Math. Prog. Comp. (2013) 5:113-142
DOI 10.1007/s12532-012-0050-3

FULL LENGTH PAPER

Trajectory-following methods for large-scale degenerate
convex quadratic programming

Nicholas I. M. Gould - Dominique Orban - Daniel P. Robinson

Received: 4 September 2011 / Accepted: 12 December 2012 / Published online: 16 February 2013
© Crown Copyright 2013

Abstract We consider a class of infeasible, path-following methods for convex
quadratric programming. Our methods are designed to be effective for solving both
nondegerate and degenerate problems, where degeneracy is understood to mean the
failure of strict complementarity at a solution. Global convergence and a polynomial
bound on the number of iterations required is given. An implementation, CQP, is
available as part of GALAHAD. We illustrate the advantages of our approach on the
CUTETr and Maros—Meszaros test sets.

Keywords Convex quadratic programming - Path-following methods -
Degenerate problems - Software

Mathematics Subject Classification (2000) 65K05 - 90C20 - 90C25 - 90C51

Electronic supplementary material The online version of this article
(doi:10.1007/s12532-012-0050-3) contains supplementary material, which is available to authorized users.

N. I. M. Gould (<)

Scientific Computing Department, Rutherford Appleton Laboratory,
Chilton, Oxfordshire, OX11 0QX, UK

e-mail: nick.gould @stfc.ac.uk

D. Orban

GERAD and Mathematics and Industrial Engineering Department, Ecole Polytechnique de Montréal,
C. P. 6079, Succ. Centre Ville, Montreal, QC H3C 3A7, Canada

e-mail: dominique.orban @ gerad.ca

D. P. Robinson

Department of Applied Mathematics and Statistics, Johns Hopkins University,
100 Whitehead Hall, 3400 N. Charles Street, Baltimore, MD 21218, USA
e-mail: daniel.p.robinson @jhu.edu

@ Springer

http://dx.doi.org/10.1007/s12532-012-0050-3

114 N. I. M. Gould et al.

1 Introduction
1.1 The problem, optimality conditions and central path

We consider an infeasible interior-point method for solving the general convex
quadratic program

CQP : minimize g(x)= %xTHx+ng
xeR”
subjectto c*<Ax<c" and x"<x<xY, (1.1

where H € R™*" is a positive semi-definite matrix, A € R”*" is assumed to have
full rank, and any of the components of the vectors "<’ eR"and x* < x¥ e R”
may be infinite. The full-rank assumption on A is not significant since in practice any
dependencies may be removed during preprocessing; we do this in our implementation.
For ease of exposition, we focus on the special case

QP: minigize qgx) = %xTHx +g¢'x subjectto Ax =0 and x >0
xeR”

that involves equality constraints and non-negativity bounds, but will return to the
general case when providing details of our implementation.

Any local solution x, to QP necessarily satisfies the first-order optimality (KKT)
conditions

Hx,+g=ATy, + 2., Ax,=0b, and x,-2,=0, (1.2)

involving the primal variables x, > 0, dual variables z, > 0 and Lagrange multipli-
ers yx, where - denotes the component-wise product; the three conditions in (1.2) are
known as dual feasibility, primal feasibility, and complementary slackness or com-
plementarity, respectively. For brevity we define v = (x, v, 2), v« = (Xx, V&, Z4),
etc.

We say that v is feasible for problem QP if it belongs to the set

F e R gxig—ATy—7=0, Ax=b, x>0, and z>0} (1.3)

and strictly feasible if it belongs to the set

Folw e R Hxtg—ATy—7=0, Ax=b, x>0, and z>0}. (1.4)

Thus, a solution (xy, yx, zs) of QP satisfies (x4, y«, z+) € F and x4 - z, = 0. Problem
QP is degenerate if for every solution there is at least one i for which [x,]; = [z«]; = 0,
otherwise it is non-degenerate.

The vast majority of feasible interior-point methods approximate a solution v,
by tracing the so-called central path. The central path v(u) = (x(,u), y(u), z(p,))
associated with QP satisfies

@ Springer

Trajectory-following methods for degenerate QP 115

Hx(w) — AT y(u) — z(n) = —g,
Ax(u) = b, and (1.5)

x(p) - z(p) = pe,

where the parameter ;1 > 0 and e is a vector of ones. These equations may be inter-
preted as perturbed optimality conditions, c.f. (1.2). If (x (), z(u)) > (O for all u >
and the lim,, o v() exists, then the limit point is necessarily a solution to QP.

1.2 The influence of degeneracy: two examples

Example 1—a non-degenerate QP
Consider the simple quadratic program

2 subjectto x > 2

minimize 1x
X
that has the unique solution x, = z, = 2. The central path (1.5) for the problem is
givenby x () = z(u) = 1+/1 + u. A typical interior-point algorithm—in this case,
specifically CQP from GALAHAD [13] with default options—starting from x = 3 and
z = 2 produces the output

Iter p-feas d-feas com-slk obj step target
0 0.0E+00 1.0E+00 2.0E+00 4.5E+00 - 2.0E-02
1 0.0E+00 0.0E+00 1.3E-02 2.0E+00 1.0E+00 1.3E-04
2 0.0E+00 4.4E-16 1.8E-04 2.0E+00 1.0E+00 1.8E-06
3 0.0E+00 0.0E+00 1.8E-06 2.0E+00 1.0E+00 2.4E-09
4 0.0E+00 4.4E-16 2.4E-09 2.0E+00 1.0E+00 1.2E-13
5 0.0E+00 4.4E-16 1.2E-13 2.0E+00 1.0E+00 3.9E-20

where Iter is the iteration number, p-feas, d-feas and comp-slk are the
violations of primal and dual feasibility and the complementary slackness, ob3j is the
objective function value, step is the stepsize and target is the target value of the
parameter u for the next iteration. This illustrates generic behaviour for a good interior-
point solver. The solution obtained is correct to twelve decimal digits. In anticipation
of what follows, note that x(x) is analytic for u > 0.

Example 2—a degenerate QP
Now consider the variant

minimize %xz subjectto x >0
X

whose solution is x, = z, = 0. For this problem, the central path is x (1) = z(u) =
/I, and the same interior-point solver now reports

Iter p-feas d-feas com-slk obj step target
0 0.0E+00 1.0E+00 2.0E+00 5.0E-01 - 2.0E-02
1 0.0E+00 0.0E+00 4.5E-01 2.3E-01 1.0E+00 4.5E-03
2 0.0E+00 0.0E+00 1.2E-01 5.8E-02 1.0E+00 1.2E-03

@ Springer

116 N. I. M. Gould et al.

3 0.0E+00 0.0E+00 2.9E-02 1.5E-02 1.0E+00 2.9E-04
4 0.0E+00 0.0E+00 7.5E-03 3.8E-03 1.0E+00 7.5E-05
5 0.0E+00 0.0E+00 1.9E-03 9.6E-04 1.0E+00 1.9E-05
6 0.0E+00 3.5E-18 4.9E-04 2.4E-04 1.0E+00 4.9E-06
18 0.0E+00 0.0E+00 3.1E-11 1.6E-11 1.0E+00 1.7E-16
19 0.0E+00 0.0E+00 7.8E-12 3.9E-12 1.0E+00 2.2E-17
20 0.0E+00 6.4E-22 1.9E-12 9.7E-13 1.0E+00 2.7E-18
21 0.0E+00 3.2E-22 4.8E-13 2.4E-13 1.0E+00 3.4E-19

when started from x = 1 and z = 2. Why is the convergence so slow? Simply, the
Newton iteration at the heart of the solver is predicated on the solution trajectory being
analytic while clearly x (u) fails to be analytic at the limit # = 0. The QP is degenerate,
since the distance of x, from its lower bound and z, are both zero. Behaviour such as the
above is generic for Taylor-series-based methods for degenerate quadratic programs
that try to trace v(u). Worse, on termination the approximations to x, and z, are only
correct to six decimal digits.

Is following the central path to blame? Actually, no, it is simply that the parame-
terization used in (1.5) is inappropriate.

Example 2 again

Again, consider Example 2, but now simply transform the parameter so that . = p?
and note that in this case x(p) = z(p) = p, which is a perfectly analytic function of
p. Applying a Taylor-series-based method to this reformulation within CQP yields

Iter p-feas d-feas com-slk obj step target
0 0.0E+00 1.0E+00 2.0E+00 5.0E-01 - 2.0E-02
1 0.0E+00 1.1E-16 5.6E-01 2.8E-01 1.0E+00 5.6E-03
2 0.0E+00 1.1E-16 5.6E-05 2.8E-05 1.0E+00 4.2E-07
3 0.0E+00 1.1E-16 3.1E-09 1.5E-09 1.0E+00 1.7E-13
4 0.0E+00 1.1E-16 9.6E-18 4.8E-18 1.0E+00 3.0E-26

which mimics the behaviour in the non-degenerate case and produces errors that are
comparable with those for Example 1.

Our intention in this paper is to describe the ideas behind the GALAHAD QP solver
CQP that has been designed, with these examples in mind, to produce fast accurate
solutions for both degenerate and non-degenerate problems.

