
Mathematical Programming 45 (1989) 475-501 475
North-Holland

NEW CRASH P R O C E D U R E S FOR LARGE S Y S T E M S OF
L I N E A R C O N S T R A I N T S

Nicho la s I .M. G O U L D and John K. R E I D

Computer Science and Systems Division, Harwell Laboratory, Oxfordshire, UK

Many algorithms for solving linearly constrained optimization problems maintain sets of basic
variables. The calculation of the initial basis is of great importance as it determines to a large
extent the amount of computation that will then be required to solve the problem. In this paper,
we suggest a number of simple methods for obtaining an initial basis and perform tests to indicate
how they perform on a variety of real-life problems.

Key words: Linear constraints, simple bounds, initial basis, feasible point.

1. Introduction

In this p a p e r we shall be conce rned with f inding a vec tor x that satisfies the sys tem

of l inear equa t ions

Ax = b (1.1a)

and s imple b o u n d cons t ra in ts

bl<~x <~ bu, (1.1b)

where A is an m by n real matr ix , b is a real m-vector , b~ and bu are real n-vectors

wi th poss ib ly infinite coefficients and the inequal i t i es (1.1b) are t aken c o m p o n e n t -

wise. We assume that b~ and bu sat isfy the inequa l i ty b~<~ bu. We will refer to the

p r o b l e m of f inding a so lu t ion to (1.1) as the feasible point problem and say that any

x which solves the p r o b l e m is a feasible point. We shall be pa r t i cu la r ly conce rned

with the feas ible po in t p r o b l e m when m and n are large and the matr ix A is sparse.

Not ice tha t it is s t r a igh t fo rward to reduce a p r o b l e m with genera l l inear inequal i t ies

to this fo rm by in t roduc ing an extra " s l a ck" var iab le for each inequal i ty .

M a n y op t imiza t ion p r o b l e m s require the m i n i m u m or m a x i m u m value of a real

func t ion

f (x) (1.2)

over vectors x for which (1.1) is satisfied. Such p rob lems are of ten ca l led l inear ly

cons t r a ined op t imiza t ion p rob lems . Of pa r t i cu la r i m p o r t a n c e are the l inear p r o g r a m -

ming p rob lem, where f (x) is l inear, and the quad ra t i c p r o g r a m m i n g p rob lem, where

f (x) is quadra t ic . Typ ica l a lgor i thms for the so lu t ion of such p rob l ems start f rom

476 N.LM. Gould, J.K. Reid / Crash procedures

a feasible point and generate a sequence o f " i , np roved" feasible points, the linearity
of (1.1) enabling feasibility to be maintained. For such schemes, it is then crucial

that an initial feasible point be determined. Unfortunately, the problem of finding
a feasible point is often as hard as solving the underlying optimization problem.
Indeed, the feasible point problem has the same complexity bound as the linear
programming problem (see, for instance, Papadimitriou and Steiglitz, 1982, pp.

170-173).
One way of tackling the feasible point problem is to introduce extra, artificial,

variables z,i and wi (i= 1 , . . . , m) and yi and z~ (i = 1 , . . . , n) and consider the

problem of minimizing

e T (V + z) (1.3a)
\ y +

subject to the linear constraints

A x + v - w + A y - A z = b (1.3b)

and simple bounds

b~<~x<~bu, v>~O, w>~O, y>~O and z~>O, (1.3c)

where e is a vector of ones. Clearly, (1.1) has a feasible solution if and only if (l.3)

has an optimal solution of zero. The problem (1.3) is one of many initialpoint or
phase-1 problems that have been suggested; others include replacing e in (1.3a) by

a vector of weights or including a contribution from f(x).
Problem (1.3) is a linear program that may be solved by the simplex method

(Dantzig, 1963). At each step of this method, the variables are partitioned into two
sets called basic and nonbasic variables. There are always m basic variables and
the corresponding columns of

(A I - I A - A)

form a nonsingular matrix B called the basis matrix or basis for short. The nonbasic

components of x always satisfy their bounds (each usually lies at a bound) and the
nonbasic artificial variables always have the value zero. The corresponding values
of the basic variables also satisfy their bounds and may be found from (1.3b) by

solving a set of equations whose matrix is the basis B. The simplex method changes
the basis by one column at a time in such a way that B remains nonsingular, the
bounds are satisfied and the function (1.3a) decreases. It continues until an optimal
solution is found, which gives a feasible solution for the original problem if the
corresponding value (1.3a) is zero.

Note that at a feasible point we may still have some artificial basic variables,
though they must have the value zero; indeed this will always happen if the rank

N.LM. Gould, J.K. Reid / Crash procedures 477

of A is smaller than m (for example if an equation is accidentally repeated) for

otherwise B would be singular. We would normally expect most of the basic variables
to have values away from their bounds.

Given any set of m columns of (A I) that forms a nonsingular matrix, a basis
and corresponding basic solution of (1.3) may be found as follows. Take the given
set of columns to define a tentative basis R If column i of A is not in B, give the
variable xi a value satisfying its bounds (1.1b). If column i of I is not in B, give
the variable vi the value zero. Solve the equation

A x + v = b (1.4)

for the remaining values. I f any variable vi is negative, replace it in the basic set by

the corresponding wi and change the sign of the corresponding column of B. I f any
xi lies above its upper bound, replace it in the basic set by the corresponding yi,
setting the value of y~ to the discrepancy and resetting x~ to its upper bound. I f any

x~ lies below its lower bound, replace it in the basic set by the corresponding z~, set
the value of z~ to the discrepancy, reset xi to its lower bound, and change the sign
of the corresponding column of B.

Note that a practical implementation does not need to store two extra copies of

A or any copies o f / . All that is necessary is to attach suitable flags to the basic
variables to indicate their origin.

The time taken by the simplex algorithm in solving a particular problem (1.3) is

very roughly proportional to no, the number of nonzero components of v, w, y and
z in the initial basic solution. (no is a lower bound on the number of simplex

iterations. In some implementations, when a variable y~ or zj reaches zero, it can

be replaced by Xi by a very economical change of basis. The total computational
cost is then less directly related to no.) It is therefore highly desirable to keep this
number small. An initial choice of ! for the basis is commonly used in linear
programming teaching texts. However, this choice is normally undesirable as it is
likely that few, if any, components of v will still be present in an optimal basic
solution and considerable work will be necessary to replace them.

Practical codes usually contain some heuristic algorithm that aims to find a good

initial basis quickly. Usually this is a triangular matrix because it is then easy to
ensure that it is nonsingular and solving the corresponding sets of equations is also
easy. A very sophisticated algorithm is unlikely to compete with the simplex
algorithm applied to (1.3) from a poor start. Therefore, a crude algorithm is tolerated
as long as it is quick and gives the simplex method a reasonably good start. This
is the reason for calling the process "crashing". Unfortunately, the literature appears

to be greatly lacking in descriptions of crash algorithms but we describe those that
we have found in Section 2. In Section 3, we describe an algorithm that has been
in use at Harwell for some ten years; in Section 4, we describe a new heuristic
algorithm that is based on first permuting A to block lower triangular form; and in
Section 5, we consider alternative ways to find this block form. Numerical results
are given in Sections 6 to 8, and concluding comments made in Section 9.

478 N.LM. Gould, J.K. Reid / Crash procedures

2. Existing crash algorithms

A summary of crashing techniques available in 1968 is given by Carstens (1968) in
the book by Orchard-Hays (1968), and we have been unable to find a comparable
recent summary. For example, in his book on linear programming, Chv~tal (1983)
mentions exchanging artificial variables for any slack variables that have been

introduced to convert inequalities to the equations (1.1a), and this is the only crash
algorithm described.

Carstens assumes that a starting set of basic variables is given. Failing other
information, it may consist entirely of artificial variables, but often experience with
similar problems allows a better choice to be made. I f the starting basis B is not
equal to I, he multiplies (1.1a) by B -1 to yield an equivalent problem in which A
is replaced by B - ~ A and b is replaced by B - t b . For the new problem, the starting

basis is /, so there is no loss of generality in considering only the case B = / . The
aim is to replace artificial columns of the basis by columns of A. When column j

of A replaces column i of B, the entry a o plays a special role and is called the pivot .

A sequence of nonzeros of A is chosen for pivots. Each pivot a 0 must lie in a
column j that is nonbasic and has zeros in all of the rows of preceding pivots. This
leads to a basis that is a symmetric permutation of a lower triangular matrix (the
permutation brings the successive pivot rows into positions 1, 2, . . .) . The fact that
it is a permutation of a triangular matrix ensures that it is nonsingular and it is
hoped that many artificial variables will be removed.

There remains considerable choice for the pivots and Carstens distinguishes two
classes of algorithms, which he calls " G A I N switch on" and " G A I N switch off".
With the G A I N switch off, the objective function (1.3a) is ignored and the choice
is made on sparsity grounds alone. I f column j of A has c s nonzeros and row i has
ri nonzeros, he mentions the following possibilities:

(a) consider the nonbasic columns in order of increasing % and choose the pivot
a o to be a nonzero that minimizes ri;

(b) consider the rows in order of increasing ri, and choose the pivot ao to be a
nonzero that minimizes cj for j nonbasic;

(c) consider the nonzeros in order of increasing (r i - 1) (C i - 1) f o r j nonbasic.
With the G A I N switch on, a basis change is made only if it leads to an improvement

in the objective function (l.3a). Therefore, any column without an advantageous
reduced cost (see, for instance, Chvfital, 1983, for the meaning of this terminology)
is rejected. Once a column has been selected, the pivot is chosen for the greatest

improvement in (1.3a). The columns may be taken sequentially or grouped and the
best improvement in the group chosen.

