
Computational Optimization and Applications
https://doi.org/10.1007/s10589-019-00064-2

Convergence and evaluation-complexity analysis of a
regularized tensor-Newtonmethod for solving nonlinear
least-squares problems

Nicholas I. M. Gould1 · Tyrone Rees1 · Jennifer A. Scott1,2

Received: 27 November 2017
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Given a twice-continuously differentiable vector-valued function r(x), a local mini-
mizer of ‖r(x)‖2 is sought. We propose and analyse tensor-Newton methods, in which
r(x) is replaced locally by its second-order Taylor approximation. Convergence is
controlled by regularization of various orders. We establish global convergence to
a first-order critical point of ‖r(x)‖2, and provide function evaluation bounds that
agree with the best-known bounds for methods using second derivatives. Numeri-
cal experiments comparing tensor-Newton methods with regularized Gauss–Newton
and Newton methods demonstrate the practical performance of the newly proposed
method.

Keywords Nonlinear least-squares · Levenberg Marquardt · Trust region methods ·
Data fitting

1 Introduction

Consider a given, smooth, vector-valued residual function r : IRn −→ IRm , and let
‖ · ‖ be the Euclidean norm. Our goal is to design effective methods for finding values
of x ∈ IRn for which ‖r(x)‖ is (locally) as small as possible. Since ‖r(x)‖ is generally

This work was supported by EPSRC Grant EP/M025179/1.

B Tyrone Rees
tyrone.rees@stfc.ac.uk

Nicholas I. M. Gould
nick.gould@stfc.ac.uk

Jennifer A. Scott
jennifer.scott@stfc.ac.uk

1 STFC Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX, UK

2 Department of Mathematics and Statistics, University of Reading, Reading, Berkshire RG6 6AX, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10589-019-00064-2&domain=pdf
http://orcid.org/0000-0003-0476-2259


N. I. M. Gould et al.

non smooth, it is common to consider the equivalent problem of minimizing

�(x):= 1
2‖r(x)‖2, (1.1)

and to tackle the resulting problem using a generic method for unconstrained opti-
mization, or one that exploits the special structure of �.

To put our proposal into context, arguably the most widely used method for solving
nonlinear least-squares problems is the Gauss–Newton method and its variants. These
iterative methods all build locally-linear (Taylor) approximations to r(xk + s) about
xk , and then minimize the approximation as a function of s in the least-squares sense
to derive the next iterate xk+1 = xk + sk [21,22,24]. The iteration is usually stabilized
either by imposing a trust-region constraint on the permitted s, or by including a
quadratic regularization term [3,23]. While these methods are undoubtedly popular in
practice, they often suffer when the optimal value of the norm of the residual is large.
To counter this, regularized Newton methods for minimizing (1.1) have also been
proposed [7,16,17]. Although this usually provides a cure for the slow convergence
of Gauss–Newton-like methods on non-zero-residual problems, the global behaviour
is sometimes less attractive; we attribute this to the Newton model not fully reflecting
the sum-of-squares nature of the original problem.

With this in mind, we consider instead the obvious nonlinear generalization of
Gauss–Newton in which a locally quadratic (Taylor) “tensor-Newton” approximation
to the residuals is used instead of a locally linear one. Of course, the resulting least-
squares model is now quartic rather than quadratic (and thus in principle is harder
to solve), but our experiments [19] have indicated that this results in more robust
global behaviour than Newton-type methods and an improved performance on non-
zero-residual problems than seen for Gauss–Newton variants. Our intention here is to
explore the convergence behaviour of a tensor-Newton approach.

We mention in passing that we are not the first authors to consider higher-order
models for least-squares problems. The earliest approach we are aware of [4,5] uses
a quadratic model of r(xk + s) in which the Hessian of each residual is approximated
by a low-rank matrix that is intended to compensate for any small singular values
of the Jacobian. Another approach, known as geodesic acceleration [29,30], aims
to modify Gauss–Newton-like steps with a correction that allows for higher-order
derivatives. More recently, derivative-free methods that aim to build quadratic models
of r(xk + s) by interpolation/regression of past residual values have been proposed
[31,32], although these ultimately more resemble Gauss–Newton variants.While each
of these methods has been shown to improve performance relative to Gauss–Newton-
like approaches, none makes full use of the residual Hessians. Our intention is thus to
investigate the convergence properties of methods based on the tensor-Newton model.

There has been a long-standing interest in establishing the global convergence of
general smooth unconstrained optimization methods, that is, in ensuring that a method
for minimizing a function f (x) starting from an arbitrary initial guess ultimately
delivers an iterate for which a measure of optimality is small. A more recent concern
has focused on how many evaluations of f (x) and its derivatives are necessary to
reduce the optimality measure below a specified (small) ε > 0 from the initial guess.
If the measure is ‖g(x)‖, where g(x):=∇x f (x), it is known that some well-known

123



Convergence and evaluation-complexity analysis of a…

schemes (including steepest descent and generic second-order trust-region methods)
may require �(ε−2) evaluations under standard assumptions [6], while this may be
improved to�(ε−3/2) evaluations for second-order methods with cubic regularization
or using specialised trust-region tools [8,15,26]. Here and hereafter O(·) indicates a
term that is of at worst a multiple of its argument, while �(·) indicates additionally
there are instances for which the bound holds.

For the problem we consider here, an obvious approach is to apply any of the
aforementioned algorithms to minimize (1.1), and to terminate as soon as

‖∇x�(x)‖ ≤ ε, where ∇x�(x) = J T (x)r(x) and J (x):=∇xr(x). (1.2)

However, it has been argued [9] that this ignores the possibility that it may suffice
to stop instead when r(x) is small, and that a more sensible criterion is to terminate
when

‖r(x)‖ ≤ εp or ‖gr (x)‖ ≤ εd , (1.3)

where εp > 0 and εd > 0 are required accuracy tolerances and gr (x) is the scaled
gradient given by

gr (x):=
⎧
⎨

⎩

J T (x)r(x)

‖r(x)‖ , whenever r(x) �= 0;
0, otherwise.

(1.4)

Wenote that gr (x) in (1.4) is precisely the gradient of‖r(x)‖whenever r(x) �= 0,while
if r(x) = 0, we are at the global minimum of r and so gr (x) = 0 ∈ ∂(‖r(x)‖), the sub-
differential of r(x). Furthermore ‖gr (x)‖ is less sensitive to scaling than ‖J T (x)r(x)‖.
It has been shown that a second-ordermethod based on cubic regularizationwill satisfy

(1.3) after O
(
max(ε−3/2

d , ε
−1/2
p )

)
evaluations [9, Theorem 3.2]. One of our aims here

is to showsimilar bounds for the tensor-Newtonmethodweare advocating.Wepropose
a regularized tensor-Newtonmethod in Sect. 2, and analyse both its global convergence
and its evaluation complexity in Sect. 3. The regularization order, r , permitted by the
algorithm proposed in Sect. 2 is restricted to be no larger than 3, and so in Sect. 4
we introduce a modified algorithm for which r > 3 is possible. We make further
comments and draw general conclusions in Sect. 6.

2 The tensor-Newtonmethod

Suppose that r(x) ∈ C2 has components ri (x) for i = 1, . . . ,m. Let t(x, s) be the
vector whose components are

ti (x, s) := ri (x) + sT∇xri (x) + 1
2 s

T∇xxri (x)s (2.1)

123



N. I. M. Gould et al.

for i = 1, . . . ,m. We build the tensor-Newton approximation

m(x, s) := 1
2‖t(x, s)‖2 (2.2)

of �(x + s), and define the regularized model

mR(x, s, σ ) := m(x, s) + 1

r
σ‖s‖r , (2.3)

where r ≥ 2 is given. Note that

∇sm
R(x, s, σ ) = ∇sm(x, s) + σ‖s‖r−2s. (2.4)

We consider the following algorithm (Algorithm 2.1) to find a critical point of�(x).

Algorithm 2.1 Adaptive Tensor-Newton Regularization.
Astarting point x0, an initial and aminimal regularization parameter σ0 ≥ σmin > 0

and algorithmic parameters θ > 0, γ3 ≥ γ2 > 1 > γ1 > 0 and 1 > η2 ≥ η1 > 0, are
given. Evaluate �(x0). For k = 0, 1, . . ., until termination, do:

1. If the termination test has not been satisfied, compute derivatives of r(x) at xk .
2. Compute a step sk by approximately minimizing mR(xk, s, σk) so that

mR(xk, sk, σk) < mR(xk, 0, σk) (2.5)

and

∥
∥∇sm

R(xk, sk, σk)
∥
∥ ≤ θ‖sk‖r−1. (2.6)

3. Set x̂k = xk + sk and compute �(̂xk) and

ρk = �(xk) − �(̂xk)

m(xk, 0) − m(xk, sk)
. (2.7)

4. Set

σk+1 ∈
⎧
⎨

⎩

[max(σmin, γ1σk), σk] if ρk ≥ η2 [very successful iteration]
[σk, γ2σk] if η1 ≤ ρk < η2[successful iteration]
[γ2σk, γ3σk] otherwise [unsuccessful iteration],

(2.8)

5. If ρk ≥ η1, set xk+1 = x̂k . Otherwise go to Step 2.

At the very least, we insist that (trivial) termination should occur in Step 1 of
Algorithm 2.1 if ‖∇x�(xk)‖ = 0, but in practice a rule such as (1.2) or (1.3) at x = xk
will be preferred.

At the heart of Algorithm 2.1 is the need (Step 2) to find a vector sk that both
reduces mR(xk, s, σk) and satisfies ‖∇smR(xk, sk, σk)‖ ≤ θ‖sk‖r−1 (see, e.g., [1]).

123



Convergence and evaluation-complexity analysis of a…

Since mR(xk, s, σk) is bounded from below (and grows as s approaches infinity), we
may apply any descent-based local optimization method that is designed to find a
critical point of mR(xk, s, σk), starting from s = 0, as this will generate an sk that is
guaranteed to satisfy bothStep 2 stopping requirements.Crucially, such aminimization
is on themodelmR(xk, s, σk), not the true objective, and thus involves no true objective
evaluations. We do not claim that this calculation is trivial, but it might, for example,
be achieved by applying a safeguarded Gauss–Newton method to the least-squares
problem involving the extended residuals (t(xk, s),

√
σk‖s‖r−2s).

We define the index set of successful iterations, in the sense of (2.8), up to iteration
k to be Sk :={0 ≤ l ≤ k | ρl ≥ η1} and let S:={k ≥ 0 | ρk ≥ η1} be the set of all
successful iterations.

3 Convergence analysis

We make the following blanket assumption:

AS.1 each component ri (x) and its first two derivatives are Lipschitz continuous
on an open set containing the intervals [xk, xk + sk] generated by Algorithm 2.1
(or its successor).