1.3 Perspective

Extensive research on interior-point methods for solving QP has resulted in a large
number of algorithms and theorems. In fact, every algorithm designed for the lin-
ear complementarity problem (LCP) [21], horizontal linear complementarity problem
(hLCP) [2,32,51,52], monotone linear complementarity problem (mLCP) [20,33,34,
43,45], geometrical linear complementarity problem (gLCP) [30], and sufficient lin-
ear complementarity problem (sLCP) [22,23,35,36,39-42,44], may be used to solve
QP since convex quadratic programming is contained within these problem classes

@ Springer

Trajectory-following methods for degenerate QP 117

(see [1,48] for descriptions and equivalences between different formulations). More-
over, advances in linear programming [4,11,28,29,31,50] are pertinent since they
often lead to improved algorithms for solving QP; a good example is the well-known
predictor-corrector scheme that Mehrotra [29] popularized.

The references above—although plentiful—represent a small subset of the total
research in the area. We believe, however, that every proposed method can be cate-
gorised by its (1) restrictions on an initial iterate; (2) step generation; (3) criteria for
step acceptance; (4) complexity results; (5) global convergence guarantees; (6) rate
of local convergence; (7) theoretical performance on nondegenerate and degenerate
problems; (8) number of factorizations per iteration; and (9) documented practical
performance. We now discuss these in detail.

Feasible interior-point methods [20,22,23,33,34,45] require a strictly feasible start-
ing point v, while infeasible interior-point methods [2,4,11,29,30,35,36,39,41,44,
51,52] only need (x,z) > 0. Generally, infeasible interior-point methods are pre-
ferred since a starting point may be obtained without excessive computation. In fact,
the widely used solvers BPMPD, Cplex, HOPDM, Mosek, OOPS, OOQP, PCx, and
Xpress are all of the latter type.

The methods we consider are iterative. A sequence of iterates is generated by
approximately following an “ideal” arc that emanates from the current point and leads
either directly to a solution of QP or to some suitable point on the central path. We
shall return to this in Sect. 2.

The step acceptance criteria has a strong influence on the ultimate performance
of any algorithm. Every criteria includes a condition that ensures that the iterates
remain strictly positive and (usually) in the vicinity of the so-called (weighted) central
path. There are four common approaches. The so-called fraction-to-the-boundary rule
forces the updated iterate to be a distance from the boundary of (x, z) > O that is at
least some fraction of the distance from the current point to the boundary. Algorithms
based on this approach [4, 11,29] typically work very well in practice, but usually lack
a proof of global convergence. The other strategies force the iterates to stay “centered”
by requiring either

¢S @ —e[,=(1=y) orequivalenty [Ir™@)—pn@)els<(1-y)u@), (1.6)

or
“max [0, e —c8 (v)]”OO < (1 —y) orequivalently r(v) > yu@e, (1.7)
or
1 cs
;,u(v)e >r>) > yu(ve (1.8)
for some y € (0, 1), where
def X7z def 7% ()

Sy p L and S (1.9)
n

n(v)

@ Springer

118 N. I. M. Gould et al.

are the pairwise complementarity slackness function, the mean complementarity func-
tion, and the centering function respectively. Condition (1.6) is the most restrictive, but
still used by many authors [20,30,41,44,45]. For a given search arc, condition (1.6)
often dictates significant backtracking, and this smothering of the step results in good
complexity at the expense of practical performance. The so-called “wide” neighbor-
hood described by (1.7) is not overly restrictive, but still guarantees that each comple-
mentarity pair x;z; is never too much smaller than the mean complementarity p(v).
Consequently, algorithms that use this condition (see [2,11,22,23,33,34,36,51,52])
may work well in practice, but their complexity results usually suffer. This observation
highlights the disconnection between theory and practice since algorithms with the
best complexity often perform poorly in practice. Finally, condition (1.8) ensures that
each complementarity pair is never too much smaller or larger than the mean comple-
mentarity. Colombo and Gondzio [4] observed that this “symmetric” neighborhood
often resolves poor performance resulting from complementarity pairs that are much
larger than the mean; the discrepancy in size leads to poorly scaled systems [4] that
are solved during each iteration.

Some of the most efficient methods [4,11,29] are based on clever heuristics and
do not have a proof of global convergence; this partly explains why these methods
occasionally fail. In this paper we introduce an algorithm that is highly efficient and
globally convergent.

Many algorithms in the literature generate iterates that are superlinearly convergent
assuming that problem QP is nondegenerate [20,52]. Unfortunately, our experience
leads us to believe that degenerate problems routinely arise in practice. Thus, it is vital
that algorithms are capable of solving degenerate and nondegenerate problems effi-
ciently; this has been accomplished (theoretically) by [22,23,30,33-36,39,41,44,45].

We should not judge the numerical performance of a method only by the average
number of iterations, but rather by the average number of iterations and the computa-
tion needed per iteration. For problem QP the main computational expense can often
be measured by the number of factorizations. Consequently, algorithms that require a
single factorization [2,4,11,29,34-36,39,51,52] per iteration are more attractive than
those that require multiple ones [20,22,23,30,33,41,44,45].

We believe that insufficient numerical evidence of the above algorithms is a
gross oversight. From the above articles, numerical testing was performed only in
[4,11,29], which are all “predictor-corrector” type methods. We believe this has lead
the optimization community to accept that other viable algorithms do not exist. In this
paper we challenge conventional wisdom by formulating an algorithm that is not of
the predictor-corrector type, and then verify numerically that it is highly efficient.

Based on the previous discussion, we believe that an ideal interior-point algorithm
for solving QP should possess the following properties.

P1. An initial starting point is easily and cheaply obtained.
P2. The search arc is both cheap to obtain and effective.
P3. The conditions for step acceptance are relatively weak.
P4. The iterates converge at a linear rate globally.

P5. The iterates converge at a superlinear rate locally.

P6. The algorithm has polynomial complexity.

@ Springer

Trajectory-following methods for degenerate QP 119

P7. The algorithm is capable of obtaining highly accurate solutions (if desired) and
performs well on nondegenerate and degenerate problems.

We are not aware of any method that satisfies all of these properties. Property P1 avoids
excessive computation and the necessity of a “two-phase” method. Properties P2 and
P3 are important since well-chosen search arcs and weaker step acceptance criteria
often allows longer trial steps to be accepted, which generally results in superior per-
formance. Properties P4-P6 are clearly desirable properties of any algorithm, but P6
should not be obtained by sacrificing P7. Property P7 is crucial since degenerate prob-
lems frequently arise in practice and interior-point methods typically do not perform
well; usually, the iterates converge slowly and computing highly accurate solutions
is not possible. This is problematic in at least two situations. First, a user may be
interested in obtaining a highly accurate solution to a “one-off” convex quadratic pro-
gram; this is not possible with traditional interior-point schemes. Second, the quadratic
program may be an auxiliary subproblem for a nonlinear programming method, e.g.,
sequential quadratic programming (SQP). These methods often need an accurate solu-
tion to QP to ensure descent on a so-called merit function and to accurately predict
the set of active constraints of a solution to the original optimization problem. This is
true of our evolving SQP algorithm S2QP [14,15] and motivates this research.

We formulate an algorithm that satisfies P1-P7 by building on the previous work of
others. The paper by Zhang [51] forms the foundation of our method since it already
satisfies most of the desired properties. His algorithm is a first-order infeasible-interior-
point strategy designed to solve sufficient linear complementarity problems (sLCP).
It is known that this class is equivalent to the P, class that includes positive-semi-
definite matrices [46], and that horizontal and mixed LCPs—which includes QP—
may be mapped to each other while preserving P,-itivity [1]. In particular, the class of
sufficient linear complementarity problems includes convex QP. During each iteration,
Zhang computes a so-called centered and damped Newton step, which is the sum of the
Newton step for (1.2) and a step designed to stay sufficiently far from the boundary of
(x, z) > 0; his method has polynomial complexity, linear global convergence, and uses
the wide neighborhood (1.7). He used less than ideal conditions for a starting point,
but this was circumvented by Billups and Ferris [2]; they proved that Zhang’s results
held for any starting point satisfying (x, z) > 0. Zhang’s algorithm currently forms
the basis of the linear and separable quadratic programming solver LSQP, which is
part of the GALAHAD [13] optimization suite. LSQP performs well on nondegenerate
problems and provides additional incentive to use his algorithm as the “work horse” of
our method. We note that Zhang and Zhang [52] proved better complexity bounds for
a second-order variant of Zhang’s method [51]. In summary, a second-order variant of
Zhang’s method satisfies every desired property except for PS and P7, i.e., it is linearly
convergent and does not perform well on degenerate problems.

If problem QP is degenerate, then, as we saw in Sect. 1.2, the central path v(w)
defined by (1.5) is not analytic in w [43, Thm.2] and has a singularity at © = O.
This is particularly troublesome since interior-point methods must drive p towards
zero to obtain an approximate solution of problem QP. To resolve this issue, we rely
on the relatively unknown work by Stoer and Wechs [42,43]. For degenerate QP, they
show that there exists a simple nonlinear re-parameterization of the central path such

@ Springer

120 N. I. M. Gould et al.

that the resulting function has an analytic extension to zero. Therefore, degeneracy is
not a problem if one views the central path defined by the “correct” parameterization.