Carstens also suggest hybrid algorithms in which the objective function is used
as a tie-breaker for a sparsity choice or a sparsity measure is used as a tie-breaker
on function reduction.

Carstens makes no firm recommendations, but prefers the G A I N switch off when
the starting basis is totally or mostly artificial and the G A I N switch on when it has

N.I.M. Gould, J,K, Reid / Crash procedures 479

few artificials. He also mentions the possibility of a further "grand cycle", that is
using the basis found as a fresh starting basis for another round of crashing, but
says that there is rarely any advantage in doing this.

Following conversations with Martin Beale, John Tomlin and Mike Saunders,

one of us (Reid) conducted some numerical experiments ten years ago that favoured
generating a sparse basis containing as many columns of A as possible but ignoring

the objective function (G A I N switch off in Carstens ' terminology). This algorithm
is explained in the next section. The other algorithms that he tried were significantly
slower and frequently produced worse results. Note that in practice b is often sparse
and many of the constraints are simple positivity bounds x i~0 . Under these
circumstances, a very sparse B is likely to be reducible and yield many zero
components of x, so there may be few infeasibilities.

The package MINOS (Murtagh and Saunders, 1987) contains a crash algorithm

that is a variant of Carstens ' GAIN-switch-off algorithm and is typical of those of
mathematical programming systems of the 1970s. Here, a pivot a;j may be selected
because its row contains zeros in all the columns that have so far been chosen as
basic or because its column contains zeros in all the rows that have been pivotal.
In the former case, the new column is placed at the front of the set of columns so

far selected. In the latter case, it is placed behind the set of columns so far selected.
Carstens considered only the latter case. In MINOS, a pivot of the former kind is

preferred, and ties are otherwise broken by choosing the largest nonzero. The pivots
are chosen in three passes:

(1) f o r j = 1, 2 , . . . n, if xj is free (its bounds are infinite), column j is considered;
(2) for j = 1, 2 n, column j is considered if it has not already been chosen,

but is not selected unless a pivot can be found in a row that was not originally an
inequality (see the first paragraph of Section 1);

(3) for j = 1, 2 , . . . n, column j is considered if it has not already been chosen;
and artificials are used to complete the basis.

In addition, MINOS ignores (treats as if zero) any entry that does not satisfy the

inequality

[a~jl ~> u maxla~{ (2.1)

for a preset tolerance u (with default value 0.1). The chosen pivots therefore satisfy
(2.1) and the basis may contain small entries outside the (permuted) triangular form.

3. The upper-triangular algorithm

The algorithm that Reid developed generates a basis that is upper triangular when

permuted to place the pivots on the diagonal in their order of generation, as opposed
to lower triangular in Carstens' GAIN-off algorithms. This means that a column
that is chosen late is required to have a nonzero in at least one row that has not

480 N.LM. Gould, J.K. Reid / Crash procedures

yet been pivotal, a less stringent requirement than needing zeros in all the rows that
have been pivotal.

The matrix A is first scanned for column singletons and as each is found, it is
introduced into the basis and the row containing its entry is flagged. When testing
later columns for being singletons, flagged rows are ignored. During the search, the

number k I of nonzeros in the shortest column that is neither empty nor a singleton
(excluding flagged rows, of course) is determined. Note that any slack variables
introduced into the problem to handle inequalities (see the first paragraph of Section
1) correspond to singleton columns.

I f the basis is not completed during the scan, a second search is commenced
during which columns of length up to k~ are accepted. I f an accepted column is
not a singleton, the greatest candidate pivot is taken, artificial variables v~ are

introduced for the other candidates and the rows of all of the candidates are flagged.
During this scan, the length k2 of the shortest rejected candidate column is recorded.

Such sweeps continue until the basis is complete or until a preset limit on the
number of sweeps is reached (default value 10). During sweep s, the length k~ of
the shortest rejected candidate column is recorded, together with the number of

such candidates. Sweep s + 1 normally uses the threshold k~, but if sweep s finds
fewer columns of length k, than the average needed for the remaining sweeps, sweep
s + 1 uses the threshold k~ + 1 in order to make rapid progress more certain. Note

that if sweep s fails to find any columns, sweep s + 1 is bound to find one or more

columns.
Our experience is that usually three or four sweeps suffice, but that occasionally

six or seven are needed. I f the limit is reached, the basis is completed with artificials.
For the sake of numerical stability, we accept pivots only if they satisfy the relative

pivot tolerance (2.1).

4. The tearing algorithm

We now describe a new algorithm for attempting to solve problem (1.1). The strategy
we adopt is one of breaking the problem into smaller pieces and solving an initial
point problem for each piece. We shall assume that we have a good method for

solving dense linear programs involving t or fewer equations; we have in mind a
typical value of t = 5. Call such a method DLP. We shall assume that DLP generates
basic optimal solutions, that is, gives optimal solutions and corresponding sets of

basic variables. The method works as follows.
We start by permuting the rows and columns of A so that the permuted matrix

has the form (A /
4..21 . -. A22

/a~l a~ Art I I B

\Ar+11 A~+12 . . . A r + l r 0

(4.1)

N.I.M. Gould, ZK. Reid / Crash procedures 481

here each matrix A!j is m~ by n~, and the integers mg and nJ are positive, excepting

m,.+~ and n~+~ which may be zero. We consider alternative algorithms for permut ing

to this form in the next section. The sizes m~ of the blocks are typically very small

in practice (see Sections 6 and 7).
We now assume that A has been ordered as in (4.1) and that x and b have been

part i t ioned so that (l • l) may be written as minimizing

eT(v -4- W) (4.2a)

subject to All / (Vl)(Wl)(b)
A2! A22 2 v2 w2 b2

\ A r + l l Ar+12 Ar+lr 0 x 1 t~r+l Wr+l br+l

and

bl~<~&<~bui, ~)i~O, wi>>-O, i = l , . . . , r + l .

In its most simple form, our method proceeds in stages, as follows•

(4.2b)

(4.2c)

We shall assume, for now, that rni ~< t for all 1 <~ i <~ r. The first b lock of (4.2b)
and constraints (4.2c) require that xl satisfies

A n x l + v l - w t = b l , bn<~xl<~bu~, vl>~0, wl~>0. (4.3)

We want both artificial variables v~ and w~ to be zero. As m~ is no larger than t, we

may achieve this using D L P to minimize

eT(vl + wl)

subject to the constraints (4.3). This is the first stage of the process• As a by-produc t

we would also expect to obtain a set o f rn~ basic variables, perhaps including some

of the artificial variables v~ and wl. Let x~, v~ and ~ be the values o f x~, v~ and

w~ obtained• (In the case o f this first block, fi~ and ~ are zero if (1.1) has a feasible

point.)
Moving to the kth stage of the method, we assume that we have obtained values

&, vi and ~g for the variables x~, v~ and w~ for 1 ~< i < k and a set of m ~ + ' • . + mk-~
basic variables• We then wish to satisfy

k--1
AkkXk + Vk -- Wg = bk -- ~ Akixi, blk <~ Xk <~ buk, Vk ~ 0, Wk >/0, (4•4)

i=l

with both Vk and Wk being z e r o - - w e say that such a solution to (4•4) is a sat is factory

solution. We at tempt to find a satisfactory solution by minimizing

eT(t)k "4- Wk)

482 N.LM. Gould, J.K. Reid / Crash procedures

subject to the constraints (4.4) using DLP---recall that we have assumed that mk <~ t.
There are two possible outcomes. Firstly, we m ay reduce all o f the artificial variables

to zero. (The basic set may still possibly include some artificial variables with values

o f zero.) Secondly, there may be no satisfactory solution to (4.4). Nonetheless, mk

basic variables will be obtained (including some artificial variables). In either case,

the values "~'k, ~k and ~k o f Xk, Vk and •k obtained are passed, together with the set

o f mk basic variables obtained, to stage k + 1.
We apply this process for stages k = 2 , 3 , . . . , r. In the last stage (k = r + l) we

cannot alter the residuals o f the last block of (4.2b) by choice o f Xr+l ; therefore we

merely pick Xr+~ to satisfy (4.2c), set the artificial variables

g r + t = m a x 0, b r + l - i and wr+ l=max 0'-br+l-k~i=l Ar+li'['i
(4.5)

and select mr+ 1 of the variables Vr+~ and wr+l to be basic (including all nonzero

components o f vr+~ and wr+l). We thus end up with values for all o f the variables,

a set of m basic variables and, we hope, most o f the artificial variables at zero.
So far, we have assumed that rni <~ t for all 1 ~ i ~ r. Our experience (see Section

6) is that this is almost always the case. However , if mk> t, we further parti t ion

(4.4) into

k-1

A k k l X k - ~ - l) k l - - W k l = b k l - ~ AkilXi, V k l ~ 0 , W k l ~ 0 ,
i=l

blk ~ X k ~ buk ,
k - I

Akk2Xk ~- Vk2 -- Wk2 = bk2 -- ~ Aki2Xi, i)k2 >~ O, Wk2 >~ O, (4.6)
i~l

where Akk I has t rows and as large a rank as possible. This latter condit ion can be

ensured by reordering the rows of Akk and we assume that this has been done. We

may then apply DL P to at tempt to find a satisfactory solution to the first set o f

equations in (4.6). I f we let Xk, Vkl and #k~ be the solution obtained, we pass this

solution and associated set o f basic variables, together with an appropr ia te basic
subset (of cardinali ty mk -- t) of the variables

~3k2 = max 0, bk2-- , r?k2 = max O, --bk2 + A k i 2 X i , (4.7)
i i=1

to the next stage. We would, o f course, not expect the artificial variables, vk2 and

wk2, in the basis to be zero but are assured at least of a set o f mk basic variables.