It has been shown [10, Lemma 3.1] that AS.1 implies that �(x) and its first two
derivatives are Lipschitz on [xk, xk + sk].

We define

H(x, y) :=
m∑

i=1

yi∇xxri (x)

and let q(x, s) be the vector whose i th component is

qi (x, s) := sT∇xxri (x)s

for i = 1, . . . ,m. In this case

t(x, s) = r(x) + J (x)s + 1
2q(x, s).

Since m(xk, s) is a second-order accurate model of �(xk + s), we expect bounds of
the form

|�(xk + sk) − m(xk, sk)| ≤ L f‖sk‖3 (3.1)

and

|∇x�(xk + sk) − ∇sm(xk, sk)| ≤ L g‖sk‖2 (3.2)

for some L f, L g > 0 and all k ≥ 0 for which ‖sk‖ ≤ 1 (see “Appendix A”).

123



N. I. M. Gould et al.

Also, since ‖r(x)‖ decreases monotonically,

‖J T (xk)r(xk)‖ ≤ ‖J T (xk)‖‖r(xk)‖ ≤ L J‖r(x0)‖ (3.3)

and

‖H(xk, r(xk))‖ ≤ LH‖r(xk)‖ ≤ LH‖r(x0)‖ (3.4)

for some L J, LH > 0 and all k ≥ 0 (again, see “Appendix A”).
Our first result derives simple conclusions from the basic requirement that the step

sk in our algorithm is chosen to reduce the regularized model.

Lemma 3.1 Algorithm 2.1 ensures that

m(xk, 0) − m(xk, sk) > 1
r σk‖sk‖r (3.5)

In addition, if r = 2, at least one of

σk < 2‖H(xk, r(xk))‖ (3.6)

or

σk‖sk‖ < 4‖J T (xk)r(xk)‖ (3.7)

holds, while if r > 2,

‖sk‖ < max

((
r‖H(xk, r(xk))‖

σk

)1/(r−1)

,

(
2r‖J T (xk)r(xk)‖

σk

)1/(r−2)
)

.

(3.8)

Proof It follows from (2.5), (2.3) and (2.2) that

0 > 2
(
m(xk, sk) + 1

r σk‖sk‖r − m(xk, 0)
)

= ‖r(xk) + J (xk)sk + 1
2q(xk, sk)‖2 + 2

r σk‖sk‖r − ‖r(xk)‖2
= ‖J (xk)sk + 1

2q(xk, sk)‖2 + 2rT (xk)
(
J (xk)sk + 1

2q(xk, sk)
) + 2

r σk‖sk‖r
= ‖J (xk)sk + 1

2q(xk, sk)‖2 + 2sTk J T (xk)r(xk) + sTk H(xk, r(xk))sk + 2
r σk‖sk‖r

≥ ‖J (xk)sk + 1
2q(xk, sk)‖2 − 2‖J T (xk)r(xk)‖‖sk‖

−‖H(xk, r(xk))‖‖sk‖2 + 2
r σk‖sk‖r . (3.9)

Inequality (3.5) follows immediately from the first inequality in (3.9). When r = 2,
inequality (3.9) becomes

0 > ‖J (xk)sk + 1
2q(xk, sk)‖2

+
(

1
2σk‖sk‖ − 2‖J T (xk)r(xk)‖

)
‖sk‖ + (

1
2σk − ‖H(xk, r(xk))‖

) ‖sk‖2.

123



Convergence and evaluation-complexity analysis of a…

In order for this to be true, it must be that at least one of the last two terms is negative,
and this provides the alternatives (3.6) and (3.7). By contrast, when r > 2, inequality
(3.9) becomes

0 > ‖J (xk)sk + 1
2q(xk, sk)‖2 +

(
1
r σk‖sk‖r−1 − 2‖J T (xk)r(xk)‖

)
‖sk‖

+
(

1
r σk‖sk‖r−2 − ‖H(xk, r(xk))‖

)
‖sk‖2,

and this implies that

1
r σk‖sk‖r−1 < 2‖J T (xk)r(xk)‖ or 1

r σk‖sk‖r−2 < ‖H(xk, r(xk))‖

(or both), which gives (3.8). 	

Our next task is to show that σk is bounded from above. Let

Bγ :=
{
j ≥ 0 | σ j ≥ γ r max

(
‖H (

x j , r(x j )
) ‖, 2‖J T (x j )r(x j )‖

)}

and

B := B1,

and note that Lemma 3.1 implies that

‖sk‖ ≤ 1 if k ∈ Bγ when γ ≥ 1,

and in particular

‖sk‖ ≤ 1 for all k ∈ B. (3.10)

We consider first the special case for which r = 2.

Lemma 3.2 Suppose that AS.1 holds, r = 2, k ∈ B and

σk ≥
√
8LfLJ‖r(x0)‖

1 − η2
. (3.11)

Then iteration k of Algorithm 2.1 is very successful.

Proof Since k ∈ B, Lemma 3.1 implies that (3.7) and (3.10) hold. Then (2.7), (3.1)
and (3.5) give that

| ρk − 1| = |�(xk + sk) − m(xk, sk)|
m(xk, 0) − m(xk, sk)

≤ 2L f‖sk‖
σk

123



N. I. M. Gould et al.

and hence

| ρk − 1| ≤ 8L f‖J T (xk)r(xk)‖
σ 2
k

≤ 8L fL J‖r(x0)‖
σ 2
k

≤ 1 − η2

from (3.3), (3.7) and (3.11). Thus it follows from (2.8) that the iteration is very suc-
cessful. 	

Lemma 3.3 Suppose that AS.1 holds and r = 2. Then Algorithm 2.1 ensures that

σk ≤ σmax := γ3 max

(√
8LfLJ‖r(x0)‖

1 − η2
, σ0, 2max(LH, 2LJ)‖r(x0)‖

)

(3.12)

for all k ≥ 0.

Proof Let

σ B
max = γ3 max

(√
8L fL J‖r(x0)‖

1 − η2
, σ0

)

.

Suppose that k + 1 ∈ Bγ3 is the first iteration for which σk+1 ≥ σ B
max. Then, since

σk < σk+1, iteration k must have been unsuccessful, xk = xk+1 and (2.8) gives that
σk+1 ≤ γ3σk . Thus

γ3σk ≥ σk+1 ≥ 2γ3 max(‖H(xk+1, r(xk+1)) 2‖J T (xk+1)r(xk+1)‖)
= 2γ3 max(‖H(xk, r(xk)), 2‖J T (xk)r(xk)‖)

since k + 1 ∈ Bγ3 , which implies that k ∈ B. Furthermore,

γ3σk ≥ σk+1 ≥ σ B
max ≥ γ3

√
8L fL J‖r(x0)‖

1 − η2
,

which implies that (3.11) holds. But then Lemma 3.2 implies that iteration k must be
very successful. This contradiction ensures that

σk < σ B
max (3.13)

for all k ∈ Bγ3 . For all other iterations, we have that k /∈ Bγ3 , and for these the
definition of Bγ3 , and the bounds (3.3) and (3.4) give

σk < 2γ3 max(‖H(xk, r(xk))‖, 2‖J T (xk)r(xk))‖) ≤ 2γ3 max(LH, 2L J)‖r(x0)‖.
(3.14)

Combining (3.13) and (3.14) gives (3.12). 	


123



Convergence and evaluation-complexity analysis of a…

We now turn to the general case for which 2 < r ≤ 3.

Lemma 3.4 Suppose that AS.1 holds, 2 < r ≤ 3, k ∈ B and

σk ≥ max

⎛

⎜
⎝

(
r Lf (r LH‖r(x0)‖) 3−r

r−1

1 − η2

) r−1
2

,

(
r Lf (2r LJ‖r(x0)‖) 3−r

r−2

1 − η2

)r−2
⎞

⎟
⎠

(3.15)

Then iteration k of Algorithm 2.1 is very successful.

Proof Since k ∈ B, it follows from (2.7), (3.10), (3.1), (3.5), (3.8), (3.3), (3.4) and
(3.15) that

|ρk − 1| = |�(xk + sk) − m(xk, sk)|
m(xk, 0) − m(xk, sk)

≤ r L f‖sk‖3−r

σk

< r L f max
(
(r‖H(xk, r(xk))‖)(3−r)/(r−1) σ

−2/(r−1)
k ,

(
2r‖J T (xk)r(xk)‖

)(3−r)/(r−2)
σ

−1/(r−2)
k

)

≤ r L f max
(
(r LH‖r(x0)‖)(3−r)/(r−1) σ

−2/(r−1)
k ,

(2r L J‖r(x0)‖)(3−r)/(r−2) σ
−1/(r−2)
k

)

≤ 1 − η2. (3.16)

As before, (2.8) then ensures that the iteration is very successful. 	

Lemma 3.5 Suppose that AS.1 holds and 2 < r ≤ 3. Then Algorithm 2.1 ensures that

σk ≤ σmax := γ3 max

⎛

⎜
⎜
⎜
⎝

(
r Lf (pLH‖r(x0)‖) 3−r

r−1

1 − η2

) r−1
2

,

(
r Lf (2r LJ‖r(x0)‖) 3−r

r−2

1 − η2

)r−2

, σ0, r max(LH, 2LJ)‖r(x0)‖

⎞

⎟
⎟
⎟
⎠

(3.17)

for all k ≥ 0.

Proof The proof mimics that of Lemma 3.3. First, suppose that k ∈ Bγ3 and that
iteration k + 1 is the first for which

σk+1 ≥ σ B
max := γ3 max

⎛

⎜
⎝

(
r L f (r LH‖r(x0)‖) 3−r

r−1

1 − η2

) r−1
2

,

(
r L f (2r L J‖r(x0)‖) 3−r

r−2

1 − η2

)r−2

, σ0

⎞

⎟
⎠.

Then, since σk < σk+1, iteration k must have been unsuccessful and (2.8) gives that

γ3σk ≥ σk+1 ≥ σ B
max,

123



N. I. M. Gould et al.

which implies that k ∈ B and (3.15) holds. But then Lemma 3.4 implies that iteration k
must be very successful. This contradiction provides the first three terms in the bound
(3.17), while the others arise as for the proof of Lemma 3.3 when k /∈ Bγ3 . 	

Next, we bound the number of iterations in terms of the number of successful ones.

Lemma 3.6 [8, Theorem 2.1]. The adjustment (2.8) in Algorithm 2.1 ensures that

k ≤ κu |Sk | + κs, where κu :=
(

1 − log γ1

log γ2

)

, κs := 1

log γ2
log

(
σmax

σ0

)

, (3.18)

and σmax is any known upper bound on σk .

