
Comput Optim Appl
DOI 10.1007/s10589-011-9446-7

Updating the regularization parameter in the adaptive
cubic regularization algorithm

N.I.M. Gould · M. Porcelli · P.L. Toint

Received: 24 February 2011
© Springer Science+Business Media, LLC 2011

Abstract The adaptive cubic regularization method (Cartis et al. in Math. Program.
Ser. A 127(2):245–295, 2011; Math. Program. Ser. A. 130(2):295–319, 2011) has
been recently proposed for solving unconstrained minimization problems. At each
iteration of this method, the objective function is replaced by a cubic approximation
which comprises an adaptive regularization parameter whose role is related to the
local Lipschitz constant of the objective’s Hessian. We present new updating strate-
gies for this parameter based on interpolation techniques, which improve the overall
numerical performance of the algorithm. Numerical experiments on large nonlinear
least-squares problems are provided.

Keywords Unconstrained optimization · Cubic regularization · Numerical
performance

Electronic supplementary material The online version of this article
(doi:10.1007/s10589-011-9446-7) contains supplementary material, which is available to authorized
users.

N.I.M. Gould
Computational Science and Engineering Department, Rutherford Appleton Laboratory, Chilton,
Oxfordshire, OX11 0QX, England, UK
e-mail: nick.gould@sftc.ac.uk

M. Porcelli (�) · P.L. Toint
Namur Center for Complex Systems (NAXYS), FUNDP-University of Namur, 61, rue de Bruxelles,
5000 Namur, Belgium
e-mail: margherita.porcelli@fundp.ac.be

P.L. Toint
e-mail: philippe.toint@fundp.ac.be

http://dx.doi.org/10.1007/s10589-011-9446-7
mailto:nick.gould@sftc.ac.uk
mailto:margherita.porcelli@fundp.ac.be
mailto:philippe.toint@fundp.ac.be


N.I.M. Gould et al.

1 Introduction

We consider the unconstrained minimization problem

min
x∈Rn

f (x), (1.1)

where f is a twice continuously differentiable function of the variables x ∈ R
n. A

simplistic method for solving this problem is to compute an improving step sk by
minimizing a quadratic Taylor-series model of the objective function around the cur-
rent iterate xk . Unfortunately, it is well-known that an iteration based on this simple
idea may not always be well-defined (when the Taylor model is nonconvex), nor
converge globally. These drawbacks may be overcome by restricting the model min-
imization to a trust region containing xk [8]. Clearly, trust-region strategies may be
considered as regularization techniques because they control the difference between
two consecutive iterates by explicitly imposing a restriction on the stepsize.

The main motivation for this paper is a series of recent papers where alternative
regularization strategies are introduced [2, 3, 7, 18, 21, 25]. These procedures are
based on the minimization of quadratic or cubic models for the objective function in
a neighbourhood implicitly defined by a regularization term that penalizes the step
length. In particular, the adaptive cubic regularization (ARC) algorithm is proposed
in [3] for solving problem (1.1). At each iteration, the objective function is locally
replaced by a cubic approximation, in which third- and higher-order Taylor-series
terms are replaced by a cubic regularization term, and an adaptive estimation of the
local Lipschitz constant of the objective function’s Hessian is employed. The method
has been shown to have excellent global and local convergence properties and numer-
ical experiments indicate that the new procedure may be competitive with the trust
region approach when solving small-scale problems [3]. Additionally, and of theo-
retical interest, ARC possesses a better worst-case evaluation-complexity bound than
its trust-region competitor [5, 6].

The purpose of this paper is twofold. Firstly, we propose alternative updating rules
for the regularization parameter of the ARC algorithm which are based on interpola-
tion techniques. In particular, in the trust-region case, the restriction on the stepsize
is explicitly imposed by the trust-region constraint. By contrast, in the cubic regu-
larization case the control on the stepsize is nonlinear and is defined implicitly. This
suggests a need to design an efficient updating rule for the regularization parameter
that is able to control the stepsize in a flexible way.

Secondly, we shall apply these ideas and report on extensive numerical experi-
ments on the solution of large nonlinear least-squares problems, that is problems of
the form

min
x∈Rn

f (x) = 1

2
‖h(x)‖2

2, (1.2)

where h : R
n → R

m is a given continuously differentiable mapping. By limiting our
discussion to this problem, we may specialize the models employed in both the ARC
and trust-region algorithms to those that are suited to solving nonlinear least-squares
problems, specifically using regularized Gauss–Newton-based models, and conse-
quently to take advantage of the ideas and implementations details proposed in [7] for



Updating the regularization parameter in the ARC algorithm

the solution of large regularized linear least-squares problems. Since we are primar-
ily interested in large problems for which matrix factorization often has prohibitive
computational cost, we shall focus on iterative algorithms for the subproblems, par-
ticularly on those implemented as part of version 2.4 of the GALAHAD optimization
library [17]. Such procedures are based on the minimization of the local model of the
objective function over a sequence of (nested) subspaces associated with the Lanczos
procedure. As a result, they are especially suited to the large-scale setting and al-
low us to test the methods on large problems from the CUTEr test collection [16]. In
particular, the new updating rules for the regularization parameter of the ARC algo-
rithm are experimentally validated and a comparison with the trust-region algorithm
is performed on problem (1.2).

The paper is organized as follows. In Sect. 2 we review the standard trust-region
algorithm and the ARC algorithm for the solution of problem (1.1). New updating
rules for the regularization parameter in the ARC algorithm are introduced in Sect. 3.
Section 4 is dedicated to numerical experiments and, finally, in Sect. 5 we draw some
conclusions.

Throughout the paper we use the following notation. The Euclidean (�2) norm is
denoted by ‖ · ‖, and I represents the identity matrix. Given a sequence of vectors
{xk}, for any generic function h we let hk = h(xk). Let g(x) = ∇f (x) where f is
the objective function in (1.1) and let J (x) denote the Jacobian matrix of the residual
function h(x) in (1.2). Finally, εm ≈ 10−16 denotes the relative machine (double)
precision.

2 The algorithms

In this section, we describe the kth iteration of two globally convergent algorithms
for the solution of problem (1.1): the standard trust-region algorithm (e.g. [8]) and
the ARC algorithm ([3]).

In the trust-region framework, a quadratic model of f (x) around xk is constructed
by defining the model of the objective function to be

qk(s) = fk + gT
k s + 1

2
sT Hks, (2.3)

where Hk is a symmetric approximation to the local Hessian ∇xxfk . Then, a trial step
sk is computed by solving (possibly only approximately) the subproblem

min
s∈Rn

{qk(s) : ‖s‖ ≤ �k}, (2.4)

where �k > 0 is the so-called trust-region radius.
By contrast, assuming that the objective’s Hessian ∇xxf is globally Lipschitz con-

tinuous on R
n with Lipschitz constant L, the cubic model used in the ARC algorithm

is based on the bound

f (xk + s) = fk + sT gk + 1

2
sT ∇xxfks

+
∫ 1

0
(1 − τ)sT [∇xxf (xk + τs) − ∇xxfk]s dτ

≤ fk + sT gk + 1

2
sT ∇xxfks + 1

6
L‖s‖3 def= lk(s), (2.5)



N.I.M. Gould et al.

which holds for all s ∈ R
n. Thus, so long as lk(sk) < lk(0) = fk , the new iterate

xk+1 = xk + sk improves f (x). In [3], a dynamic positive parameter σk replaces
the Lipschitz constant L/2 and a symmetric approximation Hk to the local Hessian
∇xxfk is allowed. At each iteration, the cubic model

ck(s) = fk + sT gk + 1

2
sT Hks + 1

3
σk‖s‖3, (2.6)

is employed as an approximation to the objective f and the subproblem

min
s∈Rn

ck(s), (2.7)

is solved. The parameter σk plays a crucial role in the description of the ARC algo-
rithm as it measures the discrepancy between the objective function and its second
order Taylor expansion and of the difference between the exact and the approximate
Hessian [3].

