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Abstract. The approximate minimization of a quadratic function within an ellipsoidal trust
region is an important subproblem for many nonlinear programming methods. When the number of
variables is large, the most widely used strategy is to trace the path of conjugate gradient iterates
either to convergence or until it reaches the trust-region boundary. In this paper, we investigate
ways of continuing the process once the boundary has been encountered. The key is to observe that
the trust-region problem within the currently generated Krylov subspace has a very special structure
which enables it to be solved very efficiently. We compare the new strategy with existing methods.
The resulting software package is available as HSL VF05 within the Harwell Subroutine Library.
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1. Introduction. Trust-region methods for unconstrained minimization are
blessed with both strong theoretical convergence properties and a good reputation
in practice. The main computational step in these methods is to find an approximate
minimizer of some model of the true objective function within a “trust” region for
which a suitable norm of the correction lies within a given bound. This restriction is
known as the trust-region constraint, and the bound on the norm is its radius. The
radius is adjusted so that successive model problems mimic the true objective within
the trust region.

The most widely used models are quadratic approximations to the objective func-
tion, as these are simple to manipulate and may lead to rapid convergence of the
underlying method. From a theoretical point of view, the norm which defines the
trust region is irrelevant so long as it is “uniformly” related to the `2-norm. From a
practical perspective, this choice certainly affects the subproblem and thus the meth-
ods one can consider when solving it. The most popular practical choices are the `2-
and `∞-norms and weighted variants thereof. In our opinion, it is important that the
choice of norm reflects the underlying geometry of the problem; simply picking the
`2-norm may not be adequate when the problem is large and the eigenvalues of the
Hessian of the model widely spread. We believe that weighting the norm is essential
for many large-scale problems.

In this paper, we consider the solution of the quadratic-model trust-region sub-
problem in a weighted `2-norm. We are interested in solving large problems and thus
cannot rely solely on factorizations of the matrices involved. We thus concentrate on
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iterative methods. If the model of the Hessian is known to be positive definite and
the trust-region radius sufficiently large that the trust region constraint is inactive
at the unconstrained minimizer of the model, the obvious way to solve the problem
is to use the preconditioned conjugate-gradient method. Note that the role of the
preconditioner here is the same as the role of the norm used for the trust-region,
namely, to change the underlying geometry so that the Hessian in the rescaled space
is better conditioned. Thus, it will come as no surprise that the two should be inti-
mately connected. Formally, we shall require that the weighting in the `2-norm and
the preconditioning be performed by the same matrix.

When the radius is smaller than a critical value, the unconstrained minimizer of
the model will no longer lie within the trust region and thus the required solution
will lie on the trust-region boundary. The simplest strategy in this case is to consider
the piecewise linear path connecting the conjugate-gradient iterates and to stop at
the point where this path leaves the trust region. Such a strategy was first proposed
independently by Steihaug [22] and Toint [23], and we shall refer to the terminating
point as the Steihaug–Toint point. Remarkably, it is easy to establish the global
convergence of a trust-region method based on such a simple strategy. The key is that
global convergence may be proved provided that the accepted estimate of the solution
has a model value no larger than at the Cauchy point (see [14]). The Cauchy point is
simply the minimizer of the model within the trust region along the preconditioned
steepest-descent direction. As the first segment on the piecewise-linear conjugate-
gradient path gives precisely this point, and as the model value is monotonically
decreasing along the entire path, the Steihaug–Toint strategy ensures convergence.

If the model Hessian is indefinite, the solution must also lie on the trust-region
boundary. This case may also be simply handled using preconditioned conjugate
gradients. Once again the piecewise linear path is followed until either it leaves the
trust region or a segment with negative curvature is found. (A vector p is a direction of
negative curvature if the inner product 〈p,Hp〉 < 0, where H is the model Hessian.)
In the latter case, the path is continued downhill along this direction of negative
curvature as far as the constraint boundary. This variant was proposed in [22], while
[23] suggests simply returning to the Cauchy point. As before, global convergence is
ensured at either of these terminating points, as the objective function values there
are no larger than at the Cauchy point. For consistency with the previous paragraph,
we shall continue to refer to the terminating point in Steihaug’s algorithm as the
Steihaug–Toint point, although strictly Toint’s point in this case may be different.

The Steihaug–Toint method is basically unconcerned with the trust region until
it blunders into its boundary and stops. This is rather unfortunate, particularly as
considerable experience has shown that this frequently happens during the first few,
and often the first, iteration(s) when negative curvature is present. The resulting step
is then barely, if at all, better than the Cauchy direction, and this may lead to a
slow but globally convergent algorithm in theory and a barely convergent method in
practice. In this paper, we consider an alternative which aims to avoid this drawback
by trying harder to solve the subproblem when the boundary is encountered, while
maintaining the efficiencies of the conjugate-gradient method so long as the iterates
lie interior. The mechanism we use is the Lanczos method.

The paper is organized as follows. In section 2 we formally define the problem
and any notation that we will use. The basis of our new method is given in section 3,
while in section 4, we will review basic properties of the preconditioned conjugate-
gradient and Lanczos methods. Our new method is given in detail in section 5. Some
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numerical experiments demonstrating the effectiveness of the approach are given in
section 6, and a number of conclusions and perspectives are drawn in the final section.

2. The trust-region subproblem and its solution. Let M be a symmetric
positive-definite easily invertible approximation to the symmetric matrix H. Further-
more, define the M -norm of a vector as

‖s‖2M = 〈s,Ms〉,

where 〈·, ·〉 is the usual Euclidean inner product. In this paper, we consider the
M -norm trust-region problem

minimize
s∈Rn

q(s) ≡ 〈g, s〉+ 1
2 〈s,Hs〉 subject to ‖s‖M ≤ ∆(2.1)

for some vector g and radius ∆ > 0.

A global solution to the problem is characterized by the following result.

Theorem 2.1 (see [4], [20]). Any global minimizer sM of q(s) subject to ‖s‖M ≤ ∆
satisfies the equation

H(λM)sM = −g,(2.2)

where H(λM) ≡ H + λM is positive semidefinite, λM ≥ 0, and λM(‖sM‖M −∆) = 0.
If H(λM) is positive definite, sM is unique.

This result is the basis of a series of related methods for solving the problem
which are appropriate when forming factorizations of H(λ) ≡ H + λM for a number
of different values of λ is realistic. Then either the solution lies interior, and hence
λM = 0 and sM = −H+g, or the solution lies on the boundary and λM satisfies the
nonlinear equation

‖H(λ)+g‖M = ∆,(2.3)

where H+ denotes the pseudoinverse of H. Equation (2.3) is straightforward to solve
using a safeguarded Newton iteration, except in the so-called hard case for which
g lies in the null-space of H(λM). In this case, an additional vector in the range-
space of H(λM) may be required if a solution on the trust-region boundary is sought.
Goldfeldt, Quandt, and Trotter [5], Hebden [7], and Gay [4] all proposed algorithms
of this form. The most sophisticated algorithm to date, that by Moré and Sorensen
[9], is available as subroutine GQTPAR in the MINPACK-2 package and guarantees that
a nearly optimal solution will be obtained after a finite number of factorizations.

While such algorithms are appropriate for large problems with special Hessian
structure—such as for band matrices—the demands of a factorization at each iteration
limit their applicability for general large problems. It is for this reason that methods
which do not require factorizations are of interest.