Our final ingredient is to find a useful bound on the smallest model decrease as the
algorithm proceeds. Let L:={k | ‖sk‖ ≤ 1}, and let G:={k | ‖sk‖ > 1} be its
compliment. We then have the following crucial bounds.

Lemma 3.7 Suppose that AS.1 holds and 2 ≤ r ≤ 3. Then Algorithm 2.1 ensures that

m(xk, 0) − m(xk, sk) ≥
⎧
⎨

⎩

1
r σmin

(‖∇x�(xk + sk)‖
Lg + θ + σmax

) r
r−1

if k ∈ L
1
r σmin if k ∈ G.

(3.19)

Proof Consider k ∈ L. The Cauchy-Schwarz inequality and (2.4) reveal that

‖∇x�(xk + sk)‖ = ‖(∇x�(xk + sk) − ∇sm(xk, sk))

+
(
∇sm(xk, sk) + σk‖sk‖r−2sk

)
− σk‖sk‖r−2sk

∥
∥
∥

≤ ‖∇x�(xk + sk) − ∇sm(xk, sk)‖
+‖∇sm

R(xk, sk, σk)‖ + σk‖sk‖r−1. (3.20)

Combining (3.20) with (3.2), (2.6), (3.12), (3.17) and ‖sk‖ ≤ 1 we have

‖∇x�(xk + sk)‖ ≤ L g‖sk‖2 + θ‖sk‖r−1 + σmax‖sk‖r−1 ≤ (L g + θ + σmax)‖sk‖r−1

and thus that

‖sk‖ ≥
(‖∇x�(xk + sk)‖

L g + θ + σmax

) 1
r−1

.

But then, combining this with (3.5), the lower bound

σk ≥ σmin (3.21)

imposed by Algorithm 2.1 and (3.5) provides the first possibility in (3.19).
By contrast, if k ∈ G, (3.5), ‖sk‖ > 1 and (3.21) ensure the second possibility

in (3.19). 	


123



Convergence and evaluation-complexity analysis of a…

Corollary 3.8 Suppose that AS.1 holds and 2 ≤ r ≤ 3. Then Algorithm 2.1 ensures
that

�(xk) − �(xk+1) ≥
⎧
⎨

⎩

1
r η1σmin

(‖∇x�(xk + sk)‖
Lg + θ + σmax

) r
r−1

if k ∈ L ∩ S
1
r η1σmin if k ∈ G ∩ S.

(3.22)

Proof The result follows directly from and (2.7) and (3.19). 	

We now provide our three main convergence results. Firstly, we establish the global

convergence1 of our algorithm to first-order critical points of �(x).

Theorem 3.9 Suppose that AS.1 holds and 2 ≤ r ≤ 3. Then the iterates {xk} generated
by Algorithm 2.1 satisfy

lim
k→∞ ‖∇x�(xk)‖ = 0 (3.23)

if no non-trivial termination test is provided.

Proof Suppose that ε > 0, and consider any successful iteration for which

‖∇x�(xk)‖ ≥ ε > 0. (3.24)

Then it follows from (3.22) that

�(xk) − �(xk+1) ≥ δ := η1σmin

r
min

((
ε

L g + θ + σmax

) r
r−1

, 1

)

> 0. (3.25)

Consider the set Uε = {k ∈ S | ‖∇x�(xk)‖ ≥ ε}, suppose that Uε is infinite, and
let ki be the i-th entry of Uε . Now consider

iε = 
 1
2‖r(x0)‖2/δ� + 1.

Thus summing (3.25) over successful iterations, recalling that �(x0) = 1
2‖r(x0)‖2,

�(xk) ≥ 0, and that � decreases monotonically and using (3.25), we have that

1
2‖r(x0)‖2≥�(x0) − �(xkiε +1)≥

∑

k∈Uε ,k≤kiε

�(xk) − �(xk+1) ≥ iεδ > 1
2‖r(x0)‖2.

(3.26)

This contradiction shows that Uε is finite for any ε > 0, and therefore (3.23) holds.
	


Secondly, we provide an evaluation complexity result based on the stopping crite-
rion (1.2).

1 Our proof avoids the traditional route via a lim inf result, and is indebted to [14].

123



N. I. M. Gould et al.

Theorem 3.10 Suppose that AS.1 holds and 2 ≤ r ≤ 3. Then Algorithm 2.1 requires
at most

⌈
κu‖r(x0)‖2r

(
Lg + θ + σmax

) r
r−1

2η1σmin
ε− r

r−1

⌉

+ κs + 1 (3.27)

evaluations of r(x) and its derivatives to find an iterate xk for which the termination
test

‖∇x�(xk)‖ ≤ ε

is satisfied for given 0 < ε < 1, where κu and κs are defined in (3.18).

Proof If the algorithm has not terminated, (3.24) holds, so summing (3.25) as before

1
2‖r(x0)‖2 ≥ �(x0) − �(xk+1) ≥ |Sk |δ = |Sk |η1σmin

r

(
ε

L g + θ + σmax

) r
r−1

(3.28)

since ε < 1, and thus that

|Sk | ≤ ‖r(x0)‖2
(
L g + θ + σmax

) r
r−1

2η1σmin
ε− r

r−1 .

Combining this with (3.18) and remembering that we need to evaluate the function
and gradient at the final xk+1 yields the bound (3.27). 	


Notice how the evaluation complexity improves from O(ε−2) evaluations with
quadratic (r = 2) regularization to O(ε−3/2) evaluations with cubic (r = 3) regular-
ization. It is not clear if these bounds are sharp.

Finally, we refine this analysis to provide an alternative complexity result based on
the stopping rule (1.3). The proof of this follows similar arguments in [9, §3.2], [11,
§3] and crucially depends upon the following elementary result.

Lemma 3.11 Suppose that a > b ≥ 0. Then

a2 − b2 ≥ c implies that a1/2
i − b1/2

i ≥ c

2i+1a
2i+1−1

2i

for all integers i ≥ −1.

Proof The result follows directly by induction using the identity
A2 − B2 = (A − B)(A + B) with A = a1/2

j
> B = b1/2

j
for increasing j ≤ i . 	


123



Convergence and evaluation-complexity analysis of a…

Theorem 3.12 Suppose that AS.1 holds, 2 < r ≤ 3 and that the integer

i ≥ i0 :=
⌈

log2

(
r − 1

r − 2

)⌉

(3.29)

is given. Then Algorithm 2.1 requires at most

⌈
κu max

(
κ−1
c , κ−1

g ε
−r/(r−1)
d , κ−1

r ε
−1/2i
p

)⌉
+ κs + 1 (3.30)

evaluations of r(x) and its derivatives to find an iterate xk for which the termination
test

‖r(xk)‖ ≤ εp or ‖gr (xk)‖ ≤ εd , (3.31)

is satisfied for given εp > 0 and εd > 0, where κu and κs are defined in (3.18), κc,
κg and κr are given by

κc := 1
2
i+1 η1σmin

r
‖r(x0)‖−(2i+1−1)/2i ,

κg :=
1
2
iη1σminβ

r/(r−1)

r(L + θ + σmax)r/(r−1)
‖r(x0)‖

(
r/(r−1)−(2i+1−1)/2i

)

and κr := 1 − β1/2i

β1/2i
, (3.32)

and β ∈ (0, 1) is a fixed problem-independent constant.

Proof Consider Sβ :={l ∈ S | ‖r(xl+1)‖ > β‖r(xl)‖}, and let i be the smallest integer
for which

2i+1 − 1

2i
≥ r

r − 1
, (3.33)

that is i satisfies (3.29).
First, consider l ∈ G ∩ S. Then (3.22) gives that

‖r(xl)‖2 − ‖r(xl+1)‖2 ≥ η1σmin

r

and, since

‖r(xl+1)‖ < ‖r(xl)‖ ≤ ‖r(x0)‖ (3.34)

for all l ∈ S, Lemma 3.11 implies that

‖r(xl)‖1/2i − ‖r(xl+1)‖1/2i ≥ 1
2
i+1 η1σmin

r
‖r(xl)‖−(2i+1−1)/2i

≥ 1
2
i+1 η1σmin

r
‖r(x0)‖−(2i+1−1)/2i . (3.35)

123



N. I. M. Gould et al.

By contrast, for l ∈ L ∩ S, (3.22) gives that

‖r(xl)‖2 − ‖r(xl+1)‖2 ≥ κ‖J T (xl+1)r(xl+1)‖r/(r−1), where

κ = 2η1σmin

r(L + θ + σmax)r/(r−1)
. (3.36)

If additionally l ∈ Sβ , (3.36) may be refined as

‖r(xl)‖2 − ‖r(xl+1)‖2 ≥ κ

(‖J T (xl+1)r(xl+1)‖
‖r(xl+1)‖

)r/(r−1)

‖r(xl+1)‖r/(r−1)

≥ κ

(‖J T (xl+1)r(xl+1)‖
‖r(xl+1)‖

)r/(r−1)

‖r(xl+1)‖r/(r−1)

≥ κβr/(r−1)‖gr (xl+1)‖r/(r−1)‖r(xl)‖r/(r−1) (3.37)

from (1.4) and the requirement that ‖r(xl+1)‖ > β‖r(xl)‖. Using (3.37), (3.34),
Lemma 3.11 and (3.33), we then obtain the bound

‖r(xl)‖1/2i − ‖r(xl+1)‖1/2i ≥ 1
2
i+1κβr/(r−1)‖gr (xl+1)‖r/(r−1)

‖r(xl)‖
(
r/(r−1)−(2i+1−1)/2i

)

≥ 1
2
i+1κβr/(r−1)‖r(x0)‖

(
r/(r−1)−(2i+1−1)/2i

)

‖gr (xl+1)‖r/(r−1) (3.38)

for all l ∈ L ∩ Sβ . Finally, consider l ∈ S \ Sβ , for which ‖r(xl+1)‖ ≤ β‖r(xl)‖ and

hence ‖r(xl+1)‖1/2i ≤ β1/2i ‖r(xl)‖1/2i . Thus we have that

‖r(xl)‖1/2i − ‖r(xl+1)‖1/2i ≥ (1 − β1/2i )‖r(xl)‖1/2i

≥ 1−β1/2i

β1/2i
‖r(xl+1)‖1/2i (3.39)

for all l ∈ L ∩ (S \ Sβ). Thus, combining (3.35), (3.38) and (3.39), we have that

‖r(xl)‖1/2i − ‖r(xl+1)‖1/2i ≥ min
(
κc, κg‖gr (xl+1)‖r/(r−1), κr‖r(xl+1)‖1/2i

)
,

(3.40)

for κc, κg and κr given by (3.32), for all l ∈ S.