Finally, to accelerate local convergence we compute additional trial iterates derived
from perturbed trajectories. The trajectories emanate from the current point and lead
to a “desirable” location; they have been studied by Potra and Stoer [36], Stoer and
Wechs [41], Stoer et al. [44], and Sun and Zhao [53].

Our work contains three key contributions. First, we believe that our algorithm
is the first to satisfy properties P1-P7. Second, we combine ideas from Zhang [51],
Stoer and Wechs [42,43], Stoer, Wechs, and Mizuno [44], and Sun and Zhao [53] into
a single cohesive framework. This framework is quite general and should allow us to
seamlessly incorporate any future advances in the field. Finally, we provide details
of our implementation and extensive numerical testing; we believe this is the first
numerical verification of the ideas presented in [36,41,43,44,53].

The paper is organized as follows. In Sect. 2 we describe and formally state our
general algorithm. Our method allows for the computation of additional trial steps
that are designed to accelerate convergence; these steps are explored in Sect. 4. We
provide convergence results in Sect. 3, a detailed description of our implementation
in Sect. 5, numerical testing in Sect. 6, and concluding remarks in Sect. 7.

2 The general algorithm

In this section we describe a rather general algorithm. Using (1.9), we define the
primal-dual infeasibility function

) = (’;':Ez;)dg(flx +§x__AbTy_Z), @.1)

the KKT-violation function
rv) = (;28) 22)

and the feasibility function
" (v) = p@) = v[Ir I, 2.3)

where v € (0, 1) is aconstant. We consider a point (x, y, z) to be sufficiently centered if
(x,2) >0 and yre < W) < pye, 2.4

for some 0 < y1, < | < yu, and sufficiently feasible if
) >0. 2.5)

Note that condition (2.4) is similar to (1.8) and ensures that individual complementarity
components do not deviate too much from the mean, and requirement (2.5) ensures that

@ Springer

Trajectory-following methods for degenerate QP 121

primal and dual feasibility are achieved when (or before) complementarity vanishes.
It follows that if a sequence {vy }x=0 satisfies (2.4), (2.5), and limj_, o x; 2, = 0, then
any limit point of the sequence is a solution to problem QP. It is natural, therefore, to
use the merit function

oty =x"z+ 7| W)l (2.6)

to monitor progress of the iterates, where T > 0 is some weighting parameter. Note
that this merit function implicitly assumes that the points x and z are positive.

We may now describe a generic iteration of the algorithm. Let vy be the k-th iterate.
We presume that v; lies within the neighbourhood defined by (2.4) and (2.5) of the
central path, but do not insist that it is primal-dual feasible, i.e., P () may be
nonzero. We define an idealised (perhaps, infeasible) solution trajectory v («) of the
scalar o € [0, 1] via the homotopy

r(ui(e) = (), 2.7

where the rarget KKT-residual trajectory (or residual trajectory for short) #; (o) satis-
fies

t(0) =r(vy) and 1,(1) = 1

for some desired rarget residual t; for iteration k—the former ensures that

vk (0) = vy (2.8)
so long as the Jacobian

H —AT -1

A 0 O

Zir 0 X

of r at v is nonsingular; here and hereafter X and Z are diagonal matrices with entries
xy and zg, respectively. Note that the idealised trajectory is completely determined once
aresidual trajectory f; (o) is chosen. Possible targets include the origin and points on
the central path “closer” to the solution. Although not essential, it is common that
the terminal point on the trajectory is primal-dual feasible, i.e., 7" (vi (1)) = 0. The
choice of residual trajectory is one of the key defining features of a method and the
best-known example [24] is

t/:D (@) \ get (1 - a)rPD(Uk)
(@) =\ = s 2.9)
f () (I —a)r=" (vk) + awog pu(vi)e
for some oy € (0, 1), which is linear in «.

@ Springer

122 N. I. M. Gould et al.

Since r is nonlinear, an exact solution of (2.7) is generally unknown even when
the residual trajectory is linear in «. Thus instead of following the solution trajectory
exactly, a series approximation

o] [
0 v . v .
Vo (o) = v,E I + E %Oél =V + E l{c—‘O{l (2.10)
i=1 i=1

to vr (o) about ¢ = 0 is traced, where the superscript [i] denotes the i-th derivative
of vy with respect to o evaluated at @ = 0. The series coefficients are obtained by
differentiating both sides of (2.7) and evaluating at « = 0. Specifically, we have that

[1]

AT _ Xk
H A 1 0 I]?D[l](O)
A 0 O Ve =\ i (2.11)
Zr 0 Xi (1] Tk 0
2k
and
H _AT 1 k Tk ()
A 0 0 yih | =) -1 (2.12)
Zr 0 Xi ; [kCS[l](O) -2 CleIEJ] ’ Zl[cl /!
Z[l] j=I1
k
fori = 2,...,¢, where cl.'J is the binomial coefficient “p choose i”. Thus a second

defining feature of a method is the type and order of series approximation taken.
The point vg ¢(a) is an approximation to vg(cr) and it is therefore unlikely that
vk, ¢ (1) will lie on the central path, or even within the required neighbourhood defined
by (2.4) and (2.5). Since our aim is to reduce complementarity to zero while ultimately
guaranteeing primal and dual feasibility, we pick a4 ¢ as the solution of

minimize ¢ (vr ¢(a); T
ae(0,1] ¢(’)

subject to ¥, < ¢ (vk,e(B)) <yu and
cF(vk,g(ﬂ))zo forall 0<B<ac<l. (2.13)

The resulting vg ¢ (ot ¢) then satisfies (2.4) and (2.5) and is measurably no worse than
Vg since our aim is to minimize ¢ (v; 7).

In order to guarantee convergence, we use the first-order (¢ = 1) Taylor approxima-
tion (2.10)—(2.11) to the idealised trajectory v (o) defined with residual trajectory (2.9)

. . def
since setting vg4+1 = v,f,I = Uk, 1(a,1) has been shown by Zhang [51] to force ¢ (v; 7)
to zero when 7 = 1, and yy = oo. The same is true [52] of the second-order (£ = 2)
L def
Taylor approximation vf , = vg 2(atk2).
Our algorithm views the step v,f’l as a sort of “Cauchy point” [5], as used by trust-
region methods to ensure convergence. In particular, our general algorithm accepts

@ Springer

Trajectory-following methods for degenerate QP 123

P /
'
'
/ Central path
o ()

Boundary of pe;r;nitted
_ neighbourhood of central path

K .-
! @ Target

Boundary of feasible region

Fig. 1 Perturbed trajectory of the central path

any iterate that is “better”” than v,f’l. To be more precise, vi4+1 may be defined as any
point satisfying

0 < (Xkt1> Zh41)s VL < (Wkg1) < vu, 0 <" (vet1),
and ¢ (vkr1:T) < PV 13 T). (2.14)

Note that our strategy is well-defined since v,f’l satisfies (2.14), and that the condition
on ¢ implies that

if lim pu(vg) =0 then lim xg - zx — w(vp)e = 0. (2.15)
k—0 k— 00

Obvious candidates that may accelerate convergence are v ¢(ct,¢) for £ > 1, but we
explore additional possibilities in Sect. 4. All the salient points of our algorithm are
illustrated in Fig. 1.

We now formally state the algorithm.

Algorithm 2.1. The general algorithm.

Input vo = (g, Yo, 20) such that (zg,z9) > 0.

Choose parameters 7 > 0 and 0 < 0,1, < Oy < 1.

Define 0 < 7, < 1 <y and v € (0,1) so that v, < ¢“(vg) < 7y, and ¢ (vg) > 0.

k—0

do
Calculate p1(vy) and choose 0 € [Omins Tmax]-
Compute v} ; = vg1(ag,1) from problem (2.13).
Compute any step vi41 that satisfies (2.14).
k—k+1

end do

@ Springer

124 N. I. M. Gould et al.

Global convergence is considered in the next section and is relatively straight for-
ward since Algorithm 2.1 is an extension of Zhang’s method [51]. However, the gen-
erality of our algorithm provides us the freedom to consider additional steps that may
accelerate local and global convergence and is the topic of Sect. 4.

3 Convergence results

In this section we give global convergence, local convergence, and complexity results.
We use results from Zhang [51] and Zhang and Zhang [52] since their algorithms are
both particular instances of our method. Our first result is that Algorithm 2.1 has (at
least) linear global convergence.

Theorem 1 If {vi};2, is the sequence of iterates generated by Algorithm 2.1, then
there exists a § € (0, 1) such that (x, zx) > 0 and

¢ (Vit1: 1) < (1 = 8)@p(vg: 7)

for all k > 0. Thus, if v, is any limit point of the sequence of iterates, then it is a
minimizer of problem QP.