It is important to note that the restriction on stepsize is explicitly imposed by
the trust-region constraint in the trust-region case, while stepsize control is defined
implicitly, indeed nonlinearly, in the cubic case. In fact, a step sk derived by reducing
(2.7) is always bounded [3, Lemma 2.2] by

‖sk‖ ≤ 3 max

[
‖Hk‖
σk

,

√
‖gk‖
σk

]
.

Such a bound suggests that the regularization parameter σk for the ARC algorithm
may loosely be interpreted as the reciprocal of the trust-region radius �k . This ob-
servation in turn suggests choosing updating rule for the parameter σk by analogy
with the trust-region case. In a standard trust-region scheme, the trust-region ra-
dius may be enlarged if there is a sufficient decrease in f (x), computed by some
measure of the relative objective changes, and it is reduced otherwise. In the regu-
larization case, the parameter σk is decreased if there is a sufficient agreement be-
tween the objective function and the model, but increased or left unchanged other-
wise.

In both algorithms, the agreement between the model and the objective function
is given by the standard ratio of the achieved to the predicted reduction, and the size
of this ratio is used to decide whether or not to accept the trial step and to change the
regularization parameter. This ratio takes the form

ρq(sk) = fk − f (xk + sk)

qk(0) − qk(sk)
, (2.8)

in the trust-region case, and

ρc(sk) = fk − f (xk + sk)

ck(0) − ck(sk)
, (2.9)

in the cubic regularization case, where the models qk and ck are defined in (2.3) and
(2.6) respectively. Without ambiguity, let ρ(s) represent both ρc(s) and ρq(s), and
let η1, η2 be constants such that 0 < η1 < η2 < 1. We say that the iteration k is
very successful if ρ(sk) ≥ η2, successful if ρ(sk) ∈ [η1, η2), unsuccessful otherwise.
When it is useful to distinguish the case ρ(sk) < 0 within the unsuccessful case, we
refer to a very unsuccessful iteration.



Updating the regularization parameter in the ARC algorithm

The general framework of the methods described so far is presented in Algo-
rithm 2.1. The string METHOD denotes the name of the method, i.e. it is either
‘TRUST-REGION’ or ‘ARC’. Sections 2.1 and 3 give further insight into Steps 1
and 4.

Algorithm 2.1 (Generic trust-region/cubic regularization method)
An initial point x0 as well as constants 0 < η1 < η2 < 1 and γ > 1 are given. If
METHOD = ‘TRUST-REGION’, set the initial radius �0 > 0 and the constants
τ1, τ2 such that 0 ≤ τ1 ≤ τ2 ≤ 1. Else set the intial regularization parameter σ0 > 0
and the constants ν1, ν2 such that 1 < ν1 ≤ ν2.

For k = 0,1, . . . , until convergence,
Step 1: Trial step computation. If METHOD = ‘TRUST-REGION’, compute sk

as an (approximate) solution of problem (2.4). Else, compute sk as an (approximate)
solution of problem (2.7).

Step 2: Step acceptance. If METHOD = ‘TRUST-REGION’, compute ρ(sk) =
ρq(sk) as in (2.8). Else, compute ρ(sk) = ρc(sk) as in (2.9). If ρ(sk) ≥ η1, let
xk+1 = xk + sk ; otherwise let xk+1 = xk .

Step 4: Regularization parameter update. If METHOD = ‘TRUST-REGION’
set

�k+1 ∈
⎧⎨
⎩

[�k, ∞) if ρ(sk) ≥ η2 [very successful iteration],
[τ2�k,�k] if ρ(sk) ∈ [η1, η2) [successful iteration],
[τ1�k, τ2�k] otherwise [unsuccessful iteration].

(2.10)

Else set

σk+1 ∈
⎧⎨
⎩

(0, σk] if ρ(sk) ≥ η2 [very successful iteration],
[σk, ν1σk] if ρ(sk) ∈ [η1, η2) [successful iteration],
[ν1σk, ν2σk] otherwise [unsuccessful iteration].

(2.11)

2.1 Computing a trial step

Step 1 of Algorithm 2.1 leaves substantial implementation freedom, which may be
used according to context. The focus of this paper is on the case where matrix fac-
torizations of the Hessian matrix are not feasible, implying that iterative methods for
computing a trial step are needed. We consider the class of subspace minimization
methods, i.e. methods that find an approximate solution by solving a sequence of
minimization problems with the additional constraint that s is contained in a sub-
space. This class may be divided into two subclasses depending on the construction
of the sequence of subspaces. The first consists of expanding subspaces methods. The
Conjugate Gradient (CG) method belongs to this subclass as it may be viewed as a
subspace minimization method for finding an unconstrained minimizer of a strictly
convex quadratic function, where, at each successive iteration, the quadratic function
is minimized by restricting the variable to a sequence of nested Krylov subspaces.
In [3, 15], methods based on this approach have been proposed for solving the reg-
ularized cubic problem (2.7) and the trust-region problem (2.4), respectively. The



N.I.M. Gould et al.

second subclass comprises low-dimensional subspace methods, i.e. methods that al-
ways generate subspaces of low-dimension. Such methods have been proposed in
literature only for solving problem (2.4) and differ in the choice of the subspaces [11,
12, 19, 20]. In order to apply the same subspace approach to both the trust-region and
the cubic case, we consider the former subclass of methods to perform Step 1.

Consider the nonlinear least-squares problem (1.2). At the current iterate xk , the
exact Hessian of the objective function f has the form

∇xxfk = J T
k Jk + Sk,

where Sk contains the second-order information on the residual. If Sk is small, it is
reasonable to consider the first order approximation Hk = J T

k Jk . This is the case, for
instance, in a neighborhood of a zero residual solution of problem (1.2), [10]. Using
the approximation Hk = J T

k Jk , the quadratic model in (2.3) takes the form

qk(s) = 1

2
‖Jks + hk‖2, (2.12)

which is the Gauss–Newton model for f , and the cubic model in (2.6) becomes

ck(s) = 1

2
‖Jks + hk‖2 + σk

3
‖s‖3, (2.13)

yielding a Gauss–Newton model regularized by a cubic term.
Procedures have been proposed in [7] to solve the subproblems (2.4) and (2.7) in

the special case where the models are given in (2.12) and (2.13) respectively. The core
component of these procedures is the Golub and Kahan bi-diagonalization process
[13] that generates orthonormal basis of a sequence of expanding subspaces {Vj }j≥1.
Let Vj ∈ R

n×j be the orthonormal matrix whose columns span Vj . The solutions of
problems (2.4) and (2.7) are found by computing the sequence of minimizers yj of
the reduced problems

min
y∈Rj

{qk(Vjy) : ‖y‖ ≤ �k}, (2.14)

and

min
y∈Rj

ck(Vjy), (2.15)

respectively, increasing the dimension j of the subspaces until sj = Vjyj is suffi-
ciently accurate. At that point, the step sk in the full space is taken as the last com-
puted sj [7].