In this form of our algorithm, one would suspect that bad choices for the early
variables xk could have unfor tunate consequences when one tries to satisfy the later

equations. With this in mind, we prefer the fol lowing variation.

We assume that we have obtained values x~, v~ and r?~ for the variables x~, v~ and

w~, for 1 ~< i < k, and a set o f m ~ + . . - + rnk_~ basic variables. As before, we first

a t tempt to find a satisfactory solution to (4.4) using D L P - - a g a i n we have assumed

N.LM. Gould, J.K. Reid / Crash procedures 483

that mk <~ r I f we find such a solution, we pass it along with the associated set of
mk basic variables (possibly including some artificial variables with values of zero)
to the (k + 1)st stage. I f we fail to obtain such a solution, it is likely that values of
Y~, 1 <~ i < k - I, found in the previous stages are inappropriate. We will, nonetheless,
have found a set of mk basic variables (including some artificial variables). There
may be scope for "backtracking" through the set of recently allocated blocks of

variables and equations, changing the values of the variables whilst continuing to
satisfy the equations. We might then be able to find a satisfactory solution to (4.4)
after all. I f we work with blocks j, j + 1 , k, we need the inequality

m~ + mj+l + . • • + mk <~ t (4.8)

to be satisfied so that we will not consider more equations than DLP can accommo-
date. We use our linear programming method to attempt to find a satisfactory

solution to

kj Akj+, . . . Ak \ x k / \ v k] \ W k / \ b k / ki

(4.9a)

and

b,<~x~<~bui, vi~>0, wi>~0, i = L . . . ,k. (4.9b)

Let ~ , ~i and #~, for j ~< i ~< k, be the values obtained. Then these new values replace
the existing values, and are passed to the next stage. Notice, however, that we do

not necessarily keep the property of having m~ basic variables among x~, vi and w~
(some blocks may gain basic variables at the expense of others). Therefore, as well

as satisfying (4.8), we need to choose j so that the condition,

number of basic variables in x~, v~ and w~, for i = j , j + 1 , k,

equals rnj+mj+l+'"+mk, (4.10)

is true, which may reduce the amount of backtracking possible. An important feature

is that we do not alter the attempted solution to the first j - 1 blocks of equations.

5. Permuting to block lower-triangular form

We have considered two alternative algorithms, along with several minor variations,
for permuting to the block lower-triangular form (4.1). The p5 algorithm of Erisman,

Grimes, Lewis and Poole (1985) (see also Duff, Erisman and Reid, 1986, Chapter
8) is available in the Harwell Subroutine Library (Harwell Subroutine Library, 1988)
as ~c33. The algorithm is designed to permute a square matrix to bordered block

484 N.LM. Gould, J.K. Reid / Crash procedures

triangular form, but it may readily be adapted to the rectangular case and the border

columns may be permuted forward to give the required form. It has the additional

properties that the diagonal blocks A,, i = 1, 2, . . . r, are full and have at least as

many columns as rows (mi <~ ni). As a consequence, no set of rows from the first r

blocks can be structurally dependent, that is linearly dependent even if arbitrary

changes are made to the values of the nonzero entries. Any null rows must be

included in block r+ 1 and any set of structurally dependent rows must have some
members in block r+ 1. Our experience is that the rows of this block are usually

all of these kinds. The sizes m~ of the blocks are typically very small in practice

(see Section 6).
The p5 algorithm chooses the columns one at a time to maximize the number of

entries in rows of minimum row count, where the row count is the number of

nonzeros in the row when columns that have been chosen are excluded. When

several columns are best from this point of view, a column with greatest column
count is chosen (unless the number of entries in rows with minimum row count is

one). This biases the later columns towards sparseness, which is seen as desirable

as far as the success of the later stages of the algorithm are concerned. However,

our backtracking algorithm (last paragraph of Section 4) might be expected to be

successful if there is little dependence on the values of the earlier variables (J?~,

i -= 1 j - 1, in equation (4.9a)), which we are not free to change. Therefore, we

experimented with a variation of the p5 algorithm in which ties are broken by
minimizing rather than maximizing the column count and giving no special attention

to the case where the number of entries in rows with minimum row count is one,

but unfortunately found that on the whole this variation gave poorer results.

Another possibility for helping the backtracking algorithm is to aim for the block

bidiagonal form

I;i I
a32 a3_,.., a,s]

(5.1)

which corresponds to the normal matrix A A T being block tridiagonal. This is the

foundation of our alternative algorithm, which we call the normal matrix method.

There are established techniques for permuting a symmetric matrix to block
tridiagonal form that are based on examining the associated graph, finding a

pseudo-diameter, and constructing a rooted level structure based on an end point

of a pseudo-diameter (see, for example, Gibbs, Poole and Stockmeyer, 1976). We

have used the variant of Sloan (1986), whose code is available as MC40 in the Harwell

Subroutine Library. Several strategies have been proposed for ordering within the

level sets (blocks of the block tridiagonal form), which is important if a small local

bandwidth is to be obtained. Again, we have used Sloan's code, but we have adjusted

N. LM. Gould, J.K. Reid / Crash procedures 485

his weights so that the block tridiagonal form is preserved. Each node in a level set

is then ordered in turn to minimize the current front size (number of nodes that are
neighbours of ordered nodes but have not yet themselves been ordered). This is the
variant proposed by Gibbs (1976) and called the Gibbs-King algorithm by Lewis

(1982). Sloan (1986) allows departure from the form (5.1) that the rooted level
structure suggests and chooses each variable to minimize a weighted sum of the
front size and the level set number. We tried this variant, but found that its results
were generally inferior for our application.

This analysis of the normal matrix provides us with an ordering for the rows of
A. If there are any null rows, they are permuted to the end and included in the last
block.

Given an ordering for the rows of A, the form (4.1) may be constructed by column
permutat ions as follows. Permute the columns with entries in row 1 to the front;
follow these with columns with the property of having a zero in row 1 and an entry
in row 2; then columns with the property of having zeros in rows 1 and 2 and an
entry in row 3; and so on. I f the normal matrix A A z is block tridiagonal, the

permuted A will have the form (5.1) with identical block row sizes. However, these
sizes are usually quite large and in practice the column permutation will break each
diagonal block ,~ii in (5.1) into a block lower triangular form with small blocks.
Thus overall we have the form

i 2~ A22 (5.2)
° ° .

rl A t2 . . . Arr

with many zero blocks in the left-hand lower corner. Note that this is comparable

to the form (4.1)7 but that the diagonal blocks are no longer full and may have more
rows than columns. Therefore any block may include a set of structurally dependent
rows and the last block may have some null rows. When the Sloan variant of the
ordering algorithm for the normal matrix is used, the large blocks are not necessarily
preserved, but there should be more small zero blocks since a small local bandwidth
of the normal matrix corresponds to the sparsity pattern of the row of A intersecting
the sparsity patterns of only nearby rows.

To illustrate the two alternative algorithms, we show the sparsity pattern of the
original matrix and the two reordered matrices for the problem Forplan in Figures

1-3 and for the problem Capri in Figures 4-6. These problems are part of the Netlib
set (Gay, 1985). The patterns illustrated are typical; for pS, the nonzeros tend to

"bow" under the "diagonal" , while the reverse is true for the normal matrix method.
Notice also that the normal equations method does yield some large zero blocks in
the lower left-hand part of the matrix.

It has been pointed out to us by Mike Saunders that this procedure will not be
useful if A has a dense column since A A T is full in this case. He suggests placing
the full columns at the front and applying our procedure to the rest.

486 N.LM. Gould, J.K. Reid / Crash procedures

\

\ \
\
\

\

\ N

\

~ '

Fig. I. The sparsity pattern of the problem Forplan before reordering.

... : - .; . - ~.i! .:': : - . ' . @ 2 ; . , = , : , . . ~ : ~ ; ~ , ~ ' ~ : ' ~ ' ~ , " ~ m ~

Fig. 2. The sparsity pattern of the problem Forplan after p5 reordering.

" - . ' .

I I I I I I II

Fig. 3. The sparsity pattern of the problem Forplan after normal matrix reordering.

6 . N u m e r i c a l e x p e r i m e n t s

In this sect ion we descr ibe the results of tes t ing the me thod sugges ted in the previous

sect ions on a var ie ty o f r ea l -wor ld l inear p r o g r a m m i n g p rob lems . All o f the p rob lems

are ava i lab le in Mps fo rmat (see, for example , Mur tagh , 1981, Chap t e r 9) and were

conver ted , i f necessary , to the gener ic fo rm

min imize cVx
(6.1)

subjec t to A x = b, bj <~ x <~ bu,

N.I.M. Gould, J.K. Reid / Crash procedures 487

....~!}

\
\

" \
" \

" , . .

\ \
"...,

\ ,
\

. "~.".-~i ~i . ' : : :
.

\

\

\

--...
-....

. • . . .

,s4444,---~
\

~ q , q ~ q l , , , m

Fig . 4. The sparsity pattern of the problem Capri before reordering.

