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Abstract. Gould and Robinson [SIAM J. Optim., 20 (2010), pp. 2023–2048] proved global
convergence of a second derivative SQP method for minimizing the exact �1-merit function for a
fixed value of the penalty parameter. This result required the properties of a so-called Cauchy
step, which was itself computed from a so-called predictor step. In addition, they allowed for the
additional computation of a variety of (optional) accelerator steps that were intended to improve the
efficiency of the algorithm. The main purpose of this paper is to prove that a nonmonotone variant
of the algorithm is quadratically convergent for two specific realizations of the accelerator step; this
is verified with preliminary numerical results on the Hock and Schittkowski test set. Once fast local
convergence is established, we consider two specific aspects of the algorithm that are important for
an efficient implementation. First, we discuss a strategy for defining the positive-definite matrix Bk

used in computing the predictor step that is based on a limited-memory BFGS update. Second, we
provide a simple strategy for updating the penalty parameter based on approximately minimizing
the �1-penalty function over a sequence of increasing values of the penalty parameter.
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1. Introduction. In [17], we presented a sequential inequality/equality con-
strained quadratic programming algorithm (an SIQP/SEQP “hybrid”) for solving
the problem

(�1-σ) minimize
x∈Rn

φ(x) = f(x) + σ‖[c(x)]−‖1,

where the constraint vector c(x) : Rn → R
m and the objective function f(x) : Rn → R

are assumed to be twice continuously differentiable, σ is a positive scalar known as the
penalty parameter, and we have used the notation [v]− = min(0, v) for a generic vector
v—the minimum is understood to be componentwise. The motivation for solving this
problem is that solutions of problem (�1-σ) correspond, under certain assumptions,
to solutions of the nonlinear programming problem

(NP) minimize
x∈Rn

f(x) subject to c(x) ≥ 0.

Our trust-region algorithm is similar to the original work of Fletcher [12]. One novel
difference, however, is that we never require the global minimizer of a general indefinite
quadratic program (QP). This is accomplished by computing trial steps as the sum of
two well-defined steps. The first step is computed from the predictor step, which is the
unique solution to a strictly convex QP. This step drives convergence of the algorithm

∗Received by the editors December 22, 2008; accepted for publication (in revised form) Decem-
ber 8, 2009; published electronically March 12, 2010. Research supported by the EPSRC grants
EP/E053351/1 and EP/F005369/1.

http://www.siam.org/journals/siopt/20-4/74455.html
†Rutherford Appleton Laboratory, Numerical Analysis Group, Chilton, Didcot, Oxfordshire,

OX11 0QX, UK (nick.gould@stfc.ac.uk).
‡University of Oxford, Mathematical Institute, 24–29 St Giles’, Oxford, OX1 3LB, UK (robinson@

maths.ox.ac.uk).

2049



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2050 NICHOLAS I. M. GOULD AND DANIEL P. ROBINSON

and is, in fact, the only step required to establish global convergence. The second
step is called the accelerator step, and its purpose is to enhance global efficiency and
improve local convergence. The primary purpose of this paper is to establish fast
local convergence rates for two particular instances of the accelerator step suggested
in [17, section 2.3].

The first instance is an equality constrained QP that relies on an estimate of the set
of constraints active at a solution to (�1-σ), i.e., an optimal active set. A local analysis
for this case is required for two reasons. First, the requirements on the Hessian matrix
of the QP associated with the predictor step are quite minimal. Thus its ability to
accurately predict an optimal active set must be established. Second, it must be shown
that this particular accelerator step is accepted by the algorithm in a neighborhood of
a solution, since this may be disallowed by global convergence criterion. The second
accelerator step we consider is derived from an inequality constrained QP that uses an
artificial so-called descent-constraint whose purpose is to ensure that the accelerator
step is not an ascent direction. To establish fast local convergence we must again
show that this particular accelerator step will be allowed by the algorithm within a
neighborhood of a solution. Additionally, we must prove that the artificial descent-
constraint does not interfere with the anticipated fast (quadratic) convergence.

The algorithm we propose has been designed with large problems in mind. Nev-
ertheless, we expect the use of the additional, and carefully constructed, accelerator
step to offer significant improvement over traditional quasi-Newton SQP methods for
problems of any size.

An outline of this paper is as follows. In section 2 we provide the details of a non-
monotone variant of the algorithm proposed in [17]. Section 3 then discusses the local
convergence properties of that algorithm and culminates with two rate-of-convergence
results. The first applies when the accelerator step is computed from an equality con-
strained subproblem [17, section 2.3.2], while the second applies when the accelerator
step is computed from an inequality constrained subproblem [17, section 2.3.1]. In
section 4 we consider other aspects of the algorithm that relate to efficiency. In par-
ticular we address strategies for adjusting the penalty parameter and for defining
the positive-definite matrix required for computing the predictor step. Finally, in
section 5, we provide preliminary numerical results for the proposed algorithm.

Notation. We let e denote the vector of all ones whose dimension is determined
by the context. The gradient of f(x) is g(x) and ∇xxf(x) its (symmetric) Hessian;
the matrix ∇xxcj(x) is the Hessian of cj(x); J(x) is the m × n Jacobian matrix of
the constraints with ith row ∇ci(x)T . The Lagrangian function associated with (NP)
is L(x, y) = f(x) − yT c(x). The Hessian of the Lagrangian with respect to x is
∇xxL(x, y) = ∇xxf(x)−

∑m
j=1 yj∇xxcj(x).

For a general vector v, the notation [v]− = min(0, v) is used, where the minimum is
understood to be componentwise, and diag(v) represents a diagonal matrix whose ith
diagonal entry is vi; given two general vectors v and w, the notation v ·w represents the
vector whose ith component is viwi; given a general symmetric matrix A, the notation
A � λ means that the smallest eigenvalue of A is bigger than or equal to λ; and given
a set of of matrices A1, A2, . . . , Ap for some p ≥ 1, we define diag(A1, A2, . . . , Ap) to
be the block-diagonal matrix whose ith block is Ai.

Given a solution x∗ to problem (NP), we define the indexing sets

(1.1) A def
= {i : ci(x∗) = 0} and I def

= {i : ci(x∗) > 0},
which are the set of active and inactive constraints, respectively, at x∗. Given a
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generic vector v, a generic matrix V , and a generic indexing set S, the notation vS
and VS will denote the rows of v and V that correspond to the indices in S; if v and
V are functions of x, then we sometimes write vS(x) and VS(x) instead of [v(x)]S and
[V (x)]S .

2. The algorithm. We now describe the details of Algorithm 2.1, which is a
nonmonotone variant of [17, Algorithm 3.1]. First, the user supplies an initial guess
(x0, y0) of a solution to problem (�1-σ). Next, “success” parameters 0 < ηS ≤ ηVS < 1,
a reset value ΔR and maximum allowed value ΔU for the predictor trust-region radius
satisfying 0 < ΔR ≤ ΔU, sufficient model decrease tolerance and approximate Cauchy
point tolerance 0 < η ≤ ηACP < 1, accelerator trust-region radius factor τf , maximum
number of consecutive failures max fails , and expansion and contraction factors 0 <
ηc < 1 < ηe are defined. With parameters set, the main iteration loop begins. First,
the problem functions are evaluated at the current point (xk, yk). Next, a symmetric
positive-definite approximation Bk to ∇xxL(xk, yk) is defined, and the predictor step
sP

k is computed as the unique minimizer to

(2.1) minimize
s∈Rn

fk + gTk s+
1
2s

TBks+ σ‖[ck + Jks]
−‖1 subject to ‖s‖∞ ≤ ΔP

k,

where ΔP

k > 0 is the predictor trust-region radius and we have used the notation
fk = f(xk), gk = g(xk), ck = c(xk), and Jk = J(xk). By introducing elastic variables
[13], this problem is equivalent to

(2.2)
minimize

s∈Rn
fk+gTk s+

1
2s

TBks+σeTv subject to ck+Jks+v ≥ 0, v ≥ 0, ‖s‖∞ ≤ ΔP

k.

Strategies for defining the positive-define matrix Bk are discussed in section 4.1. Next,
we define yF

k to be any multiplier estimate that ultimately satisfies the conditions
yF

k − y∗ = O(‖xk − x∗‖2) and [yF

k]I = 0; Lemma 3.13 shows that we may choose
yF

k = yP

k , where y
P

k is the predictor multiplier vector from (2.2), but this is not required.
We prefer using this more flexible requirement on yF

k , since it allows for alternatives,
such as least-squares multiplier estimates, to be tested in the future. Next, we define
Hk to be any symmetric approximation to ∇xxL(xk, y

F

k), but for the local convergence
results given by Theorems 3.12 and 3.14 we choose Hk ≡ ∇xxL(xk, y

F

k). We may then
define the Cauchy step as sCP

k = αks
P

k, where αk is the solution to

(2.3) minimize
0≤α≤1

MH

k(αs
P

k)

for the so-called faithful model

(2.4) MH

k(s)
def
= MH

k(s ;xk) = fk + gTk s+
1
2s

THks+ σ‖[ck + Jks]
−‖1.

The word “faithful” is used, since we are allowed to choose Hk to be the exact Hessian
of the Lagrangian ∇xxL(xk, y

F

k) (note that this is generally not allowed for the pre-
dictor subproblem (2.1), since ∇xxL(xk, y

F

k) is unlikely to be positive definite). Once
the Cauchy step has been computed, we compute

(2.5) ΔMH

k(s)
def
= ΔMH

k(s ;xk) = MH

k(0 ;xk)−MH

k(s ;xk),

which is the change in the faithful model of φ. We mention that this notation does
not allude to the dependence on the penalty parameter σ. Next we have the option of
computing an accelerator step sA

k as the solution of any of the subproblems discussed
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in [17, section 2.3]. However, in this paper we will restrict our attention to two
particular instances. The first accelerator subproblem [17, section 2.3.2] is given by

(EQP) minimize
s∈Rn

f̄k + (gk +Hks
P

k)
T s+ 1

2s
THks

subject to [Jks]A(sPk ) = 0, ‖s‖2 ≤ ΔS

k,

where A(sP

k) = {i : [ck + Jks
P

k]i ≤ 0}, f̄k = fk + gTk s
P

k + 1
2s

P

k
THks

P

k, and ΔS

k >
0 is the accelerator radius. Since this subproblem defines only multipliers for the
constraints whose indices are in the set A(sP

k), we form accelerator multipliers yA

k by
“scattering” the multipliers from subproblem (EQP) into the appropriate locations of
a zero-vector of length m. The second accelerator subproblem [17, section 2.3.1] that
we will consider is given by

(EIQP) minimize
s∈Rn

f̄k + (gk +Hks
CP

k )T s+ 1
2s

THks+ σk‖[ck + Jk(s
CP

k + s)]−Vk
‖1

subject to [ck + Jk(s
CP

k + s)]Sk
≥ 0,

(gk +Hks
CP

k + σkJ
T
k zk)

T s ≤ 0, ‖s‖∞ ≤ ΔS

k,

where f̄k = fk + gTk s
CP

k + 1
2s

CP

k
THks

CP

k , zk is defined componentwise as

(2.6) [zk]i =

{
−1 if i ∈ Vk,
0 if i ∈ Sk,

where Vk = {i : [ck+Jks
CP

k ]i < 0} and Sk = {i : [ck+Jks
CP

k ]i ≥ 0}, and (gk+Hks
CP

k +
σkJ

T
k zk)