Proof The method by Zhang [51, Alg.2] is equivalent to Algorithm 2.1 for the choice
T =1,y = o0, and v 41 = v} ;. However, one may verify that all the results in [51]
and [52] still hold for any t > 0 and yu > 1; the additional restriction s () <y
may change a constant contained in a bound on the minimum step length satisfying
" < (@) < yu (see [51,Lem.6.3] and [52, Lem.7.1-7.3]), and the T > 0O is simply
“carried along” in the proofs. Interestingly, this means that Zhang [51] could have used
the merit function ¢ (v) = xTz, which corresponds to 7 = 0.

Zhang [51, Thm.7.1] proves that the merit function ¢ decreases linearly during each
iteration. However, his algorithm makes an assumption on the initial feasible point.
This mild assumption is removed by Billups and Ferris [2, Thm.2.8] since they prove
that Zhang’s results still hold for an arbitrary (strictly positive) starting point. From
the above observations and (2.14) we conclude that

O (Vk41; 7) < ¢(v,€1; T) forall k>0
< (1-=686)¢(vk;) andsome & € (0, 1). 3.1
It also follows from (2.14) and the fact that (xg,z¢9) > O that (xx,zx) > O
for all k, which in turn ensures that ¢ is bounded below. Thus, we deduce that
limg_, 5 ¢ (vg; T) = 0 and that Algorithm 2.1 is at least globally linearly convergent.
It then follows immediately that if v, = limycx vg for some subsequence £ C N,

then using (2.2) yields

Iimr(vg) =r(ve) =0
kel
so that v, is a solution to QP. O

@ Springer

Trajectory-following methods for degenerate QP 125

The following complexity result depends on the solution set
S*={weR”™":veF and x z=0} (3.2)
and the related quantity
p* =min{|lv| : v e S*}. (3.3)

Theorem 2 Let {vi}72, be the sequence of iterates generated by Algorithm 2.1 and
assume that (xg, zo) = pe for some number p > p*//n, that v,%’z is computed during
each iteration, and that the next iterate is chosen as the trial point with the smallest
value of ¢. It follows that for any t > 1, there exists a number K, such that

lr)l < 27" lr (o)l forall k > K, = Om*?1).

Moreover, if vy is strictly feasible, i.e., vo € Fo, then K; = O (n3/%).

Proof Our goal is to prove that
S T) <2 'Pp(vy; T) forall k> K, = O(n*/?t)

since this may be combined with the conditions in (2.14) to obtain the desired result.
To this end, recall that v,f,l and v,%yz are the steps used in [51, equation (3.1)] and
[52, Alg.2], respectively. Thus, it follows from the assumptions of this theorem,
[51, Thm.7.1], and [52, proof of Thm.7.1] that there exist positive constants 81, §2 €
(0, 1) such that

¢ (k415 T) < min[@ (V] 13 T), § (V] 25 T)]
<min[(1 = 81)@(vk; 7), (1 — 8P (vr;)] < (1 = 62)p (vg; 7).

This implies that

¢ ;1) < (1 —8) ¢ (vo,)

so that the desired result holds provided k > e = 5 = 1;(11”_(%3)2') . A Taylor expansion

of the logarithm yields

o
1 .
—In(1 = 8) =8 E Tag > 8.
=07

Therefore, the desired result holds for all k satisfying

t —t
k>—>— .
5 T In(1 = 8y)

The theorem has been proved since 6, = §2(1/ n3/2) (see [52, Thm.7.11). For the case
v € Fo, the bound on 8> becomes 8, = §2(1/n3/*) (see [52, Thm.8.2]). o

@ Springer

126 N. I. M. Gould et al.

Algorithm 2.1 keeps {ox}k>0 uniformly bounded away from zero. However, it is
reasonable to use the update

ox = min (0.1, u(vr)?) for some ¢ > 0. (3.4)

The next theorem shows that this does not interfere with global convergence.

Theorem 3 If {vi)2, is the sequence of iterates generated by Algorithm 2.1 with oy,
updated by (3.4), then

lim ||r(vp)| = lim ¢ (vg;) = 0.
k— 00 k— 00
Thus, if vy is any limit point of the sequence of iterates, then it is a minimizer of QP.
Proof Suppose that there exists a number ¢ such that
{n(ve)}kes = € > 0 for some subsequence S € N 3.5)

so that {og }res = min(0.1, £7). Asin Theorem 1, it follows from Zhang [51, Thm.7.1]
that there exists a § > 0 such that for all k,

k—1
¢ (i 7) < ¢ (vo; 7) H (1 =38) < ¢vo; (1 —)™ (3.6)
j=0,jeS
where ny = card{j € S : j < k}, card B denotes the cardinality of a generic

set B, and we have used the fact that ¢ (vkr1;7) < ¢(v;T) for all k ¢ S.
Since (xg,zx) > O implies that ¢ (vg; 7) is bounded from below, we deduce
from (3.6) and limy_, oo nx = 00 that limg_, o0 @ (vk; T) = 0. Since this implies that
limg_, o (vg) = 0 we have reached a contradiction to our assumption (3.5), and
conclude that limg_, o @(vr) = 0. The conditions given by (2.14) then imply that
limg— o |[7 (vr)]| = 0 and limg—, » ¢ (vg; T) = 0. The optimality of any limit point v,
follows exactly as in Theorem 1. O

4 Residual trajectories and performance enhancing steps

The main feature that determines the efficiency of our method is the choice of idealised
solution trajectory v (o), which is completely determined by the choice of residual
trajectory #x(«) in (2.7). In this section we provide additional choices for #;(«) and
describe how they may be used to help accelerate convergence of our method on both
nondegenerate and degenerate problems.

4.1 Lustig—Marsten—Shanno—Zhang residual trajectories

This is the case mentioned in (2.9) in which the residual trajectory # (o) is defined
by

@ Springer

Trajectory-following methods for degenerate QP 127

#° @) = (1 —a)r™(vr) and (4.1a)
1 (@) = (1 — a)r® (vg) + aokp(ve)e (4.1b)

for some o} € (0, 1) [24,51]. The centering parameter oy is required to ensure that
for small «, the trajectory turns into the neighbourhood (2.4)—(2.5) and thus progress
is possible. The linearity of both ™ (v) and #" (a) and (2.10)—(2.12) imply that

Hxp (o) +g— AT -z
P (g, (@) = (k.e(@) Afkg _byk,e k,e)

=™) + affPM0) = (1 — a)r™ (wp) 4.2)

and, therefore, if the residual trajectory (4.1a) is used and vg4+1 = vk (1), then
rPD(vj) =O0forall j > kand ¢ > 1.

A method based solely on (4.1) is likely to experience difficulties when solving
degenerate problems as Sect. 1.2 clearly shows. In these situations, a reasonable alter-
native is a residual trajectory f () defined by

WP @) = (1 —a)*r™(v) and (4.32)
15 (@) = (1 — a)*r® (ue) + Qa — aPogu(vp)e. (4.3b)

This is the same trajectory as (4.1) but with a different parameterization that is given
by @ — 1 — (1 —)2, This choice copes with the fact that the path v based on
the residual trajectory (4.1) is not analytic as a solution is approached. (A Taylor
series approximation to the solution vi(«) of (2.7) using residual trajectory (4.3)
may be interpreted as a Puiseux (square root) series [38, p.98] approximation in the
parameter 1 —+/1 — « for (2.7) using (4.1).) In contrast to (4.1), if (4.3a) is used, then
the quadratic nature of 1P (o) and (2.10)—(2.12) imply that

rP (vk,l(a)) = (1—2a)r™(v;) and
P (v e(@) = (1—a?)r™ (v) for €>2. (4.4)

Thus if a linear approximation v 1(«) is used and a full step is taken, i.e., « = 1,
then there will still be no improvement in the primal-dual infeasibility. However, if
the update vi1 = vk, ¢(3) or vg41 = vk ¢(1) for £ > 2 is ever used, then rPD(vj) =0
for all j > k provided the residual trajectory (4.3a) is used.

4.2 A mixed residual trajectory
For a mixed residual trajectory we use (4.1a) to define #{° (o) and (4.3b) to define
155 (@). The resulting residual trajectory #; (o) and idealized trajectory vi (o) resolve

the difficulties caused by degeneracy by recognizing that the complications arise from
the complementarity slackness condition and not from the primal or dual feasibility.

@ Springer

128 N. I. M. Gould et al.

4.3 Potra—Stoer—Sun—Zhao residual trajectories

The residual trajectories defined in Sects. 4.1 and 4.2 all define idealised solution
trajectories satisfying vx(0) = vg and xx (1) - zx (1) = oxp(vi)e, i.e., starts at vy and
leads towards a point lying “down” the central path. In this section we consider the
residual trajectory #; (r), where 7" () is given by (4.1a),

1@ = (1= (r o +aoeu@o pwoe = r @o]), @5

and oy € (0, 1], which defines an idealised solution trajectory that aims for the solu-
tion. This residual trajectory is again quadratic in & and by design initially leads into
the neighbourhood defined by (2.4)—(2.5) so that progress is always possible. This
trajectory with the choice o = 1 is attributed to Stoer by Zhao and Sun [53], while
the general oy case is considered by Potra and Stoer [36].