Throughout this paper, we shall denote the k by k identity matrix by Ik and its jth
column by ej . A set of vectors {qi} are said to be M -orthonormal if 〈qi,Mqj〉 = δij ,
the Kronecker delta, and the matrix Qk = (q0 · · · qk) formed from these vectors is an
M -orthonormal matrix. The set of vectors {pi} are H-conjugate (or H-orthogonal)
if 〈pi, Hpj〉 = 0 for i 6= j.
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3. A new algorithm for large-scale trust-region subproblems. To set the
scene for this paper, we recall that the Cauchy point may be defined as the solution
to the problem

minimize
s ∈ span{M−1g}

q(s) ≡ 〈g, s〉+ 1
2 〈s,Hs〉 subject to ‖s‖M ≤ ∆,(3.1)

that is, as the minimizer of q within the trust region where s is restricted to the one-
dimensional subspace span

{
M−1g

}
. The dogleg methods (see [3], [13]) aim to solve

the same problem over a particular two-dimensional subspace (a one-dimensional arc),
while [19] does the same over a general two-dimensional subspace. In each of these
cases the solution is easy to find as the search space is small. The difficulty with the
general problem (2.1) is that the search space <n is large. This leads immediately to
the possibility of solving a compromise problem

minimize
s ∈ S

q(s) subject to ‖s‖M ≤ ∆,(3.2)

where S is a specially chosen subspace of <n.
Now consider the Steihaug–Toint algorithm at an iteration k before the trust-

region boundary is encountered. In this case, the point sk+1 is the solution to (3.2)
with the set

(3.3)

S = Kk def
= span

{
M−1g, (M−1H)M−1g, (M−1H)2M−1g, . . . , (M−1H)kM−1g

}
,

the Krylov space generated by the starting vector M−1g, and matrix M−1H. That is,
the Steihaug–Toint algorithm gradually widens the search space using the very efficient
preconditioned conjugate-gradient method. However, as soon as the Steihaug–Toint
algorithm moves across the trust-region boundary, the terminating point sk+1 no
longer necessarily solves the problem (3.2) over the set (3.3); indeed it is very unlikely
to do so when k > 0. (As the iterates generated by the method increase in M -norm,
once an iterate leaves the trust region, the solution to (3.2)–(3.3), and thus (2.1), must
lie on the boundary. See [22, Theorem 2.1] for details.) Can we do better? Yes, by
recalling that the preconditioned conjugate-gradient and Lanczos methods generate
different bases for the same Krylov space.

4. The preconditioned conjugate-gradient and Lanczos methods. The
preconditioned conjugate-gradient and Lanczos methods may be viewed as efficient
techniques for constructing different bases for the same Krylov space, Kk. The
conjugate-gradient method aims for an H-conjugate basis, while the Lanczos method
obtains an M -orthonormal basis.

Algorithm 4.1 (the preconditioned conjugate-gradient method). Set g0 = g,
and let v0 = M−1g0 and p0 = −v0. For j = 0, 1, . . . , k − 1, perform the iteration

αj = 〈gj , vj〉/〈pj , Hpj〉,(4.1)

gj+1 = gj + αjHpj ,(4.2)

vj+1 = M−1gj+1,(4.3)

βj = 〈gj+1, vj+1〉/〈gj , vj〉,(4.4)

pj+1 = −vj+1 + βjpj .(4.5)
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Algorithm 4.2 (preconditioned Lanczos method). Set t0 = g, w−1 = 0, and,
for j = 0, 1, . . . , k, perform the iteration

yj = M−1tj ,(4.6)

γj =
√
〈tj , yj〉,(4.7)

wj = tj/γj ,(4.8)

qj = yj/γj ,(4.9)

δj = 〈qj , Hqj〉,(4.10)

tj+1 = Hqj − δjwj − γjwj−1.(4.11)

The conjugate-gradient method generates the basis

Kk = span {p0, p1, . . . , pk}(4.12)

from Algorithm 4.1, while the Lanczos method generates the basis

Kk = span {q0, q1, . . . , qk}(4.13)

from Algorithm 4.2. The Lanczos iteration is often written in the more compact form

HQk −MQkTk = γk+1wk+1e
T
k+1 and(4.14)

QTkMQk = Ik+1,(4.15)

where Qk is the matrix (q0 · · · qk) and the matrix

Tk =


δ0 γ1

γ1 δ1 ·
· · ·
· δk−1 γk

γk δk

(4.16)

is tridiagonal. It then follows directly that

QTkHQk = Tk,(4.17)

QTk g = γ0e1, and(4.18)

g = My0 = γ0Mq0.(4.19)

The two methods are intimately related. In particular, so long as the conjugate-
gradient iteration does not break down, the Lanczos vectors may be recovered from
the conjugate-gradient iterates as

qk = σkvk/
√
〈gk, vk〉, where σk = −sign(αk−1)σk−1 and σ0 = 1,

while the Lanczos tridiagonal may be expressed as

Tk =



1
α0

√
β0

|α0|√
β0

|α0|
1
α1

+ β0

α0

√
β1

|α1|√
β1

|α1|
1
α2

+ β1

α1
·

· · ·
· 1

αk−1
+ βk−2

αk−2

√
βk−1

|αk−1|√
βk−1

|αk−1|
1
αk

+ βk−1

αk−1


.(4.20)
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The conjugate-gradient iteration may break down if 〈pj , Hpj〉 = 0, which can occur
only if H is not positive definite, and will stop if 〈gj , vj〉 = 0. On the other hand, the
Lanczos iteration can fail only if Kj is an invariant subspace for M−1H.

If q(s) is convex in the manifold Kj+1, the minimizer sj+1 of q in this manifold
satisfies

sj+1 = sj + αjpj(4.21)

so long as the initial value s0 = 0 is chosen. Thus this estimate easily recurs from
the conjugate-gradient iteration. The minimizers in successive manifolds may also be
easily obtained using the Lanczos process, although the conjugate-gradient iteration
is slightly less expensive and thus preferred.

The vector gj+1 in the conjugate-gradient method gives the gradient of q(s) at
sj+1. It is quite common to stop the method as soon as this gradient is sufficiently
small, and the method naturally records the M−1-norm of the gradient, ‖gk+1‖M−1 =
〈gj , vj〉. This norm is also available in the Lanczos method as

gk+1 = γk+1〈ek+1, hk〉wk+1 and ‖gk+1‖M−1 = γk+1|〈ek+1, hk〉|,(4.22)

where hk solves the tridiagonal linear system Tkhk + γ0e1 = 0. The last component,
〈ek+1, hk〉, of hk is available as a further by-product.

5. The truncated Lanczos approach. Rather than use the preconditioned
conjugate-gradient basis {p0, p1, . . . , pk} for S, we shall use the equivalent Lanczos
M -orthonormal basis {q0, q1, . . . , qk}. The Lanczos basis has previously been used
by [10]—to convexify the quadratic model—and [8]—to compute good directions of
negative curvature—within linesearch-based methods for unconstrained minimization.
We shall consider vectors of the form

s ∈ S = {s ∈ <n | s = Qkh}

and seek

sk = Qkhk,(5.1)

where sk solves the problem

minimize
s ∈S

q(s) ≡ 〈g, s〉+ 1
2 〈s,Hs〉 subject to ‖s‖M ≤ ∆.(5.2)

It then follows directly from (4.15), (4.17), and (4.18) that hk solves the problem

minimize
h ∈ Rk+1

〈h, γ0e1〉+ 1
2 〈h, Tkh〉 subject to ‖h‖2 ≤ ∆.(5.3)

There are a number of crucial observations to be made here. First, it is important
to note that the resulting trust-region problem involves the two-norm rather than
the M -norm. Second, as Tk is tridiagonal, it is feasible to use the Moré–Sorensen
algorithm to compute the model minimizer even when n is large. Third, having found
hk, the matrix Qk is needed to recover sk, and thus the Lanczos vectors will either
need to be saved on backing store or regenerated. As we shall see, we need only Qk
once we are satisfied that continuing the Lanczos process will give little extra benefit.
Fourth, one would hope that as a sequence of such problems may be solved, and as Tk
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only changes by the addition of an extra diagonal and superdiagonal entry, solution
data from one subproblem may be useful for starting the next. We consider this issue
in section 5.2.

The basic trust-region solution classification theorem, Theorem 2.1, shows that

(Tk + λkIk+1)hk = −γ0e1,(5.4)

where Tk + λkIk+1 is positive semidefinite, λk ≥ 0, and λk(‖hk‖2 − ∆) = 0. What
does this tell us about sk? First, using (4.17), (4.18), and (5.4) we have

QTk (H + λkM)sk = QTk (H + λkM)Qkhk = (Tk + λkIk+1)hk = −γ0e1 = −QTk g

and additionally that

λk(‖sk‖M −∆) = 0 and λk ≥ 0.(5.5)

Comparing these with the trust-region classification theorem, we see that sk is the
Galerkin approximation to sM from the space spanned by Qk.