..,iii;ii;: :. ',;;,;,i :,,;:: i }... : : ,
. h ~ l , l , . l l . t l , , . 1 t l . , I J l , , J 1 1 " [~ . I J , I

. . . . ; I ; I . . ; . . ; 1 1 ; ; ; , , . I . . . ; . ; U

: . i

, , , , , • ;

.- : i . . . i
• •.. •

Fig . 5. The sparsity pattern of the problem Capri after p5 reordering•

by adding slack variables to any inequality constraints. Our aim is to find a feasible
solution to the set of constraints for the given problem and we judge the success
of a crash algorithm by the number of infeasibilities (nonzero artificial variables)
since it is our experience that the computer time taken by the simplex method to
reach feasibility is usually approximately proportional to the number of
infeasibilities. We give details of two sets of linear programming test problems,
those collected at Harwell and the extensive set available from Netlib (Dongarra
and Grosse, 1987) as collected by Gay (1985). The characteristics of the Harwell

488 N.LM. Gould, J.K. Reid / Crash procedures

Fig. 6. The sparsity pattern of the problem Capri after normal matrix reordering.

p r o b l e m s a re s h o w n in T a b l e 6.1. N o t e t h a t th i s d a t a c o n f i r m s o u r S e c t i o n 4

c o n t e n t i o n t h a t w h e n t h e p5 a l g o r i t h m is u s e d , e a c h b l o c k r o w s i ze mi is t y p i c a l l y

v e r y smal l .

Al l o f o u r c o m p u t a t i o n was p e r f o r m e d o n t he IBM3084Q at H a r w e l l . O u r c o d e s

w e r e w r i t t e n in F o r t r a n 77 a n d c o m p i l e d b y leve l 1.4.1 o f t h e VS c o m p i l e r w i t h

O P T = 3.

T h e p r o b l e m s w e r e c o n s i d e r e d b o t h as d e f i n e d f r o m t h e i r r a w d a t a in t h e f o r m

(6 . l) (r e f e r r e d to as unscaled) a n d a l so a f t e r r o w a n d c o l u m n s c a l i n g s h a v e b e e n

Table 6.1

The Harwell test problem attributes

Problem No. rows No. cols No. p5 block sizes
name (m) (n) nonzeros

m I , . . . , m,. m r + 1

Sc50a 50 78 160 50 (1) 0
Sc50b 50 78 148 50 (1) 0
Blend 74 114 522 74 (1) 0
Sc105 105 163 340 105 (1) 0
Boeing 2 166 305 1358 165 (1) 0
Boeing 1 351 726 3827 351 (1) 0
Stair 356 532 3813 344 (1), 6 (2) 0
Finnis 497 1019 2542 497 (1) 0
Powell 524 1028 6401 511 (1), 6 (2) 1
Shell 536 1527 3058 528 (1), 4 (2) 0
Perold 625 1442 5962 579 (1), 23 (2) 0
BP 821 1876 10705 810 (1), 2 (2), 1 (3) 4
GUB 929 3333 10022 929 (1) 0

Legend: k(l) means k blocks of 1 rows.

N.I.M. Gould, J.K. Reid / Crash procedures 489

appl ied to the matr ix A (scaled). Given the raw data for the problems, the rows

and co lumns of the matr ix A are rescaled using the scheme of Curt is and Reid

(1972), imp lemen ted as subrout ine MCl9 in the Harwel l Subrout ine Library. To be

specific, d iagonal matrices D~ and D2 are found to conver t (6.1) to the equiva len t

p rob lem

minimize ~v£

subject to P~ = b, b, ~< ~ <~/~u, (6.2)

where A= D~AD2, (~= Dlb, ?.= D2c, ~= D~lbl and 6u= D2~bu. The scheme is

in t ended to p roduce a scaled matrix A~ whose nonzero entries are approx imate ly

equal in magni tude and does this by min imiz ing the sum of squares o f the logar i thms

of the absolute values o f the nonzero entries.

We appl ied the a lgor i thms of Sections 3, 4 and 5 to the unscaled and scaled test

problems. As far as the relat ive per fo rmances of the crash algori thms are concerned ,

we found little difference be tween the scaled and unsca led cases, and have therefore

chosen to present only the unscaled results here. This should not be in terpre ted as

a r e c o m m e n d a t i o n against scaling, which was f requent ly (but not always) advan-

tageous to the efficiency of the comple te solution.

In Table 6.2 we show the number of infeasibil i t ies after the appl ica t ion of our p5

tear ing algor i thm, both wi thout backt racking and with t = 5, 10 and 50 backtracking.

We conc luded from this data that some backt racking is certainly wor thwhi le , but

that a large value o f t does not give sufficient gains to just i fy its extra expense. This

data also suggests that any value of t be tween 5 and 10 wou ld be suitable for general

use and we have chosen to r e c o m m e n d 5.

Table 6.2

Harwell test problem results for the p5 tearing algorithm without and with backtracking

Problem No. Without t = 5 t = 10 t = 50
name rows

No. Time No. Time No. Time No. Time
infeas. (s ee s) infeas. (s ee s) infeas. (s ee s) infeas. (secs)

Sc50a 50 0 0.03 0 0.03 0 0.02 0 0.03
ScS0b 50 0 0.02 0 0.03 0 0.03 0 0.03
Blend 74 0 0.05 0 0.06 0 0.06 0 0.07
Sc105 105 0 0.05 0 0.05 0 0.06 0 0.09
Boeing2 166 24 0.19 17 0.21 15 0.24 5 0.69
Boeingl 351 58 0.79 13 1.13 5 1.21 3 2.32
Stair 356 83 0.40 77 0.46 76 0.57 68 2.09
Finnis 497 41 0.57 31 0.63 31 0.72 22 14.78
Powell 524 61 1.21 33 1.24 15 1.39 8 46.64
Shell 536 53 0.53 31 0.59 25 0.70 19 2.05
Perold 625 84 0.72 75 5.79 63 7.83 59 64.52
BP 821 139 1.70 102 1.86 97 2.13 79 30.72
GUB 929 5 5.68 4 5.57 4 5.75 5 6.92

490 N.LM. Gould, J.K. Reid / Crash procedures

Table 6.3

Test problem results using p5 tearing with t = 5, Reid, and MINOS algorithms

Problem No. p5 tearing Reid
name rows

No. Time No. Time Time to
infeas. (secs) infeas. (secs) match

tearing

MINOS

No.
infeas.

Sc50a 50 0 0.03 0 0.04 0.04
ScS0b 50 0 0.03 0 0.04 0.04
Blend 74 0 0.06 0 0.08 0.08
Sc105 105 0 0.05 0 0.07 0.07
Boeing2 166 17 0.21 34 0.17 0.76
Boeingl 351 13 1.13 111 0.55 9.11
Stair 356 77 0.46 117 0.27 1.78
Finnis 497 31 0.63 92 0.86 5.31
Powell 524 33 1.24 65 0.58 1.37
Shell 536 31 0.59 43 0.82 1.00
Perold 625 75 5.79 156 1.94 49.85
BP 821 102 1.86 189 1.67 11.21
GUB 929 4 5.57 6 2.99 4.91

139

131
12

229
20

We show the n u m b e r of infeasibil i t ies after the appl ica t ion of the crash algorithm

of Reid (Section 3) in Table 6.3. For these problems, it always produced more

infeasibil i t ies than the tearing algori thm with t = 5, though on one problem it

p roduced fewer than the tearing algori thm without backtracking. To measure the

difference, we show the t ime taken for the Harwell LP code LA04, starting from the

basis constructed by Reid 's crash, to reach the n u m b e r of infeasibil i t ies obta ined

for the tearing method with t = 5. It can be seen that the gain can be quite worthwhile,

though in one case (GUB) , even when the t ime for simplex i teration was included,

the Reid algori thm was faster to the same n u m b e r of infeasibilities.

For five of the problems, we also show in Table 6.3 the n u m b e r of infeasibili t ies

that are ob ta ined by the M1NOS crash algori thm that we described at the end of

Section 2.

In Tables 6.4 to 6.6 we give details of further tests performed on the Netl ib l inear

p rogramming test set (Gay, 1985), excluding the two largest cases (80bau3b and

Pilot). We note that the Netl ib problems Czprob, Fffff800, Shell, Stair and 25fv47

appear in the Harwell test set unde r the names GUB, Powell, Shell, Stair and BP

respectively.

Table 6.4 confirms our earlier experience of small blocks and Table 6.5 reinforces

our earlier conclusion in favour of the choice of t = 5 for the amoun t of backtracking

in the tearing algorithm. However, the compar i son with Reid's algori thm is not so

straightforward here. In Table 6.6 we see that in 10 of the cases (out of 50), Reid's

a lgori thm produced fewer infeasibil i t ies and for these we show the t ime for the

tearing method to match the Reid result by s implex iterations. In all these cases,

the time taken by the Reid algori thm is the lesser. Being the s impler algorithm, it

N.LM. Gould, J.K. Reid / Crash procedures

Table 6.4

Additional Netlib test problem attributes

491

Problem No. rows No. cols No. pS block sizes
name (m) (n) nonzeros

D I I ~ . , . ~ DI r rY/r+ I

Adlittle 56 138 424
Afiro 27 51 102
Bandm 305 472 2494
Beaconfd 173 295 3408
Bore3d 233 333 1446
Brandy 220 303 2202
Capri 271 466 1864
Etamacro 400 734 2188
E226 223 472 2768
Forplan 161 489 4565
Ganges 1309 1706 6937
Gffd-pnc 616 1160 2445
Grow7 140 301 2612
Growl5 300 645 5620
Grow22 440 946 8252
Israel 174 316 2443
Nesm 662 2930 13260
Pilotja 940 1956 12100
Pilotnov 975 2242 12460
Pilot.we 722 2850 9001
Pilot4 410 1093 5164
Recipe 91 180 654
Scagr7 129 185 465
Scagr25 471 671 1725
Scfxml 330 600 2732
Scfxm2 660 1200 5469
Scfxm3 990 1800 8206
Scorpion 388 466 1534
Scrs8 490 1275 3288
Scsdl 77 760 2388
Scsd6 147 1350 4316
Scsd8 397 2750 8584
Sctapl 300 660 1872
Sctap2 1090 2500 7334
Sctap3 1480 3340 9734
Sc205 205 317 665
Seba 515 1036 4360
Sbarelb 117 253 1179
Sbare2b 96 162 777
Ship041 402 2166 6380
Sbip04s 402 1506 4400
Sbip081 778 4363 12882
Ship08s 778 2467 7194
Shipl21 1151 5533 16276
Shipl2s 1151 2869 8284
Sierra 1227 2735 8001
Standata 359 1258 3173
Standgab 361 1366 3281
Standmps 467 1258 3821
Vtp.base 198 328 944