Now suppose that the stopping rule (3.31) has not been satisfied up until the start
of iteration k + 1, and thus that

‖r(xl+1)‖ > εp and ‖gr (xl+1)‖ > εd (3.41)

123



Convergence and evaluation-complexity analysis of a…

for all l ∈ Sk . Combining this with (3.40), we have that

‖r(xl)‖1/2i − ‖r(xl+1)‖1/2i ≥ min
(
κc, κgε

r/(r−1)
d , κrε

1/2i
p

)
,

and thus, summing over l ∈ Sk and using (3.34),

‖r(x0)‖1/2i ≥ ‖r(x0)‖1/2i − ‖r(xk+1)‖1/2i ≥ |Sk |min
(
κc, κgε

r/(r−1)
d , κrε

1/2i
p

)
.

As before, combining this with (3.18) and remembering that we need to evaluate the
function and gradient at the final xk+1 yields the bound (3.30). 	


If i < i0, a weaker bound that includes r = 2 is possible. The key is to note that
the purpose of (3.33) is to guarantee the second inequality in (3.38). Without this, we
have instead

‖r(xl )‖1/2i − ‖r(xl+1)‖1/2i ≥ 1
2
i+1κβr/(r−1)‖gr (xl+1)‖r/(r−1)‖r(xl+1)‖

(
r/(r−1)−(2i+1−1)/2i

)

(3.42)

for all l ∈ L ∩ Sβ , and this leads to

‖r(xl)‖1/2i − ‖r(xl+1)‖1/2i ≥ min

(

κc, κg′εr/(r−1)
d ε

(
r/(r−1)−(2i+1−1)/2i

)

p , κrε
1/2i
p

)

,

where

κg′:=
1
2
iη1σminβ

r/(r−1)

r(L g + θ + σmax)r/(r−1)
.

if (3.41) holds. This results in a bound of O
(
max(1, εr/(r−1)

d · ε

(
r/(r−1)−(2i+1−1)/2i

)

p ,

ε
1/2i
p )

)
function evaluations, which approaches that in (3.30) as i increases to infinity

when r = 2.

4 Amodified algorithm for cubic-and-higher regularization

For the case where r > 3, the proof of Lemma 3.4 breaks down as there is no
obvious bound on the quantity ‖sk‖3−r/σk . One way around this defect is to modify
Algorithm 2.1 so that such a bound automatically occurs. We consider the following
variant; our development follows very closely that in [12], itself inspired by [20]. For
completeness, we allow r = 3 in this new framework since it is trivial to do so.

Algorithm 4.1 Adaptive Tensor-Newton Regularization when r ≥ 3.
A starting point x0, an initial regularization parameter σ0 > 0 and algorithmic

parameters θ > 0, α ∈ (0, 1
3 ], γ3 ≥ γ2 > 1 > γ1 > 0 and 1 > η2 ≥ η1 > 0, are

given. Evaluate �(x0), and test for termination at x0.

123



N. I. M. Gould et al.

For k = 0, 1, . . ., until termination, do:

1. Compute derivatives of r(x) at xk .
2. Compute a step sk by approximately minimizing mR(xk, s, σk) so that

mR(xk, sk, σk) < mR(xk, 0, σk)

and

‖∇sm
R(xk, sk, σk)‖ ≤ θ‖sk‖2 (4.1)

hold.
3. Set x̂k = xk + sk , and test for termination at x̂k .
4. Compute �(̂xk) and

ρk = �(xk) − �(̂xk)

m(xk, 0) − m(xk, sk)
.

If ρk ≥ η1 and

σk‖sk‖r−1 ≥ α‖∇x�(̂xk)‖, (4.2)

set xk+1 = x̂k .
5. Set

σk+1 ∈
⎧
⎨

⎩

[γ1σk, σk] if ρk ≥ η2 and (4.2) holds
[σk, γ2σk] if η1 ≤ ρk < η2 and (4.2) holds

[γ2σk, γ3σk] if ρk < η1 or (4.2) fails,
(4.3)

and go to Step 2 if ρk < η1 or (4.2) fails.

It is important that termination is tested at Step 3 as deductions fromcomputations in
subsequent steps rely on this.Wemodify our definition of a successful step accordingly
so that now Sk = {0 ≤ l ≤ k | ρl ≥ η1 and (4.2) holds} and S = {k ≥ 0 | ρk ≥
η1 and (4.2) holds}, and note in particular that Lemma 3.6 continues to hold in
this case since it only depends on the adjustments in (4.3). Likewise, a very successful
iteration is now one for which ρk ≥ η2 and (4.2) holds. Note that (4.3), unlike (2.8) in
Algorithm 2.1, does not impose a nonzero lower bound on the generated regularization
weight; this will be reflected in our derived complexity bound (cf Theorems 3.12 and
4.7).

As is now standard, our first task is to establish an upper bound on σk .

Lemma 4.1 Suppose that AS.1 holds, r ≥ 3 and

σk‖sk‖r−3 ≥ κ2, where κ2:= r L

1 − η2
and L = max(Lf, Lg, θ). (4.4)

Then iteration k of Algorithm 4.1 is very successful.

123



Convergence and evaluation-complexity analysis of a…

Proof It follows immediately from (2.7), (3.1), (3.5) and (4.4) that

|ρk − 1| = |�(xk + sk) − m(xk, sk)|
m(xk, 0) − m(xk, sk)

≤ r L f‖sk‖3−r

σk
≤ r L‖sk‖3−r

σk
≤ 1 − η2,

and thus ρk ≥ η2. Observe that

κ2 ≥ L (4.5)

since 1 − η2 ≤ 1 and r ≥ 1. We also have from (3.20), (3.2) and (4.1) that

‖∇x�(xk + sk)‖≤ L g‖sk‖2 + θ‖sk‖2 + σk‖sk‖r−1 =
(
L g + θ + σk‖sk‖r−3

)
‖sk‖2
(4.6)

and thus from (4.4), (4.5) and the algorithmic restriction 3 ≤ 1/α that

‖∇x�(xk + sk)‖ ≤
(
2L + σk‖sk‖r−3

)
‖sk‖2 ≤

(
3σk‖sk‖r−3

)
‖sk‖2

= 3σk‖sk‖r−1 ≤ σk

α
‖sk‖r−1.

Thus (4.2) is also satisfied, and hence iteration k is very successful. 	

Lemma 4.2 Suppose that AS.1 holds, r ≥ 3 and

σk ≥ κ1‖∇s�(xk + sk)‖(3−r)/2, where κ1:= κ2(3κ2)
(r−3)/2 (4.7)

and κ2 is defined in the statement of Lemma 4.1. Then iteration k of Algorithm 4.1 is
very successful.

Proof It follows from Lemma 4.1 that it suffices to show that (4.7) implies (4.4). The
result is immediate when r = 3 since then (4.4) is (4.7). Suppose therefore that r > 3
and that (4.4) is not true, that is

σk‖sk‖r−3 < κ2. (4.8)

Then (4.6), (4.8) and (4.5) imply that

‖∇x�(xk + sk)‖ ≤ (2L + κ2)‖sk‖2 < 3κ2‖sk‖2 < 3κ2

(
κ2

σk

)2/(r−3)

which contradicts (4.7). Thus (4.4) holds. 	

Unlike in our previous analysis of Algorithm 2.1 when r ≤ 3, we are unable to

deduce an upper bound on σk without further consideration. With this in mind, we
now suppose that all the iterates xk + sk generated by Algorithm 4.1 satisfy

‖∇x�(xk + sk)‖ ≥ ε (4.9)

123



N. I. M. Gould et al.

for some ε > 0 and all 0 ≤ k ≤ l, and thus, from (4.2), that

σk‖sk‖r−1 ≥ αε (4.10)

for k ∈ Sl . In this case, we can show that σk is bounded from above.

Lemma 4.3 Suppose that AS.1 holds and r ≥ 3. Then provided that (4.9) holds for all
0 ≤ k ≤ l, Algorithm 4.1 ensures that

σk ≤ σmax := γ3 max
(
κ1ε

(3−r)/2, σ0

)
(4.11)

and κ1 is defined in the statement of Lemma 4.2.

Proof The proof is similar to the first part of that of Lemma 3.5. Suppose that iteration
k+1 (with k ≤ l) is the first for which σk+1 ≥ σmax. Then, since σk < σk+1, iteration
k must have been unsuccessful and (4.3) gives that

γ3σk ≥ σk+1 ≥ σmax,

i.e., that

σk ≥ max
(
κ1ε

(3−r)/2, σ0

)
≥ κ1ε

(3−r)/2 ≥ κ1‖∇x�(xk + sk)‖(3−r)/2

because of (4.9). But then Lemma 4.2 implies that iteration k must be very successful.
This contradiction establishes (4.11). 	


We may also show that a successful step ensures a non-trivial reduction in �(x).

Lemma 4.4 Suppose that AS.1 holds and r ≥ 3. Suppose further that (4.9) holds for
all 0 ≤ k ≤ l. Then provided that (4.9) holds for all 0 ≤ k ≤ l and some 0 < ε ≤ 1,
Algorithm 4.1 guarantees that

�(xk) − �(xk+1) ≥ κ4ε
3/2 > 0 (4.12)

for all k ∈ S, where

κ4 := ηαr/(r−1)

rκ1/(r−1)
3

, κ3 := γ3 max(κ1, σ0), (4.13)

and κ1 is defined in the statement of Lemma 4.2.

123



Convergence and evaluation-complexity analysis of a…

Proof Since 0 < ε ≤ 1, (4.11) ensures that σmax ≤ κ3ε
(3−r)/2 and thus if k ∈ S, it

follows from (3.5) and (4.10) that

�(xk) − �(xk+1) ≥ η1(m(xk, 0) − m(xk, sk)) >
η1

r
σk‖sk‖r

= η1

r
(σk‖sk‖r−1)‖sk‖ ≥ η1

r
αε

(αε)1/(r−1)

σ
1/(r−1)
k

≥ η(αε)r/(r−1)

rσ 1/(r−1)
max

≥ ηαr/(r−1)

rκ1/(r−1)
3

εr/(r−1)

(ε(3−r)/2)1/(r−1)
= κ4ε

3/2 > 0,

as required. 	

These introductory lemmas now lead to our main convergence results. First we

establish global convergence to a critical point of �(x).

Theorem 4.5 Suppose that AS.1 holds and r ≥ 3. Then the iterates {xk} generated by
Algorithm 4.1 satisfy

lim
k→∞ inf ‖∇x�(xk)‖ = 0 (4.14)

if no non-trivial termination test is provided.

Proof Suppose that (4.14) does not hold, in which case (4.9) holds for some 0 < ε ≤ 1
and all k ≥ 0. We then deduce by summing the reduction in �(x) guaranteed by
Lemma 4.4 over successful iterations that

1
2‖r(x0)‖2 ≥ �(x0) − �(xk+1) ≥ |Sk |κ4ε3/2.