We may then ask how good the approximation is. In particular, what is the error
(H + λkM)sk + g? The simplest way of measuring this error would be to calculate
hk and λk by solving (5.3), then to recover sk as Qkhk, and finally to substitute sk
and λk into (H +λM)s+ g. However, this is inconvenient as it requires that we have
easy access to Qk. Fortunately there is a far better way.

Theorem 5.1.

(H + λkM)sk + g = γk+1〈ek+1, hk〉wk+1(5.6)

and

‖(H + λkM)sk + g‖M−1 = γk+1|〈ek+1, hk〉|.(5.7)

Proof. We have that

Hsk = HQkhk
= MQkTkhk + γk+1〈ek+1, hk〉wk+1 from (4.14)
= −MQk(λkhk + γ0e1) + γk+1〈ek+1, hk〉wk+1 from (5.4)
= −λkMQkhk − γ0MQke1 + γk+1〈ek+1, hk〉wk+1

= −λkMsk − γ0Mq0 + γk+1〈ek+1, hk〉wk+1

= −λkMsk − g + γk+1〈ek+1, hk〉wk+1 from (4.19).

This then directly gives (5.6). Equation (5.7) follows from the M−1-orthonormality
of wk+1.

Therefore we can indirectly measure the error (in the M−1-norm) knowing simply
γk+1 and the last component of hk, and we do not need sk or Qk at all. Observant
readers will notice the strong similarity between this error estimate and the estimate
(4.22) for the gradient of the model in the Lanczos method, but this is not at all
surprising as the two methods are aiming for the same point if the trust-region radius
is large enough. An interpretation of (5.7) is also identical to that of (4.22). The error
will be small when either γk+1 or the last component of hk is small.

We now consider the problem (5.3) in more detail. We say that a symmetric tridi-
agonal matrix is reducible if one or more of its off-diagonal entries is zero; otherwise
it is irreducible. We then have the following preliminary result.
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Lemma 5.2 (see also [11, Theorem 7.9.5]). Suppose that the tridiagonal matrix
T is irreducible and that v is an eigenvector of T . Then the first component of v is
nonzero.

Proof. By definition

Tv = θv(5.8)

for some eigenvalue θ. Suppose that the first component of v is zero. Considering
the first component of (5.8), we have that the second component of v is zero as T is
tridiagonal and irreducible. Repeating this argument for the ith component of (5.8),
we deduce that the (i+1)st component of v is zero for all i and hence that v = 0. But
this contradicts the assumption that v is an eigenvector, and so the first component
of v cannot be zero.

This immediately yields the following useful result.

Theorem 5.3. Suppose that Tk is irreducible. Then the hard case cannot occur
for the subproblem (5.3).

Proof. Suppose the hard case occurs. Then, by definition, γ0e1 is orthogonal to
vk, the eigenvector corresponding to the leftmost eigenvalue, −θk, of Tk. Thus, the
first component of vk is zero, which, following Lemma 5.2, contradicts the assumption
that vk is an eigenvector. Thus the hard case cannot occur.

This result is important as it suggests that the full power of the Moré–Sorensen
[9] algorithm is not needed to solve (5.3). We shall return to this in section 5.2. We
also have an immediate corollary.

Corollary 5.4. Suppose that Tn−1 is irreducible. Then the hard case cannot
occur for the original problem (2.1).

Proof. When k = n − 1, the columns of Qn−1 form a basis for <n. Thus the
problems (2.1) and (5.2) are identical and (5.2) and (5.3) are related through a non-
singular transformation. The result then follows directly from Theorem 5.3 in the
case k = n− 1.

Thus, if the hard case occurs for (2.1), the Lanczos tridiagonal must become
reducible at some stage.

Theorem 5.5. Suppose that Tk is irreducible, that hk and λk satisfy (5.4), and
that Tk + λkIk+1 is positive semidefinite. Then Tk + λkIk+1 is positive definite.

Proof. Suppose that Tk +λkIk+1 is singular. Then there is a nonzero eigenvector
vk for which (Tk + λkIk+1)vk = 0. Hence, combining this with (5.4) reveals that

0 = 〈hk, (Tk + λkIk+1)vk〉 = 〈vk, (Tk + λkIk+1)hk〉 = −γ0〈vk, e1〉

and hence that the first component of vk is zero. But this contradicts Lemma 5.2.
Hence Tk + λkIk+1 is both positive semidefinite and nonsingular and thus positive
definite.

This result implies that (5.4) has a unique solution. We now consider this solution.

Theorem 5.6. Suppose that 〈ek+1, hk〉 = 0. Then Tk is reducible.

Proof. Suppose that Tk is irreducible. As the (k + 1)st component of hk is zero,
then from the irreducibility of Tk and the (k + 1)st equation of (5.4), we deduce that
the kth component of hk is zero. Repeating this argument for the (i+ 1)st equation
of (5.4), we deduce that the ith component of hk is zero for 1 ≤ i ≤ k and hence
that hk = 0. But this contradicts the first equation of (5.4), and thus Tk must be
reducible.
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Thus we see that of the two possibilities suggested by Theorem 5.1 for obtaining
an sk for which (H + λkM)sk + g = 0, it will be the possibility γk+1 = 0 that occurs
before 〈ek+1, hk〉 = 0.

Theorem 5.7. Suppose that the hard case does not occur for (2.1), and that
γk+1 = 0. Then sk solves (2.1).

Proof. If γk+1 = 0, the Krylov space Kk is an invariant subspace of M−1H, and by
construction the first basis element of this space is M−1g. As the hard case does not
occur for (2.1), this space must also contain at least one eigenvector corresponding to
the leftmost eigenvalue, −θ, of M−1H. Thus one of the eigenvalues of Tk must be −θ,
and λk ≥ θ as Tk + λkIk+1 is positive semidefinite. But this implies that H + λkM is
positive semidefinite, which combines with (5.1), (5.5), and Theorem 5.1 with γk+1 = 0
to show that sk satisfies the optimality conditions shown in Theorem 2.1.

Thus we see that in the easy case, the required solution will be obtained from the
first irreducible block of the Lanczos tridiagonal. It remains for us to consider the
hard case. In view of Corollary 5.4, this case can only occur when Tk is reducible.
Suppose therefore that Tk reduces into ` blocks of the form

Tk =


Tk1

Tk2

·
Tk`

 ,(5.9)

where each of the Tki defines an invariant subspace for M−1H and where the last
block Tk` is the first to yield the leftmost eigenvalue, −θ, of M−1H. Then there are
two cases to consider.

Theorem 5.8. Suppose that the hard case occurs for (2.1), that Tk is as described
by (5.9), and that the last block Tk` is the first to yield the leftmost eigenvalue, −θ, of
M−1H. Then,

1. if θ ≤ λk1
, a solution to (2.1) is given by sk = Qk1

hk1
, where hk1

solves the
positive-definite system

(Tk1 + λk1Ik1+1)hk1 = −γ0e1;

2. if θ > λk1
, a solution to (2.1) is given by sk = Qkhk, where

hk =


h
0
·
0
αu

 ,(5.10)

h is the solution of the nonsingular tridiagonal system

(Tk1 + θIk1+1)h = −γ0e1,

u is an eigenvector of Tk` corresponding to −θ, and α is chosen so that

‖hk1‖22 + α2‖u||22 = ∆2.

Proof. In case 1, H + λk1
M is positive semidefinite as λk1

≥ θ and the remaining
optimality conditions are satisfied as γk1+1 = 0 and hk1

solves (5.2). That Tk1
+

λk1Ik1+1 is positive definite follows from Theorem 5.5. In case 2, H + θM is positive
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semidefinite. Furthermore, as θ > λk1
, it is easy to show that ‖h‖2 < ‖hk1

‖2 ≤ ∆
and hence that there is a root α for which ‖sk‖M = ‖hk‖2 = ∆. Finally, as each Qki
defines an invariant subspace, HQki = MQkiTki . Writing s = Qk1

h and v = Qk`u,
we therefore have

Hs = HQk1
h = MQk1

Tk1
h = MQk1

(−θh− γ0e1) = −θMs− g
and

Hv = HQk`u = MQk`Tk`u = −θMQk`u = −θMv.