As before, a re-parameterization of the residual function can be used to ensure that
the trajectory is analytic even for degenerate problems. The most obvious choice is to
once again use o — 1 — (1 — «)?, which is equivalent to replacing (4.1a) by (4.3a)
and (4.5) by

1@ = (1= (r) + Q= @)oo [wwoe = rSwo]) (46)

[36], which is quartic in «. However, the simpler

1 @) = (1= (1) + aon (o) [pwoe = r @]) @)

is also possible [53] and is only cubic in «.

We close this section with the following observation: to ensure primal and dual
feasibility are obtained when o = 1, a method based on (4.5), (4.6), or (4.7) must use
at least a 2nd, 4th, or 3rd degree Taylor approximation, respectively.

5 Implementation

In this section we describe the main features of our new GALAHAD [13] Fortran 2003
convex quadratic programming package CQP. Further details, including a complete

description of all user control parameters, are provided in the package documentation
provided as part of GALAHAD.!

5.1 Preprocessing

CQP accepts problems of the form (1.1). In practice, variables and constraints are
reordered internally by the package so that those with (just) lower bounds occur before

1 Available from http://galahad.rl.ac.uk/galahad-www/. A Matlab interface is also provided.

@ Springer

http://galahad.rl.ac.uk/galahad-www/

Trajectory-following methods for degenerate QP 129

those that are bounded from both sides which themselves occur before those that
are (just) bounded from above. This leads to more effective vector operations when
(for example) checking for feasibility since there is then no need to constantly re-
check what sort of bounds a given constraint has. Equality constraints may be mixed
with the inequalities, and the preprocessing phase implicitly separates them from the
inequalities. Fixed variables and dependent equality constraints are also removed. In
addition, slack variables ¢ are introduced for general inequality constraints. Thus at
an internal level, CQP actually solves problems of the form

CQP; : minimize g(x)

x,c

subject to Afx = Alx—c=0, x" <x<x" and " <ec <Y,

where only the first parts of x" and ¢" and the last parts of x" and ¢" are nonzero. The
KKT conditions for CQP; are that

Hx,+g=ATyf + (A T yi+ 2k —z¢ and yi = yi — »!
Afx, =c® and A'x,—c, =0, and 5.
(cxi—c") - y&=0, (c"—cy) y¥ =0, (xx—x")-z5=0 and (x"—x,) z4y =0

for primal variables xY < x, < xY, constraint values ¢* < ¢, < ¢V, Lagrange
multipliers yf, yi and (yi‘ , yf) > 0, and dual variables (z%, zJ) > 0. In what follows,
we write v = (x, ¢, y*, ¥, y", ¥V, 2%, zY), and use the obvious notation v, v and
vk, ¢ () for the solution vector, the vector of iterates and the approximate solution
trajectory, etc. Some components of v, such as those components of z} for which x
is not bounded below, are identically zero; the package automatically recognises this
and the relevant components are not stored.
In view of (5.1), we note that now

Hx +g— APTyF — ATyl —7F 4 7Y (c—c") -yt

1 L U U U

PD .\ _ y =y +Yy cspn_| (=0 -y
r(v)= AEx — B . ro()= (x —x") - 7-
Alx —¢ xY —x)- 7Y

and

p) = €= D o G M i ol e 0 Kl o S D K
ni ’

where the total number of inequality constraints xr<x<xVandct <c<cVisny.

5.2 Dependent constraints
To detect dependent equality constraints, we use the GALAHAD module FDC. This

offers two alternatives especially geared towards large problems. The first [3] finds a
sparse symmetric indefinite factorization

@ Springer

130 N. I. M. Gould et al.

al (AHT ,
=LBL
A" 0

using GALAHAD’s module SLS (see Sect. 5.5) and assesses rank deficiency from tiny
eigenvalues of the one-by-one and two-by-two diagonal blocks that make up B—a
value ¢ = 0.01 is used by default. The second, default, alternative is simply to perform
a sparse unsymmetric rectangular factorization

A® = LU or (by default) (A®)T = LU

using threshold pivoting, and to identify tiny “diagonal” entries from the “lower trian-
gular” matrix L obtained [8]. We recognise that neither is as robust as, for example,
a singular-value decomposition or a rank-revealing QR factorization, but both have
proved reliable in our tests.

5.3 Getting started

Despite numerous attempts to provide a clever “starting” point vg, our current preferred
strategy is simply to set v a “large distance” from any of its lower and upper bounds
[and u. Simply, by default we set each component a distance min(w, 1(u — [)) from
its nearest bound with @ = 10* being our favourite choice. Our experience is that it is
often far easier to come in “from arbitrary infinity”, than to move to the central path
from an initial point that tries too cleverly to predict which (and start near) bounds
might be active.

5.4 Residual trajectories

CQP offers the linear and quadratic residual trajectories (4.1) and (4.3), the mixed
residual trajectory mentioned in Sect. 4.2, the Potra—Stoer—Sun—Zhao residual trajec-
tories (4.1a)/(4.5) and (4.3a)/(4.7) as well as a variant that switches from the former
to the latter once w(vy) is smaller than 1074,

5.5 Linear system solver

Having selected a residual trajectory, the next task is to compute the usable approx-
imation v ¢ (o) in (2.10) to the idealised trajectory. We offer the choice of using a
single approximation for a specified ¢, or that of using every vy ; (o) fori < £, since
the coefficients for each vy ; are trivially a subset of those for vi ;. If we are not using
the linear residual trajectory (4.1), we will additionally have to compute v,f,l as our
guarantee of convergence.

At each iteration, we need to solve the analogs of the linear systems (2.11)—(2.12)
for CQP; to determine the coefficients of the expansions v ¢(r) we will use. These
are

@ Springer

Trajectory-following methods for degenerate QP 131

H 0-A—A7 o 0 —I I X! ril
0o 0 0 [—I I 0 0 c,[f] i
A0 0 0O O 0 0 0 yPli! pli]
A1 0 0 0 0 0 0 yili! rit!
0 Yy 0 0C—-C 0 0 0 g | T et
0-v' 0 0 0C'-Cc 0 0 Sl U]
ZF 0 0 0 0 0 X;—X" 0 L[t] rlz(L[t]
~zZf 0 0 0 0 0 0 x-xi) \ ol

5.2)

for generic right-hand sides 7/l and where once again Cy, C* (etc.) are diagonal matri-
ces with entries ¢, and ¢". Rather than solving (5.2) directly, we use the relationships

(Ck_CL)yL[zl CL[i] o YLC[i] (Ck)yulz] CU[l] + YUck ’ 53
X=Xk = i = ZExl and (XU~ X028 = 0 4 Zix)
to eliminate yL[il ka [i], 193 U1 and zU[’ which results in the symmetric, indefinite
system
H+ Xy —XYH 1z} r;?‘[i] +(Xk—XL)7ll‘kXL[i]
0 AR AT [i] U 1,.xuli]
+(XY =X ZY Xy —(XY=Xp)~'rg
Ly—1yL .
(Cr—C~)" 'Yk B C[i] _ Y[l] + (Cr—)—lrkCL[l]
U —1yu k .
HE =Cu™ Y elil —(CY =t
AF 0 0 0 — Yk LEL]
k
1[i] .
Al —1I 0 0 —Yk pl]

(5.4)

Once we have found x}'!, cl'!, yEU! and yl from (5.4), we trivially recover yf!7!,

Vi 11 2 and 221 from the diagonal systems (5.3).

CQP uses another GALAHAD module, SBLS, to solve symmetric block systems

(g 1_92) (:):(Z) (5.5)

for which G and E are symmetric, like (5.4). In fact, SBLS simply gathers the data G,
B, E, a and b to set up one of a number of possible relevant systems for solution by yet
another GALAHAD module, SLS. In particular, SBLS provides either a full-space
approach, in which (5.5) is simply solved by forming and factorizing

@ Springer

132 N. I. M. Gould et al.
G BT
k=(5%)

a range-space approach in which factorizations of G and the Schur complement
E + BG~!'BT are used, or a null-space approach in which a non-singular sub-matrix
of B is determined and used to implicitly construct a basis matrix N for the null-space
of B and ultimately rests on needing to factorize the positive-definite matrix N7 GN.
The range-space approach is currently limited to the case where G is a non-singular
diagonal (but in principle could be adapted for block diagonal G), while the null-space
approach is restricted for simplicity to the case where £ = 0 [as is the case for (5.4)].
Such ideas are well known [10, Section 5.4] and their applicability generally depends
on the relative ratio of the row and column dimension of B; the range-space method
is best when B has relatively few rows, the null space one when the ratio is close to
(but no greater than) one, and the full-space approach when neither of these occurs.
The default in CQP is to use the range-space approach whenever G is non-singular
and diagonal, and the full-space approach otherwise.

The module SLS called by SBLS provides a common interface to a number of
freely-available and commercial software sparse, symmetric direct solvers—currently
these include MA27,MA57,MA77,MA86,MA87 and MA97 from HSL [19], PARDISO
from the Pardiso Project [37] and WSMP from the IBM alpha Works [17]. Options
available include a variety of sparse ordering and scalings, iterative refinement, partial,
out-of-core and parallel solution, and inertia determination and correction. Further

efficiencies are possible when the matrix is definite (such as would occur for the null-
and range-space approaches of concern here).

