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1. INTRODUCTION

We released our large-scale nonlinear programming package LANCELOT [Conn
et al. 1992] late in 1991. Over the intervening years, LANCELOT A has been
used by a large number of people, both via free source downloads from our
WWW sites and by means of the NEOS facility [Czyzyk et al. 1998] from the
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Optimization Technology Center at Argonne National Laboratory and North-
western University in the USA. It is fair to say that we (and others) recognised
its limitations from the outset, and it has long been our goal to eventually
provide a suitable successor.

LANCELOT A was written in Fortran 77. Despite the widespread avail-
ability of good Fortran 77 compilers, the limitations of the language, partic-
ularly the absence of standardised memory allocation facilities, proved to be
a serious limitation, especially for large problems. Work started in 1995 on
a Fortran 90 implementation, particularly to take advantage of the new lan-
guage’s memory manipulation features and array constructs, and by 1997 we
had a working prototype of the improved LANCELOT B. We had chosen to stay
with Fortran rather than C, for example, partially because many of the pack-
age’s key (external) components, most especially the HSL [2002] sparse matrix
codes produced by our colleagues, are all Fortran based, and also because we
believed (and still believe) Fortran 90 capable of providing all of the facilities we
needed.

Regrettably, at or around that time, a number of our colleagues had started
to release the results of comparative tests of their new codes—for instance
SNOPT [Gill et al. 2002], LOQO [Vanderbei and Shanno 1999], KNITRO [Byrd
et al. 1999], and FilterSQP [Fletcher and Leyffer 2002]—against LANCELOT A,
and the results made frankly rather depressing reading for us [Dolan and Moré
2000, Benson et al. 2001, and Chin 2001], LANCELOT often, but far from always,
being significantly outperformed. Quite clearly, the promise always held for
large-scale sequential quadratic programming (SQP) methods, based on how
they outperformed other techniques in comparative tests such as those due to
Hock and Schittkowski [1981], was now being realised, and the limit of what
might be achieved by augmented Lagrangian methods such as LANCELOT A
had probably been reached.

Reluctantly, we abandoned any plans to release LANCELOT B at that time,
and turned our attention instead to SQP methods. To our minds, there had
never really been much doubt that SQP methods would be more successful
in the long term, but there had been general concerns over how to solve (ap-
proximately) their all-important (large-scale) quadratic programming (QP) sub-
problems. Thus, we decided that our next goal should be to produce high-
quality QP codes for eventual incorporation in our own SQP algorithm(s).
Since we believe that there might be considerable interest from others in
such codes, we have decided to release these before we have finalized our SQP
solver(s). And since we realized that far from producing a single package, we are
now in effect building a library of independent but interrelated packages, we
have chosen to release an (evolving) large-scale nonlinear optimization library,
GALAHAD.

In some sense GALAHAD Version 1.0 is a stop-gap, since, although it includes
the upgraded B version of LANCELOT, we doubt seriously whether LANCELOT B
is a state-of-the-art solver for general nonlinear programming problems. What
GALAHAD V1.0 does provide are the quadratic programming solvers and re-
lated tools that we anticipate will allow us to develop the next-generation SQP
solvers we intend to introduce in Version 2 of the library.
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2. LIBRARY CONTENTS

Each package in GALAHAD is written as a Fortran 90 module, and the codes are
all threadsafe. The default precision for real arguments is double, but this is
easily transformed to single in a UNIX environment using provided sed scripts.
Each package has accompanying documentation and a test program. The latter
attempts to execute as much of the package as realistically possible. (The fact
that some of the packages are intended for nonlinear problems makes it difficult
to ensure that every statement is executed, since some segments of code are
intended to cope with pathological behaviour that cannot be ruled out in theory
but nevertheless seems never to occur in practice.) Options to packages may be
passed both directly, through subroutine arguments, and indirectly, via option-
specification files. The second mechanism is particularly useful when there is
a hierarchy of packages for which a user wishes to change an option for one of
the dependent packages without recompilation.

2.1 Overview

GALAHAD comprises the following major packages:
� LANCELOT B is a sequential augmented Lagrangian method for minimizing

a (nonlinear) objective subject to general (nonlinear) constraints and simple
bounds.

� QPB is a primal-dual interior-point trust-region method for minimizing a gen-
eral quadratic objective function over a polyhedral region.

� QPA is an active/working-set method for minimizing a general quadratic ob-
jective function over a polyhedral region.

� LSQP is an interior-point method for minimizing a linear or separable convex
quadratic function over a polyhedral region.

� PRESOLVE is a method for preprocessing linear and quadratic programming
problems prior to solution by other packages.

� GLTR is a method for minimizing a general quadratic objective function over
the interior or boundary of a (scaled) hyper-sphere.