Thus (H + θM)sk = −g and sk satisfies all optimality conditions for (5.2).
Notice that to obtain sk as described in this theorem, we require only the Lanczos

vectors corresponding to blocks one and, perhaps, ` of Tk.
We do not claim that solving the problem as outlined in Theorem 5.8 is realistic,

as it relies on our being sure that we have located the leftmost eigenvalue of M−1H.
With Lanczos-type methods, one cannot normally guarantee that all eigenvalues,
including the leftmost, will be found unless one ensures that all invariant subspaces
have been investigated, and this may prove to be very expensive for large problems. In
particular, the Lanczos algorithm, Algorithm 4.2, terminates each time an invariant
subspace has been determined and must be restarted using a vector q which is M -
orthonormal to the previous Lanczos directions. Such a vector may be obtained
from the Gram–Schmidt process by reorthonormalizing a suitable vector—a vector
with some component M -orthogonal to the existing invariant subspaces, perhaps a
random vector—with respect to the previous Lanczos directions, which means that
these directions will have to be regenerated or reread from backing store. Thus, while
this form of the solution is of theoretical interest, it is unlikely to be of practical
interest if a cheap approximation to the solution is all that is required.

5.1. The algorithm. We may now outline our algorithm, Algorithm 5.1, the
generalized Lanczos trust-region (GLTR) method. We stress that, as our goal is
merely to improve upon the value delivered by the Steihaug–Toint method, we do
not use the full power of Theorem 5.8 and are content just to investigate the first
invariant subspace produced by the Lanczos algorithm. In almost all cases, this
subspace contains the global solution to the problem, and the complications and costs
required to implement a method based on Theorem 5.8 are, we believe, prohibitive in
our context.

Algorithm 5.1 (the GLTR method). Let s0 = 0, g0 = g, v0 = M−1g0, γ0 =√〈v0, g0〉, and p0 = −v0. Set the flag INTERIOR as true. For k = 0, 1, . . . until
convergence, perform the iteration

αk = 〈gk, vk〉/〈pk, Hpk〉
Obtain Tk from Tk−1 using (4.20)
If INTERIOR is true, but αk ≤ 0 or ‖sk + αkpk‖M ≥ ∆

reset INTERIOR to false.
If INTERIOR is true

sk+1 = sk + αkpk
else

solve the tridiagonal trust-region subproblem (5.3) to obtain hk
end if
gk+1 = gk + αkHpk
vk+1 = M−1gk+1
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If INTERIOR is true
test for convergence using the residual ‖gk+1‖M−1

else
test for convergence using the value γk+1|〈ek+1, hk〉|

end if
βk = 〈gk+1, vk+1〉/〈gk, vk〉
pk+1 = − vk+1 + βkpk

If INTERIOR is false, recover sk = Qkhk by rerunning the recurrences or obtaining Qk
from backing store.

When recovering sk = Qkhk by rerunning the recurrences, economies can be made
by saving the αi and βi during the first pass and reusing them during the second. A
potentially bigger savings may be made if one is prepared to accept a slightly inferior
value of the objective function. The idea is simply to save the value of q at each
iteration. On convergence, one looks back through this list to find an iteration, `,
say, for which a required percentage of the best value was obtained, recompute h`,
and then accept s` = Q`h` as the required estimate of the solution. If the required
percentage occurs at an iteration before the boundary is encountered, both the final
point before the boundary and the Steihaug–Toint point are suitable and available
without the need for the second pass.

We note that we have used the conjugate-gradient method (Algorithm 4.1) to
generate the Lanczos vectors. If the inner-product 〈pk, Hpk〉 proves to be tiny, it is
easy to continue using the Lanczos method (Algorithm 4.2) itself; the vectors

qj = vj/
√
〈gj , vj〉 and wj = gj/

√
〈gj , vj〉

required to continue the Lanczos recurrence (4.11) are directly calculable from the
conjugate-gradient method.

At each stage of both the Steihaug–Toint algorithm and our GLTR method (Algo-
rithm 5.1), we need to calculate ‖sk +αpk‖M . This issue is not discussed by Steihaug
as it is implicitly assumed that M is available. However, it may be the case that all
that is actually available is a procedure which returns M−1v for a given input v, and
thus M is unavailable. Fortunately this is not a significant drawback as it is possible
to calculate ‖sk + αpk‖M from available information.

To see this, observe that

‖sk + αpk‖2M = ‖sk‖2M + 2α〈sk,Mpk〉+ α2‖pk‖2M(5.11)

and thus that we can find ‖sk+1‖2M from ‖sk‖2M so long as we already know 〈sk,Mpk〉
and ‖pk‖2M . But it is straightforward to show that these quantities may be calculated
from the pair of recurrences

〈sk,Mpk〉 = βk−1

(〈sk−1,Mpk−1〉+ αk−1‖pk−1‖2M
)

and(5.12)

‖pk‖2M = 〈gk, vk〉+ β2
k−1‖pk−1‖2M ,(5.13)

where, of course, 〈gk, vk〉 has already been calculated as part of the preconditioned
conjugate-gradient method.

5.2. Solving the irreducible tridiagonal trust-region subproblem. In
view of Theorem 5.3, the irreducible tridiagonal trust-region subproblem (5.3) is,
in theory, easier to solve than the general problem. This is so both because the Hes-
sian is tridiagonal (and thus very inexpensive to factorize) and because the hard case
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cannot occur. We should be cautious here because the so-called almost hard case—
which occurs when g only has a tiny component in the range-space of H(λM)—may
still happen, and the trust-region problem in this case is naturally ill conditioned and
thus likely to be difficult to solve.

The Moré–Sorensen [9] algorithm is based on being able to form factorizations
of the model Hessian (which is certainly the case here as Tk + λIk+1 is tridiagonal),
but does not try to calculate the leftmost eigenvalue of the pencil H + λM . In the
tridiagonal case, computing the extreme eigenvalues is straightforward, particularly
if a sequence of related problems is to be solved. Thus, rather than using the Moré–
Sorensen algorithm, we prefer the following method.

We restrict ourselves to the case where the solution lies on the trust-region
boundary—we will only switch to this approach when the conjugate-gradient iter-
ation leaves the trust region. The basic iteration is identical to that proposed in [9],
namely, to apply Newton’s method to

φ(λ)
def
=

1

‖hk(λ)‖2 −
1

∆
= 0,(5.14)

where

(Tk + λIk+1)hk(λ) = −γ0e1,(5.15)

to find the required root λk. Recalling that we denote the leftmost eigenvalue of
Tk by −θk, the main difference between our approach and Moré and Sorensen’s is
that we always start from some point in the interval [max(0, θk), λk]—this interval is
characterized by both Tk + λIk+1 being positive definite and ‖hk(λ)‖2 ≥ ∆—as then
the resulting Newton iteration is globally linearly, and asymptotically quadratically,
convergent without any further safeguards. The Newton iteration is performed using
Algorithm 5.2.

Algorithm 5.2 (Newton’s method to solve φ(λ) = 0). Let λ > θk and ∆ > 0
be given.

1. Factorize Tk + λIk+1 = BDBT , where B and D are unit bidiagonal and
diagonal matrices, respectively.

2. Solve BDBTh = −γ0e1.
3. Solve Bw = h.
4. Replace λ by

λ+

(‖h‖2 −∆

∆

)( ‖h‖22
‖w‖2D−1

)
.