5.6 Staying feasible

Armed with one or more search arcs vy ¢ (o) from (2.10), it remains to find the stepsize
o ¢ that gives the solution to (2.13). We do this by first determining et/ ¢ as the largest
o € (0, 1] for which

1 (vk.e(@)) = vlIr™ (ve (@) = 0 and (5.6a)
yL/L(vk,/g(a))e <r® (Uk’((a)) <)/U/,L(vk,g(a))e forall « € [0, ot] (5.6b)

and then using a simple backtracking Armijo line-search? to find ay ¢ as the first in
the sequence {2 ay ¢ }i>0 for which

¢ (ke (@); T) < ¢ (ves 7) + nagt (v 7)
for a given small n € (0, 1) and as before the bracketed superscript denotes the first

derivative; default values v = 1072, YL = 1073, yw=00,7=1landn = 10~* are
used. Since our aim is actually simply to satisfy (2.14), we first calculate v,f’ 1> and then

2 When ¢ < 2, the exact line minimizer of ¢(Uk‘g (a); r) is found by calculus.

@ Springer

Trajectory-following methods for degenerate QP 133

for each usable approximation v ¢ () we have chosen, we compute o ¢ and compare
¢ (v(ak,¢); T) with ¢(v,€1; 7). The smallest overall defines vi 1.
It is straightforward to show that

M) = e 1SN0y /ny (5.7)

—this is by analogy with the special case of problem CQP for which (2.11) gives
(componentwise) zj - x,E]] + xi - Z,EI] = tcs[l](o) from which (5.7) follows since for
CQP 1M (wy) = €7 (z; - xM + x, - 2l)/n—and that

dlr™ el T oM 0) 5:8)
da N T O] '

when 7™ (v;) # O—the derivative for general « is simply

d|Ir™ el ™ T (g e(@)r™ M e (@)
da B 17 (ke (@)
P T (g0 (@) V™ (vg () vf (@)
B 17 (ve e (o)) |

which gives the required result since
Vr™ e e (0) v, 1(0) = V™ g 1(0) = V™ o = 1 0)
because of (2.11). Thus

7P 7 ()P 0)

1772 (i) I

¢! (v 1) = & 1SN + 78 (0e) (5.9)

where §(r) = 1ifr 20 and O if » = 0.
Note that for the linear residual trajectory (4.1),

¢ (ves) = =@ (v T) + mogp(vr) and [Ir™ (v (@) | = (1= @) |7 (vi) |
because of (4.2) and (5.9), while for the quadratic residual trajectory (4.3),

oM (ve; 7) = =20 (vs T) + 2mioxu(vr) and
. C[a=2wir)l for e=1
I (e @) = [(1 =™ (u)l| for £>1

from (4.4) and (5.9).
The required inequality (5.6a) and the 2n; inequalities (5.6b) each require that we
find the smallest root of a scalar polynomial of degree 2¢ in (0, 1] (if any). For £ = 1

@ Springer

134 N. I. M. Gould et al.

and 2, itis easiest simply to enumerate the roots from stable versions of the well-known
formulae for quadratic and quartic equations. For larger ¢, rather than enumerate roots,
we instead use Sturm’s theorem (via the Euclidean algorithm) to count the number of
roots in an iteratively-bisected interval until we find a bounding interval containing
the single desired root. Thereafter, a safeguarded Newton iteration is used to refine
this root [9]. This has two essential advantages. Firstly, if (as is often the case) there is
no root in the initial interval, this is discovered very fast. Secondly, since as we wish to
find the smallest positive root of all the inequalities (5.6), for successive inequalities,
we only need investigate [0, «.], where o, is the current champion. Early detection
of a small &, leads to small subsequent intervals and thus efficiencies as in our first
point. We take precautions since the Euclidean algorithm is somewhat prone to break
down; if we become aware of large generated coefficients, we simply resort to a
more expensive but robust method that computes all the real roots [25]. All of this
functionality is available as part of GALAHAD’s ROOTS module.

An additional expense is the computation of the required polynomial coefficients for
1 (ve,e(@)) and r (vg (). Generically each of these is obtained from the products
of two polynomials of order £.

5.7 Parallelism

While many aspects of our algorithm (matrix-vector products, distances to bounds,
residuals) might be calculated in parallel, our experience with shared-memory sys-
tems like OpenMP is simply that the start-up costs usually outweigh any benefits from
parallel execution—an optimizing compiler often appears to perform just as good a
job as hand-crafted parallelism. However, we have found it beneficial to offer parallel
directives for the matrix factorization/system solves and the polynomial root extrac-
tion. The former is provided naturally by the component solvers MA77, MA86, MA87,
MA97, PARDISO and WSMP and is generally very useful. Indeed our experience is
that parallel factorization, at least on small systems (say 4-16 processors as might
occur on a modern PC), is so successful that other less demanding sequential tasks
become significant. In particular, we find that computing linear system solutions (for-
ward and backward substitution) now becomes an issue, simply because this phase is
limited by memory bandwidth [18]. The polynomial solution described in Sect. 5.6
is essentially independent and thus simply and effectively embedded within a parallel
do loop. There is a small loss in efficiency since the best o, mentioned earlier is now
per-processor rather than global. We had hoped that the calculation of the polynomial
coefficients r* (vg,¢(a)) would also benefit from parallelism, but in our experience
start-up costs again dominated.

5.8 Presolve and problem scaling

CQP is one of a number of quadratic programming solvers available with GALAHAD.
Since each has essentially the same interface, a common wrapper module QP
is also provided that adds further functionality. In particular QP provides a pre-
solve/preprocessing phase that aims to simplify a problem prior to solution using

@ Springer

Trajectory-following methods for degenerate QP 135

the GALAHAD module PRESOLVE [16], and a variety of pre-scalings that try to
equilibrate H, A and the problem bounds to try to make the solution phase easier.
Since these options were not enabled in our tests, we provide no further details here.

5.9 Termination
We stop the algorithm as soon as
7" (vl < max(e®, e¥||r' (vo)||) for each of I € {P, D, CS}

for given small ¢*, e® > 0, or when a maximum iteration limit is reached. We also
check for infeasibility by monitoring ¢ (v; T) and stop if stagnation over a given
number of iterations seems to have occcured.

6 Numerical experiments

Our tests involve the quadratic programming examples from the combined CUTEr
[12] and Maros and Meszaros [26] test sets—multiple instances of very similar nature
have been excluded. We considered 178 convex examples in all (see Table A.1 in
on-line Appendix A), of which 51 are reported as degenerate; see on-line Appendix B
for the settings used to decode the problems. All experiments were performed on
four cores of a Dell Precision T340, single Core2 Quad Q9550 processor(2.83GHz,
1333MHz FSB, 12MB L2 Cache) with 4GB RAM; CQP and its dependencies are in
double precision and compiled with gfortran 4.3 using fast (-03) optimization and
OpenMP enabled (- fopenmp).

We have compared variants of the codes using two different residual trajectories
and for each two different degrees of series approximation to the solution trajectory.
We considered the linear and quadratic residual trajectories (4.1) and (4.3). For the
former we tried the first and second degree Taylor approximations recommended by
Zhang [51] and Zhang and Zhang [52]; we refer to these as variants T1 and T2. For the
latter, we used approximations of degrees two and four (P2 and P4); as we suggested in
Sect. 4.1, a first-degree approximation would not improve the primal-dual infeasibility
for the unit steplength.

For our tests, we use default values for most control parameters. The exceptions
are that we choose the linear solver MA97 for SLS with two iterative refinements per
solve, the absolute and relative stopping tolerances are set to £* = ¢ = 107>, at
most 1,000 iterations are allowed and at most 20 iterations are permitted for which ¢
fails to decrease by 0.1 before the problem is declared primal or dual infeasible; see
on-line Appendix C for details.

The complete results from these experiments are summarised in Tables A.2-A.5
in the on-line appendix. To make comparisons easier, we provide a graphical inter-
pretation of this data using the performance profiles of the factorization counts and
run time in Figs. 2 and 3; briefly, given a set of test problems and a set of competing
algorithms, the i-th performance profile p;(w) indicates the fraction of problems for
which the i-th algorithm is within a factor w of the best for a given metric—see [6]

@ Springer

136 N. I. M. Gould et al.

Performance Profile: iterations — CUTEr convex QP test set (MA97)

fraction of problems for which solver within o of best

Fig. 2 Performance profile for the number of iterations (factorizations) required to solve the sample set
of CUTEr problems using T1, T2, P2 and P4. Variants T1, T2, P2 and P4 failed to achieve the required
accuracy for 5, 4, 3 and 3 of the 178 test problems, respectively

Performance Profile: time — CUTEr convex QP test set (MA97)
1 T T T T T T T T T

-
1]

2L FPUSRERE Py, Xk
-]
o

3

£ ==
£ -

g .