� SILS provides an interface to the HSL sparse-matrix package MA27 that is
functionally equivalent to the more recent HSL package HSL MA57.

� SCU uses a Schur complement update to find the solution of a sequence of
linear systems for which the solution involving a leading submatrix may be
found by other means.

In addition, GALAHAD contains the following auxiliary packages:
� QPP reorders linear and quadratic programming problems to a convenient

form prior to solution by other packages.
� QPT provides a derived type for holding linear and quadratic programming

problems.
� SMT provides a derived type for holding sparse matrices in a variety of formats.
� SORT gives implementations of both Quick-sort and Heap-sort methods.
� RAND provides pseudo-random numbers.
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� SPECFILE allows users to provide options to other packages, using lists of
keyword-value pairs given in package-dependent option-specification files.

� SYMBOLS assigns values to a list of commonly used GALAHAD variables.

2.2 Details of major GALAHAD packages

2.2.1 LANCELOT B. LANCELOT A is fully described in Conn et al. [1992],
and the results of comprehensive tests are given in Conn et al. [1996a]. The
enlivened LANCELOT B offers a number of improvements over its predecessor.
New features include

—automatic allocation of workspace,
—a non-monotone descent strategy [Toint 1997, and Conn et al. 2000a, §10.1]

to be used by default,
—optional use of Moré and Toraldo [1991]-type projections [see also Lin and

Moré [1999a] during the subproblem solution phase,
—an interface to Lin and Moré [1999b] public domain incomplete Cholesky

factorization package ICFS for use as a preconditioner,
—optional use of structured trust regions to better model structured problems

[Conn et al. 1996b, and Conn et al. 2002a, §10.2],
—more flexibility over the choice of derivatives, which need only be provided

for a subset of the element functions from which the problem is built, the
remainder being estimated by differences or secant approximations.

The main reason for extending LANCELOT’s life is as a prototype for what
may be achieved using Fortran 90/95 in preparation for future GALAHAD SQP
solvers, since the problem data structure and interface is unlikely to change
significantly.

To illustrate the effects of the new features, both LANCELOT A and
LANCELOT B (using a number of new options) were run on all the examples
(except linear and quadratic programs) from the CUTEr test set [Gould et al.
2002a]. The CUTEr set differs from its predecessor in CUTE [Bongartz et al.
1995] both in the number of problems and by virtue of a long-overdue increase
in default dimensions for all variable-dimensional problems. The options new
to LANCELOT B that we considered were as follows:

—The default: a nonmonotone descent strategy with a history length of 1, a
band preconditioner with semi-bandwidth 5, and exact second derivatives.

—The default, except that a monotone descent strategy is used.
—The default, except that SR1 approximations to the second derivatives are

used.
—The default, except that the Lin and Moré’ [1999b] incomplete Cholesky fac-

torization preconditioner, ICFS, with 5 extra work vectors, is used.
—The default, except that the Moré and Toraldo [1991] projected search, with

5 restarts is used.
—The default, except that a structured trust region [Conn et al. 1996b] is used.
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—The default, except that the history length for the nonmonotone descent strat-
egy is increased to 5.

LANCELOT A was run with its defaults, since an exhaustive test of other
LANCELOT A options has already been performed [Conn et al. 1996a].

In Figure 1 the performance profiles [Dolan and Moré 2002] for the CPU
time (in seconds) and the numbers of function evaluations from these tests are
reported. All experiments were performed on a single processor of a Compaq
AlphaServer DS20 with 3.5 Gbytes of RAM, using the Compaq f90 compiler with
full machine-specific optimization. Runs were regarded as unsuccessful (and
terminated) if they reached 30 minutes CPU time or 10000 function evaluations.
Of the 749 problems thus considered (and for the best of the options), 151
(roughly 20%) were terminated for that reason or because the evaluation of
problem functions led to floating-point exceptions. Of those requiring more than
30 minutes/10000 calls, most could ultimately be solved by increasing the CPU
and iteration limits.

Suppose that a given algorithm i from a competing set A reports a statistic
si j ≥ 0 when run on example j from our test set T , and that the smaller this
statistic the better the algorithm is considered. Let

k(s, s∗, σ ) =
{

1 if s ≤ σs∗

0 otherwise.

Then, the performance profile of algorithm i is the function

pi(σ ) =
∑

j∈T k(si, j , s∗
j , σ )

|T | with σ ≥ 1,

where s∗
j = mini∈A si j . Thus pi(1) gives the fraction of the number of exam-

ples for which algorithm i was the most effective (according to statistics si j ),
pi(2) gives the fraction for which algorithm i is within a factor of 2 of the best,
and limσ−→∞ pi(σ ) gives the fraction of examples for which the algorithm suc-
ceeded. We consider such a profile to be a very effective means of comparing
algorithms and (in this case) the relative merits of the new options available in
LANCELOT B.