T s ≤ 0 is the so-called descent-constraint. The descent-constraint guarantees
that the directional derivative of MH

k(s) in the direction sA

k is nonpositive. In this
case the accelerator multipliers yA

k are the multipliers for the general constraints of
the smooth variant of problem (EIQP). The trial step computation is completed by
defining the full step sk as

(EQP) sk =

{
sP

k + sA

k if ΔMH

k(s
P

k + sA

k) ≥ ηΔMH

k(s
CP

k ),

sCP

k otherwise,
(2.7)

(EIQP) sk =

{
sCP

k + sA

k if ΔMH

k(s
CP

k + sA

k ) ≥ ηΔMH

k(s
CP

k ),

sCP

k otherwise
(2.8)

for some constant 0 < η < 1 independent of k (see [17, section 2.3] for more details).
Note that the bound

(2.9) ΔMH

k(sk) ≥ ηΔMH

k(s
CP

k )

is always satisfied and is the crucial bound used to prove global convergence in [17].
We note that although the accelerator step is optional for proving global convergence,
it is generally required for establishing quadratic convergence. We then evaluate
φ(xk + sk) and the change in the faithful model at the full step ΔMH

k(sk).
We now must decide whether to accept the trial step sk. This decision is based

on the value of the ratio rk, which in turn depends on the history of “success-
ful/unsuccessful” steps. If we assume that every iterate is successful in the sense
of traditional trust-region strategies, i.e., there is “good agreement” between the ac-
tual and predicted decrease in MH

k, then our nonmonotone algorithm is identical to
traditional updating strategies. However, if a failure occurs (in the traditional sense),
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then Algorithm 2.1 still accepts the step with the hope that the next iterate will be
successful; we say that a “nonmonotone phase” has been entered. If we enter a non-
monotone phase, the ratio rk of actual to predicted decrease in the merit function is
computed based on the trial point xk + sk and the best-known point, i.e., the solution
estimate directly before the nonmonotone phase was entered. If the number of con-
secutive failures reaches the maximum number allowed (as denoted by the parameter
max fails), then the algorithm reverts to the best-known point, reduces the predictor
trust-region radius, and then tries again. In less precise terms, the algorithm has
“gone back in time” and proceeds as if we were using a traditional trust-region up-
dating strategy until the next failure occurs. We also note that our update to the
predictor trust-region radius is slightly different than that used in [17, Algorithm 3.1].
The new update ensures that the radius following every successful/very successful
iteration is at least as large as some predefined positive number ΔR. We will see that
this strategy allows us to prove that the trust-region constraints are eventually inac-
tive; more complicated alternatives are briefly outlined in [10, Chapter 15]. Finally,
we update the accelerator trust-region radius as ΔA

k+1 ← τf ·ΔP

k+1.
It may easily be verified that [17, Theorem 4.3] is still true with these changes.

Therefore, Algorithm 2.1 is globally convergent. We point out that the maximum
allowed predictor trust-region radius ΔU and the approximate Cauchy point tolerance
ηACP are not relevant for the local convergence analysis of section 3, but they are
required to prove global convergence [17].

Algorithm 2.1 Nonmonotone algorithm.

Input: (x0, y0)
Set parameters 0 < ηS ≤ ηVS < 1, 0 < ΔR ≤ ΔP

0 ≤ ΔU, 0 < η ≤ ηACP < 1, and τf ≥ 1.

Set expansion and contraction factors 0 < ηc < 1 < ηe and fail counter fails = 0.
Set nonmonotone parameters 0 ≤ max fails ∈ N and fails = 0.
k ← 0
do

Evaluate fk, gk, ck, Jk and then compute φk.
Define Bk to be a symmetric positive-definite approximation to ∇xxL(xk, yk).
Solve problem (2.1) for predictor step and multipliers (sP

k, y
P

k).

Define multiplier estimate yF

k such that yF

k − y∗ = O(‖xk − x∗‖2) and [yF

k ]I = 0.

Define Hk to be a symmetric approximation to ∇xxL(xk, y
F

k).

Solve problem (2.3) for sCP

k and compute ΔMH

k(s
CP

k ).

Compute an accelerator step and multipliers (sA

k , y
A

k ) (optional).

Define a full step sk that satisfies condition (2.9).
Evaluate φ(xk + sk) and ΔMH

k(sk).

if fails = 0, then
rk ←

(
φ(xk)− φ(xk + sk)

)
/ΔMH

k(sk) [standard definition]

else
rk ←

(
φR − φ(xk + sk)

)
/ΔH

R [change in φ based on point xR]

end if
if rk ≥ ηVS , then [very successful]

xk+1 ← xk + sk
yk+1 ← yA

k (yk+1 ← yF

k if accelerator step not computed)

ΔP

k+1 ← min
(
max(ηe ·ΔP

k, ΔR ) ,ΔU

)
[increase ΔP

k and ensure ΔP

k ≥ ΔR ]

fails ← 0
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else if rk ≥ ηS , then [successful]
xk+1 ← xk + sk
yk+1 ← yA

k (yk+1 ← yF

k if accelerator step not computed)

ΔP

k+1 ← max(ΔP

k, ΔR ) [ensure ΔP

k is bigger than ΔR]

fails ← 0
else [failure]

if fails ≤ max fails , then
if fails = 0, then [save current point]

xR ← xk, yR ← yk, φR ← φk, ΔH
R
← ΔMH

k(sk)

ΔP
R ← ΔP

k

ΔP

k+1 ← ηcΔ
P

k (optional)

end if
xk+1 ← xk + sk
ΔP

k+1 ← ΔP

k

fails ← fails + 1
else [revert to saved point]

xk+1 ← xR, yk+1 ← yR

ΔP

k+1 ← ηcΔ
P
R [decrease ΔP

k]

fails ← 0
end if

end if
ΔA

k+1 ← τf ·ΔP

k+1 [update accelerator radius]

k← k + 1
end do

3. Local convergence. In this section we show that Algorithm 2.1 is superlin-
early convergent if an accelerator step is computed from either subproblem (EQP)
or (EIQP). The update to the Lagrange multiplier vector yk is now critical, and we
must consider the sequence of vector-pairs (xk, yk). To simplify notation, we let w
denote the combined x and y vectors, i.e., w = (x, y), and we write wk = (xk, yk)
for the current estimate of a solution w∗ = (x∗, y∗), wP

k = (xP

k, y
P

k) for the solution to
the predictor subproblem (2.2), and wA

k = (xA

k , y
A

k ) for the solution of the accelerator
subproblem (the precise definition of yA

k depends on which accelerator subproblem is
used).

The main result of this section is that if a successful iterate of Algorithm 2.1
gets close enough to a local minimizer w∗ of problem (NP) that satisfies the strong
second-order sufficient conditions, and if we compute an accelerator step from either
subproblem (EQP) or (EIQP), then the sequence of iterates converges to w∗ with
the same convergence properties as Newton’s method for zero-finding applied to the
function

(3.1) FN (x, yA) =

(
g(x)− JA(x)T yA

cA(x)

)
,

where the indexing set A is defined in (1.1). We accomplish this by first showing that
if wk is close enough to w∗, then the predictor step accurately predicts the optimal
active set and that the trust-region constraint is inactive. We then show that specific
accelerator steps also identify the optimal active set and that their associated trust-
region constraints are inactive. Since these steps are then equivalent to one step of
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Newton’s method for zero-finding applied to FN , we deduce that wk+1 is closer to
w∗ than was wk. This process is then repeated and results in the value wk+2. Since
Algorithm 2.1 is a nonmonotone approach, the analysis given by Conn, Gould, and
Toint [10, section 15.3.2] shows that the �1-merit function will accept the value xk+2,
and it follows that convergence may be described using classical results for Newton’s
method applied to the function FN .

In the following definitions related to a solution of problem (NP), we use the
notation c∗ = c(x∗), g∗ = g(x∗), and J∗ = J(x∗).

Definition 3.1 (first-order KKT point). We say that the point (x∗, y∗) is a
first-order KKT point for problem (NP) if

(3.2) g∗ − J∗Ty∗ = 0, c∗ ≥ 0, y∗ ≥ 0, and c∗ · y∗ = 0.

Definition 3.2 (second-order sufficient conditions). A point (x∗, y∗) satisfies the
second-order sufficient conditions for problem (NP) if (x∗, y∗) is a first-order KKT
point and if there exists λH

min
> 0 such that sT∇xxL(x∗, y∗)s ≥ λH

min
sTs for all s

satisfying J∗
As = 0.

Definition 3.3 (strict complementarity). We say that strict complementarity
holds at a KKT point (x∗, y∗) for problem (NP) if y∗A > 0.

Definition 3.4 (linear independent constraint qualification). We say that the
linear independent constraint qualification (LICQ) holds at a KKT point (x∗, y∗) for
problem (NP) if J∗

A has full row rank.
Definition 3.5. We say that the strong second-order sufficient conditions hold

at a point (x∗, y∗) if it satisfies Definitions 3.1–3.4.
In the ensuing analysis we prove results that hold in a neighborhood of a solution

to problem (NP). It is thus convenient for us to define Bε(v) = {x ∈ R
n : ‖x−v‖2 < ε}

and B̄ε(v) = {x ∈ R
n : ‖x − v‖2 ≤ ε} to be the open and the closed ball centered at

v of radius ε, respectively, for a given vector v ∈ R
n and scalar ε.

3.1. Optimal active set identification. The analysis that ensues requires a
notion of “uniformity” for the underlying KKT systems within a neighborhood of a
solution w∗. This is generally not an an issue for systems involving Hk, since it is
reasonable to expect that if wk converges to w∗, thenHk will converge to∇xxL(x∗, y∗);
this certainly occurs if Hk ≡ ∇xxL(xk, yk) or Hk ≡ ∇xxL(xk, y

F

k). A similar statement
does not hold for systems involving Bk, since Bk is generally not a continuous function
of w. Moreover, we certainly cannot expect the positive-definite matrix Bk to converge
to ∇xxL(x∗, y∗), since ∇xxL(x∗, y∗) is normally indefinite. The optimality conditions
for problem (NP) suggest that we need the matrices Hk and Bk to be positive definite
when restricted to the null space of the active constraints (note that Bk is positive
definite by construction); this is essentially the uniformity that we need. To develop
a general framework, we define the following sets that depend on the minimizer x∗

through the indexing set A defined by (1.1):

(3.3)

S(x ; x∗) =
{
M = MT ∈ R

n×n : βmax ≥ sTMs

sTs
≥ λmin for all s satisfying JA(x)s = 0

}
and

(3.4) Sε =
⋃

w∈B̄ε(w∗)

S(x ; x∗)

for given real numbers βmax and λmin > 0. Using this definition, we now state a result
that supplies the required uniformity.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2056 NICHOLAS I. M. GOULD AND DANIEL P. ROBINSON

Lemma 3.6. If w∗ is a KKT point for problem (NP) that satisfies the LICQ,
then

(i) for any 0 ≤ ε <∞ the set

Sε = ∪w∈B̄ε(w∗)S(x ; x
∗)

is compact;
(ii) if ν1 ≤ ν2, then Sν1 ⊆ Sν2 ;
(iii) there exists a positive number ε1 such that if w ∈ Bε1(w∗) and M ∈ Sε1 ,

then sTMs ≥ (λmin/2)s
Ts for all s satisfying JA(x)s = 0.

