

series varies quickly as a function of x. This is for instance the case

when the function has local \ripples" which have little global e�ect

on the shape of the objective, but introduce strong very local varia-

tions. A memoryless iteration may then be fooled by the local nature

of the function, and may easily loose track of the more global picture,

although the latter is crucial for determining search directions that

will enable substantial progress of the algorithm. We anticipate that,

in such situations, remembering the shape of the function observed in

the past will be bene�cial in the determination of the search direction

d

k

.

The paper is organized as follows. In Section 2, we introduce a line-

search algorithm that has an explicit memory of the past iterations.

Section 3 is devoted to the analysis of its convergence properties. In

Section 4 some preliminary numerical results are reported and, �nally,

some conclusions and perspectives are presented in Section 5.

2. A linesearch algorithm with memory

The crucial motivation of the iteration (2) is that the search direction

d

k

is chosen to ensure that the point x

k

+ d

k

minimizes the model

m

k

(x) = f(x

k

) + hg

k

; x� x

k

i+

1

2

hx� x

k

;H

k

(x� x

k

)i (3)

where h�; �i denotes the Euclidean inner product. The \myopic" nature

of the iteration then results from the purely local nature of this model.



A linesearch algorithm with memory for unconstrained optimization 3

If we wish to make the algorithm more far-sighted, it is natural to

consider models that attempt to be of a more global nature. We will

therefore consider models of the type

m

M

k

(x) = m

M

k

+ hg

M

k

; x� x

k

i+

1

2

hx� x

k

;H

M

k

(x� x

k

)i

where m

M

k

approximates f(x

k

), g

M

k

approximates g

k

and H

M

k

approxi-

mates H

k

. The search direction d

k

is then determined by the equation

d

k

= �(H

M

k

)

�1

g

M

k

; (4)

where, as for H

k

, H

M

k

will, if necessary, be modi�ed to ensure that it

is positive de�nite. In what follows, we will consider the case where

m

M

k

(x) is a weighted combination of the purely local model m

k

(x) and

the model seen in the past, that is

m

M

k

(x) = (1� �

k

)m

k

(x) + �

k

m

M

k�1

(x); (5)

for some parameter �

k

which we may choose at each iteration between

0 and some �xed upper bound �� 2 [0; 1). The amount of memory of

the past models is controlled by this parameter, as m

M

k

(x) =m

k

(x) for

�

k

= 0. How should we choose �

k

? Since one expects a local model to

be more useful when the length of the step is short, it seems reasonable

to require that �

k

should be of the order of �

k�1

kd

k�1

k, where k � k

denotes the Euclidean norm. We formalize this intuition by requiring

that

�

k

� min[��; �ks

k�1

k

�

] (6)

for some constant � > 0 and some exponent � > 0. Furthermore, we

set �

0

= 0, since there is nothing to remember at the �rst iteration.

We also observe that, although m

M

k

is fully speci�ed by (3) and (5),

its actual value is irrelevant for the determination of d

k

in (4). As a

consequence, we are free to rede�ne the value of the model at x

k

if

needed. This is very useful, since using models of the type (5) creates

the additional di�culty that a descent direction for m

M

k

(x) may not be

a descent direction for m

k

(x) or the objective function itself. Hence,

there is in general no guarantee that the linesearch will �nd a step �

k

such that

f(x

k

+ �

k

d

k

) < f(x

k

)

if d

k

is a descent direction for m

M

k

(x). Thus non-monotone linesearch

techniques appear as a natural alternative in our context. That is,

instead of requiring descent on the objective or m

k

(x), we will be sat-

is�ed if the condition

f(x

k

+ �

k

d

k

) � f

M

k

+ 
�

k

hg

M

k

; d

k

i; (7)



4 N. GOULD, S. LUCIDI, M. ROMA, PH. TOINT

holds for some 
 2 (0;

1

2

) and for some value f

M

k

such that

f(x

k

) � f

M

k

� max

0�i�p(k)

f(x

k�i

) (8)

where p(k) is an integer satisfying the condition p(k) � min[p(k� 1) +

1;M ] for some M > 0. This is the �rst Wolfe condition applied to the

function

m

M

k

(x) + (f

M

k

�m

M

k

);

and allows f(x

k

+�

k

d

k

) to exceed f(x

k

) since f

M

k

� f(x

k

). Observe that

the choice f

M

k

= f(x

k

) is possible. However, in this case, (7) requires

that d

k

must be a descent direction from x

k

, which is to say that hg

k

; d

k

i

must be su�ciently negative. We therefore also require in this case that

hg

k

; d

k

i < �hg

M

k

; d

k

i when f

M

k

= f(x

k

) (9)

for some constant � 2 (0; 1]. Note that this condition is easy to enforce

algorithmically. For instance, one may choose, when f

M

k

= f(x

k

), to

rede�ne g

M

k

= g

k

or even to set �

k

= 0, which then yields that m

M

k

(x) =

m

k

(x) and thus that g

M

k

= g

k

.