The benefits of the non-monotone strategy are apparent in terms of both CPU
time and function evaluation reductions. Likewise, the Lin-Moré (for function
evaluations) and Moré-Toraldo (for CPU time) options both prove to be advan-
tageous. In addition, we are pleased to see that the best of the new options
show some gain with respect to LANCELOT A, particularly as we were initially
concerned that moving from Fortran 77 to 90 might give rise to some perfor-
mance penalties. The only new option that we are disappointed with is the use
of a structured trust region, and, on the basis of these tests, we cannot really
recommend this strategy. The full set of results are available as an internal
report [Gould et al. 2002b].

2.2.2 QPB. The module QPB is an implementation of a primal-dual feasible
interior-point trust-region method for quadratic programming.
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Fig. 1. Performance profile for LANCELOT options: CPU times (top) and number of function
evaluations (bottom). The horizontal axis gives the argument σ , while the vertical axis records
pi(σ ) for each of the competing options, i.
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To set the scene, the quadratic programming problem is to

minimize
x∈IRn

q(x) ≡ 1
2 xT Hx + gT x (2.1)

subject to the general linear constraints

cl
i ≤ aT

i x ≤ cu
i , i = 1, . . . , m, (2.2)

and the simple bound constraints

xl
j ≤ x j ≤ xu

j , j = 1, . . . , n, (2.3)

for given vectors g , ai, cl , cu, xl , xu and a given symmetric (but not necessarily
definite) matrix H. Equality constraints and fixed variables are allowed by set-
ting cu

i = cl
i and xu

j = xl
j as required, and any or all of the constraint bounds may

be infinite. The required solution x to (2.1)–(2.3) satisfies the primal optimality
conditions

Ax = c (2.4)

and

cl ≤ c ≤ cu, xl ≤ x ≤ xu, (2.5)

the dual optimality conditions

Hx + g = AT y + z, y = yl + yu and z = zl + zu, (2.6)

and

yl ≥ 0, yu ≤ 0, zl ≥ 0 and zu ≤ 0, (2.7)

and the complementary slackness conditions

(Ax − cl )T yl = 0, (Ax − cu)T yu = 0, (x − xl )T zl = 0 and (x − xu)T zu = 0,
(2.8)

where c is an additional vector of primal variables, the vectors y and z are
Lagrange multipliers for the general linear constraints and the dual variables
for the bounds, respectively, and where the vector inequalities hold compo-
nentwise.

Primal-dual interior-point methods iterate towards a point that satisfies the
optimality conditions (2.4)–(2.8) by ultimately aiming to satisfy (2.4), (2.6) and
(2.8), while ensuring that (2.5) and (2.7) are satisfied as strict inequalities at
each stage. Appropriate norms of the amounts by which (2.4), (2.6) and (2.8)
fail to be satisfied are known as the primal and dual infeasibility, and the
violation of complementary slackness, respectively. The fact that (2.5) and (2.7)
are satisfied as strict inequalities gives such methods their name, interior-point
methods.

The problem is solved in two phases. The goal of the first “initial feasible
point” phase is to find a strictly interior point that is primal feasible (satisfies
(2.4)). The GALAHAD package LSQP (see §2.2.4) is used for this purpose, and
offers the options of either accepting the first strictly feasible point found, or
preferably of aiming for the so-called “analytic center” of the feasible region.
Given such a suitable initial feasible point, the second “optimality” phase en-
sures that (2.4) remains satisfied while iterating to satisfy dual feasibility (2.6)
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and complementary slackness (2.8). It proceeds by approximately minimizing
a sequence of barrier functions

q(x) − µ


 m∑

i=1

log
(
ci − cl

i

)+ m∑
i=1

log
(
cu

i − ci
)+ n∑

j=1

log
(
x j − xl

j

)+ n∑
j=1

log
(
xu

j − x j
),

for an appropriate sequence of positive barrier parameters µ converging to zero,
while ensuring that (2.4) remains satisfied and that x and c are strictly interior
points for (2.5). Note that terms in the above summations corresponding to
infinite bounds are ignored, and that equality constraints are specially treated.

Each of the barrier subproblems is solved using a trust-region method. Such
a method generates a trial correction step (δx, δc) to the current iterate (x, c) by
replacing the nonlinear barrier function locally by a suitable quadratic model,
and approximately minimizing this model in the intersection of (2.4) and a trust
region ‖(δx, δc)‖ ≤ � for some appropriate positive trust-region radius � and
norm ‖·‖. The step is accepted/rejected and the radius adjusted on the basis of
how accurately the model reproduces the value of the barrier function at the
trial step. If the step proves to be unacceptable, a linesearch is performed along
the step to obtain an acceptable new iterate. In practice, the natural primal
“Newton” model of the barrier function is almost always less successful than
an alternative primal-dual model, and consequently the primal-dual model is
usually to be preferred.