If in addition, strict complementarity holds at w∗, then
(iv) there exists a positive number ε2 such that ε2 ≤ ε1 and numbers β0 > 0 and

β > 0 such that if w ∈ Bε2(w∗) and M ∈ Sε2 , then JA(x) has full row rank, cI(x) > 0,
yA > 0, and the matrices

K̄M (x) =

(
M JA(x)T

JA(x) 0

)
and KM (w) =

⎛⎝ M −JA(x)T −JI(x)T
diag(yA)JA(x) 0 0

0 0 diag(cI)

⎞⎠
are nonsingular and satisfy

‖K̄M (x)−1‖2 ≤ β0 and(3.5a)

‖KM (w)−1‖2 ≤ β,(3.5b)

where the indexing set I is defined in (1.1);
(v) if w ∈ Bε2(w∗) and M ∈ Sε2 , then it follows that

(3.6) s = O(‖x − x∗‖2), πA − y∗A = O(‖x − x∗‖2), and π − y∗ = O(‖x− x∗‖2),
where s and πA satisfy

(3.7) K̄M (x)

(
s
−πA

)
≡

(
M JA(x)T

JA(x) 0

)(
s
−πA

)
= −

(
g(x)
cA(x)

)
and π is obtained from πA by “scattering” the components of πA into a zero-vector of
length m as indicated by A.

Proof. We first prove part (i) of Lemma 3.6. Since it is clear that Sε is bounded, we
show only that Sε is closed. Let {Mk} be a sequence in Sε such that limk→∞ Mk = M̄ .
This implies the existence of a sequence {wk} ∈ B̄ε(w∗) such that Mk ∈ S(xk;x

∗) and
vTMkv ≥ λminv

Tv for all v such that JA(xk)v = 0. The set B̄ε(w∗) is compact, and,
therefore, we can pass to a subsequenceK1 such that limk∈K1 wk = w̄ ∈ B̄ε(w∗). Since
J is continuous and JA(x∗) has full row rank, [7, Theorem 2.3] implies the existence
of a locally continuous null space basis function Z(·) such that JA(xk)Z(xk) = 0,
limk∈K1 Z(xk) = Z̄, and JA(x̄)Z̄ = 0. This implies that Z(xk)

TMkZ(xk) � λmin and
upon taking limits that Z̄T M̄Z̄ � λmin. Since it is clear that M̄ is symmetric and
satisfies ‖M̄‖2 ≤ βmax, we have M̄ ∈ S(x̄ ;x∗) ⊆ Sε. Thus, Sε is closed.

Part (ii) of Lemma 3.6 follows immediately from the definitions of Sν1 and Sν2 .
We now prove part (iii) of Lemma 3.6. If part (iii) of Lemma 3.6 was not true, then

there would exist a monotonically decreasing and strictly positive sequence {δk} → 0
and associated sequences {wk}, {sk}, and {Mk} such that wk ∈ Bδk(w∗), Mk ∈ Sδk ⊆
Sδ1 , JA(xk)sk = 0, ‖sk‖2 = 1, and sTkMksk < λmin/2. It follows from these properties,
part (i) of Lemma 3.6, and the fact that the sequence {sk} belongs to a compact set,
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that there exists a subsequence K2, a matrix M∗ ∈ Sδ1 , and a unit vector s∗ such
that
(3.8)

lim
k∈K2

wk = w∗, lim
k∈K2

Mk = M∗, lim
k∈K2

sk = s∗, J∗
As

∗ = 0, and s∗TM∗s∗ ≤ λmin/2.

Since Mk ∈ Sδk and {δk} → 0, there also exists a sequence {x̂k} → x∗ such that
sTMks ≥ λmins

Ts for all s satisfying JA(x̂k)s = 0. Using the same argument as in the
first paragraph of this proof, we find that Z∗TM∗Z∗ � λmin, where the columns of
Z∗ form a basis for the null space of J∗

A. This contradicts (3.8), and thus part (iii) of
Lemma 3.6 must be true.

To show that part (iv) of Lemma 3.6 holds, we first note that strict complemen-
tarity and the LICQ imply that there exists a number εs such that 0 < εs ≤ ε1
and

(3.9)
ci(x) ≥ 1

2c
∗
i > 0 for i ∈ I, yi ≥ 1

2y
∗
i > 0 for i ∈ A, and JA(x) has full row rank

for all w ∈ Bεs(w∗). Under the current assumptions, it follows from parts (ii) and
(iii) of Lemma 3.6, and [1, Lemma 1.27] that

(3.10) the matrix K̄M (x) is nonsingular for all w ∈ Bεs(w∗) and M ∈ Sεs .

Assume that (3.5a) does not hold for any ε2 ≤ εs so that there exists a monotonically
decreasing sequence {δk} → 0 such that 0 < δk ≤ εs and associated sequences {wk} ∈
Bδk(w∗) and {Mk} ∈ Sδk ⊆ Sεs such that

(3.11) ‖K̄Mk
(xk)

−1‖2 ≥ k for all k ≥ 0.

Since {δk} → 0 and Sεs is compact as a result of part (i) of Lemma 3.6, there exists
a subsequence K3 such that limk∈K3 wk = w∗ and limk∈K3 Mk = M∗ ∈ Sεs . It then
follows from (3.10) that K̄M∗(x∗) is nonsingular. Since limk∈K3 K̄Mk

(xk) = K̄M∗(x∗),
[14, Theorem 8.64] implies that the singular values of K̄Mk

(xk) are uniformly bounded
away from zero for k ∈ K3 sufficiently large. Therefore, ‖K̄Mk

(xk)
−1‖2 must be

bounded above for all k ∈ K3, which contradicts (3.11). Thus, (3.5a) holds for some
ε1 ≥ εs ≥ ε2 > 0 and β0 > 0. It also follows from (3.9) that JA(x) has full row rank,
cI(x) > 0, and yA > 0 for all w ∈ Bε2(w∗).

We now show that (3.5b) holds for ε2. Let w ∈ Bε2(w∗) and M ∈ Sε2 . Equa-
tion (3.9) implies that the matrices

NF =

⎛⎝I 0 JI(x)T diag
(
cI(x)

)−1

0 diag(yA)
−1 0

0 0 I

⎞⎠, NM =

⎛⎝ M JA(x)T 0
JA(x) 0 0
0 0 diag

(
cI(x)

)
⎞⎠,

and NS = diag(I,−I, I) are nonsingular ; they satisfy NFKM (w)NS = NM so that
‖KM (w)−1‖2 ≤ ‖N−1

M ‖2‖NF‖2. It is also clear from (3.9) that the quantity ‖NF‖2 is
bounded for all w ∈ Bε2(w∗), so to bound ‖KM(w)−1‖2 we must bound ‖N−1

M ‖2, but
it is sufficient to bound ‖K̄M (x)−1‖2, since (3.9) guarantees that cI(x) ≥ 1

2c
∗
I > 0

(componentwise). The result follows from (3.5a), and, therefore, there exists a number
β > 0 such that ‖KM (w)−1‖2 ≤ β for all w ∈ Bε2(w∗) and M ∈ Sε2 .

Finally, we prove part (v) of Lemma 3.6. Let wk ∈ Bε2(w∗) and M ∈ Sε2 . Since
c∗A = 0, it follows that system (3.7) is equivalent to

(3.12)

(
M JA(x)T

JA(x) 0

)(
s

y∗A − πA

)
= −

(
g(x)− JA(x)T y∗A

cA(x) − c∗A

)
.
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Inequality (3.5a), norm inequalities, and Taylor expansions for g(x), cA(x), and JA(x)
at the point x∗ yield s = O(‖x − x∗‖2) and πA − y∗A = O(‖x − x∗‖2). The fact that
π − y∗ = O(‖x − x∗‖2) follows, since πI = 0 by construction and y∗I = 0 from the
optimality conditions for problem (NP).

Our next aim is to prove a result concerning active set identification. Given a
vector w, we define the function

(3.13) FKKT(w) =

(
g(x)− J(x)T y

c(x) · y
)
.

Lemma 3.7. Let w∗ be a solution to problem (NP) that satisfies strict com-
plementarity and the LICQ. Then there exist numbers μ > 0 and β > 0 such that if
wk ∈ Bμ/2(w∗), M ∈ Sμ/2, and 4β‖FKKT(wk)‖2 ≤ μ, then there exists a unique closest

minimizer
(
xk(M), yk(M)

)
= wk(M) to the point wk for the problem

(3.14)
minimize

x∈Rn

1
2 (x− xk)

TM(x− xk) + gTk (x− xk)

subject to ck + Jk(x− xk) ≥ 0

with the following properties:
(i) ‖xk(M)− xk‖∞ ≤ ‖wk(M)− wk‖2 ≤ 2β‖FKKT(wk)‖2;
(ii) the set of constraints active at xk(M) for problem (3.14) are the same as

the indices in A;
(iii) the solution wk(M) satisfies strict complementarity; and
(iv) JA(xk) has full row rank.
Proof. We begin by letting ε1 ≥ ε2 > 0 and β > 0 be the constants guaranteed

by Lemma 3.6. Given any vector-pair (w, w̄) and symmetric matrix M , we define

(3.15) FM (w ; w̄) =

(
M(x− x̄) + g(x̄)− J(x̄)T y(

c(x̄) + J(x̄)(x − x̄)
) · y

)
.

Differentiating (3.15) we have

F ′
M (w ; w̄) =

(
M −J(x̄)T

diag(y)J(x̄) diag
(
c(x̄) + J(x̄)(x − x̄)

)) .

Choosing (w, w̄) = (w∗, w∗) we have

F ′
M (w∗ ;w∗) =

⎛⎝ M −J∗
A
T −J∗

I
T

diag(y∗A)J
∗
A 0 0

0 0 diag(c∗I)

⎞⎠ ,

since optimality conditions at w∗ imply c∗A = 0 and y∗I = 0. It follows from (3.5a)
with the choice w = w∗ that the matrix F ′

M (w∗ ;w∗) is nonsingular and satisfies

(3.16) ‖F ′
M (w∗ ;w∗)−1‖ ≤ β for all M ∈ Sε2 .

Next, choose a number μ such that 0 < μ ≤ ε2, and if w and w̄ are contained in
Bμ(w

∗), then the following conditions are satisfied:
C1. if c∗i > 0, then [c(x̄) + Jk(x− x̄)]i > 0;
C2. if y∗i > 0, then yi > 0;
C3. ‖F ′

M (w ; w̄)− F ′
M (w∗ ;w∗)‖2 ≤ 1/(2β) (this estimate holds for all M).
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Let wk ∈ Bμ/2(w∗) and M ∈ Sμ/2. Since μ < μ/2 ≤ ε2 ≤ ε1, it follows from parts (ii)
and (iii) of Lemma 3.6 that JA(xk) has full row rank and that estimate (3.16) holds
for M ; thus part (iv) of Lemma 3.7 is true. Using the argument by Robinson [29,
Lemma 1], we now show that FM (w ;wk) has a unique zero in B̄μ/2(wk). Note that

(3.17) B̄μ/2(wk) ⊂ Bμ(w∗),

since if w ∈ B̄μ/2(wk), then

‖w − w∗‖2 ≤ ‖w − wk‖2 + ‖wk − w∗‖2 < μ/2 + μ/2 ≤ μ.

Define the function

(3.18) TM (w) = w − F ′
M (w∗ ;w∗)−1FM (w ;wk)

so that

T ′
M (w) = I−F ′

M (w∗ ;w∗)−1F ′
M (w ;wk) = F ′

M (w∗ ;w∗)−1
(
F ′
M (w∗ ;w∗)−F ′

M (w ;wk)
)
.