We are now in position to de�ne our algorithm more precisely.

Linesearch algorithm with memory

Step 0: An initial point x

0

is given, together with the constants ��, � ,

� 2 (0; 1), � 2 (0; 1), �, 
 and M . Compute f(x

0

), g

0

= r

x

f(x

0

)

and H

0

= r

xx

f(x

0

). Also set k = 0, p(�1) = 0 and �

0

= 0.

Step 1: Choose f

M

k

according to (8). Compute g

M

k

and H

M

k

from (5)

and (9).

Step 2: Compute the search direction d

k

from (4), possibly modifying

H

M

k

to ensure that it is positive de�nite (with smallest eigenvalue

at least �).

Step 3: Calculate a steplength �

k

= �

j

such that j is the smallest

nonnegative integer ensuring (7).

Step 4: Set x

k+1

= x

k

+�

k

d

k

, and compute �

k+1

to satisfy the bound

(6). Increment k by one and go back to Step 1.

End of algorithm

Note that our linesearch is of the Armijo- or backtracking type. Note

also that we have not included any stopping criterion, because our aim

is to study the convergence of the algorithm on an in�nite number of



A linesearch algorithm with memory for unconstrained optimization 5

iterations. We do not describe here how H

M

k

can be modi�ed to achieve

the uniform positive de�niteness required at Step 2, but refer the reader

to [2], [6] and [9] for further description of adequate procedures. A

simple, but crude, way to achieve this condition is to add (1 + �)kH

M

k

k

times the identity matrix to H

M

k

when it is inde�nite.

3. Convergence theory

We now wish to verify that the algorithm is well de�ned and that it

converges globally in the sense that all limit points of the sequence of

iterates are �rst-order critical, irrespective of the choice of the initial

approximation x

0

. The analysis now proceeds in two stages. In the

�rst we analyze the mechanism of the proposed method to show that

certain general conditions on the modelm

M

k

are satis�ed. In the second,

we show that these general conditions are enough to guarantee global

convergence of the algorithm.

3.1. The memory model

We start by analyzing the structure of the memory model.

Lemma 3.1. If the model m

M

k

(x) is de�ned by (5), then, for each k

and all x,

m

M

k

(x) =

k

X

i=0

(1� �

i

)

0

@

k

Y

j=i+1

�

j

1

A

m

i

(x): (10)

Moreover,

k

X

i=0

(1� �

i

)

0

@

k

Y

j=i+1

�

j

1

A

�

1

1� ��

(11)

for all k.

Proof. We easily verify that

m

M

k

(x) = (1� �

k

)m

k

(x) + �

k

m

M

k�1

(x)

= (1� �

k

)m

k

(x) + �

k

(1� �

k�1

)m

k�1

(x) + �

k

�

k�1

m

M

k�2

(x)

= : : :

=

k

X

i=0

(1� �

i

)

0

@

k

Y

j=i+1

�

j

1

A

m

i

(x);



6 N. GOULD, S. LUCIDI, M. ROMA, PH. TOINT

which proves (10). We also have, because of (6) and the bound �� < 1,

that

k

X

i=0

(1� �

i

)

0

@

k

Y

j=i+1

�

j

1

A

�

k

X

i=0

k

Y

j=i+1

�

j

�

k

X

i=0

��

k�i

=

k

X

i=0

��

i

�

1

X

i=0

��

i

=

1

1� ��

;

and the proof of the lemma is complete.

The �rst part of the lemma simply expresses the value of the model

with memory as a function of the memoryless (local) models at all past

iterates.

In what follows, we require the following assumptions.

AS0: The objective function is bounded below on IR

n

.

AS1: The iterates fx

k

g generated by the algorithm remain in a certain

compact set 
 � IR

n

.