54 (1), 1 (2) 0
27 (1) 0
291 (1), 7 (2) 0
139 (1), 3 (2), 3 (3), 1 (4) 15
213 (1), 4 (1), l (3), 1 (9) 0
175 (1), 5 (2), 1 (3) 32
271 (1) 0
397 (1), 1 (2) 0
211 (1), 2 (2), 1 (5) 3
147 (1), 3 (2) 8
1261 (1), 7 (2) 34
573 (1), 21 (2) 1
140(1) 0
300 (1) 0
440 (1) 0
174 (1) 0
662 (1) 0
820 (1), 52 (2) 16
809 (1), 68 (2), 2 (3) 24
569 (1), 66 (2), 7 (3) 0
386 (1), 12 (2) 0
88(1) 3
129 (1) 0
471 (1) 0
300 (1), 8 (2), 2 (3) 8
601 (1), 16 (2), 4 (3) 15
902 (1), 24 (2), 6 (3) 22
248 (1), 12 (2), 12 (3), 6 (4) 56
448 (1), 14(3) 0
73 (1), 2 (2) 0
145 (1), 1 (2) 0
393 (1), 2 (2) 0
300 (1) 0
1090 (1) 0
1480 (1) 0
205 (1) o
515(1) 0
82 (1), 8 (2), 5 (3), 1 (4) 0
96(1) 0
352 (1), 4 (2) 42
352 (1), 4(2) 42
696 (1), 8 (2) 66
696 (1), 8 (2) 66
1028 (1), 7 (2) 89
1028 (l) , 7 (2) 89
1117 (1), 55 (2) 0
359(1) 0
360 (1) 1
455 (1) 12
198(1) 0

Legend: k(1) means k blocks of I rows.

492 N.LM. Gould, J.K. Reid / Crash procedures

Table 6.5

Additional test problem results for the p5 tearing algorithm without and with backtracking

Problem No. Without t = 5 t = 10 t = 50
name rows

No. time No. time No. time No. time
infeas. (secs) .infeas. (secs) infeas. (secs) infeas. (secs)

Adlittle 56 3 0.04 2 0.05 2 0,05 0 0.13
Afiro 27 0 0.01 0 0.01 0 0.02 0 0.02
Bandm 305 41 0.31 31 0.84 30 1.04 15 1.08
Beaconfd 173 28 0.61 28 0.62 28 0.63 22 0.83
Bore3d 233 12 0.19 10 0,20 22 0.24 18 0.63
Brandy 220 28 0.31 22 0.33 17 0.37 8 0.83
Capri 271 70 0.22 27 0.27 23 0,36 13 1.43
Etamacro 400 45 0.34 37 0.39 37 0.45 32 1.37
E226 223 21 0.43 16 0.44 14 0.47 10 0.98
Forplan 161 35 1.02 31 1.25 24 1.35 15 1.97
Ganges 1309 181 1.17 146 1.13 132 1.31 116 3.78
Gfrd-pnc 616 12 0.36 12 0.36 12 0.40 7 0.79
Grow7 140 0 0.22 0 0.21 0 0.21 0 0.25
Growl5 300 0 0.46 0 0.46 0 0.47 0 0.56
Grow22 440 0 0,68 0 0.68 0 0.70 0 0.85
Israel 174 16 0.34 3 0.34 1 0.37 0 0.66
Nesm 662 123 2.03 107 2.15 92 2.62 65 8.49
Pilot.ja 940 144 2.41 113 2.15 108 2.97 94 12.54
Pilotnov 975 179 2.45 165 6.12 161 12.82 156 8.54
Pilot.we 722 116 1.43 104 1.54 104 2.02 I00 15.42
Pilot4 410 33 0.70 29 0.73 27 0.79 25 1.67
Recipe 91 0 0.06 0 0.06 0 0.07 0 0.09
Scagr7 129 19 0.06 6 0.08 6 0.11 4 0.29
Scagr25 471 73 0.23 24 0.31 24 0.42 24 2.09
Scfxml 330 51 0.32 46 0.35 46 0.42 37 1.30
Scfxm2 660 103 0.71 95 0.78 91 2.85 77 2.98
Scfxm3 990 153 1.10 143 1.25 137 1.44 116 4.35
Scorpion 388 80 0.18 31 0.23 32 0.28 34 1.37
Scrs8 490 16 0.51 14 0.54 14 0.67 14 1.99
Scsdl 77 0 0.42 0 0.42 0 0.43 0 0.45
Scsd6 147 0 0.73 0 0.74 0 0.74 0 0.81
Scsd8 397 0 1.26 0 1.24 0 1.26 0 1.45
Sctapl 300 32 0.34 7 0.36 7 0.42 7 1.16
Sctap2 1090 51 2.61 7 2.66 7 2.76 1 4.28
Sctap3 1480 62 3.76 3 3.80 3 3.98 0 5.76
Sc205 205 0 0.11 0 0.11 0 0.12 0 0.18
Seba 515 2 0.75 2 0.74 2 0.77 2 0.98
Sharelb 117 29 0.11 28 0.13 23 0.16 11 0.48
Share2b 96 12 0.07 10 0.09 8 0.11 8 0.98
Ship041 402 5 1.73 5 1.73 5 1.78 5 2.09
Ship04s 402 8 0.98 8 0.97 8 1.00 8 1.28
Ship081 778 7 4.68 7 4.67 7 4.69 7 5.21
Ship08s 778 12 1.72 12 1.76 12 1.81 12 2.30
Shipl21 1151 14 6.25 14 6.24 14 6.26 11 7.14
Shipl2s 1151 15 2.56 15 2.55 15 2.59 12 3.24
Sierra 1227 163 1,41 138 1.57 107 1.76 84 5.37
Standata 359 7 2.22 6 2.22 6 2.22 6 2.67
Standgub 361 7 2.24 6 2.24 6 2.26 6 2.71
Standmps 467 31 2.34 30 2.34 30 2.48 17 4.31
Vtp.base 198 17 0.13 12 0.15 12 0.17 10 0.51

N.LM. Gould, J.K. Reid / Crash procedures

Table 6.6

Additional test problems using p5 tearing with t = 5, Reid, and MINOS algorithms

493

Problem No. pS tearing Reid MINOS
name rows

No. Time Time to No Time Time to No.
infeas. (secs) match Reid infeas. (secs) match tearing infeas.

Adlittle 56 2 0.05 8 0.04 0.09 8
Afiro 27 0 0.01 0 0.02 0.04 1
Bandm 305 31 0.84 69 0.19 1.32 78
Beaconfd 173 28 0.62 0.83 24 0.12 30
Bore3d 233 10 0.20 0.37 8 0.12 10
Brandy 220 22 0.33 52 0.16 0.64 68
Capri 271 27 0.27 61 0,18 0.79 76
Etamacro 400 37 0.39 50 0.28 0.85 67
E226 223 16 0.44 31 0.17 0.47 38
Forplan 161 31 1.25 2.35 13 0.21
Ganges 1309 146 1.13 6.50 0 1.03 204
Gfrd-pnc 616 12 0.36 1.81 2 0.66 2
Grow7 140 0 0,21 0 0.16 0.16 0
Growl5 300 0 0.46 0 0.43 0.43 0
Grow22 440 0 0.68 0 0.87 0.87 0
Israel 174 3 0.34 7 0.09 0.12 8
Nesm 662 107 2.15 436 2.16 44.77 410
Pilot.ja 940 113 2.15 129 1.84 2.73 314
Pilotnov 975 165 6.12 11.03 133 2.29
Pilot.we 722 104 1.54 9.92 69 2.36 131
Pilot4 410 29 0.73 80 0.55 2.20 92
Recipe 91 0 0.06 20 0.05 0.11 21
Scagr7 129 6 0.08 14 0.05 0.18 24
Scagr25 471 24 0.31 32 0.29 1.86 78
Scfxml 330 46 0.35 59 0.23 0.52 58
Scfxm2 660 95 0.78 118 0.69 1.18 122
Scfxm3 990 143 1.25 177 1.35 2.36 186
Scorpion 388 31 0.23 52 0.17 0.37 37
Scrs8 490 14 0.54 33 0.61 1.09 38
Scsdl 77 0 0.42 7 0.19 0.35 5
Scsd6 147 0 0.74 14 0.42 0.79 34
Scsd8 397 0 1.24 17 2.26 3.15 103
Sctapl 300 7 0.36 33 0.19 0.86 51
Sctap2 1090 7 2.66 51 2.02 6.16 72
Scrap3 1480 3 3.80 61 3.53 11.54 86
Sc205 205 0 0.11 0 0.07 0.07 0
Seba 515 2 0.74 8 0.44 5.77 133
Sharelb 117 28 0.13 31 0.08 0.11 73
Share2b 96 10 0.09 0.19 4 0.04 4
Ship041 402 5 1.73 4.37 3 1.06 14
Ship04s 402 8 0.97 8 0.70 0.70 18
Ship081 778 7 4.67 7.02 6 3.77 17
Ship08s 778 12 1.76 13 1.89 1.91 25
Shipl21 1151 14 6.24 33 6.79 7.81 51
Ship12s 1151 15 2.55 35 2.85 3.57 52
Sierra 1227 138 1.57 207 2.71 5.43 210
Standata 359 6 2.22 11 0.53 0.59 29
Standgub 361 6 2.24 11 0.59 0.66
Standmps 467 30 2.34 51 0.69 1.52
Vtp.base 198 12 0.15 51 0.09 1.30 59

494 N.LM. Gould, J.K. Reid / Crash procedures

m a y a l so r e q u i r e less t i m e to get to t h e s a m e n u m b e r o f i n feas ib i l i t i e s even w h e n

the t i m e f o r s i m p l e x i t e r a t i o n s is i n c l u d e d . T h u s t h e R e i d a l g o r i t h m is m o r e eff ic ient

ove ra l l in 20 o f t he cases . Th i s c a m e to us as a s u r p r i s e ; we e x p e c t e d to f ind e v i d e n c e

f o r a b a n d o n i n g the R e i d a l g o r i t h m in f a v o u r o f t he t e a r i n g a l g o r i t h m , b u t r a t h e r

f o u n d t h a t b o t h are w o r t h y a l g o r i t h m s .