Just as in the proof of Theorem 3.10, this ensures that there are only a finite number
of successful iterations. If iteration k is the last of these, all subsequent iterations are
unsuccessful, and thus σk grows without bound. But as this contradicts Lemma 4.3,
(4.9) cannot be true, and thus (4.14) holds. 	


Next, we give an evaluation complexity result based on the stopping criterion (1.2).

Theorem 4.6 Suppose that AS.1 holds and r ≥ 3. Then Algorithm 4.1 requires at most

⌈

κu
‖r(x0)‖2

2κ4
ε−3/2 + κb

⌉

+ 1 if r = 3,
⌈

κu
‖r(x0)‖2

2κ4
ε−3/2 + κi + κe log ε−1

⌉

+ 1 if r > 3 and ε <

(
κ1

σ0

)2/(r−3)

,
⌈

κu
‖r(x0)‖2

2κ4
ε−3/2 + κa

⌉

+ 1 otherwise

(4.15)

123



N. I. M. Gould et al.

evaluations of r(x) and its derivatives to find an iterate xk for which the termination
test

‖∇x�(xk)‖ ≤ ε

is satisfied for given 0 < ε < 1, where

κb := log(κ3/σ0)

log γ2
, κi := log(γ3κ1/σ0)

log γ2
, κe := r − 3

2 log γ2
and κa := log γ3

log γ2
, (4.16)

κu is defined in (3.18), κ1 in (4.7) and κ3 in (4.13).

Proof If the algorithm has not terminated on or before iteration k, (4.9) holds, and so
summing (4.12) over successful iterations and recalling that �(x0) = 1

2‖r(x0)‖2 and
�(xk) ≥ 0, we have that

1
2‖r(x0)‖2 ≥ �(x0) − �(xk+1) ≥ |Sk |κ4ε3/2.

Thus there at most

|Sk | ≤ ‖r(x0)‖2
2κ4

ε−3/2

successful iterations. Combining this with Lemma 3.6, accounting for the max in
(4.11) and remembering that we need to evaluate the function and gradient at the final
xk+1 yields the bound (4.15). 	


We note in passing that in order to derive Theorem 4.6, we could have replaced the
test (4.2) in Algorithm 4.1 by the normally significantly-weaker requirement (4.10).

Our final result examines the evaluation complexity under the stopping rule (3.31).

Theorem 4.7 Suppose that AS.1 holds, r ≥ 3 and an i ≥ 1 is given. ThenAlgorithm 4.1
requires at most

⌈
κu‖r(x0)‖1/2i max

(
κ−1
g ε

−3/2
d , κ−1

r ε
−1/2i
p

)
+ κb

⌉
+ 1

when r = 3
⌈
κu‖r(x0)‖1/2i max

(
κ−1
g ε

−3/2
d , κ−1

r ε
−1/2i
p

)
+ κi + κe(log ε−1

d + log ε−1
p )

⌉
+ 1

(4.17)

when r > 3 and εpεd <

(
κ1

σ0

)2/(r−3)

, or otherwise

⌈
κu‖r(x0)‖1/2i max

(
κ−1
g ε

−3/2
d , κ−1

r ε
−1/2i
p

)
+ κa

⌉
+ 1,

123



Convergence and evaluation-complexity analysis of a…

evaluations of r(x) and its derivatives to find an iterate xk for which the termination
test

‖r(xk)‖ ≤ εp or ‖gr (xk)‖ ≤ εd ,

is satisfied for given 0 < εp, εd ≤ 1, where κu is defined in (3.18),

κg:= η1α
r/(r−1)

2i rγ 1/(r−1)
3

min

(
1

κ1
,
1

σ0

)1/(r−1)

‖r(x0)‖(3/2−(2i+1−1)/2i ), κr := (1 − β1/2i ),

(4.18)

κ1 is defined in (4.7), κb, κi , κe and κa in (4.16), and β ∈ (0, 1) is a fixed problem-
independent constant.

Proof As in the proof of Theorem 3.12, let Sβ :={l ∈ S | ‖r(xl+1)‖ > β‖r(xl)‖} for a
given β ∈ (0, 1). We suppose that Algorithm 4.1 has not terminated prior to iteration
l + 1, and thus that

‖r(xk)‖ > εp and ‖gr (xk)‖ > εd (4.19)

for all k ≤ l + 1. If l ∈ Sβ , it follows from (3.5), (4.2) and the definition (1.4) that

‖r(xl)‖2 − ‖r(xl+1)‖2 ≥ 2η1(m(xl , 0) − m(xl , sl)) >
2η1
r

σl‖sl‖r

= 2η1
r

(
σl‖sl‖r−1) ‖sl‖ ≥ 2η1

r
αr/(r−1)σ

−1/(r−1)
l ‖∇x�(xl+1)‖r/(r−1)

≥ 2η1
r

αr/(r−1)σ
−1/(r−1)
l ‖gr (xl+1)‖r/(r−1)‖r(xl+1)‖r/(r−1)

≥ 2η1
r

αr/(r−1)σ
−1/(r−1)
l ‖gr (xl+1)‖r/(r−1)‖r(xl)‖r/(r−1)βr/(r−1)

and thus applying Lemma 3.11 with i ≥ 1,

‖r(xl)‖1/2i − ‖r(xl+1)‖1/2i

≥ η1α
r/(r−1)

2i r
βr/(r−1)σ

−1/(r−1)
l ‖gr (xl+1)‖r/(r−1)‖r(xl)‖(r/(r−1)−(2i+1−1)/2i )

= η1α
r/(r−1)

2i r
βr/(r−1)σ

−1/(r−1)
l ‖gr (xl+1)‖r/(r−1)‖r(xl)‖(r/(r−1)−3/2)

‖r(xl)‖(3/2−(2i+1−1)/2i )

≥ κdσ
−1/(r−1)
l ‖gr (xl+1)‖r/(r−1)‖r(xl)‖(r/(r−1)−3/2), (4.20)

where κd :=η1α
r/(r−1)

2i r
βr/(r−1)‖r(x0)‖(3/2−(2i+1−1)/2i ), as 3/2 ≤ (2i+1 − 1)/2i and

(3.34) holds.

123



N. I. M. Gould et al.

In particular (4.20) becomes

‖r(xl)‖1/2i − ‖r(xl+1)‖1/2i ≥ κdσ
−1/(r−1)
l ε

(3−r)/2(r−1)
p ε

r/(r−1)
d (4.21)

and (4.10) holds with ε = εpεd , and so

σl ≤ σmax := γ3 max
(
κ1ε

(3−r)/2
p ε

(3−r)/2
d , σ0

)
(4.22)

from Lemma 4.3. Consider the possibility

κ1ε
(3−r)/2
p ε

(3−r)/2
d ≥ σ0. (4.23)

In this case, (4.22) implies that

σ
−1/(r−1)
l ≥ 1

(γ3κ1)1/(r−1)
ε
(r−3)/2(r−1)
p ε

(r−3)/2(r−1)
d

and hence combining with (4.21), we find that

‖r(xl)‖1/2i − ‖r(xl+1)‖1/2i ≥ κd

(γ3κ1)1/(r−1)
ε
3/2
d (4.24)

If (4.23) does not hold,

σ
−1/(r−1)
l ≥ 1

(γ3σ0)1/(r−1)

and thus (4.21) implies that

‖r(xl)‖1/2i − ‖r(xl+1)‖1/2i ≥ κd

(γ3σ0)1/(r−1)
ε
(3−r)/2(r−1)
p ε

r/(r−1)
d

≥ κd

(γ3σ0)1/(r−1)
ε
3/2
d (4.25)

since εp and εd ≤ 1 and r ≥ 3. Hence (4.24) and (4.25) hold when l ∈ Sβ ,

For l ∈ S \ Sβ , for which ‖r(xl+1)‖ ≤ β‖r(xl)‖ and hence ‖r(xl+1)‖1/2i ≤
β1/2i ‖r(xl)‖1/2i . Thus in view of (4.19), we have that

‖r(xl)‖1/2i − ‖r(xl+1)‖1/2i ≥ (1 − β1/2i )‖r(xl)‖1/2i ≥ (1 − β1/2i )ε
1/2i
p (4.26)

for all l ∈ S \ Sβ . Thus, combining (4.24), (4.25) and (4.26), we have that

‖r(xl)‖1/2i − ‖r(xl+1)‖1/2i ≥ min
(
κgε

3/2
d , κrε

1/2i
p

)

123



Convergence and evaluation-complexity analysis of a…

for all l ∈ S, where κg and κr are given by (4.18). Summing over l ∈ Sk and using
(3.34),

‖r(x0)‖1/2i ≥ ‖r(x0)‖1/2i − ‖r(xk+1)‖1/2i ≥ |Sk |min
(
κgε

3/2
d , κrε

1/2i
p

)

and thus that there are at most

|Sk | ≤ ‖r(x0)‖1/2i max
(
κ−1
g ε

−3/2
d , κ−1

r ε
−1/2i
p

)
.

successful iterations. As before, combining this with Lemma 3.6 for ε = εpεd ,
accounting for themax in (4.11) and remembering thatwe need to evaluate the function
and gradient at the final xk+1 yields the bound (4.17). 	


Comparing (3.30) with (4.17), there seems little theoretical advantage (aside from
constants) in using regularization of order more than three. We note, however, that the
constants in the complexity bounds in Sect. 3 depend (inversely) on σmin, while those
in Sect. 4 do not; whether this is important in practice for small chosen σmin depends
on quite how tight our bounds actually are when r = 3.

5 Numerical experiments

We compare the performance of the newly proposed algorithm with a Gauss–Newton
method, with regularization of order two, and a Newton method, with regularization
of order three. We use implementations of these algorithms found in our RALFit
software [28], which is an open-source Fortran package for solving nonlinear least-
squares problems.We apply tensor-Newtonmethods with regularization powers r = 2
and 3, and we solve the subproblem (Step 2 of Algorithm 2.1) by calling the RALFit
code recursively; see [19] for details.

Table 1 reports the number of iterations, function evaluations, and Jacobian evalu-
ations needed to solve the 26 problems in the NIST nonlinear regression test set [27].
We also include the median numbers over all tests.