Note that we could have made the stronger assumption that the level

set fx 2 IR

n

j f(x) � f(x

0

)g is compact, which then guarantees AS0

and AS1, the latter because f(x

k

) � f(x

0

) for all k.

AS2: The modi�cation to H

M

k

to make it uniformly positive de�nite

is such that the norm of the modi�ed matrix is at most 2 + � the norm

of the original one.

The technique of adding (1 + �)kH

M

k

k times the identity matrix to H

M

k

when it is inde�nite satis�es AS2, but again more elaborate methods

may be preferable.

Our �rst result shows that (4) ensures that d

k

is a good descent

direction on the model m

M

k

.

Lemma 3.2. There exist constants �

1

> 0 and �

2

> 0 such that, for

all k,

hg

M

k

; d

k

i � ��

1

kg

M

k

k

2

(12)

and

kd

k

k � �

2

kg

M

k

k: (13)

Proof. We �rst note that (10) implies that

H

M

k

=

k

X

i=0

(1� �

i

)

0

@

k

Y

j=i+1

�

j

1

A

r

xx

m

i

(x

k

) =

k

X

i=0

(1� �

i

)

0

@

k

Y

j=i+1

�

j

1

A

H

i

:



A linesearch algorithm with memory for unconstrained optimization 7

Now, if we denote

�

H

= max

x2


kr

xx

f(x)k;

which is well de�ned because of AS1, we obtain from (11) that, for all

k,

kH

M

k

k � max

i=0;:::;k

kH

i

k

k

X

i=0

(1� �

i

)

0

@

k

Y

j=i+1

�

j

1

A

�

�

H

1� ��

:

The property (12) then follows from the inequality

hg

M

k

; d

k

i = �hg

M

k

; (H

M

k

)

�1

g

M

k

i � �

1� ��

�

H

kg

M

k

k

2

:

The inequality (13) results from

kd

k

k = k(H

M

k

)

�1

g

M

k

k � k(H

M

k

)

�1

k kg

M

k

k �

1

�

kg

M

k

k;

where we have used the uniform positive de�niteness of H

M

k

.

We now observe that (12) and (13) also cover the case where the

system H

M

k

d

k

= �g

M

k

(giving (4)) is not solved exactly, provided its

approximate solution is obtained by minimizing the quadratic m

M

k

(x)

along a set of descent directions that includes the negative gradient.

Lemma 3.3. Assume that d

k

is computed as

d

k

= �

m

X

i=1

hg

M

k

; v

i

i

hv

i

;H

M

k

v

i

i

v

i

; (14)

for some m between 1 and n, and where the directions fv

i

g

m

i=1

satisfy

the conditions

v

1

= �g

M

k

and hg

M

k

; v

i

i � 0 (i = 1; : : : ;m):

Then conditions (12) and (13) hold.

Proof. We have that

hg

M

k

; d

k

i = �

m

X

i=1

hg

M

k

; v

i

i

2

hv

i

;H

M

k

v

i

i

� �

m

X

i=1

hg

M

k

; v

i

i

2

�

H

kv

i

k

2

� �

1

�

H

kg

M

k

k

2

;

because of the de�nition of �

H

and where we have restricted the sum to

its �rst term to obtain the last inequality. This gives (12) with �

1

= �

�1

H

.

Our assumption on d

k

also yields that

kd

k

k � kg

M

k

k

m

X

i=1

kv

i

k

2

hv

i

;H

M

k

v

i

i

�

m

�

kg

M

k

k �

n

�

kg

M

k

k;



8 N. GOULD, S. LUCIDI, M. ROMA, PH. TOINT

where we have used the Cauchy-Schwarz inequality, the uniform posi-

tive de�niteness of H

M

k

and the bound m � n. Hence (13) holds with

�

2

= n=�.

This result is of practical importance because it covers the case

where the search direction d

k

is computed by a truncated conjugate-

gradient algorithm (see [3]), a very common situation in large-scale

problems.

We next verify that r

x

m

M

k

(x

k

) and r

x

m

k

(x

k

) = r

x

f(x

k

) asymp-

totically coincide when the iterates get closer.