7. Using alternative algorithms

W e s h o w in Tab l e s 7.1 to 7.4 t he resu l t s on o u r tes t p r o b l e m s o f u s i n g t h e n o r m a l

e q u a t i o n s r e o r d e r i n g a l g o r i t h m i n s t e a d o f t he p5 a l g o r i t h m . T h e y c o r r e s p o n d to

T a b l e s 6.1, 6.2, 6.4, 6.5, r e spec t i ve ly .

Table 7.1

The Harwell test problem attributes, using normal matrix algorithm

Problem No. rows Block sizes
(m) m m,

Sc50a 50
Sc50b 50
Blend 74
Sc105 105
Boeing2 t66
Boeingl 351
Stair 356
Finnis 497
Shell 536
Perold 625
BP 821
GUB 929

44 (1), 3 (2)
41 (1), 3 (2), 1 (3)
48 (1), 5 (2), 1 (4), 1 (5), 1 (7)
91 (1), 7 (2)
162 (1), 2 (2)
345 (l), 3 (2)
278 (1), 24 (2), 1 (3), 3 (4), 1 (6), 1 (9)
483 (1), 7 (2)
504 (1), 11 (2), 2(3), 1 (4)
490 (1), 45 (2), 11 (3), 1 (4), 1 (8)
625 (1), 49 (2), 15 (3), 8 (4), 3 (5), ! (6)
903 (1), 1 (26)

Legend: k(l) means k blocks of I rows.

Table 7.2

Harwell test problem results for the normal matrix algorithm without and with backtracking

Problem No, Without t = 5 t = 10 t = 50
name rows

No. Time No. Time No. Time No. Time
infeas. (secs) infeas. (secs) infeas. (secs) infeas. (secs)

Sc50a 50 7 0.02 4 0.02 2 0.03 0 0.07
Sc50b 50 4 0.02 4 0.02 2 0.02 0 0.06
Blend 74 0 0.04 0 0.05 0 0.05 0 0.05
Sc105 105 14 0.04 9 0.05 8 0.07 1 0.19
Boeing2 166 20 0.11 11 0.13 10 0.17 5 0.56
Boeingl 351 50 0.30 28 0.53 27 0.60 19 1.69
Stair 356 156 0.31 145 0.40 122 0.54 81 2.19
Finnis 497 56 0.28 35 0.32 32 0.40 19 1.58
Powell 524 144 0.54 146 0.64 132 0.85 136 23.15
Shell 536 62 0.29 38 0.33 35 0.42 26 1.85
Perold 625 129 0.46 105 0.56 106 0.71 66 3.15
BP 821 184 0.81 161 0.96 140 1.18 111 5.63
GUB 929 27 0.79 27 0.81 22 0.87 22 0.83

N.LM. Gould, J.K. Reid / Crash procedures 495

Table 7.3

Netlib test problem attributes, using normal equations algorithm

Problem No. rows Block sizes
(m) m m ,

Adlittle 56
Afiro 27
Bandm 305
Beaconfd 173
Bore3d 233
Brandy 220
Capri 271
Etamacro 400
E226 223
Forplan 161
Ganges 1309
Gfrd-pnc 616
Grow7 140
Growl5 300
Grow22 440
Israel 174
Nesm 662
Pilot.ja 940
Pilotnov 975
Pilot.we 722
Pilot4 410
Recipe 91
Scagr7 129
Scagr25 471
Scfxml 330
Scfxm2 660
Scfxm3 990
Scorpion 388
Scrs8 490
Scsdl 77
Scsd6 147
Scsd8 397
Sctapl 300
Sctap2 1090
Sctap3 1480
Sc205 205
Seba 515
Share lb 117
Share2b 96
Ship041 402
Ship04s 402
Ship081 778
Ship08s 778
Shipl21 1151
Shipl2s 1151
Sierra 1227
Standata 359
Standgub 361
Standmps 467
Vtp.base 198

41 (1), 3 (2), 3 (3)
23 (1), 2 (2)
209 (I), 31 (2), 10 (3), 1 (4)
115 (1), 16 (2), 5(3) , 1 (4), 1 (7)
155 (1), 17 (2), 3 (3), 1 (4), 2 (5), 1 (6), 1 (15)
117 (1), t5 (2), 6(3) , 1 (6), 1 (8), 1 (19), 1 (22)
193 (1), 17 (2), 5 (3), 4 (4), 1 (13)
319 (1), 29 (2), 5 (3), 2 (4)
200 (1), 6 (2), 2 (3), 1 (5)
127 (1), 7 (2), 1 (3), 1 (4), 1 (13)
1056 (1), 31 (2), 13 (3), 6 (4), 1 (5), 9 (12), 1 (15)
560 (1), 25 (2), 2 (3)
140 (1)
300 (1)
440 (I)
174(1)
652 (1), 5 (2)
705 (1), 69 (2), 14 (3), 5 (4), 1 (5), 1 (6), I (7), 1 (17)
719 (1), 79 (2), 13 (3), 2 (4), 1 (5), 1 (6), 1 (7), 1 (8), I (25)
564 (1), 47 (2), 12 (3), 1 (4), 2 (5), 1 (6), 1 (8)
332 (1), 26 (2), 3 (3), 3 (4), 1 (5)
69 (1), 7 (2), 2 (4)
105 (1), 12 (2)
348 (1), 60 (2), 1 (3)
261 (1), 21 (2), 4(3) , 1 (4), 1 (5), 1 (6)
508 (1), 44 (2), 9(3) , 3(4) , 1 (5), 2(6), 1 (8)
752 (1), 62 (2), 14 (3), 7 (4), 1 (5), 4 (6), 1 (7), 1 (8)
175 (1), 18 (2),6 (3), 8 (4), 6 (5), 1 (6),2 (7), 2 (9), 1 (11), 2 (14), 1 (20)
412 (1), 39 (2)
6 4 (1) , 5 (2) , 1(3)
117 (1), 11 (2), 1 (3), 1 (5)
319 (1), 39 (2)
300 (1)
1o9o (1)
1480 (1)
175 (1), 15 (2)
513 (1), 1 (2)
64(1), 6(2), 9(3) , 1 (4), 2(5)
83 (1), 5 (2), 1 (3)
278 (1), 1 (2), 1 (3), 1 (4), 1 (23), 1 (43), 1 (49)
304(1), 4(2), 1 (3), 2(5), 2 (17), 1 (43)
507 (1), 9 (2), 3 (9), 3 (16), 3 (18), 3 (19), 1 (67)
641 (l) , 8 (2), 3 (8), 3 (10), 1 (67)
957 (1), 8 (2), 1 (3), 1 (5), 1 (60), 1 (110)
992 (1), 9 (2), 1 (6), 2 (7), 1 (11), 1 (110)
1004 (1), 75 (2), 23 (3), 1 (4)
335 (1), 9 (2), 2 (3)
335 (1), 10(2), 2 (3)
446 (1), 4(2), 3 (3), 1 (4)
160(1), 17 (2), 1 (4)

Legend: k(I) means k blocks of 1 rows.

496 N.LM. Gould, J.K. Reid / Crash procedures

Table 7.4

Netlib test problem results for the normal equations algorithm without and with backtracking

Problem No. Without t = 5 t = 10 t = 50

name rows

No. Time No. Time No. Time No. Time

infeas. (secs) infeas. (secs) infeas. (secs) infeas. (secs)

Adlittle 56 7 0.03 8 0.03 5 0.04 0 0.19
Afiro 27 0 0.01 0 0.01 0 0.01 0 0.01

Bandm 305 67 0.21 54 0.25 41 0.32 30 1.22

Beaconfd 173 30 0.20 29 0.21 28 0.23 23 0.80
Bore3d 233 4 0.13 4 0.13 4 0.14 4 0.24

Brandy 220 49 0.15 45 0.16 43 0.20 36 0.76

Capri 27t 84 0.17 62 0.21 60 0.26 48 1.20

Etamacro 400 64 0.23 61 0.27 56 0.35 30 1.29
E226 223 28 0.19 17 0.20 15 0.24 7 1.13

Forplan 161 14 0.21 7 0.21 7 0,23 6 4.40
Ganges 1309 116 0.74 90 0.80 76 0.94 48 2.90
Gfrd-pnc 616 3 0.27 2 0.28 2 0.30 2 0.53

Grow7 140 0 0.12 0 0.13 0 0.13 0 0.16
Growl5 300 0 0.27 0 0.27 0 0.28 0 0.36

Grow22 440 0 0.40 0 0.40 0 0.42 0 0.54

Israel 174 8 0.32 6 0.33 6 0.35 13 0.64

Nesm 662 123 0.66 60 0.77 75 1.04 37 4.16

Pilot.ja 940 163 0.98 145 1.10 136 1.35 140 7.45
Pilotnov 975 208 0.91 196 1.04 190 1.33 170 5.95
Pilot.we 722 130 0.52 115 0.60 114 0.76 88 4.48
Pilot4 410 69 0.37 46 0.41 49 0.50 35 2.29