It is interesting to note, that if the LSQR algorithm [22] is used to solve the un-
constrained problem mins qk(s), a basis of the Krylov subspaces

Kj =
{
(J T

k Jk)
iJ T

k hk

}j−1

i=0
,

is given by the columns of Vj . Due to the equivalence between the LSQR and CG
methods, the sequence sj generated by LSQR has the favorable property to be mono-
tonically increasing in norm [24]. Thus, either LSQR finds a solution in the interior
of the trust-region, or finds an iterate sj s.t. ‖sj−1‖ ≤ �k < ‖sj‖ and in this case
we may conclude that the solution of the problem (2.4) lies on the boundary of the



Updating the regularization parameter in the ARC algorithm

trust-region. When this happens two alternative strategies can be followed: either the
so-called Steihaug–Toint point [8, §7.5.1] is computed or a solution on the boundary
is computed to any prescribed accuracy. The Steihaug–Toint strategy interpolates the
last interior iterate sj−1 with the newly discovered exterior one sj to find the bound-
ary point between them. The resulting step has the favorable property that the optimal
decrease of qk at the exact solution of the trust-region problem (2.4), is no more than
twice that achieved at the Steihaug–Toint point (see [26] or [8, Theorem 7.5.9]). On
the negative side however, it makes no attempt to find a constrained solution with pre-
scribed accuracy. A more refined strategy solves a sequence of constrained reduced
problems (2.14) with increasing j until sj is sufficiently accurate [7]. Note that this
strategy specializes to problem (2.14) with qk given in (2.12) the GLTR method [15]
for the general trust-region problem (2.4) in which the CG method is used as long
as the iterates are in the interior of the trust-region and the expanding subspaces are
defined by the Lanczos vectors.

It is important to remark, that once a sufficiently accurate solution yj̄ of the re-
duced problems (2.14) and (2.15) has been found, the solution sj̄ = Vj̄ yj̄ in the full
space must be recovered. If the basis of Vj is needed, it has to be regenerated afresh,
and a second-phase is activated. In the trust-region case, the LSQR procedure allows
one to recur sj from sj−1 provided the iterates lie in the interior of the trust-region
or at the Steihaug–Toint point without the need for the second phase. However, the
second-phase is needed if we look for a more accurate solution on the trust-region
boundary or if the cubic regularization algorithm is employed.

The second-phase may be accelerated if needed by storing the first t (say)
basis vectors of the subspace Vj̄ as calculated in the first-phase so that the bi-
diagonalization process may be restarted at iteration j = t . Clearly, the efficiency
of these implementations strongly depends on the magnitude of the chosen t .

3 Updating rules for the regularization parameters

Because of its central role, the definition of a procedure to update the regularization
parameters at Step 4 of Algorithm 2.1 may have a crucial influence on its overall
performance. In this section, we first review two established updating strategies for
the trust-region radius �k and then propose new strategies for the parameter σk for
the ARC algorithm.

Clearly, the rule (2.10) in Algorithm 2.1 leaves considerable flexibility. A simple
and reasonable choice is to select

�k+1 =
⎧⎨
⎩

max{γ2‖sk‖,�k} if ρq(sk) ≥ η2 [very successful iteration],
�k if ρq(sk) ∈ [η1, η2) [successful iteration], and
γ1‖sk‖ otherwise [unsuccessful iteration],

(3.16)

where γ1 and γ2 are constants such that 0 < γ1 < 1 ≤ γ2, but further refinements are
possible using interpolation techniques in the unsuccessful case. If ρq(sk) is negative,
the agreement between the model and the objective function is extremely poor and
some drastic action might be warranted. In this case, we presume for simplicity that



N.I.M. Gould et al.

sk+1 will be aligned with sk and we compute a trust-region radius small enough to
ensure that the new step gives at least a successful iteration [8, Chap. 17]. To compute
such a radius, we consider a step of the form αsk with α > 0 and we set �k+1 =
αbad

η �k where αbad
η solves ρq(αsk) = η, which is equivalent to the scalar nonlinear

equation

fk − f (xk + αsk) = η(qk(0) − qk(αsk)), (3.17)

with η ∈ [η1,1) and η1 as given in Algorithm 2.1. To avoid the expense of computing
the extra function value f (xk + αsk) and to simplify the solution of (3.17), the scalar
function f̂ (α) = f (xk + αsk), α > 0 is replaced by a quadratic interpolating polyno-
mial for f̂ . The polynomial tf (α) such that tf and t ′f agree with f̂ and f̂ ′ at 0, and

tf (1) = f̂ (1) = f (xk + sk), is given by

tf (α) = fk + gT
k skα + (

f (xk + sk) − fk − gT
k sk

)
α2.

Substituting this value for f (xk + αsk) into (3.17) and solving for α, yields the value
of αbad

η given by

αbad
η = (1 − η)gT

k sk

(1 − η)(fk + gT
k sk) + η qk(sk) − f (xk + sk)

. (3.18)

We may therefore modify (3.16) to use this information and obtain the more sophis-
ticated rule

�k+1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max{γ2‖sk‖,�k} if ρq(sk) ≥ η2
[very successful iteration],

�k if ρq(sk) ∈ [η1, η2)

[successful iteration],
γ1‖sk‖ if ρq(sk) ∈ [0, η1)

[unsuccessful iteration], and
min{γ1‖sk‖,max{γ3, α

bad
η }�k} otherwise

[very unsuccessful iteration],

(3.19)

where αbad
η is given by (3.18) and the constants γ1, γ2, γ3 are such that 0 < γ3 < γ1 <

1 ≤ γ2 [8].
Let us now consider the ARC framework with this in mind. The updating rule pro-

posed in [3] aims to try to reduce the model rapidly to match the Newton model once
convergence sets in, while maintaining some regularization before the asymptotic
behaviour. The rule used in the reported experiments was

σk+1 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

max{min{σk,‖gk‖}, εm} if ρc(sk) ≥ η2
[very successful iteration],

σk if ρc(sk) ∈ [η1, η2)

[successful iteration], and
γ σk otherwise

[unsuccessful iteration],

(3.20)

with γ ≥ 1. Clearly, the relationship between the step length and the regularization
parameter in (3.20) is not as simple as in the updating rules (3.16) for the trust-region
case and the control of the first by the second is performed implicitly.