2 - J
(0]

=

o 4
(7]

<

Q

z]
=

z

(o]

) J
1))

€

K]]
o)

o

o

o

s <= == T1
c e T2
2 017 —pP2|]
g - - -p4
- 0 L I ! L 1 I L L T

Fig. 3 Performance profile for the time spent in solving the sample set of CUTETr problems using T1, T2,
P2 and P4

for a formal definition of performance profiles and a discussion of their properties. In
Figs. 4 and 5 we focus simply on the subset of 51 degenerate problems.

In Fig. 2, we clearly see the advantage of using higher-order polynomial approx-
imations to the solution trajectories. More accurate approximations lead to fewer

@ Springer

Trajectory-following methods for degenerate QP 137

Performance Profile: iterations — CUTEr degenerate convex QP test set (MA97)

fraction of problems for which solver within o of best

Fig. 4 Performance profile for the number of iterations (factorizations) required to solve the degenerate
subset of 51 CUTEr problems using T1, T2, P2 and P4. Variants T1, T2, P2 and P4 failed to achieve the
required accuracy for 4, 4, 2 and 3 of the 51 degenerate test problems, respectively

Performance Profile: time — CUTEr degenerate convex QP test set (MA97)
T T T

fraction of problems for which solver within of best

Fig. 5 Performance profile for the time spent in solving the degenerate subset of 51 CUTEr problems
using T1, T2, P2 and P4

iterations/factorizations. The curves T2 and P2 indicate a slight but not overwhelming
advantage of using the quadratic residual trajectory in comparison to the linear one.
This trend is more pronounced in Fig. 4 in which we focus on the degenerate examples.
We note that in a few cases the required stopping accuracy was not attained.

@ Springer

138 N. I. M. Gould et al.

Table 1 High accuracy solution

Name Tl T2 P2 P4

Iter Time Error Iter Time Error Iter Time Error Iter Time Error

DEGDIAG 28 237 4475 20 280 3875 15 233 978 12 354 3817
DEGTRID 26 344 2774 18 415 3974 12 369 13712 g 348 97!
DEGTRID2 34 452 6077 24 532 687 5 127 768 5 215 6377
DEGTRIDL 193 29.03 6.0 80 18.84 137¢ 11 294 339 7 318 1510

When it comes to run times, however, Fig. 3 shows that this reduction in the number
of factorizations is counterbalanced by the need to solve additional systems and to find
roots of polynomial equations. In particular, recall that every method needs to find at
least v,f!l, and for T1 this is all that is required. The cost in P4 clearly more than
offsets the gains in iterations. When we focus on the degenerate examples in Fig. 5,
the advantage of using the quadratic residual trajectory is apparent, and here it is
reasonable to suggest that P2 performs best.

One of our stated aims was to show that it is possible to solve even degenerate
examples accurately. The solutions to most of our test problems are not known exactly,
so we illustrate how our methods work on a few (contrived) large examples, DEGDIAG,
DEGTRID, DEGTRID2 and DEGTRIDL, from the test set, for which the exact solution
is available. We again consider the T1, T2, P2 and P4 variants, but now set the absolute
and relative stopping tolerances to ¢* = ¢® = 107!2; again, see on-line Appendix C
for details. In Table 1 we give the number of iterations required, the time taken and
the maximum error in x for each variant. As we see, the quadratic residual trajectory
pays off both in terms of effort and of attained accuracy for these examples.

We have experimented with the other residual trajectories mentioned in Sect. 5.4
with mixed success. Although each proves to perform well (and sometimes exception-
ally so) in some cases, none proves to be as reliable as the simple linear and quadratic
ones we have focused on here.

7 Conclusions and discussion

Relatively little is known about the existence of the central path when strict comple-
mentarity does not hold. For convex optimization problems and a decreasing sequence
of parameters {uy} converging to zero, minimizers of the log-barrier function, i.e.,
solutions to (1.5), are known to converge to a constrained minimizer [47]. For proper
convex objective functions and linear constraints, the existence and uniqueness of
the central path is established in [7] without requiring strict complementarity but
assuming that the set of constrained minimizers is nonempty and bounded. This path
has the desirable property that for any g > 0, the path parametrized over (0, it]
is compact and can be extended continuously to a constrained minimizer of the
original problem as 4 — 0. When strict complementarity fails, the central path seems
to be best understood for convex quadratic programming (more precisely for monotone
and sufficient linear complementarity problems [42,43]). The key to the analysis is

@ Springer

Trajectory-following methods for degenerate QP 139

to re-parametrize the path using ,/u in place of . Whether similar results hold for
more general problem classes such as nonconvex quadratic optimization or nonlinear
optimization, is still an open question; some clues appear in [27] and [49], but again
numerical experience is scarce. However, the non-quadratic extension of Example 2
in Sect. 1.2 given by

minimize %x” subjectto x >0
X

for fixed p > 1, for which x(u) = /L% and z(n) = ,upTl, leaves no doubt as to
the need for a non-Taylor trajectory in some cases—of course there is no guarantee
that a general nonlinear problem has (local or global) central path(s) without strong
additional assumptions such as strict complementarity or second-order sufficiency.

Example 2 in Sect. 1.2 is unfortunately typical in that it produces an approximate
solution with only a few digits of accuracy. Obtaining accurate solutions to degenerate
convex quadratic programs is important in its own right, but is also crucial in certain
active-set-based sequential quadratic programming methods for nonlinear optimiza-
tion. For such methods, Table 1 suggests that the P2 and P4 strategies are particularly
attractive.

Variants on the path-following methods proposed here are possible. For instance,
rather than using Taylor Series approximations of idealised trajectories, one might
instead fit a Puiseux expansion of the form

1 3
a0+a%;ﬂ +a1,u+a%;ﬂ +a2u2+~--

to a prescribed number of past iterates. Convergence of such a procedure is unclear,
but it may also be effective in handling degenerate problems.

In this paper we have not considered the rate of local convergence. However, it is
reasonable to assume that the iterates will converge superlinearly provided (i) suffi-
ciently high Taylor approximations to the idealized trajectories are utilised and (ii)
a residual trajectory defined by (4.1a) and (4.5) is used, or if (4.1a) and (4.1b) are
used and o}, > 0 is decreased to zero sufficiently fast. Indeed, in practice we routinely
observe superlinear convergence.

We now informally argue how results from Potra and Stoer [36] may be used to
prove fast local convergence for a slightly modified version of Algorithm 2.1. Assume
that Algorithm 2.1 is executed such that for all iterates suficiently large the target
trajectory defined by (4.1a) and (4.5) is used so that

Cs

03 (@) = (1 — a)p(wr) (r), aok| w(wr)e — r ()]) - (7.1)

k
wm(vg)

We also must slightly modify our algorithm so that during each iteration the “wide”
neighborhood (2.4) is widened further, as described by [36, Equations (3.3), (3.4),
(3.11), (3.40)]. Then, to apply the results of [36, Thm.2.2] and deduce that all deriva-

@ Springer

140 N. I. M. Gould et al.

tives given by (2.11) and (2.12) are bounded, we must show that the vector

S (vr)

(k)

+ aor[pe —r) | = (- Oédk) Xk - 2k + aogp(ve)e

w(vg)

used in (7.1) is contained within a compact subset of {x € R"” : x > 0} for all
a € (0,1] and all £ sufficiently large. This can easily be shown using (3.4), the
definition of u(vg), the fact that limy— o (vg) = 0, (2.3), and (2.4). Since this is the
key result used by Potra and Stoer to obtain their results, we are not surprised that
Algorithm 2.1 consistently exhibits superlinear convergence.

Acknowledgments This work was supported by the EPSRC grants EP/E053351/1, EP/F005369/1 and
EP/H026053/1 and NSERC Discovery Grant 299010-04. We are extremely grateful to areferee and associate
editor for comments that lead to important clarifications of our numerical results.