Recipe 91 1 0.05 0 0.05 0 0.05 0 0.07

Scagr7 129 17 0.06 16 0.07 15 0.09 3 0.40

Scagr25 471 76 0.21 70 0.25 69 0.34 20 1.52
Scfxml 330 44 0.23 37 0.26 35 0.34 26 1.17

Scfxm2 660 101 0.45 89 0.51 83 0.66 47 2.39

Scfxm3 990 146 0.68 129 0.75 120 0.96 69 3.56

Scorpion 388 57 0.15 80 0.19 72 0.25 57 1.04
Scrs8 490 25 0.26 16 0.28 16 0.32 6 0.79
Scsdl 77 1 0.09 1 0.09 1 0.10 0 0.47

Scsd6 147 6 0.16 5 0.16 3 0.18 4 0.42

Scsd8 397 2 0.37 1 0.37 0 0.39 0 0.79

Sctapl 300 33 0.15 32 0.17 31 0.22 23 0.73

Sctap2 1090 51 0.65 50 0.70 50 0.80 50 2.41

Sctap3 1480 61 0.93 53 0.98 54 1.10 54 2.90
Sc205 205 32 0.08 18 0.10 16 0.13 1 0.61

Seba 515 9 1.57 9 1.58 9 1.61 9 1.94
Sharelb 117 49 0.07 31 0.09 15 0.13 6 0.72

Share2b 96 15 0.06 15 0.07 14 0.09 2 0.93
Ship041 402 71 0.30 70 0.31 61 0.37 69 1.01

ShipO4s 402 34 0.26 33 0.26 23 0.30 32 0.78

Ship081 778 60 0.63 59 0.64 54 0.71 37 1.59
ShipO8s 778 20 0.48 17 0.48 21 0.53 19 1.08

Shipl21 1151 52 0.98 52 0.99 46 1.04 t2 2.07

Shipl2s 1151 27 0.69 27 0.70 24 0.76 24 1.36

Sierra 1227 274 0.75 217 0.97 197 1.31 165 6.45
Standata 359 14 0.22 11 0.25 10 0.29 10 0.87

Standgub 361 14 0.23 l 1 0.25 10 0.30 10 0.90

Standmps 467 22 0.32 17 0.33 17 0.38 6 1.80
Vtp.base 198 51 0.13 39 0.16 32 0.22 22 0.84

N.I.M. Gould, .LK. Reid / Crash procedures 497

It may be seen from Tables 7.1 and 7.3 (when compared with Tables 6.1 and 6.4)
that the normal equations algorithm is not quite so successful in obtaining small
blocks, though the vast majority of them still have order less than 5. Note that the
block sizes are not those of the bidiagonal form (5.1), but those of the form (5.2)
obtained after applying row and column permutations to A.

The data in Tables 7.2 and 7.4 shows that, as with the p5 algorithm, some
backtracking is worthwhile and that any value of t between 5 and 10 would be
suitable. We have again chosen to recommend 5.

I f the times without backtracking are compared (Table 6.2 with Table 7.2 and
Table 6.5 with Table 7.4), it may be seen that the two algorithms usually take about
the same time, but that occasionally p5 is much slower. This may be a quirk of the

Harwell implementation, which was designed for square matrices. Examples illus-
trating this slowness are GUB, Standgub, and Standmps. In the case of Standgub
and Standmps, the proport ion of the total time taken by this part of the calculation
is quite high (see Table 8.1).

Taken as a whole, we view the two algorithms as comparable. In terms of
the number of infeasibilities, the p5 algorithm is usually superior but this must

be counterbalanced by its greater times. Some overall comparisons are made in
Section 8.

Other variants that we have tried have been less successful. Modifying the p5
algorithm to favour sparse columns early (see the second paragraph of Section 5)

on the whole gave poorer results. We also tried to make the backtracking algorithm
with high t values competitive by limiting such backtracking to once every ½t rows,
but found that this lost too much of the gains that are available from backtracking.

8. Comparison between the new algorithms

Finally, we use the bases generated by our crash algorithms as an initial basis for

the solution of the linear programming problems (6.1) and (6.2). We report on the
progress of the linear programming code LA04 in Tables 8.1, 8.2 and 8.3; we give

details of the number of iterations and timings to obtain a feasible point and an
optimal solution for the problems along with the optimal objective function value
obtained. LA04 is a standard simplex code, maintaining and updating a sparse
triangular factorization of the basis (see Reid, 1982) and using complete pricing

together with a steepest-edge strategy (see Goldfarb and Reid, 1977) as a pricing
mechanism. We selected and solved a subset of the larger problems from our two
test sets and solved the unscaled versions of the problems.

A direct comparison is also made between the three methods in the tables. Any
entry prefixed by * is the best of the three or within 20% of the best, any entry
prefixed by ? is within a factor of 2 of the best, and the remainder are not labelled.
The numbers of cases in these categories for the four columns of Table 8.1 are

18-5-5, 10-11-7, 17-10-1, 15-11-2; for Table 8.2 they are 6-8-14, 13-8-7, 18-7-3, 21-6-1;
and for Table 8.3 they are 12-3-13, 13-7-8, 10-10-8, 10-8-10. Thus both the p5 tearing

498 N.LM. Gould, J.K. Reid / Crash procedures

Table 8.1

Details of LP run on test problems using the p5 tearing crash algorithm with t = 5 backtracking

Problem Feasibility phase Feasibility and optimality phase

Iterations Time Iterations Time Optimal value
(secs) (secs) obtained

BP * 531 * 28.65 * 1858 * 119.92 5501.8494
Capri * 56 * 0.86 * 101 * 1.47 2690.0120
Etamacro * 94 * 1.59 * 492 t 8.17 -310.1144
Finnis * 187 t 3.35 * 374 * 6.47 112447.8754
Forplan 129 3.70 t 208 t 5.02 -605.1331
Ganges 222 6.50 t 511 t 1 6 . 3 5 -109586.2817
Gffd-pnc 39 t 1.17 t 611 t 9.66 6902236.5352
GUB * 493 t 25.11 * 1007 t 52.48 2185196.7563

Nesm 686 35.57 t 2232 t 1 2 4 . 0 8 14076041.1386
Pilot4 * 213 * 5.98 * 931 * 35.78 -2581.1403
Powell t 160 4.93 * 263 * 7.10 553329.0897
Scagr25 * 43 * 1.02 * 212 * 3 .61 -14753431.8152
Scfxm2 * 354 * 8.69 * 630 * 1 5 . 7 1 36660.2603
Scfxm3 t 554 t 18.68 * 956 * 32.39 54901.2525
Scorpion * 43 t 0.81 * 103 * 1.59 1878.1234
Scrs8 t 219 t 4.66 * 421 * 9.68 904.2970
Scsd8 * 1 t 3.08 t 582 t 25.00 905.0000
Sctap2 * 7 * 4.11 t 542 t 1&22 1724.8071
Sctap3 * 3 * 6.08 t 706 t 30.55 1424.0000
Seba * 77 * 2.82 * 650 * 9.63 15711.6009
Shell t 72 t 2.24 * 302 * 5.82 1208825346.0000
Ship081 * 14 7.55 t 572 t 28.68 1909055.1849
Ship08s t 20 t 3.51 * 262 * 9.39 1920098.1832
Shipl21 * 22 t 11.67 * 283 * 24.49 1470187.9323
Shipl2s * 24 t 5.19 * 234 * 1 1 . 6 5 1489236.1478
Sierra * 246 * 10.79 t 676 t 23.59 15394363.5594
Standgub * 6 2.68 102 3.87 1257.6995
Standmps 184 5.15 t 298 6.69 1406.0175

* Best of the three algorithms or within 20% of the best.
t Within factor 2 of the best.

a l g o r i t h m a n d t h e R e i d a l g o r i t h m a p p e a r to b e " w i n n e r s " , b u t e a c h a l g o r i t h m

o u t p e r f o r m s t h e o t h e r s in a s i g n i f i c a n t n u m b e r o f c a s e s . U n f o r t u n a t e l y , t h e r e d o e s

n o t s e e m to b e a n y p a r t i c u l a r p a t t e r n to e x p l a i n t h i s b e h a v i o u r . T i m i n g s p r o v i d e a

f a i r e r c o m p a r i s o n b e c a u s e t h e t e a r i n g a l g o r i t h m , p a r t i c u l a r l y w i t h t h e p5 a l g o r i t h m

in u s e , is s l o w e r a n d d o e s n o t p r o d u c e a n in i t i a l b a s i s t h a t is a p e r m u t a t i o n o f a

t r i a n g u l a r m a t r i x (t h o u g h in p r a c t i c e it is n e a r l y s o) . T h i s in t u r n i m p l i e s t h a t e x t r a

c o m p u t a t i o n is r e q u i r e d to c a l c u l a t e t h e in i t i a l s t e e p e s t - e d g e w e i g h t s .