Updating the regularization parameter in the ARC algorithm

To relate the step size and the parameter σk in a more direct way, we now present
an alternative strategy for updating σk in the spirit of the interpolation procedures
used with the trust-region scheme. Specifically, we try to ensure, in the very unsuc-
cessful case, that the next iterate gives at least a successful iteration. In the very
successful case we may also exploit the overestimation property (2.5) measuring at
each iteration the gap between the current objective function value f (xk + sk) and the
current model value ck(sk) and reduce σk in order to decrease this gap (cf. [18, 25]).
In particular, given the current xk, σk and sk , we presume, as above, that sk+1 is
of the form αsk,α > 0 and compute the value σk+1 to ensure suitable conditions
on αsk .

As in the trust-region case, we avoid the need to compute the value of f (xk +
αsk) by using instead a suitable interpolating approximation. The interpolating cubic
function pf (α), α ≥ 0 we use here is built by requiring that pf (0) = fk, p′

f (0) =
gT

k sk, p′′(0) = sT
k Hksk and pf (1) = f (xk + sk), and hence takes the form

pf (α) = fk + gT
k skα + 1

2
sT
k Hkskα

2 + pf 3α
3, (3.21)

where

pf 3 = f (xk + sk) − qk(sk). (3.22)

The quadratic model (2.3) along the direction sk may be written as

q(α) = fk + gT
k skα + 1

2
sT
k Hkskα

2, (3.23)

while its regularized cubic counterpart (2.6) is

c(α,σ ) = q(α) + σ‖sk‖3

3
α3. (3.24)

We now define the current overestimation gap χ
f
k to be

χ
f
k = ck(sk) − f (xk + sk). (3.25)

Note that the model ck at sk overestimates f (xk + sk), i.e. χ
f
k ≥ 0, if and only if

ρc(sk) ≥ 1.
Consider the very successful (χf

k > 0) case first, in which case the regularization

parameter should be decreased. If the current gap χ
f
k is large enough, we aim at re-

ducing it by a factor β ∈ (0,1). Assume first that f (xk + sk) ≥ qk(sk). Remembering
that the next step should minimize the cubic model (in particular along sk), we thus
search for α and σ such that

c(α,σ ) − pf (α) = β χ
f
k and (3.26)

d

dα
c(α,σ ) = 0, (3.27)

c(α,σ ) and pf (α) given in (3.24) and (3.21). It follows from (3.26) that

σ = 3
βχ

f
k + pf 3α

3

α3‖sk‖3
≡ σk + 3

χ
f
k

‖sk‖3

(
β − α3

α3

)
, (3.28)



N.I.M. Gould et al.

Fig. 1 Very successful iteration and f (xk + sk) ≥ qk(sk)

and substituting (3.28) into (3.27), we find that the required α satisfies the cubic scalar
equation

3βχ
f
k + gT

k skα + sT
k Hkskα

2 + 3pf 3α
3 = 0. (3.29)

Thus, we determine the root α of (3.29) which exceeds 3
√

β by the least (if there is
such a root) and recover σ ∗

k,β from (3.28). If there is no such α, or if α is too large,
we simply reduce σk by a factor δ1 ∈ (0,1).

In Figs. 1, 2 and 3 the current cubic model (c(α,σk)), the approximated objective
function (pf (α)), the quadratic model (q(α)) and the next cubic model (denoted by
c(α,σ ∗

k,β) in the very successful case and by c(α,σ ∗
k,η) in the very unsuccessful case)

are plotted. Figure 1 represents an example where the k-th iterate is very successful
and f (xk + sk) ≥ qk(sk). In this example, β = 0.5 and (3.29) has two positive roots.
The largest one (α∗

β in the figure) is larger than 3
√

β ≈ 0.7937 and gives σ ∗
k,β such that

σ ∗
k,β < σk .

Consider now the case where f (xk + sk) < qk(sk). If we attempt to solve the
system (3.26)–(3.27), i.e. try to reduce the quantity ck(sk) − f (xk + sk) by a factor
β , we might reduce this gap too much, leading to undesirable value of the new σ .
Figure 2(a) illustrates the typical situation: in this example (β = 0.5), (3.29) only has

one positive solution (αχ
f
k ≈ 0.745 in the figure), but it is smaller than 3

√
β so that

the corresponding σ ∗
k,β computed by (3.28) is larger than the current σk . To avoid this

undesirable situation, we instead attempt to reduce the following gap

χ
q
k = ck(sk) − qk(sk), (3.30)

and search for α and σ such that

c(α,σ ) − q(α) = β χ
q
k and (3.31)

d

dα
c(α,σ ) = 0, (3.32)



Updating the regularization parameter in the ARC algorithm

Fig. 2 Very successful iteration and f (xk + sk) < qk(sk)

with c(α,σ ) and q(α) given in (3.24). Computing σ from (3.31), we then find that

σ = 3
βχ

q
k

α3‖sk‖3
≡ β

α3
σk, (3.33)

and substituting (3.33) in (3.32) yields that α solves the quadratic scalar equa-
tion

3βχ
q
k + gT

k skα + sT
k Hkskα

2 = 0. (3.34)

As in the previous case, we compute the root of (3.34) which exceeds 3
√

β

by the least (if such a root exists) and compute the corresponding value σ ∗
k,β us-

ing (3.33). Once again, if there is no such α, or if α is too large, we simply re-
duce σk by a factor δ1 ∈ (0,1). Figure 2(b) illustrates the same example as in
Fig. 2(a) but now solving the system (3.31)–(3.32): (3.34) has 2 positive roots and
one (α∗

β in the figure) is larger than 3
√

β , so that the corresponding σ ∗
k,β is smaller

than σk .
Let us now turn to the very unsuccessful case, ρc(sk) < 0, where we wish to in-

crease the regularization parameter. We proceed as in the trust-region framework sim-
ply requiring that αsk produces at least a successful iterate. We thus search for α and
σ such that

fk − pf (α) = η(fk − c(α,σ )), and (3.35)

d

dα
c(α,σ ) = 0, (3.36)



N.I.M. Gould et al.

Fig. 3 Very unsuccessful iteration

for some η ∈ [η1,1). Computing σ from (3.36) we obtain that

σ = −gT
k sk − sT

k Hkskα

α2‖sk‖3
, (3.37)

and substituting this expression in (3.35), we find that α must be a root of the
quadratic scalar equation

2(3 − 2η)gT
k sk + (3 − η)sT

k Hkskα + 6pf 3α
2 = 0, (3.38)

where pf 3 is positive since ρc(sk) < 0. The discriminant of the above equation is
given by

(3 − η)2(sT
k Hksk)

2 − 48(3 − 2η)gT
k skpf 3,

and as η < 3/2, it is always positive. In this case, the above equation has two roots
of opposite sign. If α∗

η is the positive one, we then compute σ ∗
k,η from (3.37) with

α = α∗
η . Figure 3 shows an example of this case.