Lemma 3.4. We have that

lim

k!1

kg

M

k

� g

k

k = 0 (15)

whenever

lim

k!1

kx

k+1

� x

k

k = 0: (16)

Proof. Again, we deduce from (10) that

r

x

m

M

k

(x

k

) = g

M

k

=

k

X

i=0

(1� �

i

)

0

@

k

Y

j=i+1

�

j

1

A

r

x

m

i

(x

k

):

Thus, for all k,

g

M

k

� g

k

=

k�1

X

i=0

(1� �

i

)

0

@

k

Y

j=i+1

�

j

1

A

r

x

m

i

(x

k

) + (1� �

k

)r

x

m

k

(x

k

)� g

k

=

k�1

X

i=0

(1� �

i

)

0

@

k

Y

j=i+1

�

j

1

A

r

x

m

i

(x

k

)� �

k

r

x

m

k

(x

k

)

(17)

as r

x

m

k

(x

k

) = g

k

. We now observe that AS1 and the twice con-

tinuously di�erentiable nature of the objective function imply that

kg

k

k, kH

k

k and kx

k

� x

i

k are uniformly bounded, and therefore, since

r

x

m

i

(x) = g

i

+ H

i

(x � x

i

) that there exists a constant �

g

> 0 such

that

�

g

= max

x2


kr

x

m

i

(x)k

for all i. If we now de�ne

�

k

def

=

k�1

X

i=0

(1� �

i

)

0

@

k�1

Y

j=i+1

�

j

1

A



A linesearch algorithm with memory for unconstrained optimization 9

then (17) and (6) give that

kg

M

k

� g

k

k � �

g

�

k

�

k

+ �

k

kr

x

m

k

(x

k

)k

� �

k

�

g

(�

k

+ 1)

� ��

g

(�

k

+ 1)ks

k�1

k

�

:

(18)

We now observe that (11) ensures that �

k

�

1

1���

, and hence that (18)

gives that

kg

M

k

� g

k

k �

�

g

�(2 � ��)

1� ��

ks

k�1

k

�

:

Since (16) means that ks

k�1

k = kx

k

�x

k�1

k converges to zero, this last

bound implies that (15) holds.

3.2. Global convergence

Our general conditions are (8){(9) and (12){(16). We now proceed to

prove that they are su�cient for obtaining global convergence of our

algorithm. We �rst verify that the linesearch procedure of Step 3 is well

de�ned.

Theorem 3.5. If (8) and (9) hold, then the algorithm is well de�ned

in the sense that (7) holds for a �nite j.

Proof. Assume by contradiction that, at the iteration k, the test

(7) is never satis�ed. Then there exits a sequence f�

j

g, with �

j

! 0

as j !1, such that

f(x

k

+ �

j

d

k

) > f

M

k

+ 
�

j

htg

k

; d

k

i;

from which we have that

f(x

k

+ �

j

d

k

)� f(x

k

) > f

M

k

� f(x

k

) + 
�

j

hg

M

k

; d

k

i: (19)

Remember now that, because of (8), we have that f

M

k

�f(x

k

) � 0. Now

if f

M

k

�f(x

k

) > 0, since �

j

! 0, for su�ciently large j, (19) yields that

f

M

k

� f(x

k

) � 0, which is a contradiction. If, instead, f

M

k

� f(x

k

) = 0,

then dividing both terms of (19) by �

j

and taking the limit for j !1,

we obtain that

hg

k

; d

k

i � 
hg

M

k

; d

k

i;

which then contradicts (9). Hence (7) must be satis�ed eventually.

The rest of our convergence proof is strongly inspired by that of [7]

for the case where g

M

k

= g

k

for all k.



10 N. GOULD, S. LUCIDI, M. ROMA, PH. TOINT

Theorem 3.6. Assume that AS1 and AS2 hold. Then either the algo-

rithm terminates at some x

p

such that g(x

p

) = 0, or it produces an in�-

nite sequence fx

k

g whose every limit point x

�

2 
 satis�es g(x

�

) = 0.