Table 1 reports that, for most problems in the test set, the tensor-Newton methods
required fewer iterations, function evaluations, and Jacobian evaluations.We can learn
more about the performance of individual problems by looking at convergence curves
that plot the gradient, ‖J T r‖, at each iteration; we give these for a number of the
problems, chosen to represent different behaviours, in Fig. 1. As should be expected,
the asymptotic convergence rate of the Newton approximation is better than that of
Gauss–Newton. We also see that, despite the inferior asymptotic convergence rate of
Gauss–Newton, it often converges in fewer iterations that Newton due to the fact that
it takes longer for Newton to enter this asymptotic regime (see, e.g., [13]). This is the
case in Fig. 1a–c (see also Table 1). Our newly proposed tensor-Newton algorithm
seems to converge at the same asymptotic rate as Newton, but with this regime being
entered into much earlier, as is typical of Gauss–Newton. We credit this behaviour
to the fact that, unlike Newton, the Gauss–Newton and tensor-Newton models are
themselves sums-of-squares. We note that, although we observe something close to

123



N. I. M. Gould et al.

Ta
bl
e
1

R
es
ul
ts
fo
r
th
e
N
IS
T
te
st
se
t

Pr
ob
le
m

G
au
ss
–N

ew
to
n

N
ew

to
n

Te
ns
or

N
ew

to
n
(r

=
2)

Te
ns
or

N
ew

to
n
(r

=
3)

i
t

f
e

j
e

i
t

f
e

j
e

i
t

f
e

j
e

i
t

f
e

j
e

B
E
N
N
E
T
T
5

42
9

43
6

43
0

59
7

88
0

59
8

4
5

5
4

5
5

B
O
X
B
O
D

36
64

37
6

8
7

3
4

4
4

5
5

C
H
W
IR
U
T
1

14
20

15
13

16
14

4
5

5
4

5
5

C
H
W
IR
U
T
2

13
19

14
11

14
12

4
5

5
4

5
5

D
A
N
W
O
O
D

7
8

8
10

11
11

4
5

5
4

5
5

E
C
K
E
R
L
E
4

21
40

22
1

2
2

3
4

4
3

4
4

E
N
SO

20
26

21
9

12
10

4
5

5
4

5
5

G
A
U
SS

1
5

6
6

7
8

8
3

4
4

3
4

4

G
A
U
SS

2
6

7
7

7
8

8
3

4
4

3
4

4

G
A
U
SS

3
7

8
8

9
10

10
3

4
4

3
4

4

H
A
H
N
1

19
20

20
50

86
51

17
29

18
16

26
17

L
A
N
C
Z
O
S1

67
68

68
35

48
36

38
63

39
28

45
29

L
A
N
C
Z
O
S2

68
69

69
35

49
36

38
63

39
28

45
29

L
A
N
C
Z
O
S3

12
1

12
2

12
2

36
51

37
41

66
42

30
47

31

M
G
H
09

14
1

15
6

14
2

−5
00

0
−7

29
6

−5
00

1
54

10
1

55
32

50
33

M
G
H
10

−5
00

0
−5

01
6

−5
00

1
48

1
84

0
48

2
86

16
8

87
55

96
56

M
G
H
17

37
67

38
31

13
33

40
31

14
3

4
4

7
9

8

M
IS
R
A
1A

22
24

23
34

49
35

6
7

7
8

9
9

M
IS
R
A
1B

18
20

19
28

40
29

6
7

7
7

8
8

M
IS
R
A
1C

10
11

11
29

40
30

6
7

7
7

8
8

123



Convergence and evaluation-complexity analysis of a…

Ta
bl
e
1

co
nt
in
ue
d

Pr
ob
le
m

G
au
ss
–N

ew
to
n

N
ew

to
n

Te
ns
or

N
ew

to
n
(r

=
2)

Te
ns
or

N
ew

to
n
(r

=
3)

i
t

f
e

j
e

i
t

f
e

j
e

i
t

f
e

j
e

i
t

f
e

j
e

M
IS
R
A
1D

13
14

14
34

47
35

6
7

7
7

8
8

N
E
L
SO

N
71

81
72

81
12

4
82

16
7

31
0

16
8

34
1

46
2

34
2

R
A
T
42

9
10

10
31

50
32

4
5

5
4

5
5

R
A
T
43

18
19

19
25

32
26

7
11

8
5

6
6

R
O
SZ

M
A
N
1

21
30

22
17

14
2

18
24

25
25

14
6

14
7

14
7

T
H
U
R
B
E
R

33
34

34
26

27
27

5
6

6
9

11
10

M
ed
ia
n

20
.5

25
.0

21
.5

28
.5

43
.5

29
.5

5.
5

6.
5

6.
5

7.
0

8.
0

8.
0

A
ne
ga
tiv

e
va
lu
e
in
di
ca
te
s
th
at
th
e
m
et
ho

d
di
d
no

tc
on
ve
rg
e
w
ith

in
50

00
ite

ra
tio

ns
.i

t
:i
te
ra
tio

ns
,f

e
:f
un
ct
io
n
ev
al
ua
tio

ns
,j

e
:J
ac
ob
ia
n
ev
al
ua
tio

ns
.T

he
be
st
pe
rf
or
m
er

in
ea
ch

ca
te
go
ry

is
bo
ld
fa
ce

123



N. I. M. Gould et al.

Fig. 1 Convergence curves for examples from the NIST test set

123



Convergence and evaluation-complexity analysis of a…

Table 2 Wallclock timings (seconds), with the number of iterations in brackets, for NIST problems where
at least one solver took over 0.5 s

Problem GaussNewton Newton Tensor Newton (r = 2) Tensor Newton (r = 3)

BENNETT5 0.40 (429) 0.59 (597) 0.03 (4) 0.08 (4)

HAHN1 0.01 (19) 0.04 (50) 0.56 (17) 0.58 (16)

LANCZOS1 0.01 (67) 0.02 (35) 0.55 (38) 0.28 (28)

LANCZOS2 < 0.01 (68) 0.02 (35) 0.14 (38) 0.52 (28)

LANCZOS3 0.02 (121) 0.03 (36) 0.56 (41) 0.18 (30)

MGH09 0.01 (141) 0.62 (−5000) 0.23 (54) 0.03 (32)

MGH10 0.31 (−5000) 0.36 (481) 0.18 (86) 0.59 (55)

MGH17 0.01 (37) 0.74 (3113) < 0.01 (3) < 0.01 (7)

NELSON 0.01 (71) 0.05 (81) 0.51 (167) 0.90 (341)

ROSZMAN1 < 0.01 (21) < 0.01 (17) 0.01 (24) 0.55 (146)

A negative number of iterations means the method did not converge

quadratic convergence in practice, whether this is always the asymptotic convergence
rate is an open question (but see “Appendix B”).

Figure 1d shows convergence curves for one of the few tests where the performance
of tensor-Newton is worse than that of the alternatives. All four methods struggle with
this problem initially, but Gauss–Newton and Newton fall into the asymptotic regime
first. Figure 1c, by contrast, shows an example where both variants of tensor-Newton
perform much better than Gauss–Newton/Newton, which both suffer from a long
period of stagnation.

The NIST examples are generally too small to make useful time comparisons. In
Table 2 we report timings for those where at least one of the solvers took over 0.5s.
These computations were performed on a desktop machine running Linux Mint 18.2,
with an Intel Core i7-7700 and 16GB RAM, and we used the gfortran compiler.

We see that the cost of carrying out an iteration of the tensor-Newton method is
significantly higher than that of Gauss–Newton/Newton, but there are examples (e.g.,
BENNETT5, MGH17) where it is the fastest.

In order to demonstrate the behaviour of the algorithms with an expensive function
evaluation, we performed an experiment where we read in the data at each func-
tion/derivative evaluation from a directory stored on a remote computer.We performed
this test for the example closest to the median behaviour in Table 1: MISRA1B. Here,
Gauss–Newton took 0.108 s, Newton 0.148 s, and tensor-Newton 0.004 s. This high-
lights that, while more work needs to be done per iteration in the tensor-Newton
method, once the function has been evaluated and the derivatives calculated, it makes
greater use of the information, which can lead to a faster solution time.

6 Conclusions

We have proposed and analysed a related pair of tensor-Newton algorithms for solving
nonlinear least-squares problems. Under reasonable assumptions, the algorithms have

123



N. I. M. Gould et al.

been shown to converge globally to a first-order critical point.Moreover, their function-
evaluation complexity is as good as the best-known algorithms for such problems. In
particular, convergence to an ε-first-order critical point of the sum-of-squares objec-
tive (1.1) requires at most O

(
ε−min(r/(r−1),3/2)

)
function evaluations with r -th-order

regularization with r ≥ 2. Moreover, convergence to a point that satisfies the more

natural convergence criteria (1.3) takes at most O
(
max(ε−min(r/(r−1),3/2)

d , ε
−1/2i
p

)

evaluations for any chosen i ≥ ⌈
log2 ((r − 1)/(r − 2))

⌉
. Whether such bounds may

be achieved is an open question.
Although quadratic (r = 2) regularization produces the poorest theoretical worst-

case bound in the above, in practice it often performs well. Moreover, although
quadratic regularization is rarely mentioned for general optimization in the literature
(but see [2] for a recent example), it is perhaps more natural in the least-squares setting
since the Gauss- and tensor-Newton approximations (2.2) are naturally bounded from
below and thus it might be argued that regularization need not be so severe. The rather
weak dependence of the second bound above on εp is worth noting. Indeed, increasing
i reduces the influence, but of course the constant hidden by the O(·) notation grows
with i . A similar improvement on the related bound in [9, Theorem 3.2] is possible
using the same arguments.

It is also possible to imagine generalizations of the methods here in which
the quadratic tensor-Newton model in (2.1) is replaced by a p−th-order Taylor
approximation (p > 2). One might then anticipate evaluation-complexity bounds
in which the exponents min(r/(r − 1), 3/2) mentioned above are replaced by
min(r/(r −1), (p+1)/p), along the lines considered elsewhere [11,12]. The limiting
applicability will likely be the cost of computing higher-order derivative tensors.

An open question relates to the asymptotic rates of convergence of our methods. It
is well known that Gauss–Newton methods converge quadratically for rank-deficient
problems under reasonable assumptions, but that a Newton-like method is needed to
achieve this rate when the optimal residuals are nonzero. It is not clear what the rate
is for our tensor-Newton method. The main obstacle to a convincing analysis is that,
unlike its quadratic counterpart, a quartic model such as used by the tensor-Newton
may have multiple minimizers. Our inner-iteration stopping criteria make no attempt
to distinguish, indeed to do so would require global optimality conditions. In practice,
however, we generally observe at least quadratic convergence, sometimes even faster
when the optimal residuals are zero. In “Appendix B”, we indicate that a reasonable
choice of the step sk in Algorithm 2.1 does indeed converge with an asymptotic Q rate
of r − 1 for 2 < r < 3 under standard assumptions. Extending this to Algorithm 4.1
is less obvious as it is unclear that the additional required acceptance test (4.2) might
not deny an otherwise rapidly-converging natural choice of the step.

Our interest in these algorithms has been prompted by observed good behaviour
when applied to practical problems [19]. The resulting software is available as part of
the RALFit [28] and GALAHAD [18] software libraries.