It follows that

‖T ′
M(w)‖2 ≤ β‖F ′

M (w∗ ;w∗)− F ′
M (w ;wk)‖2 ≤ 1

2

(
use (3.16), (3.17), and C3

)
for all w ∈ B̄μ/2(wk), which implies that TM is a contraction. It also follows that

(3.19) ‖TM (wk)− wk‖2 ≤ β‖FM (wk ;wk)‖2
(
use (3.18) and (3.16)

)
.

Using the triangle inequality, the fact that TM (w) is a contraction with contraction
factor 1/2, (3.19), and the assumption that 4β‖FM (wk ;wk)‖2 ≤ μ, we have that for
all w ∈ B̄μ/2(wk) the estimate

‖TM (w)− wk‖2 ≤ ‖TM (w) − TM (wk)‖2 + ‖TM (wk)− wk‖2
≤ 1

2‖w − wk‖2 + β‖FM (wk ;wk)‖2 ≤ μ
2 ,

which implies TM : B̄μ/2(wk) → B̄μ/2(wk). We may now apply the well-known fixed
point result [31, Theorem 9.23]) which states that TM has a unique fixed point wk(M)
in B̄μ/2(wk) and that

‖xk(M)− xk‖∞ ≤ ‖xk(M)− xk‖2 ≤ ‖wk(M)− wk‖2 (use norm inequalities)

≤ 2‖TM(wk)− wk‖2 (estimate from fixed-point theorem)

≤ 2β‖FM (wk ;wk)‖2 (use (3.19)),

which proves part (i) of Lemma 3.7. Since wk(M) is a fixed point for TM (w), (3.18)
implies that

(3.20) FM (wk(M) ;wk) = 0.

Thus wk(M) satisfies the equality conditions for being a first-order KKT point for
problem (3.14). We now show that the point wk(M) is actually a first-order KKT
point for problem (3.14). Since wk(M) ∈ B̄μ/2(wk) ⊂ Bμ(w∗), we may deduce the
following: if y∗i > 0, then C2 implies [yk(M)]i > 0 and then (3.20) implies [ck +
Jk

(
xk(M)−xk

)
]i = 0; if c∗i > 0, then C1 implies [ck+Jk

(
xk(M)−xk

)
]i > 0 and then

(3.20) implies [yk(M)]i = 0. Since strict complementarity holds at w∗ by assumption,
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one of these two cases must hold, and, therefore, wk(M) is a first-order KKT point
for the problem (3.14) that satisfies strict complementarity and correctly identifies
the optimal active set; this establishes parts (ii) and (iii). The fact that xk(M) is a
minimizer follows from parts (ii) and (iii) of Lemma 3.6. Finally, wk(M) is the unique
closest solution, since any other solution would be a KKT point and, therefore, a zero
of the function FM (w ;wk). However, wk(M) is the unique zero inside B̄μ/2(wk).

3.2. Local descent properties. In this section we show that, in a neighborhood
of a solution w∗, directions related to the traditional SQP step are descent directions
for the underlying model functions; this result is critical for proving that Algorithm 2.1
has a fast rate-of-convergence. We use the following definition.

Definition 3.8. Given a vector v ∈ R
n and a subspace V ⊆ R

n, we define

(3.21) θ(v,V) =
{
tan−1 (‖vR‖2/‖vN‖2) if ‖vN‖2 �= 0,

π/2 otherwise,
0 ≤ θ ≤ π/2,

to be the angle between v and V, where v = vN + vR is the unique orthogonal decom-
position of v such that vN ∈ V and vR ⊥ V.

The next result essentially says how close a vector s must be to the null space of
the active constraints to guarantee positive curvature in a neighborhood of a solution.

Lemma 3.9. Let w∗ be a solution to problem (NP) that satisfies the LICQ. Then,
there exists a number ε2 > 0 such that if w, s, and M satisfy w ∈ Bε2(w∗), M ∈ Sε2 ,
and

(3.22) θ
(
s, null

(
JA(x)

)) ≤ θ̄
def
= min

(
π

4
, tan−1

(
λmin

24βmax

))
,

then sTMs ≥ (λmin/8)s
Ts.

Proof. Let ε2 be defined as in part (iv) of Lemma 3.6 so that JA(x) has full row-
rank for all w ∈ Bε2(w∗). Suppose that w ∈ Bε2(w∗), M ∈ Sε2 , and s satisfy (3.22).
If we write s = sN + sR for sN ∈ null(JA(x)) and sR ∈ Range(JA(x)T ), it follows from
(3.21) and (3.22) that θ = θ(s, null

(
JA(x)

)
) satisfies

(3.23)
‖sR‖2
‖sN‖2 = tan(θ) ≤ 1.

Using the orthogonal decomposition of s, parts (ii) and (iii) of Lemma 3.6, the Cauchy–
Schwarz inequality, the definition of βmax, and (3.23) and (3.22), we have

sTMs

sTs
=

sN
TMsN + sR

TMsR + 2sN
TMsR

‖sN‖22 + ‖sR‖22
≥ (λmin/2)sN

TsN − βmax‖sR‖22 − 2βmax‖sR‖2‖sN‖2
‖sN‖22 + ‖sR‖22

≥ λmin

4
− βmax tan

2(θ) − 2βmax tan(θ)

≥ λmin

4
− 3βmax tan(θ) ≥ λmin

8
,

which completes the proof.
We now show that in the neighborhood of a solution w∗, the (unique) solution to

(3.24) minimize
s∈Rn

g(x)Ts+ 1
2s

TMs subject to cA(x) + JA(x)s = 0
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satisfies a certain “descent” property for the underlying models (under certain as-
sumptions).

Lemma 3.10. Let w∗ be a minimizer for problem (NP) that satisfies the LICQ
and strict complementarity, and suppose that σ > ‖y∗‖∞. It follows that there exist
positive numbers c2 and ε3 such that if w ∈ Bε3(w∗) and M ∈ Sε3 , then problem (3.24)
is well defined and the solution sT satisfies

(3.25)
(
g(x) + σJ(x)T z

)T
sT < −c2‖sT‖22 for z =

{
0 if c(x) ≥ 0,

−1 otherwise.

Proof. Strict complementarity implies the existence of a scalar κS > 0 such that

(3.26) y∗A ≥ κSe > 0.

We define θ̄ as in Lemma 3.9 and choose positive scalars κJ and ε3 so that the following
hold for all w ∈ Bε3(w∗) and M ∈ Sε3 :

1. ε3 ≤ ε2, where ε2 is defined in Lemma 3.9;
2. ‖J(x)T ‖2‖(J(x)J(x)T )−1‖2 ≤ κJ;
3. the system

(3.27)

(
M JA(x)T

JA(x) 0

)(
s
−q

)
= −

(
g(x)− JA(x)T yA

cA(x)

)

has a unique solution (s, q) that satisfies
a. (κS/2)e ≤ yA + q ≤ σ(1 − κσ)e for some κσ > 0;
b. ‖s‖2 ≤ min(1, c1), where

(3.28) c1 =
κ sin(θ̄)

2κJβmax

> 0 and κ = min
(κS

2
, σκσ

)
> 0; and

c. if c∗i > 0, then ci(x) +∇ci(x)Ts > 0.
Condition 2 can be satisfied, since J∗

A has full row rank. Condition 1 is well defined,
since the assumptions of this theorem imply that the assumptions of Lemma 3.9 hold.
Since ε3 ≤ ε2, parts (ii), (iii), and (iv) of Lemma 3.6 combined with [1, Lemma 1.27]
guarantee that problem (3.24) has a unique solution, say sT, and the optimality
conditions show that (sT, qT) satisfies system (3.27), where qT is the step from y to
the Lagrange multiplier vector for problem (3.24). Note that we can make the solution
(sT, qT) arbitrarily small in norm, since the target vector in system (3.27) converges to
zero as w converges to w∗. This observation, (3.26), and the assumption σ > ‖y∗‖∞
guarantee that we can satisfy conditions 3a and 3b for some κσ > 0.

Now let w ∈ Bε3(w∗), M ∈ Sε3 , and (sT, qT) denote the solution to problem (3.24)
so that it satisfies system (3.27). For convenience we “scatter” the vector qT, which
has length equal to the size of the indexing set A, into a vector qTF ∈ R

m so that
[qTF]i = 0 if i /∈ A. We also partition the constraints up into four types: I, II, III, and
IV (see Figure 1); condition 3c and the properties of sT guarantee that these are the
only possibilities. Note that ∇ci(x)T sT < 0 for i ∈ I, ∇ci(x)T sT = 0 for i ∈ II, and
∇ci(x)T sT > 0 for i ∈ III. It then follows from system (3.27), the definitions of qTF
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[ck + Jks]i = 0

xk

F
sT

(a) Active - type I.

[ck + Jks]i = 0xk

F

sT

(b) Active - type II.

[ck + Jks]i = 0
F

sT

xk

(c) Active - type III.

[ck + Jks]i = 0

xk

F

sT

(d) Inactive - type IV.

Fig. 1. The only four possibilities in a small enough neighborhood of the solution w∗. (a) For
type I, we have ci(xk) > 0, c∗i = 0, and ∇ci(xk)

TsT < 0. (b) For type II, we have ci(xk) = 0, c∗i = 0,

and ∇ci(xk)
TsT = 0. (c) For type III, we have ci(xk) < 0, c∗i = 0, and ∇ci(xk)

TsT > 0. (d) For
type IV, we have c∗i > 0.

and z, condition 3a, and the definition of κ that(
g(x)+ σJ(x)Tz

)T
sT

= −sT
TMsT + (JA(x)sT)

T[y + qTF]A + σzT (J(x)sT)

= −sT
TMsT +

∑
i∈I

(∇ci(x)T sT)[y + qTF]i +
∑
i∈III

(∇ci(x)T sT)[y + qTF − σe]i

≤ −sT
TMsT +

κS

2

∑
i∈I

(∇ci(x)T sT)− σκσ

∑
i∈III

(∇ci(x)T sT)

≤ −sT
TMsT − κ

∑
i∈I∪II∪III

|∇ci(x)T sT|

= −sT
TMsT − κ‖JA(x)sT‖1.(3.29)

We now develop a lower bound on ‖JA(x)sT‖1.
If we let sT = sR

T + sN
T be the orthogonal decomposition of sT such that sR

T ∈
Range(JA(x)T ) and sN

T
∈ null(JA(x)), then it follows that there exists a vector r such

that JA(x)T r = sR
T
, and, therefore,

(3.30) ‖sR

T
‖2 ≤

∥∥JA(x)T∥∥2 ‖r‖2 and JA(x)sT = JA(x)sR

T
= JA(x)JA(x)Tr.

Using the nonsingularity of JA(x)JA(x)T and norm inequalities, we have

(3.31) ‖r‖2 ≤
∥∥∥(JA(x)JA(x)T)−1

∥∥∥
2
‖JA(x)sT‖2.

This inequality, (3.30), and condition 2 imply

(3.32)

‖JA(x)sT‖2 ≥ ‖r‖2∥∥∥(JA(x)JA(x)T)−1
∥∥∥
2

≥ ‖sR
T‖2∥∥∥(JA(x)JA(x)T)−1

∥∥∥
2
‖JA(x)T‖2

≥ ‖s
R
T‖2
κJ

.

Using this inequality, norm inequalities, and the fact that ‖sR
T
‖2 = sin(θ)‖sT‖2, we

have

(3.33) ‖JA(x)sT‖1 ≥ ‖JA(x)sT‖2 ≥
(
sin(θ)‖sT‖2

)
/κJ.
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Combining this with (3.29) we have

(3.34)
(
g(x) + σJ(x)T z)T sT ≤ −sT

TMsT −
(
κ sin(θ)‖sT‖2

)
/κJ.