The trust-region subproblem is approximately solved using the combined
conjugate-gradient/Lanczos method [Gould et al. 2001 and Gould et al. 1999a]
implemented in the GALAHAD module GLTR (see §2.2.6). Such a method re-
quires a suitable preconditioner, and in our case, the only flexibility we have is
in approximating the model of the Hessian. Although using a fixed form of pre-
conditioning is sometimes effective, we have provided the option of an automatic
choice that aims to balance the cost of applying the preconditioner against the
need for an accurate solution of the trust-region subproblem. The preconditioner
is applied using the GALAHAD factorization package SILS (see §2.2.7)—or op-
tionally using HSL MA57 from HSL if this is available—but options at this stage
are to factorize the preconditioner as a whole (the so-called “augmented system”
approach) or to perform a block elimination first (the “Schur-complement” ap-
proach). The latter is usually to be preferred when a (non-singular) diagonal pre-
conditioner is used, but may be inefficient if any of the columns of A is too dense.

The theoretical justification of the overall scheme, for problems with general
objectives and inequality constraints, is given by Conn et al. [2000b], in which
we also present numerical results that suggest it is indeed able to solve some
problems of the size we had been aiming for. More recently, we investigated
the ultimate rate of convergence of such schemes, and have shown that, under
fairly general conditions, a componentwise superlinear rate is achievable for
both quadratic and general nonlinear programs [Gould et al. 1999b].

Full advantage is taken of any zero elements in the matrix H or the vectors
ai. An older version of QPB (using HSL MA57 rather than SILS, see §2.2.7, but
without some of the most recent features in QPB) is available commercially as
HSL VE12 within HSL.
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2.2.3 QPA. The module QPA is an implementation of a second approach to
quadratic programming, this time of the active/working set variety. QPA is pri-
marily intended within GALAHAD to deal with the case where a good estimate
of the optimal active set has been determined (so that relatively few iterations
will be required). The method is actually more general in scope, and is geared
toward solving �1-quadratic programming problems of the form

minimize
x∈IRn

m(x, ρg , ρb) def= q(x) + ρg vg (x) + ρbvb(x) (2.9)

involving the quadratic objective q(x) and the infeasibilities

vg (x) =
m∑

i=1

max
(
cl

i − aT
i x, 0

)+
m∑

i=1

max
(
aT

i x − cu
i , 0
)

and

vb(x) =
n∑

j=1

max
(
xl

j − x j , 0
)+

n∑
j=1

max
(
x j − xu

j , 0
)
.

At the k-th iteration of the method, an improvement to the value of the merit
function m(x, ρg , ρb) at x = x(k) is sought. This is achieved by first computing a
search direction s(k) and then setting x(k+1) = x(k) + α(k)s(k), where the stepsize
α(k) is chosen as the first local minimizer of φ(α) = m(x(k) + αs(k), ρg , ρb) as α

increases from zero. The stepsize calculation is straightforward, and exploits
the fact that φ(α) is a piecewise quadratic function of α.

The search direction is defined by a subset of the “active” terms in v(x), that is,
those for which aT

i x = cl
i or cu

i (for i = 1, . . . , m) or x j = xl
j or xu

j (for j = 1, . . . , n).
The “working set” W (k) is chosen as the intersection of subsets of indices i and − j
from the active terms, and is such that its members have linearly independent
gradients. The search direction s(k) is chosen as an approximate solution of the
equality-constrained quadratic program

minimize
s∈IRn

mQ(s) def= q
(
x(k) + s

)+ ρgl (k)
g (s) + ρbl (k)

b (s), (2.10)

subject to

aT
i s = 0, i ∈ {1, . . . , m} ∩ W (k), and x j = 0, − j ∈ {−1, . . . , −n} ∩ W (k),

(2.11)
where

l (k)
g (s) = −

m∑
i=1

aT
i x<cl

i

aT
i s +

m∑
i=1

aT
i x>cu

i

aT
i s

and

l (k)
b (s) = −

n∑
j=1

x j <xl
j

sj +
n∑

j=1
x j >xu

j

sj .

The equality-constrained quadratic program (2.10)–(2.11) is solved by a pro-
jected preconditioned conjugate gradient method [Gould et al. 2001]. The
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method terminates if the solution is found, or if a pre-specified iteration
limit is reached, or if a direction of infinite descent is located, along which
mQ(s) decreases without bound within the feasible region (2.11). Successively
more accurate approximations are required as suspected solutions of (2.9) are
approached.