Combining these different cases together, we are now able to state the complete
rule for updating the current regularization parameter σk : it is described as Algo-
rithm 3.1 on the following page. This algorithm also safeguards against the case
where equations (3.29) and (3.34) do not admit a solution larger than 3

√
β , or where

such a solution exists but may be very much larger than this value, resulting in a tiny
corresponding σ ∗

k,β . In all these cases, we simply choose a fraction of the current σk .
On the other hand, note that, by definition, the values of σ ∗

k,β computed in (3.39) and
(3.40) are positive and smaller than the current σk . Figure 4 shows a typical varia-
tion of σk+1 computed by Algorithm 3.1 as a function of the objective function value
f (xk +sk). This curve for σk+1 is a piecewise linear function where the sloping pieces
correspond to values of σk+1 computed by the interpolation rules (3.39)–(3.41).

Algorithm 3.1 (Regularization parameter update)
Given the current xk, sk, σk , let the constants η1 and η2 be fixed by Algorithm 2.1.



Updating the regularization parameter in the ARC algorithm

Fig. 4 Typical variation of σk+1 computed by Algorithm 3.1 as a function of the objective function value
f (xk + sk)

Let the positive threshold εχ and the constants δ1, δ2, δ3, δmax, β, η be chosen such
that

0 < δ1 < δ2 ≤ 1 < δ3 � δmax, 0 < β < 1, 0 < η < 3/2, 1 < αmax.

Compute ρc(sk) by (2.9) and

χk = ck(sk) − max {f (xk + sk), qk(sk)} .

• If ρc(sk) ≥ 1 and χk ≥ εχ , then

– If f (xk + sk) ≥ qk(sk), solve equation (3.29) with χ
f
k = χk .

Let A∗ = {α | α is a root of (3.29) and α ≥ 3
√

β}.
* If A∗ = ∅, set σk+1 = max{δ1σk, εm}.
* If A∗ �= ∅, let α∗

β = argmin{(α − 3
√

β) | α ∈ A∗}.
If α∗

β ≤ αmax, compute

σ ∗
k,β = σk + 3

χk

‖sk‖3

(
β − α∗

β
3

α∗
β

3

)
, (3.39)

and set σk+1 = max{σ ∗
k,β, εm};

If α∗
β > αmax, set σk+1 = max{δ1σk, εm}.

– Else if f (xk + sk) < qk(sk), solve equation (3.34) with χ
q
k = χk .

Let A∗ = {α | α is a root of (3.34) and α ≥ 3
√

β}.
* If A∗ = ∅, set σk+1 = max{δ1σk, εm}.
* If A∗ �= ∅, let α∗

β = argmin{(α − 3
√

β) | α ∈ A∗}.
If α∗

β ≤ αmax, compute

σ ∗
k,β = β

α∗
β

3
σk, (3.40)

and set σk+1 = max{σ ∗
k,β, εm};

If α∗
β > αmax, set σk+1 = max{δ1σk, εm}.



N.I.M. Gould et al.

• Else if ρc(sk) ≥ 1 and χk < εχ , set σk+1 = max{δ2σk, εm}.
• Else if ρc(sk) ∈ [η2,1), set σk+1 = max{δ2σk, εm}.
• Else if ρc(sk) ∈ [η1, η2), set σk+1 = σk .
• Else if ρc(sk) ∈ [0, η1), set σk+1 = δ3σk .
• Else (ρc(sk) < 0), compute the positive root α∗

η of (3.38) and compute

σ ∗
k,η = −gT

k sk − sT
k Hkskα

∗
η

α∗
η

2‖sk‖3
. (3.41)

Set σk+1 = min{max{σ ∗
k,η, δ3σk}, δmaxσk}.

4 Numerical experiments

We now present numerical experiments on nonlinear least-squares problems (1.2),
where we study the numerical behaviour of the trust-region and the ARC algorithms
employing the different updating rules presented in Sect. 3 in a first stage, and, in a
second stage, compare the two algorithms using the best performing rules.

To compare the overall computational effort of the algorithms we use the perfor-
mance profiles proposed by Dolan and Moré [9] for a given set of test problems and
a given selection of algorithms. For each problem P in our testing set and each Al-
gorithm A, we let feP,A denote the number of function evaluations required to solve
problem P using Algorithm A and feP be number of function evaluations required
by the best algorithm to solve problem P , i.e. the algorithm which uses the fewest
function evaluations. The function evaluation performance profile is defined for the
Algorithm A as

πA(τ) = number of problems s.t. feP,A ≤ τ feP

number of problems
, τ ≥ 1. (4.42)

Analogously, we define the CPU time performance profile φA(τ), τ ≥ 1 measuring
the efficiency of the algorithm A in terms of the employed CPU time.

In what follows and in order to improve readability of the performance profile
graphs, we limit the plots πA(τ) and φA(τ) to the interval [1,4] and report the number
of failures in the legend.

4.1 The problem set

Numerical results are given for problems from the CUTEr test collection [16]. The
test examples we consider are constructed using the CUTEr interactive select tool in
order to locate the problems with no objective function and with constraints that are
systems of nonlinear equations. We exclude the problems CHEMRCTA, CHEMRCTB,
DRCAVTY3, FLOSP2HH, FLOSP2HL, FLOSP2HM, FLOSP2TH, FLOSP2TL,
FLOSP2TM, HYDCAR20, SEMICON2 and SEMICN2U as no algorithm succeeded
in solving these problems for any tested parameter choice. For some CUTEr prob-
lems, we considered variants that differ in the dimensions (denoted with the super-
script 2,3). The resulting testing set consists of 95 problems of the form (1.2) whose
names and dimensions are reported in Table 1. The problems ARGLALE, ARGBLE,