The Newton correction in step 4 of this algorithm is given by

λ− φ(λ)

φ′(λ)
= λ+

(‖h‖2 −∆

∆

)( ‖h‖22
〈h, (Tk + λIk+1)−1h〉

)
,

while the exact form given is obtained by using the identity

〈h, (Tk + λIk+1)−1h〉 = 〈h,B−TD−1B−1h〉 = 〈B−1h,D−1B−1h〉 = ‖w‖2D−1 ,

where w is as computed in step 3. It is slightly more efficient to pick B to be unit
upper-bidiagonal rather than unit lower-bidiagonal, as then step 2 simplifies to BTh =
−γ0D

−1e1 because of the structure of the right-hand side.
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To obtain a suitable starting value, two possibilities are considered. First, we
attempt to use the solution value λk−1 from the previous subproblem. Recall that Tk
is merely Tk−1 with an appended row and column. As we already have a factorization
of Tk−1 + λk−1Ik, it is trivial to obtain that of Tk + λk−1Ik+1 and thus to determine
if the latter is positive definite. If Tk + λk−1Ik+1 turns out to be positive definite,
hk(λk−1) is computed from (5.15), and if ‖hk(λk−1)‖2 ≥ ∆, λk−1 is used to start the
Newton iteration.

Second, if λk−1 is unsuitable, we monitor Tk to see if it is indefinite. This is trivial,
as, for instance, the matrix is positive definite so long as all of the αi, 0 ≤ i ≤ k,
generated by the conjugate-gradient method are positive. If Tk is positive definite,
we start the Newton iteration with the value λ = 0, which by assumption gives
‖hk(0)‖2 ≥ ∆ as the unconstrained solution lying outside the trust region. Otherwise,
we determine the leftmost eigenvalue, −θk, of Tk and start with λ = θ + ε, where ε
is a small positive number chosen to make Tk + λk−1Ik+1 numerically “just” positive
definite. By this we mean that its BDBT factorization should exist, but that ε should
be as small as possible. We have found that a value (1 + θk)ε0.5m , where εm is the unit
roundoff, is almost always suitable, but we have added the precaution of multiplying
this value by increasing powers of 2 so long as the factorization fails.

If we need to compute the leftmost eigenvalue of Tk, we use an iteration based
upon the last-pivot function proposed by Parlett and Reid [12]. The last-pivot func-
tion, δk(θ), is simply the value of the last diagonal entry of the BDBT factor Dk(λ)
of Tk − θIk+1. This value will be zero, and the other diagonal entries positive, when
θ = θk and δk(θ) > 0 for θ > θk. An interval of uncertainty [θl, θu] is placed around
the required root. The initial interval is given by the Gersgorin bounds on the left-
most eigenvalue. When it is known, the leftmost eigenvalue, −θk−1, of Tk−1 may
be used to improve the lower bound because of the Cauchy interlacing property of
the eigenvalues of Tk−1 and Tk (see, for instance, [11, Theorem 10.1.2]). Given an
initial estimate of θk, an improvement may be sought by applying Newton’s method
to δk(θ); the derivative of δk is easy to obtain by recurrence. However, as Parlett and
Reid point out,

δk(θ) =
det(Tk − θIk+1)

det(Tk−1 − θIk)

and thus has a pole at θ = θk−1. Hence it is better to choose the new point by fitting
the model

δM

k (θ) =
(θ − a)(θ − b)
θ − θk−1

(5.16)

to the function and derivative value at the current θ and then to pick the new iterate
as the larger root of δM

k (θ). If the new iterate lies outside the interval of uncertainty,
it is replaced by the midpoint of the interval. The interval is then contracted by
computing δk at the new iterate and replacing the appropriate endpoint by the iterate.
The iteration is stopped if the length of the interval or the value of δk(θk) is small.

If θk−1 is known, the initial iterate chosen as θk−1 + ε for some small positive
ε ≤ θk − θk−1, and successive iterates generated from (5.16), the iterates converge
globally, and asymptotically superlinearly, from the left. If the Newton iteration
is used, the required root is frequently obscured and the scheme resorts to interval
bisection. Thus the Parlett–Reid scheme is preferred.
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Other means of locating the required eigenvalue based on using the determinant
det(Tk − θIk+1) instead of δk(θ) were tried, but proved to be less reliable because of
the huge numerical range (and thus potential overflow) of the determinant.

6. Numerical experiments. The algorithm sketched in sections 5.1 and 5.2 has
been implemented as a Fortran-90 module, HSL VF05, within the Harwell Subroutine
Library [6].

As our main interest is in using the methods described in this paper within a
trust-region algorithm, we are particularly concerned with two issues. First, can we
obtain significantly better values of the model by finding better approximations to
its solution than the Steihaug–Toint method? And second, do better approximations
to the minimizer of the model necessarily translate into fewer iterations of the trust-
region method? In this section, we address these outstanding questions.

Throughout, we will consider the basic problem of minimizing an objective f(x)
of n real variables x. We shall use the following standard trust-region method.

Algorithm 6.1 (standard trust-region algorithm).
0. An initial point x0 and an initial trust-region radius ∆0 are given, as are

constants εg, η1, η2, γ1, and γ2, which are required to satisfy the conditions

0 < η1 ≤ η2 < 1 and 0 < γ1 < 1 ≤ γ2.(6.1)

Set k = 0.
1. Stop if ‖∇xf(xk)‖2 ≤ εg.
2. Define a second-order Taylor series model qk and a positive-definite precon-

ditioner Mk. Compute a step sk to “sufficiently reduce the model” qk within
the trust region ‖s‖Mk

≤ ∆k.
3. Compute the ratio

ρk =
f(xk)− f(xk + sk)

qk(xk)− qk(xk + sk)
.(6.2)

If ρk ≥ η1, let xk+1 = xk + sk; otherwise let xk+1 = xk.
4. Set

∆k+1 =

 γ2∆k if ρk ≥ η2,
∆k if ρk ∈ [η1, η2),
γ1∆k if ρk < η1.

(6.3)

Increment k by one, and go to step 1.
We choose the specific values εg = 0.00001, η1 = 0.01, η2 = 0.95, γ1 = 0.5, and

γ2 = 2 and set an upper limit of n iterations. The step sk in step 2 is computed
using either Algorithm 5.1 or the Steihaug–Toint algorithm. Convergence in both
algorithms for the subproblem occurs as soon as

‖gk+1‖M−1 ≤ min(0.1, ‖g0‖0.1M−1)‖g0‖M−1(6.4)

or if more than n iterations have been performed. In addition, of course, the Steihaug–
Toint algorithm terminates as soon as the boundary is crossed.

All our tests were performed on an IBM RISC System/6000 3BT workstation with
64 Megabytes of RAM; the codes are all double precision Fortran-90, compiled under
xlf90 with -O optimization, and IBM library BLAS are used. The test examples
we consider are the larger examples from the CUTE test set [1] for which negative
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curvature is frequently encountered. Tests were terminated if more than 30 CPU
minutes elapsed.

6.1. Can we get much better model values than Steihaug–Toint? We
first consider problems of the form (2.1). Our test examples are generated by run-
ning Algorithm 6.1 on the CUTE set for 10 iterations and taking the trust-region
subproblem at iteration 10 as our example. The idea here is to simulate the kind of
subproblems which occur in practice, not those which result at the starting point for
the algorithm, as such points frequently have special (favorable) properties.

Our aim is to see whether there is any significant advantage in continuing the
minimization of the trust-region subproblem once the boundary of the trust region
has been encountered. We ran HSL VF05 to convergence, stopping when ‖gk+1‖M−1 ≤
max(10−15, 10−5‖g0‖M−1) or more than n iterations had been performed.

In all of the experiments reported here, the best value found was in fact the
optimum value—a factorization of H + λM was used to confirm that the matrix
was positive semidefinite, while the algorithm ensured that the remaining optimality
conditions held—although, of course, there is no guarantee that this will always be
the case. We measured the iteration (ST) and the percentage (ratio) of the optimal
value obtained at the point at which the Steihaug–Toint method left the trust region,
as well as the number of iterations taken to achieve 10%, 90%, and 99% of the optimal
reduction (10%, 90%, 99%, respectively).