Acknowledgements The authors are grateful to two referees and the editor for their very helpful comments
on the original draft of this paper.

123



Convergence and evaluation-complexity analysis of a…

Appendix A: Proofs of function bounds (3.1)–(3.4)

We assume that ri (x), i = 1, . . . ,m are twice-continuously differentiable, and that
they and their first two derivatives are Lipschitz on the intervals Fk = {x : x =
xk + αsk for some α ∈ [0, 1]}. Therefore

‖r(x) − r(y)‖ ≤ L r‖x − y‖, ‖J (x) − J (y)‖ ≤ L j‖x − y‖
and ‖∇xxri (x) − ∇xxri (y)‖ ≤ L h‖x − y‖ (A.1)

for x , y ∈ Fk . Moreover, these Lipschitz bounds imply that

‖∇xri (x)‖ ≤ L r, ‖J (x)‖ ≤ L r and ‖∇xxri (x)‖ ≤ L j (A.2)

for x ∈ Fk [25, Lemma 1.2.2]. It follows from Taylor’s theorem and (A.1) that

|ri (xk + sk) − ti (xk, sk)| ≤ 1
6 L h‖sk‖3, (A.3)

and from the definition (2.1) of ti (x, s), the Cauchy-Schwarz inequality, (A.2) and the
monotonicity bound

|ri (xk)| ≤ ‖r(xk)‖ ≤ ‖r(x0)‖ (A.4)

that

|ti (xk, sk)| ≤ |ri (xk)| + ‖∇xri (xk))‖‖sk‖ + 1
2‖∇xxri (xk)‖‖sk‖2

≤ ‖r(x0)‖ + L r‖sk‖ + 1
2 L j‖sk‖2. (A.5)

But, using (A.3)–(A.5),

|r2i (xk + sk) − t2i (xk, sk)| = |ri (xk + sk) − ti (xk, sk)||ri (xk + sk) + ti (xk, sk)|
≤ 1

6 L h‖sk‖3(|2ti (xk, sk)| + L h‖sk‖3)
≤ 1

6 L h‖sk‖3(2‖r(x0)‖ + 2L r‖sk‖ + L j‖sk‖2 + L h‖sk‖3).

Thus if ‖sk‖ ≤ 1, it follows from the triangle inequality that

| 12‖r(xk + sk)‖2 − 1
2‖t(xk, sk)‖2| ≤ 1

12mL h(2‖r(x0)‖ + 2L r + L j + L h)

which provides the bound (3.1) with L f:= 1
12mL h(2‖r(x0)‖ + 2L r + L j + L h).

Taylor’s theorem once again gives that

‖∇xri (xk + sk) − ∇s ti (xk, sk)‖ ≤ 1
2 L j‖s‖2. (A.6)

123



N. I. M. Gould et al.

But then the triangle inequality together with (A.3), (A.5) and (A.6) give

‖ri (xk + sk)∇xri (xk + sk) − ti (xk, sk)∇s ti (xk, sk)‖
= ‖(ri (xk + sk) − ti (xk, sk))∇xri (xk + sk)

+ti (xk, sk)(∇xri (xk + sk) − ∇s ti (xk, sk))‖
≤ |ri (xk + sk) − ti (xk, sk)|‖∇xri (xk + sk)‖

+|ti (xk, sk)|‖∇xri (xk + sk) − ∇s ti (xk, sk)‖
≤ 1

6 L hL j‖sk‖3 + 1
2 L j(‖r(x0)‖ + L r‖sk‖ + 1

2 L j‖sk‖2)‖sk‖2.

Hence, if ‖sk‖ ≤ 1, we have that

|�(xk + sk) − m(xk, sk)| ≤ m
(
1
6 L hL j + 1

2 L j(‖r(x0)‖ + L r + 1
2 L j)

)
,

which is (3.2) with L g:=m( 1
6 L hL j + 1

2 L j(‖r(x0)‖ + L r + 1
2 L j)).

The bound (3.3) follows immediately fromCauchy-Schwarz and (A.2)with L J:=L r.
Finally (A.2), (A.4) and the well-known relationship ‖ · ‖1 ≤ √

m‖ · ‖ between the �1
and Euclidean norms give

‖H(xk, r(xk))‖ =
∥
∥
∥
∥
∥

m∑

i=1

ri (xk)∇xxri (xk)

∥
∥
∥
∥
∥

≤
m∑

i=1

|ri (xk)|‖∇xxri (xk)‖

≤ ‖r(xk)‖1L j ≤ √
mL j‖r(x0)‖,

which is (3.4) with LH := √
mL j.

Appendix B: Superlinear convergence

We focus onAlgorithm 2.1 and2 the case 2 < r < 3. Denote the leftmost eigenvalue of
a generic real symmetric matrix H by λmin[H ]. Consider the gradient ∇smR(x, s, σ )

of the regularized model given by (2.4). It follows from (2.1) and (2.2) that

∇sm
R(xk , s, σk)

=
m∑

i=1

(
ri (xk) + sT∇xri (xk) + 1

2 s
T∇xxri (xk)s

)
(∇xri (xk) + ∇xxri (xk)s) + σk‖s‖r−2s

= gk + (Hk + σk‖s‖r−2 I )s +
m∑

i=1

(
sT∇xri (xk)

)
∇xxri (xk)s

+ 1
2

m∑

i=1

(
sT∇xxri (xk)s

)
∇xri (xk) + 1

2

m∑

i=1

(
sT∇xxri (xk)s

)
∇xxri (xk)s, (B.1)

2 It is unclear what happens when r = 2 or 3.

123



Convergence and evaluation-complexity analysis of a…

where for brevity we have written

gk :=∇x�(xk) ≡ J T (xk)r(xk) and Hk :=∇xx�(xk) ≡ H(xk, r(xk))+ J T (xk)J (xk).

Ideally one might hope to choose s in (B.1) to make ∇smR(xk, s, σk) = 0, but this
is generally unrealistic as ∇smR(x, s, σ ) is a combination of a cubic function and the
derivative of the regularization term. A tractable compromise is to pick s = sN

k , so that

(Hk + λk I )s
N
k = −gk, (B.2)

where

λk := σk‖sN
k‖r−2 ≥ 0. (B.3)

since this provides a zero of the lower-order terms in (B.1).
We will try sk = sN

k if Hk is positive definite, with leftmost eigenvalue
λmin,k :=λmin[Hk] > 0, and three essential properties hold, namely that

mR(xk, s
N
k , σk) < mR(xk, 0, σk), (B.4)

‖∇sm
R(xk, s

N
k , σk)‖ ≤ θ‖sN

k‖r−1 and (B.5)

�(xk) − �(xk + sN
k )

m(xk, 0) − m(xk, sN
k )

≥ η1 (B.6)

If so, sN
k provides a successful step in Algorithm 2.1, since (B.4)–(B.6) are then that

(2.5)–(2.6) and ρk ≥ η1 hold, We are not specific about how sk is chosen when Hk is
not positive definite, nor how sk might be chosen if sN

k does not provide a successful
step.

Consider the sub-sequence of iterates {xk}, k ∈ K, whose limit is x∗ (and thus for
which g∗:=∇x�(x∗) = 0 because of Theorem 3.9), suppose that∇x�(x) is Lipschitz
continuous in an open neighbourhood of x∗ and that λmin,∗:=λmin[∇xx�(x∗)] > 0.
Then, for all k ∈ K sufficiently large, λmin,k ≥ 1

2λmin,∗. This ensures that

‖(Hk + λk I )
−1‖ ≤ 1

λmin,k + λk
≤ 1

λmin,k
≤ 2

λmin,∗
, (B.7)

and hence (B.2) and (B.7) provides the bound

‖sN
k‖ ≤ ‖(Hk + λk I )

−1‖‖gk‖ ≤ 2‖gk‖
λmin,∗

. (B.8)

But Lipschitz continuity and Taylor’s theorem applied to ∇x�(x) yields

‖gk‖ = ‖g∗ − gk‖ ≤ L1‖x∗ − xk‖

123



N. I. M. Gould et al.

and

‖g∗ − gk − Hk (x∗ − xk) ‖2 ≤ L2‖x∗ − xk‖22 (B.9)

for some constants L1, L2 > 0, and thus

‖sN
k‖ ≤ 2L1

λmin,∗
‖x∗ − xk‖ (B.10)

because of (B.8).
Define

κs := 2L2

λmin,∗

(

L2 + σmax

(
2L1

λmin,∗

)r−2
)

, (B.11)

where σmax is given by (3.17), and suppose that xk ∈ X , where

X =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

x ∈ Bδ and ‖x − x∗‖ ≤ min

⎛

⎝

(
1

2κs

)1/(r−2)

,

λmin,∗
2L1

min

[

1,min

(
(r − 2)σmin

mrL j(L r + L j)
,

2θ

mL j(3L r + L j)
,
σmin(1 − η2)

r L f

)1/(3−r)
])

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

.

(B.12)

and Bδ = {x | ‖x − x∗‖ ≤ δ} is any ball around x∗ of fixed radius δ > 0 for which
λmin[∇xx�(x)] ≥ 1

2λmin,∗ for all x ∈ Bδ . In this case (B.10) guarantees that

‖sNk ‖ ≤ min

[

1,

(
(r − 2)σmin

mrL j(L r + L j)

)1/(3−r)

,

(
2θ

mL j(3L r + L j)

)1/(3−r)

,

(
σmin(1 − η2)

r L f

)1/(3−r)
]

,

(B.13)

and hence, trivially,

‖sN
k‖3 ≤ ‖sN

k‖2 ≤ ‖sN
k‖r−1 ≤ ‖sN

k‖. (B.14)

We now establish the required bounds (B.4)–(B.6). Firstly, expanding the definition
(2.2) of m(x, s) gives

m(xk , s
N
k ) − m(xk , 0) = gTk s

N
k + 1

2 s
N T
k Hks

N
k + e(xk , s

N
k ),

where e(xk , s
N
k ) := 1

2

m∑

i=1

sN T
k ∇xri (xk)s

N T
k ∇xxri (xk)s

N
k + 1

8

m∑

i=1

(
sN T
k ∇xxri (xk)s

N
k

)2
,

(B.15)

123



Convergence and evaluation-complexity analysis of a…

and it follows directly from the Cauchy-Schwarz inequality, (A.2) and (B.14) that

e(xk, s
N
k ) ≤ 1

2m‖sN
k‖3L rL j + 1

8mL2
j ‖sN

k‖4 < 1
2mL j(L r + L j)‖sN

k‖3. (B.16)

Substituting (B.15) into the definition (2.3) of the regularized modelmR(x, s, σ ) gives

mR
(
xk, s

N
k , σk

) − mR (xk , 0, σk) = m(xk, s
N
k ) − m(xk, 0) + σk

r

∥
∥sNk

∥
∥r

= gTk s
N
k + 1

2 s
N T
k Hks

N
k + σk

r

∥
∥sNk

∥
∥r + e

(
xk , s

N
k

)

= − 1
2 s

N T
k (Hk + λk I )s

N
k − r − 2

2r
σk

∥
∥sNk

∥
∥r + e

(
xk, s

N
k

)

< − 1
2

r − 2

r
σmin

∥
∥sNk

∥
∥r + 1

2mL j(L r + L j)
∥
∥sNk

∥
∥3 < 0

because of the positive semi-definiteness of Hk + λk I , the requirement that σk ≥
σmin > 0, and the bounds (A.2) and (B.16) and the second term in (B.13). This
provides the required bound (B.4).