Updating the regularization parameter in the ARC algorithm

Table 1 The problem set

Name n m Name n m Name n m

AIRCRFTA 8 5 DECONVNE 61 41 OSCIPANE 500 500

ARGAUSS 3 15 DRCAVTY1 196 100 PFIT1 2 2

ARGLALE 200 400 DRCAVTY2 4489 3969 PFIT2 2 2

ARGLBLE 200 400 EIGENA 110 110 PFIT3 2 2

ARGTRIG 200 200 EIGENA2 2550 2550 PFIT4 2 2

ARTIF 502 500 EIGENA3 4970 4970 POROUS1 1024 900

ARTIF2 5002 5000 EIGENB 110 110 POROUS12 5184 4900

ARWDHNE 500 998 EIGENB2 2550 2550 POROUS13 22500 21904

BDVALUES 102 100 EIGENC 462 462 POROUS2 1024 900

BDVALUS2 5002 5000 EIGENC2 2652 2652 POROUS22 5184 4900

BOOTH 2 2 GOTTFR 2 2 POROUS23 22500 21904

BRATU2D 484 400 GROWTH 3 12 POROUS24 62500 61504

BRATU2D2 5184 4900 HATFLDF 3 3 POWELLBS 2 2

BRATU2DT 484 400 HATFLDG 25 25 POWELLSQ 2 2

BRATU2DT2 5184 4900 HEART6 6 6 QR3D 610 610

BRATU3D 1000 512 HEART8 8 8 QR3D2 2420 2420

BRATU3D2 4913 3375 HIMMELBA 2 2 QR3DBD 457 610

BROWNALE 200 200 HIMMELBC 2 2 QR3DBD2 1717 2420

BROWNALE2 1000 1000 HIMMELBD 2 2 RECIPE 3 3

BROYDN3D 1000 1000 HIMMELBE 3 3 SINVALNE 2 2

BROYDN3D2 10000 10000 HS8 2 2 SPMSQRT 10000 16664

BROYDNBD 1000 1000 HYDCAR6 29 29 TRIGGER 7 6

BROYDNBD2 10000 10000 HYPCIR 2 2 WOODSNE 10000 7501

CBRATU2D 3200 2888 INTEGREQ 102 100 YATP1SQ 2600 2600

CBRATU3D 3456 2000 INTEGREQ2 502 500 YATP1SQ2 40400 40400

CHANDHEQ 100 100 METHANB8 31 31 YATP1SQ3 63000 63000

CHANNEL 2400 2398 METHANL8 31 31 YATP2SQ 2600 2600

CHANNEL2 9600 9598 MSQRTA 4900 4900 YATP2SQ2 40400 40400

CHNRSBNE 50 98 MSQRTA2 5625 5625 YATP2SQ3 63000 63000

CLUSTER 2 2 MSQRTB 4900 4900 YFITNE 3 17

COOLHANS 9 9 MSQRTB2 5625 5625 ZANGWIL3 3 3

CUBENE 2 2 NYSTROM5 18 20

GROWTH, HIMMELBD and OSCIPANE are large residual problems, i.e. the objective
function value at the computed solution is much greater than one, the remaining are
small or zero residual problems. Moreover, for 9 problems m > n, for 28 problems
m < n, the remaining 58 ones being square.

4.2 Implementation issues

We implemented Algorithm 2.1 in Fortran 95, using the procedures presented in
Sect. 2.1 to solve the subproblem at Step 1. We consider two implementations of



N.I.M. Gould et al.

the trust-region algorithm (TR-ST and TR-bST) which use the GALAHAD’s pack-
age [17] LSTR and differ in the computation of the boundary trust-region solution:
TR-ST computes the Steihaug–Toint point, TR-bST computes a more accurate so-
lution as described in Sect. 2.1. The tested version of the ARC algorithm for solving
problem (1.2) has been implemented using the GALAHAD’s packages LSRT and it is
denoted by ARC-LS.

In Algorithm 2.1, we set the specific algorithmic constants

η1 = 0.01, η2 = 0.95, (4.43)

and the initial regularization parameters �0 and σ0 are chosen equal to one. The
algorithm is terminated as soon as either

‖J T
k hk‖ ≤ max{εga, εgr ‖J T

0 h0‖} or ‖hk‖ ≤ max{εf a, εf r ‖h0‖}, (4.44)

where εf a, εga, εf r , εgr > 0 are tolerances chosen as εf a = εga = 10−6, εf r = εgr =
10−12. Moreover, we require that the trial step sk computed at Step 1 of Algorithm 2.1
satisfies the inexact stopping criterion given by

‖J T
k (Jksk + hk) + λksk‖ ≤ min{εin, ‖J T

k hk‖1/2}‖J T
k hk‖, (4.45)

where λk = σk‖sk‖ in ARC-LS and in the trust-region case if ‖sk‖ = �k then λk is an
estimate of the Lagrange multiplier associated with the trust-region constraint while
if the ‖sk‖ < �k then λk = 0; the parameter εin is fixed at εin = 10−1.

If the problem dimension n is lower than 50, we allow for the generation of the
full space in the Krylov sequence in order to compute a very accurate solution of the
subproblems (2.14) and (2.15). Furthermore, we record the first t = 10 basis vectors
of the current Krylov subspace to re-use them to make computational savings as men-
tioned in Sect. 2.1 in any potential second phase. Any run exceeding 2 hours of CPU
time, performing more than 5000 outer iterations or if the magnitude of computed
search direction is lower than 10εm, is considered a failure. All other parameters in
the GALAHAD’s packages are set at their default values.

All our tests were performed on an Intel Xeon (TM) 3.4 GHz, 1 GB of RAM;
the codes are all double precision, and compiled under g95 without optimization
(default).

4.3 Numerical results

We consider first the trust-region algorithm and the trust-region radius updating rules
described in Sect. 3. The sensitivity of trust-region algorithms to their parameters
have been intensively studied in literature, see e.g. [14], and then we refer to [8,
Chap. 17] for optimal choice of the parameters in the updating rules (3.16) and (3.19).
In particular, we use the suggested values

γ1 = 1/2, γ2 = 2, γ3 = 0.0625, η = η2, (4.46)

and we tried the further value η = η1 in (3.18) with η1, η2 given in (4.43).
In Fig. 5, the function evaluation performance profiles show that both TR-ST and

TR-bST are slightly more efficient using the updating rule (3.19) with η = η1. More-
over, TR-bST is also a little more robust with this choice. The performance profile



Updating the regularization parameter in the ARC algorithm

Fig. 5 The function evaluation performance profile: TR-ST (left) and TR-bST (right) with (3.16) (“stan-
dard rule”) and (3.19) using η = η1, η2 (“interpolation rule”)

Fig. 6 The function evaluation
performance profile: TR-ST and
TR-bST with the interpolation
rule (3.19) and the best
parameter choice (η = η1)

of Fig. 6 summarizes the comparison between the two trust-region implementations
using the best performing rule with the best parameter choice. As one might hope, the
figure suggests that the extra effort required to solve the subproblem more accurately
appears to offer some overall benefit.

We now examine the sensitivity in number of function evaluations for the param-
eter choices of the new updating rule for σk for the ARC algorithm. To this purpose,
we performed a small parametric study starting from the following reasonable values
for the parameters in Algorithm 3.1:

β = 1/100, αmax = 2, εχ = 10−8, δ1 = 1/10, δ2 = 1,

η = η1, δ3 = 2, δmax = 100,
(4.47)

and varying one parameter at the time in some set to find the best performing value.
More precisely, let all the parameters be ordered as β , αmax, εχ , δ1, δ2, η, δ3,

δmax and be fixed as in (4.47). Let p be a parameter to be analyzed. Moreover, let
Ip = {p1, . . . , pq} be a set of trial values for p, Api

be the ARC-LS algorithm run
with p = pi and let πApi

(τ ) be the performance measure defined in (4.42) compar-
ing the algorithms Api

, pi ∈ Ip . To estimate the efficiency of these algorithms, we
compute the percentage of problems (%pbτ̂ ) for which πApi

(τ ) ≤ π̂ with π̂ � 1 and
to evaluate their robustness, we compute the number of failures. Taking into account
these performance measures, we fix the “best” value for the parameter p ∈ Ip and
we proceed with the analysis of the subsequent parameter in the list. In Table 2, we



N.I.M. Gould et al.