The results of these experiments are summarized in Table 6.1. In this table we
give the name of each example used, along with its dimension n, and the statis-
tics “ratio”(expressed in the form x(y) as a shorthand for x × 10y), “ST,” “10%,”
“90%,” and “99%” as just described. Some of the problems had interior solutions,
in which case the “ratio” and “ST” statistics are absent (as indicated by a dash).
We considered both the unpreconditioned method (M = In) and a variety of stan-
dard preconditioners—a band preconditioner with semibandwidth of 5, and modified
incomplete and sparse Cholesky factorizations, with the modifications as proposed
in [18]—used by the LANCELOT package (see [2, Chapter 3]). The Cholesky factor-
ization methods both failed for the problem MSQRTALS for which the Hessian matrix
required too much storage.

We make a number of observations.
1. On some problems, the Steihaug–Toint point gives a model value which is a

good approximation to the optimal value.
2. On other problems, a few extra iterations beyond the Steihaug–Toint point

pay handsome dividends.
3. Getting to within 90% or even 99% of the best value very rarely requires

many more iterations than to find the Steihaug–Toint point.
In conclusion, based on these numbers, we suggest that a good strategy would

be to perform a few (say, 5) iterations beyond the Steihaug–Toint point and accept
the improved point only if its model value is significantly better (as this will cost a
second pass to compute the Lanczos vectors). We shall consider this further in the
next section.

6.2. Do better values than Steihaug–Toint imply a better trust-region
method? We now consider how the methods we have described for approximately
solving the trust-region subproblem perform within a trust-region algorithm. Of par-
ticular interest is the question whether solving the subproblem more accurately re-
duces the number of trust-region iterations or more particularly the cost of solving
the problem—the number of iterations is of concern if the evaluation of the objective
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Table 6.1
A comparison of the number of iterations required to achieve a given percentage of the optimal

model value for a variety of preconditioners. See the text for a key to the data.

No preconditioner 5 band
Example n Ratio ST 10% 90% 99% Ratio ST 10% 90% 99%
BROYDN7D 1000 9(-1) 1 1 2 2 8(-3) 3 4 8 19
BRYBND 1000 3(-5) 23 24 28 39 5(-5) 1 2 6 17
CHAINWOO 1000 4(-5) 15 16 20 31 8(-1) 1 1 2 2
COSINE 1000 8(-1) 1 1 2 2 2(-13) 1 2 6 17
CRAGGLVY 1000 - - 1 2 3 - - 1 1 1
DIXMAANA 1500 - - 1 1 1 - - 1 1 1
DQRTIC 1000 8(-1) 1 1 2 2 8(-1) 1 1 2 2
EIGENALS 930 8(-1) 1 1 2 2 8(-1) 1 1 2 2
FREUROTH 1000 - - 1 4 5 8(-1) 1 1 2 2
GENROSE 1000 8(-3) 8 9 9 10 8(-1) 1 1 2 2
HYDC20LS 99 5(-6) 23 25 29 40 8(-1) 1 1 3 3
MANCINO 100 8(-1) 1 1 2 5 8(-1) 1 1 2 2
MSQRTALS 1024 1(-1) 12 11 23 49 1(-5) 1 2 6 17
NCB20B 1000 3(-5) 65 66 70 81 2(-4) 96 97 101 112
NONCVXUN 1000 8(-1) 1 1 2 2 8(-1) 1 1 2 2
NONCVXU2 1000 8(-1) 1 1 2 2 8(-1) 1 1 2 2
SENSORS 100 7(-1) 1 1 2 7 7(-6) 1 2 6 16
SINQUAD 5000 1 3 2 2 2 6(-3) 11 11 12 13
SPARSINE 1000 4(-1) 44 1 50 54 8(-1) 1 1 2 2
SPMSRTLS 1000 4(-2) 5 5 6 7 2(-7) 1 2 6 17

Incomplete Cholesky Modified Cholesky
Example n Ratio ST 10% 90% 99% Ratio ST 10% 90% 99%
BROYDN7D 1000 6(-6) 1 2 6 17 6(-3) 2 3 7 18
BRYBND 1000 8(-1) 1 1 2 2 - - 1 1 1
CHAINWOO 1000 8(-1) 1 1 2 2 8(-1) 1 1 2 2
COSINE 1000 8(-1) 1 1 2 2 7(-20) 1 2 6 17
CRAGGLVY 1000 - - 1 1 1 - - 1 1 1
DIXMAANA 1500 5(-1) 1 1 4 11 3(-11) 1 2 6 17
DQRTIC 1000 8(-1) 1 1 2 2 8(-1) 1 1 2 2
EIGENALS 930 1(-4) 1 2 6 17 2(-10) 1 2 6 17
FREUROTH 1000 8(-1) 1 1 2 2 8(-1) 1 1 2 2
GENROSE 1000 8(-1) 1 1 2 2 2(-7) 1 2 6 17
HYDC20LS 99 8(-1) 1 1 2 2 4(-1) 1 1 5 14
MANCINO 100 8(-1) 1 1 2 2 8(-1) 1 1 2 2
MSQRTALS 1024 factorization failure factorization failure
NCB20B 1000 1(-6) 2 3 7 18 2(-4) 3 4 8 19
NONCVXUN 1000 8(-1) 1 1 2 2 3(-5) 1 2 6 17
NONCVXU2 1000 7(-2) 1 2 6 17 3(-6) 1 2 6 17
SENSORS 100 8(-1) 1 1 2 2 7(-14) 1 2 6 16
SINQUAD 5000 - - 2 2 2 - - 1 1 1
SPARSINE 1000 5(-4) 1 2 6 17 1E(-10) 1 2 6 17
SPMSRTLS 1000 3(-7) 1 2 6 17 8E(-14) 1 2 6 17

function and its derivatives is the dominant cost, as then there is a direct correlation
between the number of iterations and the overall cost of solving the problem.

In Tables 6.2 and 6.3, we compare the Steihaug–Toint scheme with the GLTR
algorithm (Algorithm 5.1) run to high accuracy. We exclude the problem HYDC20LS

for our reported results, as no method succeeded in solving the problem in fewer than
our limit of n iterations, and the problems BROYDN7D and SPMSRTLS, as a number of
different local minima were found. In these tables, in addition to the name and dimen-
sion of each example, we give the number of objective function (“#f”) and derivative
(“#g”) values computed, the total number of matrix-vector products (“#prod”) re-
quired to solve the subproblems, and the total CPU time required in seconds. We
compare the same preconditioners M as we used in the previous section. We indi-
cate those cases where one or another method performs at least 10% better than its
competitor by highlighting the relevant figure in bold.



520 N. I. M. GOULD, S. LUCIDI, M. ROMA, AND PH. L. TOINT

Table 6.2
A comparison of the Steihaug–Toint and exact model minimization techniques within a trust-

region method, using a variety of preconditioners, for unconstrained minimization (part 1). See the
text for a key to the data.

No preconditioner Steihaug–Toint Model optimum
Example n #f #g #prods CPU #f #g #prods CPU
BRYBND 1000 13 13 80 0.9 13 13 80 1.0
CHAINWOO 1000 > n iterations 865 577 34419 145.02
COSINE 1000 11 11 14 0.1 11 11 14 0.1
CRAGGLVY 1000 19 19 130 1.0 19 19 130 0.9
DIXMAANA 1500 13 13 12 0.3 13 13 17 0.3
DQRTIC 1000 43 43 83 0.3 43 43 91 0.3
EIGENALS 930 68 56 1303 68.2 52 45 1107 57.3
FREUROTH 1000 17 17 34 0.4 17 17 34 0.4
GENROSE 1000 859 777 6092 28.8 773 642 24466 82.2
MANCINO 100 25 24 29 21.0 26 24 67 21.6
MSQRTALS 1024 44 34 7795 486.0 32 27 6009 373.6
NCB20B 1000 40 25 2057 92.3 27 16 7533 327.8
NONCVXUN 1000 492 466 177942 1017.9 > 1800 seconds
NONCVXU2 1000 414 381 3582 26.2 335 283 6987 44.0
SENSORS 100 20 19 37 6.4 20 19 140 8.8
SINQUAD 5000 182 114 363 24.3 161 106 382 24.6
SPARSINE 1000 15 15 3790 31.5 15 15 4143 34.4