Preconditioning of the conjugate gradient iteration requires the solution of
one or more linear systems of the form(

M (k) A(k)T

A(k) 0

)(
p

u

)
=
(

g

0

)
, (2.12)

where M (k) is a “suitable” approximation to H and the rows of A(k) comprise
the gradients of the terms in the current working set. Rather than recomput-
ing a factorization of the preconditioner at every iteration, we use a Schur
complement method, recognizing the fact that gradual changes occur to suc-
cessive working sets. The main iteration is divided into a sequence of “major”
iterations. At the start of each major iteration (say, the overall iteration l ), a
factorization of the current “reference” matrix(

M (l ) A(l )T

A(l ) 0

)
(2.13)

is obtained using the GALAHAD factorization package SILS (see §2.2.7)—or,
once again, optionally using HSL MA57 from HSL if this is available. This refer-
ence matrix may be factorized as a whole (the augmented system approach).
Alternatively, systems involving (2.13) may be solved by performing a block
elimination of p and then factorizing A(l )M (l )−1 A(l )T (the “Schur-complement”
approach). The latter is usually to be preferred when a (non-singular) diago-
nal preconditioner is used, but may be inefficient if any of the columns of A(l )

is too dense. Subsequent iterations within the current major iteration obtain
solutions to (2.12) via the factors of (2.13) and an appropriate (dense) Schur
complement, obtained from SCU in GALAHAD (see §2.2.8). The major iteration
terminates once the space required to hold the factors of the (growing) Schur
complement exceeds a given threshold.

The working set changes by (a) the addition of an active term encountered
during the determination of the stepsize, or (b) the removal of a term if s = 0
solves (2.10)–(2.11). The decision on which to remove in the latter case is based
upon the expected decrease upon the removal of an individual term, and this
information is available from the magnitude and sign of the components of the
auxiliary vector u computed in (2.12). At optimality, the components of u for ai
terms will all lie between 0 and ρg —and those for the other terms between 0
and ρb—and any violation of this rule indicates further progress is possible.

To solve quadratic programs of the form (2.1)–(2.3), a sequence of problems
of the form (2.9) are solved, each with a larger value of ρg and/or ρb than its
predecessor. The required solution has been found once the infeasibilities vg (x)
and vb(x) have been reduced to zero at the solution of (2.9) for the given ρg and ρb.

Having proposed and implemented two very different quadratic program-
ming methods, one might ask: how do the methods compare? We examined this
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Table I. QPB on Large QP Examples. Runs Performed
on a Compaq AlphaServer DS20 (3.5 Gbytes RAM),

Time in CPU Seconds. n is the Number of Unknowns,
and m is the Number of General Constraints. C

Indicates a Convex Problem, while NC is a Convex
One. Note that the Factorization for QPBAND Fills in

Considerably More Than That for QPNBAND, and This
Accounts for the Significantly Higher CPU Times

Name n m type its time
QPBAND 100000 50000 C 13 157
QPBAND 200000 100000 C 17 1138
QPBAND 400000 200000 C 17 2304
QPBAND 500000 250000 C 17 2909
QPNBAND 100000 50000 NC 12 32
QPNBAND 200000 100000 NC 13 71
QPNBAND 400000 200000 NC 14 156
QPNBAND 500000 250000 NC 13 181

Table II. How QPB Scales with Dimension. Notation
as for Table I

Name n m type its time
PORTSQP 10 1 C 11 0.02
PORTSQP 100 1 C 15 0.03
PORTSQP 1000 1 C 26 0.09
PORTSQP 10000 1 C 37 1.26
PORTSQP 100000 1 C 20 9.48
PORTSQP 1000000 1 C 11 72.31
PORTSNQP 10 2 NC 21 0.03
PORTSNQP 100 2 NC 30 0.04
PORTSNQP 1000 2 NC 39 0.17
PORTSNQP 10000 2 NC 32 1.70
PORTSNQP 100000 2 NC 107 58.69
PORTSNQP 1000000 2 NC 22 209.53

question in Gould and Toint [2002] by comparing QPA and QPB on the CUTEr QP
test set [Gould et al. 2002a].

While for modest sized problems, started from “random” points, the two
methods are roughly comparable, the advantages of the interior-point approach
become quite clear when problem dimensions increase. For problems involv-
ing tens of thousands of unknowns and/or constraints, our active set approach
simply takes too many iterations, while the number of iterations required by
the interior point approach seems relatively insensitive to problem size. For
general problems involving hundreds of thousands or even millions of un-
knowns/constraints, the active set approach is impractical, while we illustrate
in Table I that QPB is able to solve problems of this size. QPB also appears to
scale well with dimension, as can be seen see in Table II.

While such figures might seem to indicate that QPB should always be pre-
ferred to QPA, this is not the case. In particular, if a good estimate of the
solution—more particularly, the optimal active set—is known, active-set meth-
ods may exploit this, while interior-point methods are (currently) less able to do
so. In particular Gould and Toint [2002] illustrate that QPA often outperforms
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QPB on warm-started problems unless the problem is (close to) degenerate or
very ill-conditioned. Thus, since nonlinear optimization (SQP) algorithms often
solve a sequence of related problems for which the optimal active sets are al-
most (or actually) identical, there is good reason to maintain both QPA and QPB
in GALAHAD.