Table 2 Parametric study

p Ip #fails %pbτ̂ , τ̂ = 1 %pbτ̂ , τ̂ = 1.15 %pbτ̂ , τ̂ = 1.25 %pbτ̂ , τ̂ = 1.5 %pbτ̂ , τ̂ = 2

β 0.001 3 58.95 90.53 92.63 93.68 95.79
0.005 4 55.79 86.32 92.63 93.68 95.79

0.01 3 68.42 91.58 95.79 95.79 96.84

0.05 3 51.58 82.11 89.47 93.68 95.79
0.1 4 51.58 81.05 89.47 95.79 95.79

αmax 1 4 42.11 69.47 75.79 91.58 94.74

2 3 60.00 88.42 92.63 94.74 94.74
3.5 3 55.79 85.26 90.53 92.63 92.63
5 3 61.05 84.21 90.53 92.63 92.63
10 3 63.16 86.32 90.53 91.58 92.63
50 4 61.05 84.21 89.47 90.53 91.58

εχ 10−12 3 81.05 92.63 93.68 95.79 95.79
10−11 3 83.16 93.68 95.79 95.79 96.84

10−10 2 80.00 95.79 96.84 96.84 97.89

10−9 3 76.84 92.63 93.68 94.74 96.84
10−8 3 73.68 92.63 92.63 94.74 94.74
10−6 4 65.26 78.95 82.11 86.32 90.53

δ1 0.01 6 69.47 85.26 88.42 91.58 92.63
0.05 3 65.26 92.63 94.74 95.79 95.79

0.1 2 71.58 94.74 97.89 97.89 97.89

0.25 3 62.11 87.37 93.68 95.79 95.79
0.5 3 58.95 83.16 92.63 95.79 95.79

δ2 0.25 3 61.05 74.74 85.26 91.58 94.74
0.5 3 53.68 78.95 85.26 90.53 96.84
0.75 4 57.89 86.32 91.58 94.74 95.79
0.9 4 57.89 85.26 90.53 93.68 95.79

1 2 58.95 89.47 95.79 97.89 97.89

η η1 2 72.63 94.74 95.79 96.84 97.89

(η2 − η1)/2 4 68.42 88.42 91.58 94.74 95.79
η2 5 62.11 81.05 88.42 91.58 94.74
1.25 3 63.16 78.95 87.37 89.47 90.53

δ3 1.50 4 69.47 89.47 93.68 94.74 94.74

2 2 72.63 93.68 96.84 97.89 97.89
2.5 4 66.32 89.47 91.58 94.74 95.79
3 4 65.26 88.42 94.74 95.79 95.79
4 3 66.32 83.16 92.63 94.74 96.84

δmax 10 4 66.32 86.32 90.53 91.58 93.68
50 4 70.53 89.47 93.68 95.79 95.79

100 2 74.74 95.79 97.89 97.89 97.89
500 4 71.58 91.58 93.68 93.68 94.74
1000 4 72.63 88.42 93.68 93.68 94.74



Updating the regularization parameter in the ARC algorithm

Fig. 7 The function evaluation
performance profile: ARC-LS
with (3.20) (“g-rule”) and
ARC-LS with Algorithm 3.1
and parameters (4.48)
(“interpolation rule (best
parameters)”)

report the sets Ip for all the parameters in Algorithm 3.1, the efficiency measure
(%pbτ̂ ) for τ̂ = 1,1.15,1.25,1.5,2 and the number of failures (#fails). We note
that a more sophisticated choice, in which the globally optimal parameters for our
test set is determined [1], is possible but has not been performed.

For each set Ip , it is quite easy to find the best performing parameter choice. It
results from Table 2 that the new updating rule is not very sensitive to the param-
eter choice and that ARC-LS performs slightly better with the following parameter
assignment:

β = 1/100, αmax = 2, εχ = 10−10, δ1 = 1/10,

(4.48)
δ2 = 1 η = η1, δ3 = 2, δmax = 100.

We remark that in the experiments, a solution α∗
β of (3.29) and (3.34) was always

found and that only in a few cases this values was larger than αmax. Moreover, the
value σ ∗

k,η computed by (3.41) was very often positive and lower than the current σk .
Consequently, the regularization parameter was in fact updated by using the proposed
interpolation techniques most of the time.

In Fig. 7, ARC-LS using Algorithm 3.1 and the parameters in (4.48) is compared
with ARC-LS using the old rule (3.20) and γ = 2 employed in [3]. The new rule
clearly outperforms the old one. A possible explanation of the relatively poor be-
haviour of ARC-LS with the old rule may be found in what follows. In the exper-
iments, we noticed that the norm of the gradient oscillates considerably for some
problems, resulting in high oscillations in the updated σk through the iterations. Fur-
thermore, we observed that, using (3.20), σk was updated in several runs using a
small ‖gk‖ and hence was considerably reduced; the next iterate was then unsuc-
cessful and doubling σk to recover an acceptable σk gave rise to many unsuccessful
iterations.

Finally, we compare TR-ST, TR-bST and ARC-LS using the best performing
updating rules for the regularization parameters, i.e. for the trust-region radius �k the
rule (3.19) with the parameters in (4.46) but with η = η1 and for the regularization
parameter σk , the rule presented in Algorithm 3.1 with the parameter choice (4.48).
The corresponding function evaluation performance profiles are plotted in Figs. 8
and 9. ARC-LS fails on problems ARWHDNE, DRCAVITY2, TR-bST on problems
DRCAVITY2, POROUS2 and TR-ST on problems QR3D2, POROUS2. Evidently,
ARC-LS is much more efficient than TR-ST. Compared to TR-bST, it is better for



N.I.M. Gould et al.

Fig. 8 The function evaluation
performance profile: TR-ST
rule (3.19) with η = η1
(“interpolation rule (best
parameters)”) and ARC-LS with
Algorithm 3.1 and parameters
(4.48) (“interpolation rule (best
parameters)”)

Fig. 9 The function evaluation
performance profile: TR-bST
rule (3.19) with η = η1
(“interpolation rule (best
parameters)”) and ARC-LS with
Algorithm 3.1 and parameters
(4.48) (“interpolation rule (best
parameters)”)

Fig. 10 The CPU time
performance profile: TR-ST
rule (3.19) with η = η1
(“interpolation rule (best
parameters)”) and TR-bST rule
(3.19) with η = η1
(“interpolation rule (best
parameters)”)

the 68.42% of the runs and TR-bST is within a factor 2 of ARC-LS for the 88.10%
of the runs.

We conclude this section adding some remarks on the performance of the algo-
rithms in terms of CPU time. In Fig. 10 we plot the CPU time performance profile
between TR-ST and TR-bST and, as expected, TR-ST is the most efficient since
the second-phase is never activated. Concerning the behaviour of ARC-LS, its effi-
ciency is directly related to the number t of stored basis vectors for the second-phase.
In Fig. 11 we plot the CPU time performance profile between TR-ST and ARC-LS
with increasing t = 10,100,500. It is important to remark that the extra cost of the
second-phase is strictly dependent on the specific implementation used for solving
the subproblems and is not an issue, e.g., if we follow a direct approach. Moreover,
note that although for the CUTEr test problems, the cost of function and derivative
evaluation is very low, had the evaluations been more expensive, the trend shown for
function evaluations in Fig. 8 would have been repeated in Fig. 11.



Updating the regularization parameter in the ARC algorithm

Fig. 11 The CPU time
performance profile: TR-ST
rule (3.19) with η = η1
(“interpolation rule (best
parameters)”) and ARC-LS with
Algorithm 3.1, parameters
(4.48) (“interpolation rule (best
parameters)”) and number of
stored basis vectors
t = 10,100,500

We report in the Appendix the complete set of results of the experiments described
in this section.