Proof. Let `(k) be an index such that

k � p(k) � `(k) � k and f(x

`(k)

) = max

i=0;:::;p(k)

f(x

k�i

): (20)

From the linesearch condition (7) and (8), we obtain that

f(x

k+1

) = f(x

k

+ �

k

d

k

) � f

M

k

+ 
�

k

hg

M

k

; d

k

i � f(x

`(k)

) + 
�

k

hg

M

k

; d

k

i:

(21)

This in turn implies that

f(x

`(k+1)

) = max

i=0;:::;p(k+1)

f(x

`(k+1�i)

)

� max

i=0;:::;p(k)+1

f(x

`(k+1�i)

)

= max[f(x

`(k)

); f(x

k+1

)]

= f(x

`(k)

);

where we have used the fact that p(k+1) � p(k)+1. Thus the sequence

ff(x

`(k)

)g must therefore be non-increasing. Moreover, (7) and (8) also

imply that

f(x

`(k)

) = f(x

`(k)�1

+ �

`(k)�1

d

`(k)�1

)

� f(x

`(k�1)

) + 
�

`(k)�1

hg

M

`(k)�1

; d

`(k)�1

i:

But AS0 guarantees that f(x

`(k)

) is bounded below, and we must there-

fore obtain that

lim

k!1

�

`(k)�1

hg

M

`(k)�1

; d

`(k)�1

i = 0; (22)

Observe now that (12), (13) and the bound �

k

� 1 give that

�

2

k

kd

k

k

2

� �

k

kd

k

k

2

� �

2

2

�

k

kg

M

k

k

2

�

�

2

2

�

1

�

k

jhg

M

k

; d

k

ij; (23)

which, together with (22), yields that

lim

k!1

�

`(k)�1

kd

`(k)�1

k = 0: (24)

We now intend to show that (24) is valid not only for the sequence

f`(k)g but for the complete sequence fkg. Let

^

`(k)

def

= `(k +M + 2): (25)



A linesearch algorithm with memory for unconstrained optimization 11

First, we prove by induction that, for any j � 1,

lim

k!1

�

^

`(k)�j

kd

^

`(k)�j

k = 0 (26)

and

lim

k!1

f(x

^

`(k)�j

) = lim

k!1

f(x

^

`(k)

): (27)

If j = 1, (26) follows from (24). This latter limit also implies that (27)

holds because of the uniform continuity of the objective on 
. Assume

now that (26){(27) hold for a given j � 1. Then the linesearch condition

(7) ensures that

f(x

^

`(k)�j

) � f(x

`(

^

`(k)�j�1)

) + 
�

^

`(k)�j�1

hg

M

^

`(k)�j�1

; d

^

`(k)�j�1

i:

Using (27), we then deduce that

lim

k!1

�

^

`(k)�(j+1)

hg

M

^

`(k)�(j+1)

; d

^

`(k)�(j+1)

i = 0;

and thus, from (12), that

lim

k!1

�

^

`(k)�(j+1)

kd

^

`(k)�(j+1)

k = 0:

The uniform continuity of the objective on 
 then implies that

lim

k!1

f(x

^

`(k)�(j+1)

) = lim

k!1

f(x

^

`(k)�j

) = lim

k!1

f(x

^

`(k)

);

and we may therefore conclude that (26) and (27) hold for any j � 1.

Now, (25) implies that

^

`(k) � k, and we therefore have that, for

each k,

x

k+1

= x

^

`(k)

�

^

`(k)�k�1

X

j=1

�

^

`(k)�j

d

^

`(k)�j

: (28)

But the �rst part of (20) ensures that

^

`(k)� k � 1 = `(k +M + 2)� k � 1 �M + 1;

and thus (28) and (26) imply that

lim

k!1

kx

k+1

� x

^

`(k)

k = 0: (29)

Since the sequence ff(x

`(k)

)g converges, the uniform continuity of the

objective on 
 and (29) yield that

lim

k!1

f(x

k+1

) = lim

k!1

f(x

^

`(k)

): (30)



12 N. GOULD, S. LUCIDI, M. ROMA, PH. TOINT

But the linesearch condition (7) can be used again to obtain that

f(x

k+1

) � f(x

`(k)

) + 
�

k

hg

M

k

; d

k

i:

We may now take the limit for k tending to in�nity in this last inequal-

ity, and deduce, using (30), that

lim

k!1

�

k

hg

M

k

; d

k

i = 0;

and therefore, using (23) as before, that

lim

k!1

�

k

kd

k

k = 0: (31)

Moreover, the last inequality in (23) also implies that

lim

k!1

�

k

kg

M

k

k

2

= 0: (32)

Consider now �x, any limit point of the sequence of iterates. Note

that such a limit point must exist because of AS1, and a subsequence

indexed by K

1

converging to �x. Then (32) ensures that either

lim

k!1;k2K

1

kg

M

k

k = 0 (33)

or there exists a subsequence indexed by K

2

� K

1

such that

lim

k!1;k2K

2

�

k

= 0: (34)