An enhanced version of QPA (using HSL MA57 rather than SILS, see §2.2.7) is
available commercially as HSL VE19 within HSL.

2.2.4 LSQP. LSQP is an interior-point method for minimizing a linear or
separable convex quadratic function

minimize 1
2

n∑
i=1

w2
i

(
xi − x0

i

)2 + gT x,

for given weights w and gradient g , over the polyhedral region (2.2)–(2.3).
In the special case where w = 0 and g = 0 the so-called analytic center of
the feasible set will be found, while linear programming, or constrained least
distance, problems may be solved by picking w = 0, or g = 0, respectively. The
basic algorithm is that of Zhang [1994]. LSQP is used within GALAHAD by QPB
to find an initial strictly-interior feasible point (see §2.2.2).

Note that since predictor-corrector steps are not taken, the method is unlikely
to be as efficient as state-of-the-art interior-point methods for linear program-
ming. We intend to remedy this defect for Version 2.

2.2.5 PRESOLVE. The module PRESOLVE is intended to pre-process quadratic
programming problems of the form (2.1)–(2.3). The purpose is to exploit the
optimality equations (2.4)–(2.8) so as to simplify the problem and reduce it to a
standard form (that makes subsequent manipulation easier), defined as follows:

—The variables are ordered so that their bounds appear in the order
free x j
non-negativity 0 ≤ x j

lower xl
j ≤ x j

range xl
j ≤ x j ≤ xu

j
upper x j ≤ xu

j
non-positivity x j ≤ 0

Fixed variables are removed. Within each category, the variables are further
ordered so that those with non-zero diagonal Hessian entries occur before
the remainder.

—The constraints are ordered so that their bounds appear in the order
non-negativity 0 ≤ (Ax)i

equality cl
i = (Ax)i

lower cl
i ≤ (Ax)i

range cl
i ≤ (Ax)i ≤ cu

i
upper (Ax)i ≤ cu

i
non-positivity (Ax)i ≤ 0

Free constraints are removed.
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—In addition, constraints may be removed or bounds tightened, to reduce the
size of the feasible region or simplify the problem if this is possible, and
bounds may be tightened on the dual variables and the multipliers associated
with the problem.

The presolving algorithm [Gould and Toint 2002b] proceeds by applying a
(potentially long) series of simple transformations to the problem. These involve
the removal of empty and singleton rows, the removal of redundant and forcing
primal constraints, the tightening of primal and dual bounds, the exploitation
of empty, singleton, and doubleton colums, merging of dependent variables,
row “sparsification” and splitting equalities. Transformations are applied in
successive passes, each pass involving the following actions:

(1) remove empty and singletons rows,
(2) try to eliminate variables that do not appear in the linear constraints,
(3) attempt to exploit the presence of singleton columns,
(4) attempt to exploit the presence of doubleton columns,
(5) complete the analysis of the dual constraints,
(6) remove empty and singleton rows,
(7) possibly remove dependent variables,
(8) analyze the primal constraints,
(9) try to make A sparser by combining its rows,

(10) check the current status of the variables, dual variables and multipliers
for optimality or infeasibility.

All these transformations are applied on the structure of the original problem,
which is only permuted to standard form after all transformations are com-
pleted. The reduced problem may then be solved by a quadratic or linear pro-
gramming solver. Finally, the solution of the simplified problem is re-translated
to the variables/constraints format of the original problem in a “restoration”
phase.

At the overall level, the presolving process follows one of the following two
sequences:

initialize →
[

apply transformations → (solve problem) → restore

]
→ terminate

or

initialize →
[

read
specfile

→ apply
transformations

→
(

solve
problem

)
→ restore

]
→ terminate

where the procedure’s control parameter may be modified by reading an exter-
nal “specfile”, and where (solve problem) indicates that the reduced problem is
solved. Each of the “boxed” steps in these sequences corresponds to calling a
specific routine of the package, while a bracketed subsequence of steps means
that they can be repeated with problems having the same structure.

Gould and Toint [2002b] indicate that, when considering all 178 linear and
quadratic programming problems in the CUTE test set [Bongartz et al. 1995],
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an average reduction of roughly 20% in both the number of unknowns and the
number of constraints results from applying PRESOLVE. With the GALAHAD QP
solver QPB (see §2.2.2), an overall average reduction of roughly 10% in CPU
time results. In some cases, the gain is dramatic. For example, for the problems
GMNCASE4, STNPQ1, STNQP2 and SOSQP1, PRESOLVE removes all the variables and
constraints, and thus reveals the complete solution to the problem without
resorting to a QP solver.