It also follows immediately from (B.1) and (B.2) that

∥
∥∇sm

R
(
xk, s

N
k , σk

)∥
∥ ≤ 3

2mL rL j

∥
∥sN

k

∥
∥2 + 1

2mL2
j

∥
∥sN

k

∥
∥3 ≤ θ

∥
∥sN

k

∥
∥r−1

using the triangle inequality, (A.2) and the third term in (B.13), which establishes
(B.5).

Finally, it follows precisely as in (3.16) that

|ρk − 1| = |�(xk + sN
k ) − m(xk, sN

k )|
m(xk, 0) − m(xk, sN

k )
≤ r L f

σk

∥
∥sN

k

∥
∥3−r ≤ r L f

σmin

∥
∥sN

k

∥
∥3−r

since σk ≥ σmin > 0. Combining this with the fourth term in (B.13) immediately
gives that |ρk − 1| ≤ 1 − η2 and hence that (B.6) holds. Thus we have shown that sN

k
is allowed by Step 2 of Algorithm 2.1, and leads to a successful iteration for which
xk+1 = xk + sN

k .
Our intention is to show that

‖xk+1 − x∗‖ ≤ κ‖xk − x∗‖r−1 (B.17)

for some κ > 0, and hence the resulting iteration ultimately converges at a (Q-order
r − 1) superlinear rate. The iterate xk+1 = xk + sN

k satisfies

xk+1 − x∗ = xk + sN
k − x∗

= xk − x∗ − (Hk + λk I )
−1gk

= xk − x∗ − (Hk + λk I )
−1 (gk − g∗)

= (Hk + λk I )
−1 (g∗ − gk − (Hk + λk I )(x∗ − xk))

= (Hk + λk I )
−1 (g∗ − gk − Hk(x∗ − xk) − λk(x∗ − xk)) . (B.18)

123



N. I. M. Gould et al.

Taking norms and combining this with (B.9) gives

‖xk+1 − x∗‖ ≤ L2‖(Hk + λk I )
−1‖

(
L2‖x∗ − xk‖2 + λk‖x∗ − xk‖

)

≤ 2L2

λmin,∗

(

L2‖x∗ − xk‖2 + σmax

(
2L1

λmin,∗

)r−2

‖x∗ − xk‖r−1

)

≤ κs‖x∗ − xk‖r−1 (B.19)

using (B.18), (B.7), (B.3), (B.10) and (B.11) and the appropriate bound σk ≤ σmax
from (3.17). Thus (B.17) holds. Moreover, it also follows from (B.19) and the first
term in (B.12) that

‖xk+1 − x∗‖ ≤ 1
2‖xk − x∗‖,

in which case xk+1 ∈ X and thus (B.12) continues to hold at iteration k + 1. Hence
once an iterate entersX , it will remain there, and the remaining sequencewill converge
superlinearly to x∗.

References

1. Birgin, E.G., Gardenghi, J.L., Martínez, J.M., Santos, S.A., Toint, PhL: Worst-case evaluation com-
plexity for unconstrained nonlinear optimization using high-order regularized models. Math. Program.
163(1), 359–368 (2017)

2. Birgin, E.G., Martinez, J.M.: Quadratic regularization with cubic descent for unconstrained optimiza-
tion. Technical Report MCDO271016, State University of Campinas, Brazil (2016)

3. Björck, Å.: Numerical Methods for Least Squares Problems. SIAM, Philadelphia (1996)
4. Bouaricha, A., Schnabel, R.B.: Algorithm 768: TENSOLVE: a software package for solving systems of

nonlinear equations and nonlinear least-squares problems. ACM Trans. Math. Softw. 23(2), 174–195
(1997)

5. Bouaricha, A., Schnabel, R.B.: Tensor methods for large, sparse nonlinear least squares problems.
SIAM J. Sci. Stat. Comput. 21(4), 1199–1221 (1999)

6. Cartis, C., Gould, N.I.M., Toint, PhL: On the complexity of steepest descent, Newton’s method and
regularized Newton’s methods for nonconvex unconstrained optimization problems. SIAM J. Optim.
20(6), 2833–2852 (2010)

7. Cartis, C., Gould, N.I.M., Toint, PhL: Adaptive cubic regularisation methods for unconstrained opti-
mization. Part I:motivation, convergence andnumerical results.Math. Program.Ser.A 127(2), 245–295
(2011)

8. Cartis, C., Gould, N.I.M., Toint, PhL: Adaptive cubic regularisation methods for unconstrained opti-
mization. Part II: worst-case function and derivative-evaluation complexity. Math. Program. Ser. A
130(2), 295–319 (2011)

9. Cartis, C., Gould, N.I.M., Toint, PhL: On the evaluation complexity of cubic regularizationmethods for
potentially rank-deficient nonlinear least-squares problems and its relevance to constrained nonlinear
optimization. SIAM J. Optim. 23(3), 1553–1574 (2013)

10. Cartis, C., Gould, N.I.M., Toint, Ph.L.: Evaluation complexity bounds for smooth constrained non-
linear optimization using scaled KKT conditions and high-order models. Report naXys-11-2015(R1),
University of Namur, Belgium (2015)

11. Cartis, C.,Gould,N.I.M., Toint, Ph.L.: Improvedworst-case evaluation complexity for potentially rank-
deficient nonlinear least-Euclidean-norm problems using higher-order regularized models. Technical
Report RAL-TR-2015-011, Rutherford Appleton Laboratory, Chilton, Oxfordshire (2015)

123



Convergence and evaluation-complexity analysis of a…

12. Cartis, C., Gould, N.I.M., Toint, Ph.L.: Universal regularization methods-varying the power, the
smoothness and the accuracy. Preprint RAL-P-2016-010, Rutherford Appleton Laboratory, Chilton,
Oxfordshire (2016)

13. Chen, P.: Hessian matrix vs. Gauss–Newton Hessian matrix. SIAM J. Numer. Anal. 49(4), 1417–1435
(2011)

14. Curtis, F.E., Lubberts, Z., Robinson, D.P.: Concise complexity analyses for trust-region methods.
Technical Report 01-2018, Johns Hopkins University, Baltimore (2018)

15. Curtis, F.E.,Robinson,D.P., Samadi,M.:A trust region algorithmwith aworst-case iteration complexity
of O(ε−3/2) for nonconvex optimization. Math. Program. 162(1–2), 1–32 (2017)

16. Dennis, J.E., Gay, D.M., Welsh, R.E.: An adaptive nonlinear least squares algorithm. ACM Trans.
Math. Softw. 7(3), 348–368 (1981)

17. Gill, P.E., Murray, W.: Algorithms for the solution of the nonlinear least squares problem. SIAM J.
Numer. Anal. 15(5), 977–992 (1978)

18. Gould, N.I.M., Orban, D., Toint, PhL: GALAHAD—a library of thread-safe Fortran 90 packages for
large-scale nonlinear optimization. ACM Trans. Math. Softw. 29(4), 353–372 (2003)

19. Gould, N.I.M., Rees, T., Scott, J.A.: A higher order method for solving nonlinear least-squares prob-
lems. Technical Report RAL-P-2017-010, STFC Rutherford Appleton Laboratory (2017)

20. Grapiglia, G.N., Nesterov, Y.: Regularized Newton methods for minimizing functions with Hölder
continuous Hessians. SIAM J. Optim. 27(1), 478–506 (2017)

21. Levenberg, K.: A method for the solution of certain problems in least squares. Q. Appl. Math. 2(2),
164–168 (1944)

22. Marquardt, D.: An algorithm for least-squares estimation of nonlinear parameters. SIAM J. Appl.
Math. 11(2), 431–441 (1963)

23. Moré, J.J.: The Levenberg-Marquardt algorithm: implementation and theory. In: Watson, G.A. (ed.)
Numerical Analysis, Dundee 1977, Number 630 in Lecture Notes in Mathematics, pp. 105–116.
Springer, Berlin (1978)

24. Morrison, D.D.: Methods for nonlinear least squares problems and convergence proofs. In: Lorell, J.,
Yagi, F (eds.) Proceedings of the Seminar on Tracking Programs and Orbit Determination, pp. 1–9,
Pasadena. Jet Propulsion Laboratory (1960)

25. Nesterov,Yu.: IntroductoryLectures onConvexOptimization.KluwerAcademicPublishers,Dordrecht
(2004)

26. Nesterov, Yu., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Math.
Program. 108(1), 177–205 (2006)

27. NIST Nonlinear Regression Datasets. http://www.itl.nist.gov/div898/strd/nls/nls_main.shtml.
Accessed June 2018

28. RALFit. https://github.com/ralna/RALFit. Accessed 20 July 2018
29. Transtrum, M.K., Machta, B.B., Sethna, J.P.: Why are nonlinear fits to data so challenging? Phys. Rev.

Lett. 104(6), 060201 (2010)
30. Transtrum, M.K., Sethna, J.P.: Geodesic acceleration and the small-curvature approximation for non-

linear least squares (2012). arXiV.1207.4999
31. Zhang, H., Conn, A.R.: On the local convergence of a derivative-free algorithm for least-squares

minimization. Comput. Optim. Appl. 51(2), 481–507 (2012)
32. Zhang, H., Conn, A.R., Scheinberg, K.: A derivative-free algorithm for least-squares minimization.

SIAM J. Optim. 20(6), 3555–3576 (2010)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://www.itl.nist.gov/div898/strd/nls/nls_main.shtml
https://github.com/ralna/RALFit
http://arxiv.org/abs/1207.4999

	Convergence and evaluation-complexity analysis of a regularized tensor-Newton method for solving nonlinear least-squares problems
	Abstract
	1 Introduction
	2 The tensor-Newton method
	3 Convergence analysis
	4 A modified algorithm for cubic-and-higher regularization
	5 Numerical experiments
	6 Conclusions
	Acknowledgements
	Appendix A: Proofs of function bounds (3.1)–(3.4)
	Appendix B: Superlinear convergence
	References