If (33) holds, then (31) and Lemma 3.4 together imply that

kg(�x)k � lim

k!1

kg

M

k

k+ lim

k!1

kg(x

k

)� g

M

k

k = 0: (35)

and �x is a �rst-order stationary point. Now suppose that (34) holds. In

this case, the mechanism of the linesearch implies that there exists an

index k

0

such that, for all k � k

0

, k 2 K

2

,

f(x

k

+

�

k

�

d

k

) > f

M

k

+ 


�

k

�

hg

M

k

; d

k

i � f(x

k

) + 


�

k

�

hg

M

k

; d

k

i;

where we have used (8) to deduce the last inequality. Applying now

the mean-value theorem, we �nd, for all k � k

0

, k 2 K

2

, a point

u

k

2 [x

k

; x

k

+ (�

k

=�)d

k

] such that

hg(u

k

); d

k

i � 
hg

M

k

; d

k

i;



A linesearch algorithm with memory for unconstrained optimization 13

from which we have that

jhg

M

k

; d

k

ij �

1

1� 


jhg

M

k

� g(u

k

); d

k

ij: (36)

If we now consider a further subsequence K

3

� K

2

such that

lim

k!1;k2K

3

x

k

= �x and lim

k!1;k2K

3

d

k

kd

k

k

=

�

d;

we may deduce from and (36), (13), (12) and the Cauchy-Schwarz

inequality that

kg(�x)k = lim

k!1;k2K

3

kg

k

k

� lim

k!1;k2K

3

kg

M

k

k+ lim

k!1;k2K

3

kg

M

k

� g

k

k

� �

2

lim

k!1;k2K

3

kg

M

k

k

2

kd

k

k

+ lim

k!1;k2K

3

kg

M

k

� g

k

k

�

�

2

�

1

lim

k!1;k2K

3

jhg

M

k

; d

k

ij

kd

k

k

+ lim

k!1;k2K

3

kg

M

k

� g

k

k

�

�

2

�

1

(1� 
)

lim

k!1;k2K

3

jhg

M

k

� g(u

k

);

d

k

kd

k

k

ij+ lim

k!1;k2K

3

kg

M

k

� g

k

k

�

�

2

+ 1

�

1

(1� 
)

lim

k!1;k2K

3

kg

M

k

� g

k

k+

�

2

�

1

(1� 
)

lim

k!1;k2K

3

kg

k

� g(u

k

)k

But both kg

M

k

�g

k

k and ku

k

�x

k

k must converge to zero because of (31)

and Lemma 3.4. Hence again �x is �rst-order critical, which concludes

the proof.

We conclude this convergence analysis by a few comments. The �rst

is that conditions (8), (12), (13), (15){(16) and (9) are not speci�c to

our speci�c context, but also apply for the more general case where a

non-monotone linesearch is applied on a problem where the gradients

(and Hessians) are only approximated. In particular, conditions (15){

(16) give a criterion on how accurate the gradient approximation should

be at each iteration. Interestingly, this criterion is similar in spirit to

that proposed by Mor�e in [8] for the case of monotone trust-region

algorithm (he requested (15) to hold whenever the sequence fx

k

g is

convergent), and to that proposed by [10] in the same context (where

the error in the gradient has to be bounded by the trust-region radius).

Our second comment is more practical. If we used the condition (6)

for obtaining our global convergence results, nothing prevents us from

imposing additional restrictions on the memory parameter. In particu-

lar, one could impose a condition of the form

�

k

� min[��; �

g

kg

M

k

k

�

g

; �

s

ks

k�1

k

�

s

]: (37)



14 N. GOULD, S. LUCIDI, M. ROMA, PH. TOINT

The intuitive justi�cation for this alternative de�nition is that one

expects a local model to produce asymptotically fast converging iter-

ates when a critical point is approached.

4. Numerical Experience

In this section, we present the results of our preliminary numerical expe-

rience with the new global approach we have proposed in this paper.

While our experiments are far from exhaustive, our aim has been to

examine the reliability and e�ectiveness of this new global framework.