Currently PRESOLVE is not embedded within QPA/B or LSQP and must be called
separately, but we intend to correct this defect for Version 2.0.

2.2.6 GLTR. GLTR aims to find the global solution to the problem of mini-
mizing the quadratic function (2.1) where the variables are required to satisfy
the constraint ‖x‖M ≤ �, where the M -norm of x is ‖x‖M = √

xT M x for some
symmetric, positive definite M , and where � > 0 is a given scalar. This prob-
lem commonly occurs as a trust-region subproblem in nonlinear optimization
methods, and is used within GALAHAD by QPB. The method may be suitable for
large n as no factorization of H is required. Reverse communication is used to
obtain matrix-vector products of the form Hz and M−1z. The package may also
be used to solve the related problem in which x is instead required to satisfy the
equality constraint ‖x‖M = �. The method is described in detail in Gould et al.
[1999a], and GLTR is a slightly improved version of the HSL package HSL VF05.

2.2.7 SILS. The module SILS provides a Fortran 90 interface to the
Fortran 77 HSL sparse linear equation package MA27 [Duff and Reid 1982].
The interface and functionality are designed to be identical to the more
recent HSL Fortran 90 package HSL MA57 [Duff 2002], enabling anyone with
HSL MA57 to easily substitute this for SILS throughout GALAHAD. The reason
that we are forced to rely on MA27 rather than the superior HSL MA57 by
default is simply that the former is available without charge from the HSL
Archive (http://hsl.rl.ac.uk/hslarchive), while the latter is only available
commercially. SILS (and hence either MA27 or HSL MA57) is required by QPA/B
and LSQP, and is used optionally by LANCELOT B.

2.2.8 SCU. SCU may be used to find the solution to an extended system of
n + m sparse real linear equations in n + m unknowns,(

A B
C D

)(
x1
x2

)
=
(

b1
b2

)
.

in the case where the n by n matrix A is nonsingular and solutions to the
systems

Ax = b and AT y = c

may be obtained from an external source, such as an existing factorization. The
subroutine uses reverse communication to obtain the solution to such smaller
systems. The method makes use of the Schur complement matrix

S = D − CA−1 B.
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The Schur complement is stored and updated in factored form as a dense matrix
(using either Cholesky or QR factors as appropriate) and the subroutine is thus
appropriate only if there is sufficient storage for this matrix. Special advantage
is taken of symmetry and definiteness of the matrices A, D and S. Provision
is made for introducing additional rows and columns to, and removing existing
rows and columns from, the extended matrix.

SCU is used by both LANCELOT B and QPA to cope with core linear systems
that arise as constraints and variables enter and leave their active/working
sets. A slightly simplified version of SCU is available in HSL as HSL MA69.

3. INSTALLATION

Just as for its immediate predecessors CUTEr and SifDec [Gould et al. 2002a],
GALAHAD is designed to be used in a multi-platform, multi-compiler environ-
ment in which core (source and script) files are available in a single location,
and machine/compiler/operating system-specific components (most especially
compiled libraries of binaries) are isolated in uniquely identifiable subdirecto-
ries. As before, we have concentrated on UNIX and Linux platforms, principally
because we have no experience with other systems.

GALAHAD is provided as a series of directories and files, all lying beneath
a root directory that we shall refer to as $GALAHAD. The directory structure is
illustrated in Figure 2.

Before installation the sub-directories objects, modules, makefiles,
versions and bin/sys will all be empty. The script install galahad prompts
the user for the answers to a series of questions aimed at determining what
machine type, operating system and compiler (from a large list of predefined
possibilities encoded in the arch sub-directory) to build GALAHAD for—we call
this combination of a machine, operating system and compiler an architecture.
Each architecture is assigned a simple (mnemonic) architecture code name,
say architecture—for example a version for the NAG Fortran 95 compiler on
a PC runing Linux is coded pc.lnx.n95, while another for the Compaq For-
tran 90 compiler on an Alpha system running Tru64 Unix is alp.t64.f90.
Having determined the architecture, the installation script builds subdirec-
tories of objects and modules named architecture, as well as further sub-
directories double and single of these to hold architecture-dependent com-
piled libraries and module file information. In addition, architecture-dependent
makefile information and environment variables for execution scripts are
placed in files named architecture in the makefiles and bin/sys subdirec-
tories, and a file recording how the code is related to the architecture is put in
versions.