We consider two cases. First suppose that sT
TMsT ≥ (λmin/8)sT

TsT. Then it imme-
diately follows from (3.34) that

(3.35)
(
g(x) + σJ(x)T z

)T
sT ≤ −(λmin/8)‖sT‖22.

Next, suppose that sT
TMsT < (λmin/8)sT

TsT. Lemma 3.9 then implies that 0 < θ̄ < θ,
and, therefore, 0 < sin(θ̄) < sin(θ). We can then use this fact, (3.34), the Cauchy–
Schwarz inequality, the definition of βmax, and condition 3b to conclude that(

g(x) + σJ(x)T z
)T

sT ≤ ‖sT‖22‖M‖2 − (κ sin(θ̄)‖sT‖2)/κJ

≤ ‖sT‖2
(
βmax‖sT‖2 − (κ sin(θ̄))/κJ

)
≤ −(κ sin(θ̄)/2κJ)‖sT‖2 ≤ −(κ sin(θ̄)/2κJ)‖sT‖22.(3.36)

If we define

(3.37) c2 = min

(
λmin

8
,
κ sin(θ̄)

2κJ

)
> 0,

then it follows from (3.35) and (3.36) that

(3.38)
(
g(x) + σJ(x)T z

)T
sT ≤ −c2‖sT‖22,

which completes the proof.
With a little more effort, we can show that the step from the Cauchy step sCP

k to
the solution of problem (3.24) is a descent direction for the underlying models. Since
the Cauchy step is computed from the predictor step, it is imperative that we choose
Bk so that sP

k has desirable properties. The results in section 3.1 suggest that we
make the following assumption.

Assumption 3.1. There exists a number λB
min

> 0 such that the sequence of
positive-definite matrices {Bk} defined in Algorithm 2.1 satisfies

sTBks ≥ λB
mins

Ts for all s ∈ R
n and all k ≥ 0.

We now show that in the neighborhood of a solution w∗, the (unique) solution to

(3.39) minimize
s∈Rn

(gk+MsCP

k

)T
s+ 1

2s
TMs subject to cA(xk)+JA(xk)(s

CP

k +s) = 0

is a descent direction for the underlying model determined by the matrix M (under
certain assumptions).

Lemma 3.11. Let w∗ be a minimizer for problem (NP) that satisfies the LICQ
and strict complementarity, and assume that σk > ‖y∗‖∞, that Assumption 3.1 holds,
and that ‖Bk‖2 ≤ bB for some bB > 0. It follows that there exist positive numbers
c2 and ε4 such that if iterate k − 1 is successful, wk ∈ Bε4(w∗), and M ∈ Sε4 , then
problem (3.39) is well defined and the solution sT satisfies

(3.40) (gk +MsCP

k + σkJ
T
k zk)

T sT < −c2‖sT‖22 for [zk]i =

{
0 if i ∈ Vk,
−1 if i ∈ Sk,

where Vk = {i : [ck + Jks
CP

k ]i < 0} and Sk = {i : [ck + Jks
CP

k ]i ≥ 0}.
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[ck + Jks]i = 0

xk

F

sP
k

sCP
k

sT

(a) Active - type I.

[ck + Jks]i = 0xk

F

sCP
k sT

(b) Active - type II.

[ck + Jks]i = 0

xk

F

sP
k

sCP
k

sT

(c) Active - type III.

[ck + Jks]i = 0

xk F

sP
k

sCP
k

sT

(d) Inactive - type IV.

Fig. 2. The only four possibilities in a small enough neighborhood of the solution w∗. (a) For
type I, we have ci(xk) > 0, c∗i = 0, and ∇ci(xk)

TsT < 0. (b) For type II, we have ci(xk) = 0, c∗i = 0,

and ∇ci(xk)
TsT = 0. (c) For type III, we have ci(xk) < 0, c∗i = 0, and ∇ci(xk)

TsT > 0. (d) For
type IV, we have c∗i > 0.

Proof. Since the proof is very similar to Lemma 3.10, we point out only the dif-
ferences. First, by choosing λmin ≤ λB

min
, we have that Bk ∈ Sε for all ε > 0. Second,

since σk > ‖y∗‖∞, the predictor subproblem (2.1) is equivalent to problem (3.14)
for the choice M = Bk, provided that the trust-region constraint is inactive. Third,
Lemma 3.7 shows that the solution to problem (3.14) with M = Bk correctly identifies
the optimal active set if wk is sufficiently close to w∗, so that the solution satisfies sys-
tem (3.7). Equation (3.6) then shows that we can make the solution to problem (3.14)
arbitrarily small by choosing wk sufficiently close to w∗. Fourth, since iteration k− 1
is successful by assumption, we know that the predictor trust-region radius is at least
as large as ΔR for iteration k (see Algorithm 2.1). Combining all of this together, we
know that there exists a positive number ε4 < μ/2 (μ is defined in Lemma 3.7) such
that if wk ∈ Bε4(w∗), then the trust-region in the predictor step will be inactive, sP

k

correctly identifies the optimal active set (see Figure 2), and ‖sP

k‖2 is as small as we
wish. The system that arises in place of (3.27) is

(3.41)

(
M JA(x)T

JA(x) 0

)(
s
−q

)
= −

(
g(x) − JA(x)T yA +MsCP

k

cA(x) + JA(xk)s
CP

k

)
,

but since ‖sCP

k ‖2 ≤ ‖sP

k‖2, we can ensure—by possibly decreasing ε4—that parts 3a
and 3b of Lemma 3.10 are once again satisfied. The rest of the proof is identical to
Lemma 3.10.

3.3. Local convergence with an (EQP) step. Our first rate-of-convergence
result for Algorithm 2.1 assumes that the accelerator step is computed from subprob-
lem (EQP) as discussed in [17, section 2.3.2] and restated on page 2052.

Theorem 3.12 ((EQP) local convergence result). Let w∗ = (x∗, y∗) be a mini-
mizer for problem (NP) that satisfies the strong second-order sufficient conditions as
given by Definition 3.5. Let Assumption 3.1 hold, and suppose that σk ≡ σb > ‖y∗‖∞
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and ‖Bk‖2 ≤ bB for some bB > 0 and σb > 0 and for all k ≥ 0, the accelerator
step is computed from subproblem (EQP) with the choice Hk ≡ ∇xxL(xk, y

F

k), and
max fails ≥ 1 in Algorithm 2.1. It follows that there exists a positive number δ such
that if the accelerator step is computed for every iteration once the first successful
iterate of Algorithm 2.1 is contained in Bδ(w∗), then the sequences of iterates {xk}
and {yk} generated by Algorithm 2.1 converge to x∗ and y∗ at a Q-superlinear and
R-superlinear rate, respectively. Moreover, if ∇xxL(x, y) is Lipschitz continuous in a
neighborhood of (x∗, y∗), then they converge at a Q-quadratic and R-quadratic rate,
respectively.

Proof. Set λmin = min(λH
min/2, λ

B
min) and βmax = max(bB , ‖∇xxL(x∗, y∗)‖2 + 1) in

the definition of S(x ; x∗) as given by (3.3), and let β, ε1, ε2, and μ be the positive
constants guaranteed by Lemmas 3.6 and 3.7; note that they satisfy 0 < μ ≤ ε2 ≤ ε1
by construction, so that part (ii) of Lemma 3.6 implies

(3.42) Bμ/2(w∗) ⊆ Bμ(w∗) ⊆ Bε2(w∗) ⊆ Bε1(w∗) and Sμ/2 ⊆ Sμ ⊆ Sε2 ⊆ Sε1 ,

where Sε is defined by (3.3) and (3.4). By possibly decreasing μ, we can also guarantee
that if w and w̄ are contained in Bμ(w

∗), then the following conditions are satisfied:
C1. ‖y − y∗‖∞ < σb − ‖y∗‖∞;
C2. ‖∇xxL

(
x, yF(x)

)‖2 ≤ ‖∇xxL(x∗, y∗)‖2 + 1, where yF(x) is any estimate sat-
isfying yF(x) − y∗ = O(‖x− x∗‖2);

C3. sT∇xxL
(
x, yF(x)

)
s ≥ (λH

min
/2)sTs for all s satisfying J∗

As = 0;
C4. Newton’s method applied to the function FN in (3.1) converges from the

point w to w∗; moreover, the Newton update w+ to w satisfies ‖w+−w∗‖2 ≤ ‖w−w∗‖2
(see Dennis and Schnabel [11, Theorem 5.2.1].
With μ defined, we now pick δΔ > 0 so that

C5. δΔ ≤ min
(
μ/2, ε4

)
, where ε4 is defined in Lemma 3.11; and

C6. δΔ ≤ ηcΔR/2, where 0 < ΔR ≤ ΔU and ηc are used in Algorithm 2.1.
Finally, we choose δ > 0 so that

C7. δ ≤ min(μ/2, ε4), where ε4 is defined in Lemma 3.11; and
C8. if w ∈ Bδ(w∗), then the following bound on the KKT equality conditions is

satisfied:

‖fKKT(w)‖2 =

∥∥∥∥(g(x)− J(x)T y
c(x) · y

)∥∥∥∥
2

<
1

4β
min (δΔ, ηcΔR) .

Now let k − 1 be the first successful iterate generated by Algorithm 2.1 such that
wk ∈ Bδ(w

∗). By construction of Algorithm 2.1 and the fact that the accelerator
trust-region scale factor satisfies τf ≥ 1, we have

(3.43) ΔP

k ≥ ΔR > 0 and ΔS

k ≥ τfΔR ≥ ΔR > 0.

Since (3.42) and C7 imply that wk ∈ Bμ/2(w∗), it follows from C8, Lemma 3.7,
and (3.43) that JA(xk) has full row rank, and if M ∈ Sμ/2, then xk(M) correctly
identifies the optimal active set and satisfies

(3.44) ‖xk(M)− xk‖∞ ≤ 2β‖FM (wk ;wk)‖2 ≤ 1
2 min(δΔ, ηcΔR) ≤ 1

2ηc min(ΔP

k,Δ
S

k).

We now observe that Bk ∈ Sμ/2 by construction and is, in fact, positive definite.
Furthermore, since C1 implies σk = σb > ‖yk(Bk)‖∞ and (3.44) implies ‖xk(Bk) −
xk‖∞ ≤ (ηc/2)Δ

P

k < ΔP

k, we must have wP

k = wk(Bk). Thus the solution to the
predictor subproblem satisfies sP

k = xk(Bk) − xk, correctly identifies the optimal
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xk

sP

k

sCP

k

sT

sA

kxk(Hk) [ck + Jks]i = 0

ΔA

k

xP

k

F

Fig. 3. A depiction of the scenario in Theorem 3.12. The following quantities are displayed: xk

is the current iterate, sPk is the predictor step, xP
k is the predictor point, sCP

k is the Cauchy step, sAk is
the accelerator step as computed from problem (EQP), ΔS

k is the accelerator trust-region radius, sT
is the solution to problem (3.39), xk(Hk) is the first n components of wk(Hk), which is the closest
minimizer to wk for problem (3.14) with the choice M = Hk, and F denotes the feasible side of the
constraint [ck + Jks]i ≥ 0.

active set, and is not restricted by the trust-region constraint; i.e., sP

k is the solution
to (3.24) with M = Bk.