With this in mind, we implemented an algorithm belonging to the class

of the linesearch algorithms with memory de�ned in Section 2. Specif-

ically, we used the following settings:


 = 10

�3

; M = 3; � =

1

2

; �� = 0:5; � = 0:9:

The crucial parameter �

k

was computed as

�

k

= 10

�i

min[��; kg

M

k

k; ks

k�1

k]; (38)

where i is the smallest nonnegative integer for which the condition

hg

k

; d

k

i < �hg

M

k

; d

k

i (39)

is satis�ed. This requirement on the choice of �

k

is stronger than the

restriction (9) required at Step 1 of the linesearch algorithm with memo-

ry, but empirically leads to a signi�cant improvement in the numerical

performance of the new algorithm. This is likely because any search

direction satisfying (39) is guaranteed to be \su�ciently good" descent

direction for the model m

M

k

(x

k

).

We tested this algorithm on a set of large scale unconstrained prob-

lems from the CUTE collection [1]; the chosen problems are a signi�cant

subset of the most di�cult examples in the collection. We used double

precision Fortran 90 codes compiled under xlf90 with the optimization

compiling option. All of our tests were performed on an IBM RISC

System/6000 375.

We summarize the results of this preliminary numerical study in

Table I and II. For each problem, we report the number of gradients

evaluations (#g), number of function evaluations (#f), CPU time (in

seconds) and the �nal objective function value. We compare our new

linesearch algorithm with memory against a basic algorithm which com-

putes search directions in the same way, but which makes no use of

memory (i.e. obtained by setting � = 0 and M = 1).



A linesearch algorithm with memory for unconstrained optimization 15

Firstly, we note that the performance of the two algorithms are not

directly comparable on problems BROYDN7D, CHAINWOO, CURLY10 and

CURLY30 since the algorithms converge to di�erent local minima. Of

the remaining problems, the algorithm with memory provides signi�-

cant savings in terms of number of function and gradient evaluations

and CPU time relatives to the basic one without memory on problems

CURLY20, DIXMAANB, GENROSE, NCB20B and PENALTY1. For FLETCHCR

and WOODS the algorithm with memory is superior in terms of num-

ber of gradient and function evaluations while it is comparable in term

of CPU time. This is because improvements in terms of numbers of

function and gradient evaluations are counterbalanced by the cost of

updating the parameter �

k

. The only two cases where the algorithm

without memory performs signi�cantly better than the new algorithm

are COSINE and GENHUMPS.

Table I. Results for the new algorithm with memory

Problem n # g # f Time function value

BROYDN7D 1000 37 172 5.75 4.9660E+02

BRYBND 1000 19 29 4.20 4.6134E-14

CHAINWOO 1000 96 309 9.72 2.8984E+02

COSINE 1000 22 23 1.58 -9.9900E+02

CRAGGLVY 1000 14 14 1.40 3.3642E+02

CURLY10 1000 107 973 36.37 -1.0025E+05

CURLY20 1000 54 278 68.33 -1.0030E+05

CURLY30 1000 112 919 375.31 -1.0023E+05

DIXMAANA 1500 12 12 1.75 1.0000E+00

DIXMAANB 1500 70 337 11.06 1.0000E+00

DIXMAANE 1500 33 88 5.22 1.0000E+00

DQRTIC 1000 29 29 1.18 1.4451E-07

FLETCHCR 1000 1442 1443 112.73 4.0489E-16

FREUROTH 1000 44 285 4.89 1.2147E+05

GENHUMPS 1000 3374 6977 308.79 2.2418E-14

GENROSE 1000 571 882 44.73 1.0000E+00

NCB20B 1000 24 58 32.59 1.6760E+03

NONDQUAR 1000 17 17 5.31 1.6815E-09

PENALTY1 1000 37 39 2159.24 9.6862E-03

POWELLSG 1000 18 18 0.78 1.2948E-08

QUARTC 1000 29 29 1.09 1.4451E-07

SINQUAD 1000 12 12 4.21 8.7381E-09

WOODS 1000 38 40 2.20 1.1238E-20

While it would be unwise to draw �rm conclusions from these results,

they indicate some promise for the new approach we have proposed



16 N. GOULD, S. LUCIDI, M. ROMA, PH. TOINT

in this paper. We appreciate that further testing is needed to tune

our algorithmic parameters, and to investigate other e�ects. Further

investigations within our global framework will be the subject of future

work.