The Fortran source codes for each GALAHAD package occur in a separate sub-
directory of the src directory. The subdirectory contains the package source, a
comprehensive test program (along with a simpler second test program, which
is used as an illustration of how to call the package in the accompanying doc-
umentation), and a makefile. Since the order of compilation of Fortran mod-
ules is important, and as we have seen there is a strong interdependency
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Fig. 2. Structure of the GALAHAD directories.

between the GALAHAD packages, the makefiles have to be carefully crafted.
For this reason, we have chosen not to use variants of tools such as imake to
build and maintain the makefiles. Postscript and PDF Documentation for all
packages is contained in doc.
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Not every component of GALAHAD is distributed as part of the package.
In particular, the HSL Archive code MA27 must be downloaded prior to the
installation from

http://hsl.rl.ac.uk/archive/hslarchive.html

before any of the QP packages can be used (it is optionally used by
LANCELOT B). Additionally GALAHAD makes optional use of the Lin-Moré
preconditioner ICFS, available as part of the MINPACK 2 library via

http://www-unix.mcs.anl.gov/~more/icfs/ ,

and the HSL codes MA57 and MC61, which are only available commercially. If
any nondefault code is used, the file packages in the directory src/makedefs
must be edited to describe where the external code may be found—details are
given in packages. Default dummy versions of all optional codes are provided
in src/dum to ensure that linking prior to execution works properly.

Once the correct directory structure is in place, the installation script builds
a random-access library of the required precision by visiting each of the subdi-
rectories of src and calling the Unix utility make. GALAHAD packages are all
written in double precision, but if a user prefers to use single precision, the
makefiles call suitable Unix sed scripts (stored in seds) to transform the source
prior to compilation. A user may choose to install all of GALAHAD, or just the
QP or LANCELOT B components. There are also sed features to switch auto-
matically from SILS (see §2.2.7) to MA57 if the latter is available. The command
make tests runs comprehensive tests of all compiled components.

4. INTERFACES TO THE CUTER TEST SET

As well as providing stand-alone Fortran modules, we provide interfaces be-
tween LANCELOT B, QPA/B, LSQP and PRESOLVE and problems written in the
Standard Input Format (SIF) [Conn et al. 1992], most particularly the CUTEr
test set [Gould et al. 2002a]. To use these interfaces LANCELOT B users will need
to have installed SifDec (from http://cuter.rl.ac.uk/cuter-www/sifdec),
while users wishing to use the interfaces to the QP packages will additionally
need CUTEr (from http://cuter.rl.ac.uk/cuter-www).

To run one of the supported packages on an example stored in EXAMPLE.SIF,
say, a user needs to issue the command

sdgal code package EXAMPLE[.SIF]

where code is the architecture code discussed in §3, package defines the package
to be used—it may be one of lanb, qpa, qpb or pre, with access to LSQP provided
via qpb—and the suffix [.SIF] is optional. This command translates the SIF file
into Fortran subroutines and related data using the decoder provided in SifDec,
and then calls the required optimization package to solve the problem. Once a
problem has been decoded, it may be reused (perhaps with different options)
using the auxiliary command

gal code package
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A few SIF examples are given in the examples subdirectory, while the sdgal and
gal commands are in the bin subdirectory, and have man-page descriptions in
the man/man1 sub-directory.

One additional feature is that if the user has access to the HSL automatic
differentiation packages HSL AD01 or HSL AD02 [Pryce and Reid 1998], these may
be used to generate automatic first and second derivatives for the element and
group functions [Conn et al. 1992] from which the overall problem is reassem-
bled by CUTEr and LANCELOT B. Of course it would be better to use one of the
more commonly occurring packages such as ADIFOR [Bischof et al. 1992], and
we plan to do this in the future.

As with LANCELOT A, options may be passed directly to the solvers by means
of user-definable option-specification files. Each SIF interface has its own set of
options, but overall control is maintained via the GALAHAD module SPECFILE.

5. AVAILABILITY

GALAHAD may be downloaded from http://galahad.rl.ac.uk/galahad-www .
There are restrictions on commercial use, and all users are required to agree
to a number of minor conditions of use.

6. CONCLUSIONS

We have described the scope and design of the first release of GALAHAD, a
library of Fortran 90 packages for nonlinear optimization. Version 1.0 of the li-
brary particularly addresses quadratic programming problems, although there
is an updated version of LANCELOT for more general problems.

In the future, we intend to use the quadratic programming packages as the
basic tool within one or more SQP methods for nonlinear optimization. We are
currently developing AMPL [Fourer et al. 2003] interfaces for the principal
packages so that users will be able to use a more natural interface than is
provided by SIF. In addition, we plan to incorporate the preprocessing tools
as options within the QP solvers, rather than having them stand-alone as at
present.
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CZYZYK, J., MESNIER, M. P., AND MORÉ, J. J. 1998. The NEOS Server. IEEE J. Computational Sci.
Engin. 5, 68–75.

DOLAN, E. D. AND MORÉ, J. J. 2000. Benchmarking optimization software with COPS. Tech. Rep.
ANL/MCS-246, Argonne National Laboratory, Illinois, USA.
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