Next we observe that C2 and C3 imply that Hk ∈ S(x∗;x∗) ⊂ Sμ/2. Therefore,
the point wk(Hk) is well defined, identifies the optimal active set, and is the unique
minimizer of problem (3.14) in a neighborhood of wk for M = Hk. Since JA(xk) has
full row rank, it follows from (3.42), part (iii) of Lemma 3.6, and [1, Lemma 1.27]
that subproblem (EQP) has sA

k as a unique solution. It follows that if ‖xk(Hk) −
(xk + sP

k)‖2 ≤ ΔS

k, then sA

k = xk(Hk) − (xk + sP

k) (see Figure 3). Using the triangle
inequality, the definition of wk(Bk), and (3.44), we have

‖xk(Hk)− (xk + sP

k)‖2 ≤ ‖xk(Hk)− xk‖2 + ‖sP

k‖2
= ‖xk(Hk)− xk‖2 + ‖xk(Bk)− xk‖2 ≤ ηcΔ

S

k ≤ ΔS

k.

Thus, if sP

k + sA

k satisfies condition (2.9), then sk = sP

k + sA

k , and it follows that
xk + sk = xk(Hk) and yA

k = yk(Hk). We now show that this is the case. If sT �= 0,
then C5 and Lemma 3.11 show that the vector sT, which satisfies sCP

k + sT = xk(Hk),
is a descent direction for the model MH

k. Therefore, MH

k(s
P

k + sA

k) < MH

k(s
CP

k ) so that
condition (2.9) is satisfied by sP

k + sA

k . On the other hand, if sT = 0, then it follows
that sP

k = sCP

k and sA

k = 0 so that sP

k + sA

k = sCP

k trivially satisfies condition (2.9).
If xk + sk is a successful step, then xk+1 ← xk + sk; otherwise, the update

xk+1 ← xk+sk is still made since max fails ≥ 1, but a nonmonotone phase is entered.
In either case, the vector wk+1 is the same vector that is obtained by performing
one step of Newton’s method on the function FN (see (3.1)) from the point (xk, y

F

k)
with the understanding that yk+1 is formed by “scattering” yA

k into a zero-vector of
length m. Since Algorithm 2.1 makes the assignment wk+1 ← wA

k , it follows from
C4 that wk+1 ∈ Bδ(w∗), and so the same argument may be repeated starting from
the point wk+1; this results in a vector wk+2 that has the same properties as wk+1

and is, in fact, equivalent to performing one step of Newton’s method on the function
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FN from the point (xk+1, y
F

k+1) . The only difference in the argument is that the
predictor and accelerator trust-region radii are only guaranteed to be bigger than
ηcΔR, since the predictor trust-region radius may be contracted if the point wk+1 was
not successful. However, conditions C1–C8 were chosen to ensure that all the previous
estimates still hold. It is shown in [10, section 15.3.2.3] that this process is sufficient
for avoiding the Maratos effect, provided the ratio rk of actual to predicted decrease
in the merit function is defined using the strategy in Algorithm 2.1; therefore, wk+2

will be accepted by the �1-merit function. This argument can clearly be repeated so
that every remaining step will be accepted. As for rate-of-convergence, we have from
[24, Theorem 11.2] and C2 that

(3.45)

(
xk+1 − x∗

yk+1 − y∗

)
= o

(∥∥∥∥(xk − x∗

yF

k − y∗

)∥∥∥∥
2

)
= o (‖xk − x∗‖2)

so that {x∗
k} and {yk} converge to x∗ and y∗ Q-superlinearly and R-superlinearly,

respectively (see [25, Chapter 9] for a description of Q and R convergence); C2 also
shows that {yF

k} converges to y∗ R-superlinearly. If ∇xxL(x, y) is locally Lipschitz
continuous, then a similar argument shows that {xk} converges to x∗ Q-quadratically
and that {yk} and {yF

k} converge to y∗ R-quadratically.
Lemma 3.13. Let w∗ = (x∗, y∗) be a minimizer for problem (NP) that satisfies the

LICQ and strict complementarity, and suppose that σk > ‖y∗‖∞, that Assumption 3.1
holds, and that ‖Bk‖2 ≤ bB for some bB > 0 and all k ≥ 0. Then there exists a scalar
δP > 0 such that if iterate k − 1 is successful and wk ∈ BδP(w∗), then

(3.46) yP

k − y∗ = O(‖xk − x∗‖2) and [yP

k]I = 0,

where yP

k are the multipliers for the predictor subproblem (2.2).
Proof. Let δP be defined to satisfy conditions C5–C8 of Theorem 3.12. It follows,

just as in the proof of Theorem 3.12, that sP

k = xk(Bk)−xk and that sP

k is the unique
solution to problem (3.24) with the choice M = Bk. This implies that (sP

k, y
P

k) satisfies
system (3.7) (π = yP

k) so that (3.46) follows from (3.6).

3.4. Local convergence with an (EIQP) step. We now consider the rate-of-
convergence for Algorithm 2.1 when the accelerator step is computed from subproblem
(EIQP) as described in [17, section 2.3.1] and restated on page 2052.

We begin by making two observations. First, since problem (EIQP) is generally
a nonconvex inequality constrained QP, we will need to assume that the solution sA

k

is one of minimal norm; a similar assumption is made by Robinson in [30, section 3].
Although this assumption is not ideal, it is not too offensive within our setting; if we
use an active set QP solver with a hot start based on the active set obtained from the
predictor step, then the solution to subproblem (EIQP) will ultimately be the same
as the solution to subproblem (EQP). Theorem 3.12 validates that this is a good step,
and, therefore, if this strategy is used, then the “minimum-norm solution” assumption
is not necessary. The second observation is that if the accelerator step is chosen to
be one of minimal norm, then the proof of Theorem 3.12 carries over, since (1) the
Cauchy step sCP

k satisfies ‖sCP

k ‖∞ ≤ ‖sP

k‖∞; (2) the vector xk(Hk)− sCP

k is a solution
to subproblem (EIQP); and (3) Lemma 3.11 guarantees that the descent-constraint
does not interfere with the step from sCP

k to xk(Hk).
Theorem 3.14 ((EIQP) local convergence result). Let w∗ = (x∗, y∗) be a mini-

mizer for problem (NP) that satisfies the strong second-order sufficient conditions as
given by Definition 3.5. Let Assumption 3.1 hold, and assume that σk ≡ σb > ‖y∗‖∞
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and ‖Bk‖2 ≤ bB for some bB > 0 and σb > 0 and all k ≥ 0, the accelerator step is com-
puted from subproblem (EIQP) with the choice Hk ≡ ∇xxL(xk, y

F

k), and max fails ≥ 1
in Algorithm 2.1. It follows that there exists a positive number δ such that if the ac-
celerator step is a solution of minimal-norm and is computed for every iteration once
the first successful iterate of Algorithm 2.1 is contained in Bδ(w∗), then the sequences
of iterates {xk} and {yk} converge to x∗ and y∗ at a Q-superlinear and R-superlinear
rate, respectively. Moreover, if ∇xxL(x, y) is Lipschitz continuous in a neighborhood
of (x∗, y∗), then they converge at a Q-quadratic and R-quadratic rate, respectively.

Proof. The result follows from the proof of Theorem 3.12, the discussion above,
and Lemma 3.10.

4. Practical issues concerning Bk and σ. In this section we address two com-
ponents of Algorithm 2.1 that are important for an efficient implementation. First, we
describe a strategy for defining the positive-definite matrix Bk via a limited-memory
BFGS update. Second, we briefly consider a simple strategy for updating the penalty
parameter.

4.1. A limited-memory BFGS update. In this section we describe a method
for defining the positive-define matrix needed in the computation of the predictor
step (2.1) that is based on the limited-memory BFGS update. We must be cautious,
however, since the matrix ∇xxL(xk, yk) is generally indefinite, and, therefore, the
traditional update may result in an indefinite matrix [2, 27]. We also note that if the
problem dimension is small, then a full BFGS update is practical.

The limited-memory BFGS update uses a fixed number of vectors, say l, to define
a positive-definite approximation to∇xxL(xk, yk) based on the most recent l iterations
(for more details see [24, 2]). If we define dk = ∇xL(xk + sk, yk+1) −∇xL(xk, yk+1),
then we may write the update as

(4.1) Bk = B0
k +

k−1∑
i=k−l

(qiq
T
i − pip

T
i ),

where B0
k denotes any initial positive-definite approximation to ∇xxL(xk, yk) and

(4.2) pi =
Bisi

(sTi Bisi)1/2
, qi =

di
(dTi si)

1/2
, and Bi = B0

k +

i−1∑
j=k−l

(qjq
T
j − pjp

T
j ).

Note that in these definitions we have assumed that k ≥ l−1 so that there are l vectors
to use. This formula is relatively simple, but one must be careful. It is tempting to
store the vector-pairs (pi, qi). However, as (4.2) illustrates, the vector pi is defined
from Bi and the matrix Bi changes from iteration to iteration, since the “oldest”
vector-pair (si, di) is removed from the set of l vector-pairs. Hence, the vector pi
must be recomputed at each iteration. The relationships given by (4.2) suggest how
this may be done, since

(4.3) Bisi = B0
ksi +

i−1∑
j=k−l

[
(qTj si)qj − (pTj si)pj

]
.

Algorithm 4.1, which is [24, Procedure 7.6], computes the vector-pair (pi, qi) recur-
sively.
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Algorithm 4.1 Computing the vector-pairs (pi, qi).
for i = k − l, k − l + 1, . . . , k − 1

qi ← di/(d
T
i si)

1/2

pi ← B0
ksi +

∑i−1
j=k−l

[
(qTj si)qj − (pTj si)pj

]
pi ← pi/(s

T
i pi)

1/2

end (for)

During the kth iteration, Algorithm 4.1 computes the values qi for k−l ≤ i ≤ k−1
and qTj si for all k− l ≤ j ≤ i− 1. However, since qi depends only on the data (di, si),

only the value qk−1 and values qTj sk−1 (k − l ≤ j ≤ k − 2) need to be computed (the
other quantities should be stored from previous iterations).

Once the vector-pairs (pi, qi) have been computed, we set Bk = B0
k−PPT +QQT ,

where we have defined P = [pk−l pk−l+1 . . . pk−1] and Q = [qk−l qk−l+1 . . . qk−1].
The predictor subproblem (2.2) then becomes

(4.4)
minimize
s∈Rn,v∈Rm

fk + gTk s+
1
2s

T (B0
k − PPT +QQT )s+ σeT v

subject to ck + Jks+ v ≥ 0, v ≥ 0, ‖s‖∞ ≤ ΔP

k.

If we define the 2l extra variables

(4.5) wa = PT s and wb = QT s,

then problem (4.4) is equivalent to

(4.6)
minimize
s,v,wa,wb

fk + gTk s+
1
2 (s

TB0
ks− wT

a wa + wT
b wb) + σeT v

subject to ck + Jks+ v ≥ 0, PT s = wa, QT s = wb, v ≥ 0, ‖s‖∞ ≤ ΔP

k.