N.I.M. Gould, J.K. Reid / Crash procedures

Table 8.2

Details of LP run on test problems using Reid's crash algorithm

499

Problem Feasibility phase Feasibility and optimality phase

Iterations Time Iterations Time Optimal value
(secs) (secs) obtained

BP t 785 t 44.94 * 2010 * 134.89 5501.8494
Capri 159 t 1.36 t 184 * 1.71 2690.0119
Etamacro 216 t 2.58 * 486 * 6.42 -310.1161
Finnis t 275 t 3.84 * 430 * 6.28 112447.8805
Forplan 78 1.49 * 162 * 2.96 -605.1328
Ganges * 1 * 0.90 * 400 * 14.62 -109586.5268
Gfrd-pnc 210 3.22 * 421 * 6.71 6902236.5352

GUB * 451 * 16.18 * 957 * 41.98 2185196.7563
Nesm 1257 59.04 t 2755 t 129.10 14076032.7917
Pilot4 t 272 * 6.36 * 995 * 37.52 -2583.0383
Powell * 108 * 2,20 * 312 * 6.73 520039.4539
Scagr25 194 3,42 t 351 t 6.24 -14753431.8152
Scfxm2 t 393 t 9A8 * 691 * 17.50 36660.2603
Scfxm3 t 579 t 18.03 * 982 * 33.30 54901.2525
Scorpion t 65 * 0.67 251 t 2.65 1878.1247
Scrs8 333 6.10 t 537 * 11.28 904.2970
Scsd8 18 * 2.43 1078 43.80 905.0000
Sctap2 188 t 6.29 * 329 * 10.29 1724.8071
Sctap3 266 t 11.74 * 444 * 18.07 1424.0000
Seba 393 8.62 t 949 t 13.43 15711.6009
Shell * 50 * 1.36 t 442 i 7.73 1208825346.0000
Ship081 * 13 * 3.43 * 428 * 19.44 1909055.1849
Ship08s t 27 * 2.09 * 249 * 8.02 1920098.1832
Shipl21 47 * 7.17 767 t 43.28 1470187.9323
Ship12s 51 * 3.61 t 366 * 13.80 1489236.1478
Sierra * 252 * 9.46 * 510 * 17.22 15402297.4208
Standgub t 12 * 0.62 * 46 * 1.07 1257.6995
Standmps 145 2.74 * 168 * 3.13 1406.0175

* Best of the three algorithms or within 20% of the best.
t Within factor 2 of the best.

9. Conclusions

W e h a v e p r o p o s e d t h r e e c r a s h a l g o r i t h m s , o n e b a s e d o n f i n d i n g a b a s i s m a t r i x t h a t

is a p e r m u t a t i o n o f a n u p p e r - t r i a n g u l a r m a t r i x a n d t h e o t h e r s b a s e d o n r e s t r u c t u r i n g

t h e r e c t a n g u l a r se t o f e q u a t i o n s to a b l o c k l o w e r - t r i a n g u l a r f o r m a n d t h e n u s i n g a

t e a r i n g t e c h n i q u e . F o r t h e t e a r i n g t e c h n i q u e s , w e f o u n d t h a t a m o d e s t a m o u n t o f

b a c k t r a c k i n g is w o r t h w h i l e . O u r e x p e r i m e n t a l r e s u l t s i n d i c a t e t h a t e a c h o f t h e

a l g o r i t h m s is s u p e r i o r t o t h e o t h e r s a b o u t a t h i r d o f t h e t i m e . I n t e r m s o f t h e n u m b e r

o f i n f e a s i b i l i t i e s , t h e y s h o w b e t t e r p e r f o r m a n c e t h a n t h e s i m p l e c r a s h a l g o r i t h m in

500 N.LM. Gould, J.K. Reid / Crash procedures

Table 8.3

Details of LP run on test problems using the normal equations crash algorithm with t = 5 backtracking

Problem Feasibility phase Feasibility and optimality phase

Iterations Time Iterations Time Optimal value
(secs) (secs) obtained

BP t 887 t 51.16 * 2193 * 142.15 5501.8494
Capri 140 t 1.44 329 3.42 2690.0019
Etamacro * 112 * 1.77 t 622 t 9.81 -310.1146
Finnis * 158 * 2.69 * 392 * 6.52 112447.8804
Forplan * 13 * 0,54 371 7.28 -605.1331
Ganges 69 3,67 t 683 t 2 7 . 6 1 -109586.5124
Gfrd-pnc * 5 * 0.81 * 434 * 7.13 6902236.5352
GUB * 458 * 17.17 * 916 * 41.18 2185196.7563
Nesm * 229 * 8.83 * 1710 * 78.47 14076041.2188
Pilot4 1230 50.35 2231 97.34 -2581.1402
Powell 344 7.78 680 1 6 . 9 8 555678.5230
Scagr25 155 2.54 t 304 t 4.74 -14753431.8152
Scfxm2 * 324 * 7.47 * 619 * 1 4 . 6 6 36660.2603
Scfxm3 * 399 * 12.44 * 1062 * 33.84 54901.2525
Scorpion 89 1.36 221 t 2.89 178.1247
Scrs8 * 116 * 2.48 * 446 * 9.57 904.2970
Scsd8 t 2 * 2.13 * 378 * 14.50 905.0000
Sctap2 208 10.13 t 569 21.63 1724.8071
Sctap3 299 20.68 ? 783 40.29 1424.0000
Seba 463 12.15 t 1010 t 1 7 . 6 1 15711.6009
Shell 101 t 2.44 * 323 * 5.81 1208825346.0000
Ship081 59 t 5.94 t 823 39.25 1909055A849
Ship08s * 17 * 2.47 t 363 t 1 2 . 7 1 1920098,1832
Shipl21 52 ? 8.77 986 52.78 1470187.9323
Shipl2s * 27 * 3.81 t 415 t 1 5 . 6 3 1489236.1478
Sierra t 374 t 13.67 1172 36.53 15394362.5804
Standgub 15 t 0.90 128 2.24 1257.6995
Standmps * 36 * 1.27 t 245 t 4.11 1406.0175

* Best of the three algorithms or within 20% of the best.
t Within factor 2 of the best.

M i n o s o n m o s t (b u t n o t a l l) o f o u r t e s t p r o b l e m s . B a s e d o n t h i s s a t i s f a c t o r y

e x p e r i e n c e , w e p r o p o s e to p l a c e c o d e f o r t h e t h r e e a l g o r i t h m s in t h e H a r w e l l

S u b r o u t i n e L i b r a r y .

Acknowledgements

W e w o u l d l ike to e x p r e s s o u r t h a n k s to M i k e S a u n d e r s f o r p r o v i d i n g u s w i t h t h e

MINOS d a t a , t o D a v i d G a y f o r s u p p l y i n g u s w i t h t h e N e t l i b t e s t p r o b l e m s , to I a i n

N.I.M. Gould, .LK. Reid / Crash procedures 501

Duf f fo r r e a d i n g the p a p e r a n d sugges t i ng i m p r o v e m e n t s to t he p r e s e n t a t i o n , a n d

to J e n n i f e r Scot t for c h e c k i n g the i n t r o d u c t i o n f r o m the p o i n t o f v i e w o f a r e a d e r

n o t f a m i l i a r w i th l i nea r p r o g r a m m i n g a n d sugges t i ng an i m p r o v e m e n t .

References

D.M. Carstens, "Crashing techniques," in: W. Orchard-Hays, Advanced Linear-Programming Computing
Techniques (McGraw-Hill, New York, 1968) pp. 131-139.

V. Chvfital, Linear Programming (Freeman, New York and San Francisco, 1983).
A.R. Curtis and J.K. Reid, "On the automatic scaling of matrices for Gaussian elimination," Journal of

the Institute of Mathematics and its Applications 10 (1972) 118-124.
G.B. Dantzig, Linear Programming and Extensions (Princeton University Press, Princeton, NY, 1963).
J.J. Dongarra and E. Grosse, "Distribution of mathematical software via electronic mail," Communications

of the ACM 30 (1987) 403-407.
I.S. Duff, A.M. Erisman and J.K. Reid, Direct Methods for Sparse Matrices (Oxford University Press,

London, 1986).
A.M. Erisman, R.G. Grimes, J.G. Lewis and W.G. Poole Jr., "A structurally stable modification of

Hellerman-Rarick's p4 algorithm for reordering unsymmetric sparse matrices," SIAM Journal on
Numerical Analysis 22 (1985) 369-385.

D.M. Gay, "Electronic mail distribution of linear programming test problems," Mathematical Program-
ming Society COAL Newsletter (December 1985).

N.E. Gibbs, "A hybrid profile reduction algorithm," ACM Transactions on Mathematical Software 2
(1976) 378-387.

N.E. Gibbs, W.G. Poole Jr. and P.K. Stockmeyer, "An algorithm for reducing the bandwidth and profile
of a sparse matrix," SIAM Journal on Numerical Analysis 13 (1976) 236-250.

D. Goldfarb and J.K. Reid, "A practicable steepest-edge simplex algorithm," Mathematical Programming
12 (1977) 361-371.

Harwell Subroutine Library, "A catalogue of subroutine," Report R9185, HMSO (London, 1988).
J.G. Lewis, "Implementation of the Gibbs-Poole-Stockmeyer and Gibbs-King algorithms," ACM

Transactions on Mathematical Software 8 (1982) 180-194.
B.A. Murtagh, Advanced Linear Programming (McGraw-Hill, New York, 1981).
B.A. Murtagh and M.A. Saunders, "MINOS 5.1 User's guide," Report SOL 83-20R, Department of

Operations Research, Stanford University (Stanford, CA, 1987).
W. Orchard-Hays, Advanced Linear-Programming Computing Techniques (McGraw-Hill, New York,

1968).
C.H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and Complexity (Prentice-

Hall, Englewood Cliffs, N J, 1982).
J.K. Reid, "A sparsity exploiting variant of the Bartels-Golub decomposition for linear programming

bases," Mathematical Programming 24 (1982) 55-69.
S.W. Sloan, "An algorithm for profile and wavefront reduction of sparse matrices," International Journal

for Numerical Methods in Engineering 23 (1986) 239-251.