5 band Steihaug–Toint Model optimum
Example n #f #g #prods CPU #f #g #prods CPU
BRYBND 1000 29 25 42 2.1 29 25 44 2.1
CHAINWOO 1000 146 99 145 4.8 191 123 196 6.3
COSINE 1000 21 15 20 0.4 21 15 30 0.5
CRAGGLVY 1000 22 22 21 1.1 22 22 21 1.1
DIXMAANA 1500 13 13 14 0.5 13 13 16 0.6
DQRTIC 1000 54 54 53 0.9 54 54 53 1.0
EIGENALS 930 56 43 171 75.2 53 42 222 75.8
FREUROTH 1000 20 18 19 0.8 20 18 17 0.8
GENROSE 1000 > n iterations > n iterations
MANCINO 100 91 72 90 87.2 52 43 90 52.2
MSQRTALS 1024 88 62 9793 700.2 73 52 19416 1292.2
NCB20B 1000 28 18 827 41.2 23 14 4775 214.4
NONCVXUN 1000 > n iterations > n iterations
NONCVXU2 1000 > n iterations > n iterations
SENSORS 100 33 29 38 12.2 45 38 197 19.3
SINQUAD 5000 239 154 753 67.0 203 133 806 65.4
SPARSINE 1000 46 37 3289 32.4 64 50 3678 36.9

We observe the following:
1. The use of different M leads to radically different behavior. Different precon-

ditioners appear to be particularly suited to different problems. Surprisingly,
perhaps, the unpreconditioned algorithm often performs the best overall.

2. In the unpreconditioned case, the model-optimum variant frequently requires
significantly fewer function evaluations than the Steihaug–Toint method. How-
ever, the extra algebraic costs per iteration often outweigh the reduction in
the numbers of iterations. The advantage in function calls for the other pre-
conditioners is less pronounced.

Ideally, one would like to retain the advantage in numbers of function calls while
reducing the cost per iteration. As we noted in section 6.1, one normally gets a good
approximation to the optimal model value after a modest number of iterations. More-
over, while the Steihaug–Toint point often gives a significantly suboptimal value, a few
extra iterations usually suffice to give a large percentage of the optimum. Thus, we
next investigate both of these issues in the context of an overall trust-region method.

In Tables 6.4 and 6.5, we compare the number of function evaluations (#f) and
the CPU time taken to solve the problem for the Steihaug–Toint (“ST”) method
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Table 6.3
A comparison of the Steihaug–Toint and exact model minimization techniques within a trust-

region method, using a variety of preconditioners, for unconstrained minimization (part 2). See the
text for a key to the data.

Incomplete Cholesky Steihaug–Toint Model optimum
Example n #f #g #prods CPU #f #g #prods CPU
BRYBND 1000 55 18 54 3.9 59 37 61 7.7
CHAINWOO 1000 174 115 173 8.1 183 121 309 10.3
COSINE 1000 22 17 26 0.8 22 19 49 1.2
CRAGGLVY 1000 22 22 21 1.5 22 22 21 1.5
DIXMAANA 1500 16 14 15 0.8 32 23 37 1.8
DQRTIC 1000 54 54 53 0.9 54 54 53 1.1
EIGENALS 930 76 52 76 94.6 89 60 112 111.1
FREUROTH 1000 > n iterations > n iterations
GENROSE 1000 948 629 951 35.5 496 322 847 23.5
MANCINO 100 29 27 30 125.0 31 28 32 130.1
MSQRTALS 1024 factorization failure factorization failure
NCB20B 1000 34 18 48 23.2 54 28 150 41.2
NONCVXUN 1000 > n iterations > n iterations
NONCVXU2 1000 > n iterations > n iterations
SENSORS 100 49 41 48 24.8 44 37 136 24.8
SINQUAD 5000 77 52 89 542.6 78 50 121 526.7
SPARSINE 1000 90 75 3465 89.1 135 109 4974 130.3
Modified Cholesky Steihaug–Toint Model optimum

Example n #f #g #prods CPU #f #g #prods CPU
BRYBND 1000 15 15 14 2.2 59 37 61 7.7
CHAINWOO 1000 178 119 177 7.6 183 121 309 10.3
COSINE 1000 41 25 40 1.1 22 19 49 1.2
CRAGGLVY 1000 23 23 33 1.4 22 22 21 1.6
DIXMAANA 1500 35 23 34 1.3 32 23 37 1.8
DQRTIC 1000 54 54 53 1.2 54 54 53 1.1
EIGENALS 930 133 92 132 167.8 89 60 112 111.0
FREUROTH 1000 > n iterations > n iterations
GENROSE 1000 462 332 463 16.5 496 322 847 23.4
MANCINO 100 31 28 30 129.3 31 28 32 130.1
MSQRTALS 1024 factorization failure factorization failure
NCB20B 1000 38 23 81 26.1 54 28 150 41.2
NONCVXUN 1000 > n iterations > n iterations
NONCVXU2 1000 > n iterations > n iterations
SENSORS 100 97 67 97 40.6 44 37 136 24.8
SINQUAD 5000 14 14 13 99.4 78 50 121 527.1
SPARSINE 1000 324 176 796 852.6 135 109 4974 130.4

with a number of variations on our basic GLTR method (Algorithm 5.1). The basic
requirement is that we compute a model value which is at least 90% of the best
value found during the first pass of the GLTR method. If this value is obtained
by an iterate before that which gives the Steihaug–Toint point, the Steihaug–Toint
point is accepted. Otherwise, a second pass is performed to recover the first point at
which 90% of the best value was observed. The other ingredient is the choice of the
stopping rule for the first pass. One possibility is to stop this pass as soon as the test
(6.4) is satisfied. We denote this strategy by “90%best.” The other possibility is to
stop when either (6.4) is satisfied or at most a fixed number of iterations beyond the
Steihaug–Toint point have occurred. We refer to this as “90%(ST+k),” where k gives
the number of additional iterations allowed. We investigate the cases k = 1, 5, and
10. Once again, we compare the same preconditioners M as we used in the previous
section. We highlight in bold those entries which are at least 10% better than the
competition.

The conclusions are as broad as before. Each method has its successes and failures,
and there is no clear overall best method or preconditioner, although the unprecondi-
tioned version performs surprisingly well. Restricting the number of iterations allowed
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Table 6.4
A comparison of a variety of GLTR techniques within a trust-region method, using a variety

of preconditioners, for unconstrained minimization (part 1). See the text for a key to the data.

No preconditioner ST 90%(ST+1) 90%(ST+5) 90%(ST+10) 90%best
Example n #f CPU #f CPU #f CPU #f CPU #f CPU
BRYBND 1000 13 0.9 13 0.9 13 0.9 13 1.0 13 1.0
CHAINWOO 1000 > n its. 902 61.8 915 81.8 884 87.9 887 112.5
COSINE 1000 11 0.1 11 0.2 11 0.1 11 0.1 11 0.1
CRAGGLVY 1000 19 1.0 19 0.9 19 0.9 19 0.9 19 1.0
DIXMAANA 1500 13 0.3 13 0.3 13 0.3 13 0.3 13 0.3
DQRTIC 1000 43 0.3 43 0.3 43 0.3 43 0.3 43 0.3
EIGENALS 930 68 68.2 59 61.5 66 71.0 61 71.4 62 69.7
FREUROTH 1000 17 0.4 17 0.4 17 0.4 17 0.4 17 0.4
GENROSE 1000 859 28.8 748 38.9 721 48.1 738 57.3 728 60.0
MANCINO 100 25 21.0 24 20.2 24 20.2 24 20.4 24 20.4
MSQRTALS 1024 44 486.0 45 558.8 35 394.2 45 569.8 62 824.4
NCB20B 1000 40 92.3 40 104.7 45 141.1 33 104.6 30 182.3
NONCVXUN 1000 492 1017.9 368 861.3 > 1800 secs. > 1800 secs. 433 1198.6
NONCVXU2 1000 414 26.2 263 24.4 272 29.7 270 31.4 292 36.2
SENSORS 100 20 6.4 23 7.3 21 8.1 21 8.0 21 8.1
SINQUAD 5000 182 24.3 152 20.8 152 21.7 152 21.4 152 21.5
SPARSINE 1000 15 31.5 16 36.4 16 36.5 16 36.5 16 36.6