As a function of (s, v, wa, wb), the Hessian associated with subproblem (4.6) is given
by

(4.7) BA

k =

⎛⎜⎜⎝
B0

k 0 0 0
0 0 0 0
0 0 −I 0
0 0 0 I

⎞⎟⎟⎠ ,

which is not positive definite. This may seem strange, since problem (4.6) is equiva-
lent to the strictly convex QP (4.4) (assuming that the updated matrix was positive
definite). However, if the current iterate is feasible for subproblem (4.6), then any step
that maintains linear feasibility is guaranteed to be a direction of positive curvature
even though BA

k is indefinite. To see this, suppose that (s, v, wa, wb) is a feasible point
so that wa = PT s and wb = QT s. Furthermore, suppose that PT (s+Δs) = wa+Δwa

and QT (s+Δs) = wb +Δwb. Simplification yields PTΔs = Δwa and QTΔs = Δwb.
It then follows that

(Δs,Δv,Δwa, Δwb)
TBA

k (Δs,Δv,Δwa, Δwb)

= ΔsTB0
kΔs−ΔwT

a Δwa +ΔwT
b Δwb

= ΔsTB0
kΔs−ΔsTPPTΔs+ΔsTQQTΔs

= ΔsT (B0
k − PPT +QQT )Δs = ΔsTBkΔs > 0,
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since Bk is positive definite by construction. A great advantage in using subprob-
lem (4.6) is that the Hessian matrix has essentially the same sparsity as B0

k. In con-
trast, the Hessian matrix associated with subproblem (4.4) is generally dense, since
it uses a sum of rank-1 updates. Note, however, that the 2l extra constraints (4.5)
are generally dense; fortunately a limited number of dense constraints can be accom-
modated easily by modern sparse QP solvers such as QPA and QPB from the GALAHAD

library [15].
Until this point we have assumed that the limited-memory BFGS update results in

a positive-definite matrix. However, it is well known that this is true if and only if the
quantity dTk sk > 0, and this is not guaranteed to hold. When the resulting update
is not positive definite, then perhaps the simplest strategy is to use the damping
technique introduced by Powell [27]. Basically, this approach modifies dk so that the
resulting update is (sufficiently) positive definite.

We have explored other variants of this basic idea in [16, section 2.2].

4.2. Updating the penalty parameter. The updating scheme that we now
discuss is based on the simple idea of calculating a sequence of approximate solu-
tions to problem (�1-σ). After each approximate solution is computed, we check the
constraint violation and if sufficient improvement is not obtained, then the penalty
parameter is increased with the intent of driving the constraint violation to zero. Since
the penalty parameter is now allowed to change over a sequence of iterations, we let
σk denote the penalty parameter during the kth iterate. We accept the vector-pair
(xk, πk) as an approximate solution for problem (�1-σ) if it satisfies

εD

k ≥
‖gk + σkJ

T
k πk‖∞

1 + ‖gk‖∞ ,(4.8a)

[πk]i =

⎧⎪⎨⎪⎩
[− εCk

σk
,
εCk
σk

] if [ck]i > εP

k,

[−1− εC

k ,
εCk
σk

] if −εP

k ≤ [ck]i ≤ εP

k,

[−1− εC

k ,−1 + εC

k ] if [ck]i < −εP

k,

(4.8b)

where εP

k, ε
D

k , and εC

k denote the kth primal, dual, and complementary-slackness toler-
ances, respectively, for problem (�1-σ). These conditions are based on the optimality
conditions for an exact minimizer (x, π), which are given by g(x) + σkJ(x)

Tπ = 0 for
π ∈ ∂ ‖[c(x)]−‖1 (see [12, section 14.3] for more details).

In practice, we define estimates πk = −yP

k/σk, where yP

k is the Lagrange multi-
plier vector for problem (2.2). Provided the sequence {yP

k} converges to a Lagrange
multiplier vector for the elastic version of problem (�1-σ), this strategy will eventually
produce a vector-pair (xk, πk) satisfying (4.8). We note that alternatives, such as
defining πk = −yA

k/σk for accelerator multipliers yA

k or defining πk as a solution of the
optimization problem

(4.9) minimize
π∈Rm

1
2‖gk + σkJ

T
k π‖22 subject to π satisfying (4.8b),

may be used.
Algorithm 4.2 provides the pseudocode for updating the penalty parameter as

well as the additional parameter initiations that must be made.
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Algorithm 4.2 Updating σ based on approximate critical points to prob-

lem (�1-σ).
begin (additions to preamble of Algorithm 2.1)

Choose σ0 > 0, η0 > 0, 0 < εc < 1, 0 < εP
0 < εcη0, and 1 < σe.

Set εD
0 = εP

0 and εC
0 = εP

0 .
end (additions to preamble of Algorithm 2.1)
if (xk, πk) satisfies condition (4.8), then [an approximate critical point]

if c(xk) ≥ −ηke, then [successful]
ηk+1 ← ηcηk [decrease ηk]
εP

k+1 ← εcηk+1 [ensure that εP

k is less than ηk]

εD

k+1 ← εP

k+1, εC

k+1 ← εD

k+1

σk+1 ← σk

else [unsuccessful]
ηk+1 ← ηk
εP

k+1 ← εcε
P

k

εD

k+1 ← εP

k+1, εC

k+1 ← εD

k+1

σk+1 ← σeσk [increase σk]
end if

else [not an approximate critical point]
ηk+1 ← ηk, εP

k+1 ← εP

k, εD

k+1 ← εD

k , εC

k+1 ← εC

k , σk+1 ← σk

end if

For simplicity, we have defined εD

k = εC

k = εP

k. However, all that is required is that
limk→∞ εP

k = limk→∞ εD

k = limk→∞ εC

k = 0.
For numerical considerations, it is generally undesirable to let the penalty pa-

rameter grow “too large.” However, there are two situations in which the penalty
parameter should converge to infinity. The first is when the problem contains infeasi-
ble constraints. Detecting this situation is difficult and is equivalent to showing that
the global solution of

(4.10) minimize
x∈Rn

‖[c(x)]−‖1

is strictly positive (see [4] for some recent work on this topic). The second situation
occurs when the iterates converge to a critical point of problem (4.10) for which
‖[c(x)]−‖1 > 0. This undesirable situation may occur for all penalty methods, but it
is rarely encountered in practice. Barring these two situations and under reasonable
assumptions, Theorem 4.2 below shows that the penalty parameter remains uniformly
bounded and that we can expect to generate an approximate solution to problem (NP)
in a finite number of iterations. We use the following definition.

Definition 4.1. A point x is a first-order critical point for problem (4.10) if it
satisfies

(4.11) J(x)Ty = 0

for some y ∈ ∂ ‖[c(x)]−‖1.
For given primal, dual, and complementary-slackness tolerances τp, τd, and τc,

respectively, we say that a vector-pair (xk, yk) is an approximate solution to problem
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(NP) if it satisfies

‖gk − JT
k yk‖∞

1 + ‖gk‖∞ ≤ τd,(4.12a)

ck ≥ −τpe,(4.12b)

yk ≥ −τce,(4.12c)

max(|ck|, |yk|) ≤ τce,(4.12d)

where condition (4.12d) should be interpreted componentwise.
Theorem 4.2. Let the assumptions for global convergence hold [17, Theorem 4.3],

and let {xk} be the sequence of iterates generated by Algorithm 2.1 with penalty pa-
rameter update given by Algorithm 4.2. Assume that at all limit points x∗ of {xk}
the Jacobian of active constraints has full row rank and if x∗ is a first-order critical
point for problem (4.10), then ‖[c(x∗)]−‖1 = 0. Then

(i) the penalty parameter remains uniformly bounded; and
(ii) if τp, τd, and τc denote positive primal, dual, and complementary-slackness

tolerances, respectively, for problem (NP), then the algorithm described in this theorem
terminates in a finite number of iterations with an approximate solution to problem

(NP) as given by (4.12), where yk
def
= −σkπk and (xk, πk) is an approximate solution

to (�1-σ) as given by (4.8) for the value σk.
Proof. The proof of these statements is a relatively straightforward exercise. For

a detailed proof see [16, Theorem 3.3].
We close this section by mentioning two potential drawbacks associated with using

Algorithm 4.2. First, if the initial penalty parameter is substantially smaller than the
threshold value required to guarantee convergence [10, Theorem 14.5.1], then Algo-
rithm 4.2 may be laborious, since it is based on computing a sequence of approximate
minimizers of the merit function. We also note that when the penalty parameter is too
small, the merit function may not even have a well-defined minimizer [6, Example 1].
Second, even if the merit function does have a well-defined minimizer, there may not
exist a strictly decreasing path that connects a poor initial point x0 to this minimizer
[6, Example 2]. A possible way of avoiding these situations is to dynamically update
the penalty parameter based on linear infeasibility. The so-called steering method
is based on this idea and has been studied by Byrd et al. [5] and Byrd, Nocedal,
and Waltz [6]. Their algorithm is composed of essentially two stages that we now
briefly describe using our notation. If we denote the current penalty parameter by
σC, then the first stage is to compute a step s∞ that locally minimizes the linearized
constraint violation; this can be viewed as essentially solving the predictor subprob-
lem with penalty parameter σ =∞. The second stage is to compute a predictor step
sP

k and a new penalty parameter σN that satisfy the following conditions: (i) the de-
crease in the linearized constraint violation obtained from sP

k must be at least a fixed
multiple of the decrease obtained from s∞; and (ii) the decrease in the faithful model
must respect the progress made by sP

k on the linearized infeasibility by satisfying

(4.13) ΔMB

k(s
P

k) ≥ εaσN(‖[ck]−‖1 − ‖[ck + Jks
P

k]
−‖1),

where the constant εa satisfies 0 < εa < 1 (note that ΔMB

k(sk) depends on σN,
although the notation does not make this explicit). The authors present three com-
pelling examples that elucidate the strengths of this approach. For this approach
to be beneficial, however, the additional cost must be offset by the “superior” val-
ues for the penalty parameter. This dynamic strategy is used in a sequential linear
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quadratic programming method that is part of the KNITRO software package [33], and
the authors report results that are superior to static penalty updating strategies.

We take the stance that both approaches should be available to the user. If a
reasonable estimate of the size of the entire sequence of computed multiplier estimates
is known in advance, then steering is likely to be less efficient because of the potential
overhead associated with the method. However, since this is usually not the case, we
generally recommend steering.

5. Numerical results. Preliminary testing of Algorithm 2.1 was performed on
the Hock–Schittkowski (HS) [19] test problems. The HS test suite is comprised of
generally small and dense problems that are very useful during early stages of code
development; the small size of the problems allows for relatively careful inspection of
each problem. We note that problem HS87 has been removed from the test set, since
the objective function is not continuous.

To be precise, we tested three variants of Algorithm 2.1—they differ in how we
compute the accelerator step and update the penalty parameter. In the first variant we
computed the accelerator step from the inequality constrained subproblem (EIQP) on
page 2052 and updated the penalty parameter by using “steering” as briefly described
at the end of section 4.2. In the second variant we computed the accelerator step from
the equality constrained subproblem (EQP) on page 2052 and again used steering
to update the penalty parameter. Finally, in the third variant we computed the
accelerator step from the inequality constrained subproblem (EIQP) and updated the
penalty parameter by using Algorithm 4.2.

Since the problems in the test set are of small dimension, we chose to update
the positive-definite matrix Bk in the predictor subproblem (2.2) by using the BFGS
update. To perform this update, we used the vectors sk and dk = ∇xL(xk+sk, yk+1)−
∇xL(xk, yk+1). If these vectors did not result in a sufficiently positive-definite update,
then we used the damping technique introduced by Powell [27]. For simplicity, we
chose B0 = I.

In all cases, we chose Hk ≡ ∇xxL(xk, y
P

k) during the computation of the accelera-
tor and Cauchy step, where yP

k is the multiplier vector from the predictor subproblem.
We solved both the (convex) quadratic program (2.2) and the (generally indefinite)
quadratic program (EIQP) using the GALAHAD [15] package QPC, which is a “cross-
over” QP solver. In the first phase, QPC calls the GALAHAD interior-point QP solver
QPB [9] to compute an approximate solution and an estimate of the optimal active set.
In the second phase, QPC calls the GALAHAD active set QP solver QPA [18] to “refine”
the approximate solution from the first phase. To solve the equality constrained QP
(EQP) we used the GALAHAD package EQP, which has been designed to solve prob-
lems of precisely this form. We should mention that most of the GALAHAD packages,
including the QP solvers mentioned above, use the sparse solvers MA48 and MA57 from
[20] to handle the required systems. The modular design of all the GALAHAD packages
makes it easy to call these subroutines as needed.