Table II. Results for the algorithm with no memory

Problem n # g # f Time function value

BROYDN7D 1000 42 295 6.82 4.5533E+02

BRYBND 1000 15 43 3.14 1.0122E-14

CHAINWOO 1000 107 433 10.74 2.3580E+02

COSINE 1000 13 14 0.85 -9.9900E+02

CRAGGLVY 1000 15 15 1.40 3.3642E+02

CURLY10 1000 82 704 27.68 -1.0029E+05

CURLY20 1000 71 492 89.61 -1.0030E+05

CURLY30 1000 54 311 178.53 -1.0031E+05

DIXMAANA 1500 12 12 1.59 1.0000E+00

DIXMAANB 1500 81 475 12.39 1.0000E+00

DIXMAANE 1500 33 124 4.78 1.0000E+00

DQRTIC 1000 31 31 1.07 1.4683E-07

FLETCHCR 1000 1475 1676 108.31 1.9184E-16

FREUROTH 1000 42 296 4.80 1.2147E+05

GENHUMPS 1000 2293 5065 203.44 7.8695E-15

GENROSE 1000 625 1352 48.07 1.0000E+00

NCB20B 1000 30 82 39.68 1.6760E+03

NONDQUAR 1000 18 18 5.56 1.0591E-09

PENALTY1 1000 41 43 2375.18 9.6862E-03

POWELLSG 1000 18 18 0.73 4.2713E-07

QUARTC 1000 31 31 1.03 1.4683E-07

SINQUAD 1000 12 12 4.27 1.1721E-08

WOODS 1000 40 59 2.16 3.5323E-19

5. Conclusion and perspectives

We have presented a linesearch algorithm that adds memory to the

Newton model of the objective in the hope of making the method less

myopic when applied on strongly nonlinear unconstrained optimization

problems. We have also provided a global convergence theory for the

new algorithm.

Our choice of the linesearch paradigm for unconstrained optimiza-

tion is not the only possible one: one could equally consider the class



A linesearch algorithm with memory for unconstrained optimization 17

of trust-region methods. We only mention here that a similar extension

of these methods to include memory in Newton's model is also possible

and will be described elsewhere.

Acknowledgments

Nick Gould and Philippe Toint are grateful to the Department of Infor-

matics and Systems (Rome) for its hospitality. The �rst three authors

appreciate the support provided by the British Council/MURST travel

grant ROM/889/95/53.

References

1. I. Bongartz, A. R. Conn, N. I. M. Gould and Ph. L. Toint. CUTE: Constrained

and unconstrained testing environment. ACM Transaction on Mathematical

Software, 21, 123{160, 1995.

2. S. H. Cheng and N. J. Higham. A modi�ed Cholesky algorithm based on a sym-

metric inde�nite factorization. Numerical Analysis Report No. 289, Manchester

Centre for Computational Mathematics, Manchester, England, 1996.

3. R. S. Dembo and T. Steihaug. Truncated-Newton algorithms for large-scale

unconstrained optimization. Mathematical Programming, 26, 190{212, 1983.

4. J. E. Dennis and R. B. Schnabel. Numerical methods for unconstrained opti-

mization and nonlinear equations. Prentice-Hall, Englewood Cli�s, New Jersey,

1983.

5. R. Fletcher. Practical Methods of Optimization. J. Wiley and Sons, Chicester

and New York, second edn, 1987.

6. P. E. Gill, W. Murray, and M. H. Wright. Practical Optimization. Academic

Press, London and New York, 1981.

7. L. Grippo, F. Lampariello, and S. Lucidi. A nonmonotone line search technique

for Newton's method. SIAM Journal on Numerical Analysis, 23(4), 707{716,

1986.

8. J. J. Mor�e. Recent developments in algorithms and software for trust region

methods. In A. Bachem, M. Gr�otschel and B. Korte, eds, `Mathematical Pro-

gramming: The State of the Art', pp. 258{287, Springer Verlag, Heidelberg,

Berlin, New York, 1983.

9. R. B. Schnabel and E. Eskow. A new modi�ed Cholesky factorization. SIAM

Journal on Scienti�c Computing, 11(6), 1136{1158, 1991.

10. Ph. L. Toint. Global convergence of a class of trust region methods for non-

convex minimization in Hilbert space. IMA Journal of Numerical Analysis,

8, 231{252, 1988.

Address for correspondence: Massimo Roma, Dipartimento di Informatica e Sis-

temistica, Universit�a di Roma \La Sapienza". Via Buonarroti 12, 00185 Roma, Italy.