5 band ST 90%(ST+1) 90%(ST+5) 90%(ST+10) 90%best
Example n #f CPU #f CPU #f CPU #f CPU #f CPU
BRYBND 1000 29 2.1 29 2.1 29 2.1 29 2.1 29 2.1
CHAINWOO 1000 146 4.8 159 5.1 159 5.1 159 5.2 159 5.1
COSINE 1000 21 0.4 21 0.5 21 0.4 21 0.4 21 0.5
CRAGGLVY 1000 22 1.1 22 1.0 22 1.1 22 1.1 22 1.1
DIXMAANA 1500 13 0.5 13 0.6 13 0.6 13 0.6 13 0.6
DQRTIC 1000 54 0.9 54 0.9 54 1.0 54 1.0 54 1.0
EIGENALS 930 56 75.2 79 97.9 80 98.7 80 98.6 80 98.4
FREUROTH 1000 20 0.8 20 0.8 20 0.8 20 0.9 20 0.8
GENROSE 1000 > n its. > n its. > n its. > n its. > n its.
MANCINO 100 91 87.2 52 51.8 52 51.8 52 52.0 52 51.8
MSQRTALS 1024 88 700.2 97 756.7 73 704.9 74 844.7 79 981.5
NCB20B 1000 28 41.2 28 43.0 28 53.7 29 58.6 25 88.3
NONCVXUN 1000 > n its. > n its. > n its. > n its. > n its.
NONCVXU2 1000 > n its. > n its. > n its. > n its. > n its.
SENSORS 100 33 12.2 41 15.7 44 18.2 44 18.3 44 18.0
SINQUAD 5000 239 67.0 221 61.4 232 67.0 232 66.8 232 66.6
SPARSINE 1000 46 32.4 62 37.6 78 38.4 65 30.9 65 31.0

after the Steihaug–Toint point has been found appears to curb the worst behavior of
the unrestricted method.

7. Perspectives and conclusions. We have considered a number of methods
which aim to find a better approximation to the solution of the trust-region subprob-
lem than that delivered by the Steihaug–Toint scheme. These methods are based on
solving the subproblem within a subspace defined by the Krylov space generated by
the conjugate-gradient and Lanczos methods. The Krylov subproblem has a number
of useful properties which lead to its efficient solution. The resulting algorithm is
available as a Fortran-90 module, HSL VF05 [6].

We must admit to being slightly disappointed that the new method did not per-
form uniformly better than the Steihaug–Toint scheme, and we were genuinely sur-
prised that a more accurate approximation does not appear to significantly reduce
the number of function evaluations within a standard trust-region method, at least
in the tests we performed. While this may limit the use of the methods developed
here, it also calls into question a number of other recent eigensolution-based proposals
for solving the trust-region subproblem (see [15], [16], [17], [21]). While these authors
demonstrate that their methods provide an effective means of solving the subproblem,
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Table 6.5
A comparison of a variety of GLTR techniques within a trust-region method, using a variety

of preconditioners, for unconstrained minimization (part 2). See the text for a key to the data.

Incomplete Cholesky ST 90%(ST+1) 90%(ST+5) 90%(ST+10) 90%best
Example n #f CPU #f CPU #f CPU #f CPU #f CPU
BRYBND 1000 55 3.9 56 4.2 56 4.3 56 4.3 56 5.0
CHAINWOO 1000 174 8.1 199 9.7 199 10.1 199 10.2 199 10.1
COSINE 1000 22 0.8 45 1.9 45 1.9 45 1.9 45 2.0
CRAGGLVY 1000 22 1.5 22 1.6 22 1.6 22 1.5 22 1.6
DIXMAANA 1500 16 0.8 32 1.7 32 1.7 32 1.7 32 1.7
DQRTIC 1000 54 0.9 54 1.0 54 1.1 54 1.1 54 1.1
EIGENALS 930 76 94.6 77 97.2 74 97.2 74 97.3 74 96.8
FREUROTH 1000 > n its. > n its. > n its. > n its. > n its.
GENROSE 1000 948 35.5 500 22.4 499 23.0 499 23.0 499 23.0
MANCINO 100 29 125.0 31 129.6 31 130.1 31 129.7 31 129.9
MSQRTALS 1024 fact. failure fact. failure fact. failure fact. failure fact. failure
NCB20B 1000 34 23.2 40 27.2 40 27.7 40 27.6 40 27.4
NONCVXUN 1000 > n its. > n its. > n its. > n its. > n its.
NONCVXU2 1000 > n its. > n its. > n its. > n its. > n its.
SENSORS 100 49 24.8 45 25.6 55 28.8 55 29.0 55 28.8
SINQUAD 5000 77 542.6 68 484.2 68 484.1 68 485.4 68 489.0
SPARSINE 1000 90 89.1 144 117.8 177 143.1 177 138.7 177 138.9
Modified Cholesky ST 90%(ST+1) 90%(ST+5) 90%(ST+10) 90%best

Example n #f CPU #f CPU #f CPU #f CPU #f CPU
BRYBND 1000 15 2.2 15 2.2 15 2.3 15 2.2 15 2.2
CHAINWOO 1000 178 7.6 176 7.9 176 7.9 176 7.8 176 8.0
COSINE 1000 41 1.1 41 1.3 41 1.3 41 1.3 41 1.3
CRAGGLVY 1000 23 1.4 23 1.4 23 1.4 23 1.5 23 1.5
DIXMAANA 1500 35 1.3 35 1.5 35 1.4 35 1.4 35 1.4
DQRTIC 1000 54 1.2 54 1.2 54 1.3 54 1.3 54 1.3
EIGENALS 930 133 167.8 113 123.5 63 85.4 63 85.5 63 86.2
FREUROTH 1000 > n its. > n its. > n its. > n its. > n its.
GENROSE 1000 462 16.5 434 18.8 434 19.3 434 19.1 434 19.1
MANCINO 100 31 129.3 64 232.3 77 275.9 77 275.5 77 275.6
MSQRTALS 1024 fact. failure fact. failure fact. failure fact. failure fact. failure
NCB20B 1000 38 26.1 33 22.8 33 26.8 33 26.8 33 26.4
NONCVXUN 1000 > n its. > n its. > n its. > n its. > n its.
NONCVXU2 1000 > n its. > n its. > n its. > n its. > n its.
SENSORS 100 97 40.6 72 32.6 66 32.0 66 31.9 66 31.9
SINQUAD 5000 14 99.4 14 99.9 14 100.0 14 99.7 14 99.7
SPARSINE 1000 324 852.6 254 738.1 361 1047.5 363 1063.7 363 1063.6

they make no effort to evaluate whether this is actually useful within a trust-region
method. The results given in this paper suggest that this may not in fact be the case.
This also leads to the interesting question as to whether it is possible to obtain useful
low-accuracy solutions with these methods. We believe that further testing is needed
to confirm the trends we have observed here.

We should not pretend that the formulae given in this paper are exact or even
accurate in floating-point arithmetic. Indeed, it is well known that the floating-
point matrices Qk from the Lanczos method quickly lose M -orthonormality (see, for
instance, [11, Section 13.3]). Despite this, the method as given appears to be capable
of producing usable approximate solutions to the trust-region subproblem. We are
currently investigating why this should be so.

One further possibility, which we have not considered so far, is to find an estimate
λ using the first pass of Algorithm 5.1 and then to compute the required s by min-
imizing the unconstrained model 〈g, s〉 + 1

2 〈s, (H + λM)s〉 using the preconditioned
conjugate-gradient method. The advantage of doing this is that any instability in the
first pass does not necessarily reappear in this auxiliary calculation. The disadvan-
tages are that it may require more work than simply using (5.1) and that λ must be
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computed sufficiently large to ensure that H + λM is positive semidefinite.
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