The following parameters were used in all cases: primal/dual/complementarity
slackness tolerances τp = τd = τc = 1.0e−5, successful/very successful tolerances
ηS = 0.01 and ηVS = 0.7, maximum predictor trust-region radius ΔU = 1000, trust-
region “reset” radius ΔR = 1.0e−4, accelerator trust-region scale factor τf = 4.0,
number of nonmonotone steps allowed max fails = 1, and trust-region contraction
and expansion factors ηc = 0.1 and ηe = 5.0. We used an initial penalty parameter of
σ = 1.0 for the first and second strategies, and we used an initial penalty parameter
of σ = 9.0 for the third strategy. The larger (seemingly arbitrary) initial penalty
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Table 1

We record the number of function and gradient evaluations required and note that the difference
between these values indicates the number of unsuccessful steps attempted.

EIQP-steer EQP-steer EIQP-seq

Prob. #fc #gJ #fc #gJ #fc #gJ

HS1 46 25 39 24 46 25

HS2 11 8 11 8 11 8

HS3 3 3 3 3 3 3

HS4 3 2 3 2 3 2

HS5 10 6 9 6 10 6

HS6 3 3 5 5 3 3

HS7 10 9 9 8 12 10

HS8 6 6 6 6 6 6

HS9 3 3 4 4 3 3

HS10 10 10 10 10 10 10

HS11 6 6 6 6 6 6

HS12 7 7 6 6 14 11

HS13 15 12 29 27 56 54

HS14 5 5 5 5 5 5

HS15 7 7 7 7 20 20

HS16 4 4 4 4 5 5

HS17 7 7 7 7 10 10

HS18 9 8 7 7 9 8

HS19 6 6 6 6 13 13

HS20 8 8 4 4 16 15

HS21 2 2 2 2 2 2

HS22 2 2 2 2 2 2

HS23 6 6 6 6 6 6

HS24 3 3 4 4 3 3

HS25 1 1 1 1 1 1

HS26 17 17 16 16 17 17

HS27 12 11 14 13 13 12

HS28 2 2 3 3 2 2

HS29 6 6 6 6 31 23

parameter for the third variant was chosen based on performance and seems to be
related to the less dynamic nature of the update as compared with steering.

Tables 1, 2, 3, and 4 give our preliminary numerical results for these three strate-
gies; column EIQP-steer corresponds to the first strategy, column EQP-steer corre-
sponds to the second strategy, and column EIQP-seq corresponds to the third strategy.
For each strategy we have recorded the number of function evaluations #fc and the
number of gradient evaluations #gJ. Note that if the quantity #fc - #gJ is positive,
then its value represents the number of unsuccessful iterations, i.e., the number of
times that the trust-region radii were necessarily decreased in order to obtain good
agreement between the faithful model MH

k and the merit function φ. An F indicates
that more than 500 evaluations were required, and an FQP indicates that the QP
solver failed.
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Table 2

We record the number of function and gradient evaluations required and note that the difference
between these values indicates the number of unsuccessful steps attempted; an F indicates that more
than 500 evaluations were required.

EIQP-steer EQP-steer EIQP-seq

Prob. #fc #gJ #fc #gJ #fc #gJ

HS30 10 10 10 10 10 10

HS31 8 8 9 7 5 5

HS32 3 3 4 4 3 3

HS33 5 5 14 11 5 5

HS34 9 8 9 8 34 28

HS35 2 2 3 3 2 2

HS36 3 3 4 4 3 3

HS37 5 5 5 5 5 5

HS38 84 38 65 46 84 38

HS39 12 11 13 11 12 11

HS40 4 4 4 4 4 4

HS41 2 2 2 2 2 2

HS42 6 6 4 4 4 4

HS43 7 7 8 8 12 10

HS44 2 2 3 3 2 2

HS45 3 3 5 4 3 3

HS46 16 16 16 16 16 16

HS47 15 15 20 18 19 17

HS48 2 2 3 3 2 2

HS49 16 16 16 16 16 16

HS50 9 9 6 6 9 9

HS51 2 2 2 2 2 2

HS52 2 2 2 2 2 2

HS53 2 2 2 2 2 2

HS54 9 9 14 14 22 22

HS55 2 2 2 2 2 2

HS56 110 82 F F F F

HS57 8 6 6 6 8 6

HS59 10 9 8 8 18 15

The strictly convex predictor subproblem combined with either accelerator sub-
problem (EIQP) or (EQP) typically generates iterates that rapidly converge to a
solution; the nonmonotone approach avoids the Maratos effect. The results also in-
dicate that using steering to update the penalty parameter generally performs better
than the method discussed in section 4.2; this agrees with [5, 6]. In particular, steer-
ing was essential in solving HS93 for otherwise the merit function converged to minus
infinity, the constraints blew up, and the method failed. In a less clear manner, the
update to the penalty parameter is important in solving HS56. When the update
in section 4.2 was used, the merit function again converged to minus infinity; the
same occurred when the accelerator step was computed from subproblem (EQP) and
steering was used.
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Table 3

We record the number of function and gradient evaluations required and note that the difference
between these values indicates the number of unsuccessful steps attempted.

EIQP-steer EQP-steer EIQP-seq

Prob. #fc #gJ #fc #gJ #fc #gJ

HS60 7 7 7 7 7 7

HS61 5 5 5 5 14 11

HS62 12 6 8 7 12 6

HS63 7 7 7 7 7 7

HS64 15 15 20 17 23 23

HS65 6 6 6 6 22 16

HS66 4 4 4 4 4 4

HS67 7 7 10 10 14 14

HS68 27 20 38 27 20 16

HS69 24 19 42 30 45 34

HS70 21 17 41 33 21 17

HS71 5 5 5 5 5 5

HS72 16 15 15 14 46 45

HS73 3 3 3 3 3 3

HS74 8 8 8 8 8 8

HS75 8 8 8 8 8 8

HS76 2 2 4 4 2 2

HS77 12 12 12 12 12 12

HS78 4 4 4 4 4 4

HS79 5 5 5 5 5 5

HS80 7 7 8 8 7 7

HS81 6 6 6 6 6 6

HS83 6 6 6 6 16 16

HS84 4 4 4 4 5 5

HS85 8 8 13 12 21 20

HS86 4 4 4 4 4 4

HS88 20 18 25 21 43 41

HS89 23 21 64 46 45 43

6. Conclusions. In [17], we proved global convergence of a second derivative
SQP method for minimizing the �1-penalty function for a fixed value of the penalty
parameter. The main purpose of this paper was to study the local convergence prop-
erties of a nonmonotone variant of that algorithm. In section 3 we gave two local
convergence results—the first applies when the accelerator step is computed from
an equality constrained subproblem (the so-called SEQP approach), and the second
applies when the accelerator step is computed from an inequality constrained subprob-
lem (the so-called SIQP approach). Both results show superlinear convergence of the
iterates to a solution satisfying the strong second-order sufficiency conditions; under
slightly stronger assumptions on the second derivatives, the convergence is quadratic.

Algorithm 2.1 requires the definition of a positive-definite matrix that approx-
imates the Hessian of the Lagrangian. In section 4.1 we discussed a strategy for
defining these matrices based on limited -memory BFGS updating. In particular, we
showed how the resultant dense predictor step QP could be transformed into an equiv-
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Table 4

We record the number of function and gradient evaluations required and note that the difference
between these values indicates the number of unsuccessful steps attempted; an F indicates that more
than 500 evaluations were required, and an FQP indicates that the QP solver QPC failed.

EIQP-steer EQP-steer EIQP-seq

Prob. #fc #gJ #fc #gJ #fc #gJ

HS90 44 33 40 30 42 34

HS91 43 32 32 25 73 61

HS92 35 25 34 27 64 37

HS93 18 15 6 6 F F

HS95 3 3 2 2 3 3

HS96 3 3 2 2 3 3

HS97 4 4 5 5 4 4

HS98 4 4 5 5 4 4

HS99 5 5 FQP FQP 75 34

HS100 10 9 13 10 10 9

HS101 34 27 68 40 67 52

HS102 28 21 55 34 44 39

HS103 26 20 27 20 79 62

HS104 17 14 19 14 14 11

HS105 21 14 31 23 21 14

HS106 103 101 122 66 103 101

HS107 6 6 6 6 10 10

HS108 12 9 12 10 242 177

HS109 9 9 9 9 10 10

HS110 9 5 8 6 9 5

HS111 28 23 41 31 23 19

HS112 11 11 50 50 11 11

HS113 5 5 6 6 5 5

HS114 142 142 13 13 136 134

HS116 F F F F F F

HS117 10 10 11 11 10 10

HS118 3 3 12 12 3 3

HS119 7 7 8 8 7 7

alent QP whose sparsity is essentially the same as the initial approximation (which is
chosen to be sparse in practice).

In section 4.2 we gave details on a simple strategy for updating the penalty pa-
rameter based on minimizing the �1-penalty function over a sequence of increasing
values of the penalty parameter. Although the basic idea is certainly not new [8, 28,
21, 32, 26, 34, 3, 22], the details of our very simple strategy have not been published
to our knowledge.

In section 5 we gave preliminary numerical results for the HS test problems. Our
first set of results were based on using “steering” [5, 6] to update the penalty pa-
rameter and computing the accelerator step from the inequality constrained subprob-
lem (EIQP) on page 2052. Although this requires “solving” a potentially indefinite
QP, which is generally perceived as a bad idea, the results are quite good. Our sec-
ond set of results also used steering to update the penalty parameter, but instead
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computed the accelerator step from the equality constrained subproblem (EQP) on
page 2052. Our last set of results was based on solving subproblem (EIQP) for the
accelerator step, but updating the penalty parameter by monitoring the norm of the
constraint violation over a sequence of approximate minimizers of the merit function
(see section 4.2). We stress that these results are preliminary and that they are not
intended to compare the SIQP approach with the SEQP approach, but rather to show
that both approaches have the potential to be successful in practice.

During essentially simultaneous work, Morales, Nocedal, and Wu [23] have de-
veloped a similar �1-SQP line-search algorithm. Roughly, they compute a predictor
step (without a trust-region constraint) followed by an accelerator step defined as the
solution to problem (EQP). They then reduce the �1-merit function by performing a
line search along the “bent” path defined by the steps sP

k and sA

k . Our methods differ
in the following ways. First, Algorithm 2.1 is based on trust-region methodology,
while their algorithm is based on line-search philosophy. Second, global convergence
of our algorithm is guaranteed by the Cauchy step, while convergence of their algo-
rithm is ensured by the predictor step with a suitable line search. Third, we allow
and have analyzed an accelerator step computed as the minimizer of an inequality
constrained subproblem, which allows for active set refinement; they have not consid-
ered such a subproblem, although one could imagine that such an analysis is possible.
Finally, our algorithms differ even when subproblem (EQP) is used to compute an
accelerator step. Following the rejection of a trial step, Morales, Nocedal, and Wu
perform a line search in the direction of the predictor step. We, on the other hand,
perform the equivalent of a backtracking line search with each trial point enhanced
by a new accelerator direction. Since convergence of our method relies on the Cauchy
point, we could easily use more sophisticated line search techniques without sacrificing
convergence.
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