We also considered strategies for choosing the initial regularization parameter σ0
along the lines of the strategy proposed in [23] for automatically computing the initial
trust-region radius. In particular, we tested a strategy in which one solves a one-
dimensional minimization problem (along the steepest descent direction) in the hope
of estimating a better value of σ0 for starting the minimization in the full space.
However, these experiments (not reported here) produced disappointing results in
that it turned out to be generally better to start minimization in the full-space from
the start and not “waste” additional function evaluations for estimating σ0. This is not
entirely unexpected in our context where we assume the cost of function evaluation to
dominate the inner linear algebra calculations. But it is also clear that any a priori user
estimation of the Hessian Lipschitz constant can be usefully exploited by selecting
σ0 appropriately.

5 Conclusion

In this paper we propose a new reliable strategy to update the regularization parame-
ter in the cubic regularization algorithm (ARC). This strategy is based on analyzing
the adequacy between the objective function and its cubic model, and exploits its
overestimation property. Moreover, it has the favorable feature of not requiring extra
function values. We report numerical tests which show that the new rule considerably
improves the numerical performance of the ARC algorithm. We also provide a nu-
merical comparison between the ARC and trust-region frameworks on a set of large
nonlinear least-squares CUTEr problems. These suggest a numerical advantage of the
former on our set of test problems in a framework where the overall computational
cost is dominated by the cost of a function evaluation.

Acknowledgements The work of the first author was supported by EPSRC grant EP/E053351/1. The
second author wishes to thank Stefania Bellavia and Benedetta Morini for several helpful discussions and
for their continued encouragement and support.

References

1. Audet, C., Orban, D.: Finding optimal algorithmic parameters using derivative-free optimization.
SIAM J. Control Optim. 17(3), 642–664 (2006)

http://dx.doi.org/10.1007/s10589-011-9446-7


N.I.M. Gould et al.

2. Bellavia, S., Cartis, C., Gould, N.I.M., Morini, B., Toint, Ph.L.: Convergence of a regularized Eu-
clidean residual algorithm for nonlinear least-squares. SIAM J. Numer. Anal. 48, 1–29 (2010)

3. Cartis, C., Gould, N.I.M., Toint, Ph.L.: Adaptive cubic overestimation methods for unconstrained
optimization. Part I: Motivation, convergence and numerical results. Math. Program., Ser. A 127(2),
245–295 (2011)

4. Cartis, C., Gould, N.I.M., Toint, Ph.L.: Adaptive cubic overestimation methods for unconstrained
optimization. Part II: Worst-case function- and derivative-evaluation complexity. Math. Program. Ser.
A 130(2), 295–319 (2011). doi:10.1007/s10107-009-0337-y

5. Cartis, C., Gould, N.I.M., Toint, Ph.L.: Complexity bounds for second-order optimality in uncon-
strained optimization. J. Complex 28(1), 93–108 (2012). doi:10.1016/j.jco.2011.06.001

6. Cartis, C., Gould, N.I.M., Toint, Ph.L.: On the complexity of steepest descent, Newton’s and regu-
larized Newton’s methods for nonconvex unconstrained optimization. SIAM J. Control Optim. 20(6),
2833–2852 (2010)

7. Cartis, C., Gould, N.I.M., Toint, Ph.L.: Trust-region and other regularisations of linear least-squares
problems. BIT 49(1), 21–53 (2009)

8. Conn, A.R., Gould, N.I.M., Toint, Ph.L.: Trust-Region Methods. SIAM, Philadelphia (2000)
9. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Pro-

gram. 91, 201–213 (2002)
10. Dennis, J.E., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization and Nonlinear

Equations. Prentice Hall, Englewood Cliffs (1983)
11. Erway, J.B., Gill, P.E.: A subspace minimization method for the trust-region step. SIAM J. Control

Optim. 20, 1439–1461 (2009)
12. Erway, J.B., Gill, P.E., Griffin, J.D.: Iterative methods for finding a trust-region step. SIAM J. Control

Optim. 20, 1110–1131 (2009)
13. Golub, G.H., Kahan, W.: Calculating the singular values and pseudo-inverse of a matrix. SIAM J.

Numer. Anal. 2(2), 205–224 (1965)
14. Gould, N.I.M., Orban, D., Sartenaer, A., Toint, Ph.L.: Sensitivity of trust-region algorithms to their

parameters. 4OR 3(3), 227–241 (2005)
15. Gould, N.I.M., Lucidi, S., Roma, M., Toint, Ph.L.: Solving the trust-region subproblem using the

Lanczos method. SIAM J. Control Optim. 9(2), 504–525 (1999)
16. Gould, N.I.M., Orban, D., Toint, Ph.L.: CUTEr, a constrained and unconstrained testing environment,

revisited. ACM Trans. Math. Softw. 29(4), 373–394 (2003)
17. Gould, N.I.M., Orban, D., Toint, Ph.L.: GALAHAD—a library of thread-safe Fortran 90 packages for

large-scale nonlinear optimization. ACM Trans. Math. Softw. 29(4), 353–372 (2003)
18. Griewank, A.: The modification of Newton’s method for unconstrained optimization by bounding

cubic terms. Technical Report NA/12 (1981), Department of Applied Mathematics and Theoretical
Physics, University of Cambridge, United Kingdom (1981)

19. Hager, W.W., Park, S.C.: Global convergence of SSM for minimizing a quadratic over a sphere. Math.
Comput. 74, 1413–1423 (2005)

20. Hager, W.W.: Minimizing a quadratic over a sphere. SIAM J. Control Optim. 12, 188–208 (2001)
21. Nesterov, Yu., Polyak, B.T.: Cubic regularization of Newton’s method and its global performance.

Math. Program. 108(1), 177–205 (2006)
22. Paige, C.C., Saunders, M.A.: ALGORITHM 583: LSQR: an algorithm for sparse linear equations and

sparse least squares. ACM Trans. Math. Softw. 8(2), 195–209 (1982)
23. Sartenaer, A.: Automatic determination of an initial trust region in nonlinear programming. SIAM J.

Sci. Comput. 18(6), 1788–1803 (1997)
24. Steihaug, T.: The conjugate gradient method and trust regions in large scale optimization. SIAM J.

Numer. Anal. 20, 626–637 (1983)
25. Weiser, M., Deuflhard, P., Erdmann, B.: Affine conjugate adaptive Newton methods for nonlinear

elastomechanics. Optim. Methods Softw. 22(3), 413–431 (2007)
26. Yuan, Y.: On the truncated conjugate-gradient method. Math. Program., Ser. A 87(3), 561–573 (1999)

http://dx.doi.org/10.1007/s10107-009-0337-y
http://dx.doi.org/10.1016/j.jco.2011.06.001

	Updating the regularization parameter in the adaptive cubic regularization algorithm
	Abstract
	Introduction
	The algorithms
	Computing a trial step

	Updating rules for the regularization parameters
	Numerical experiments
	The problem set
	Implementation issues
	Numerical results

	Conclusion
	Acknowledgements
	References