References

1. Anitescu, M., Lesaja, G., Potra, F.A.: Equivaence between different formulations of the linear com-
plementarity problem. Optim. Methods Softw. 7(3—4), 265-290 (1997)
2. Billups, S.C., Ferris, M.C.: Convergence of an infeasible interior-point algorithm from arbitrary positive
starting points. STAM J. Optim. 6(2), 316-325 (1996)
3. Cartis, C., Gould, N.LM.: Finding a point in the relative interior of a polyhedron. Technical Report
RAL-TR-2006-016, Rutherford Appleton Laboratory. Chilton (2006)
4. Colombo, M., Gondzio, J.: Further development of multiple centrality correctors for interior point
methods. Comput. Optim. Appl. 41(3), 277-305 (2008)
5. Conn, A.R., Gould, N.I.M., Toint, Ph.L.: Trust-Region Methods. MPS-SIAM Series on Optimization.
SIAM publications, Philadelphia (2000)
6. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Pro-
gram. 91(2), 201-213 (2002)
7. Grafia Drummond, L.M., Svaiter, B.F.: On well definedness of the central path. J. Optim. Theory Appl.
102(2), 223-237 (1999)
8. Duff, LS., Reid, J.K.: The design of MA48: a code for the direct solution of sparse unsymmetric linear
systems of equations. Trans. ACM Math. Softw. 22(2), 187-226 (1996)
9. Dunaway, D.K.: Calculation of zeros of a real polynomial through factorization using Euclid’s algo-
rithm. SIAM J. Numer. Anal. 11(6), 10871104 (1974)
10. Gill, PE., Murray, W., Wright, M.H.: Practical Optimization. Academic Press, London (1981)
11. Gondzio, J.: Multiple centrality corrections in a primal-dual method for linear programming. Comput.
Optim. Appl. 6(2), 137-156 (1996)
12. Gould, N.ILM., Orban, D., Toint, Ph.L.: CUTEr (and SifDec), a constrained and unconstrained testing
environment, revisited. Trans. ACM Math. Softw. 29(4), 373-394 (2003)
13. Gould, N.LLM., Orban, D., Toint, Ph.L.: GALAHAD—a library of thread-safe fortran 90 packages for
large-scale nonlinear optimization. Trans. ACM Math. Softw. 29(4), 353-372 (2003)
14. Gould, N.I.M., Robinson, D.P.: A second derivative SQP method: global convergence. STAM J. Optim.
20(4), 2023-2048 (2010)
15. Gould, N.I.LM., Robinson, D.P.: A second derivative SQP method: local convergence and practical
issues. STAM J. Optim. 20(4), 2049-2079 (2010)
16. Gould, N.I.M., Toint, Ph.L.: Preprocessing for quadratic programming. Math. Program. B 100(1),
95-132 (2004)
17. Gupta, A.: WSMP: Watson sparse matrix package part I—direct solution of symmetric sparse system.
Research Report RC 21886. IBM T. J. Watson Research Center, Yorktown Heights (2010)
18. Hogg, J.D., Scott, J.A.: A note on the solve phase of a multicore solver. Technical Report RAL-TR-
2010-007, Rutherford Appleton Laboratory, Chilton (2010)

@ Springer

Trajectory-following methods for degenerate QP 141

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.
41.

42.

43.

44,

45.

46.
47.

HSL. A collection of Fortran codes for large-scale scientific computation (2011). http://www.hsl.rl.ac.
uk

Ji, J., Potra, F.A., Huang, S.: Predictor—corrector method for linear complementarity problems with
polynomial complexity and superlinear convergence. J. Optim. Theory Appl. 85(1), 187-199 (1995)
Kojima, M., Mizuno, S., Noma, T.: Limiting behavior of trajectories generated by a continuation
method for monotone complementarity problems. Math. Oper. Res. 15(4), 662-675 (1990)

Liu, X., Potra, F.A.: Predictor-corrector methods for sufficient linear complementarity problems in a
wide neighborhood of the central path. Optim. Methods Softw. 20(1), 145-168 (2005)

Liu, X., Potra, F.A.: Corrector—predictor methods for sufficient linear complementarity problems in a
wide neighborhood of the central path. SIAM J. Optim. 17(3), 871-890 (2006)

Lustig, I.J., Marsten, R.E., Shanno, D.F.: Computational experience with a primal—dual interior point
method for linear programming. Linear Algebra Appl. 152, 191-222 (1991)

Madsen, K., Reid, J.K.: Fortran subroutines for finding polynomial zeros. Technical Report AERE-R
7986, AERE Harwell Laboratory, Harwell (1975)

Maros, 1., Meszaros, C.: A repository of convex quadratic programming problems. Optim. Methods
Softw. 11-12, 671-681 (1999)

McCormick, G.P., Witzgall, C.: Logarithmic SUMT limits in convex programming. Math. Program.
90(1), 113-145 (2001)

Megiddo, N.: Pathways to the optimal set in linear programming. In: Megiddo, N. (ed.) Progress in
Mathematical Programming, pp. 131-158. Springer, New-York (1989)

Mehrotra, S.: On the implementation of a primal-dual interior point method. SIAM J. Optim. 2,
575-601 (1992)

Mizuno, S.: A superlinearly convergent infeasible-interior-point algorithm for geometrical LCPs with-
out a strictly complementary condition. Math. Oper. Res. 21(2), 382-400 (1996)

Mizuno, S., Todd, M.J., Ye, Y.: On adaptive-step primal—dual interior-point algorithms for linear
programming. Math. Oper. Res. 18, 964-981 (1993)

Monteiro, R.D.C., Tsuchiya, T.: Limiting behavior of the derivatives of certain trajectories associ-
ated with a monotone horizontal linear complementarity problem. Math. Oper. Res. 21(4), 793-814
(1996)

Potra, FA.: A superlinearly convergent predictor—corrector method for degenerate LCP in a wide
neighborhood of the central path with O (y/nL)-iteration complexity. Math. Program. 100(2), 317—
337 (2004)

Potra, FA.: Primal-dual affine scaling interior point methods for linear complementarity problems.
SIAM J. Optim. 19(1), 114-143 (2008)

Potra, F.A., Sheng, R.: Superlinearly convergent infeasible-interior-point algorithm for degenerate lcp.
J. Optim. Theory Appl. 97(2), 249-269 (1998)

Potra, FA., Stoer, J.: On a class of superlinearly convergent polynomial time interior point methods
for sufficient LCP. SIAM J. Optim. 20(3), 1333-1363 (2009)

Schenk, O., Girtner, K.: On fast factorization pivoting methods for symmetric indefinite systems.
Electron. Trans. Numer. Anal. 23, 158-179 (2006)

Siegel, C.L.: Topics in Complex Function Theory. Elliptic Functions and Uniformization Theory, vol.
1. Wiley, Chichester (1988)

Stoer, J.: High order long-step methods for solving linear complemenarity problems. Ann. Oper. Res.
103 (2001)

Stoer, J.: Analysis of interior-point paths. J. Res. Natl. Inst. Stand. Technol. 111(2) (2006)

Stoer, J., Wechs, M.: The complexity of high-order predictor-corrector methods for solving sufficient
linear complementarity problems. Optim. Methods Softw. 10(2), 393-417 (1998)

Stoer, J., Wechs, M.: Infeasible-interior-point paths for sufficient linear complementarity problems and
their analyticity. Math. Program. 83(1-3), 407-423 (1998)

Stoer, J., Wechs, M.: On the analyticity properties of infeasible-interior-point paths for monotone linear
complementarity problems. Numer. Math. 81, 631-645 (1999)

Stoer, J., Wechs, M., Mizuno, S.: High order infeasible-interior-point methods for solving sufficient
linear complementarity problems. Math. Oper. Res. 23(4), 832-862 (1998)

Sturm, J.F.: Superlinear convergence of an algorithm for monotone linear complementarity problems,
when no strictly complementary solution exists. Math. Oper. Res. 24(1), 72-94 (1999)

Viliaho, H.: Py-matrices are just sufficient. Linear Algebra Appl. 239, 103-108 (1996)

Wright, M.H.: Interior methods for constrained optimization. Acta Numer. 1, 341-407 (1992)

@ Springer

http://www.hsl.rl.ac.uk
http://www.hsl.rl.ac.uk

142

N. I. M. Gould et al.

48.

49.

50.

51

52.

53.

Wright, S.J.: Primal-Dual Interior-Point Methods. Society for Industrial and Applied Mathematics
(SIAM), Philadelphia (1997)

Wright, S.J., Orban, D.: Local convergence of the Newton/log-barrier method for degenerate problems.
Math. Oper. Res. 27(3), 585-613 (2002)

Ye, Y., Giiler, O., Tapia, R.A., Zhang, Y.: A quadratically convergent O (y/nL)-iteration algorithm for
linear programming. Math. Program. 59, 151-162 (1993)

Zhang, Y.: On the convergence of a class of infeasible interior-point methods for the horizontal linear
complementarity problem. SIAM J. Optim. 4(1), 208-227 (1994)

Zhang, Y., Zhang, D.: On polynomiality of the Mehrotra-type predictor—corrector interior-point algo-
rithms. Math. Program. 68, 303-318 (1995)

Zhao, G., Sun, J.: On the rate of local convergence of high-order-infeasible-path- following algorithms
for Py-linear complementarity problems. Comput. Optim. Appl. 14(3), 293-307 (1999)

@ Springer

	Trajectory-following methods for large-scale degenerate convex quadratic programming
	Abstract
	1 Introduction
	1.1 The problem, optimality conditions and central path
	1.2 The influence of degeneracy: two examples
	1.3 Perspective

	2 The general algorithm
	3 Convergence results
	4 Residual trajectories and performance enhancing steps
	4.1 Lustig--Marsten--Shanno--Zhang residual trajectories
	4.2 A mixed residual trajectory
	4.3 Potra--Stoer--Sun--Zhao residual trajectories

	5 Implementation
	5.1 Preprocessing
	5.2 Dependent constraints
	5.3 Getting started
	5.4 Residual trajectories
	5.5 Linear system solver
	5.6 Staying feasible
	5.7 Parallelism
	5.8 Presolve and problem scaling
	5.9 Termination

	6 Numerical experiments
	7 Conclusions and discussion
	Acknowledgments
	References

