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Gould and Robinson (2010,SIAM J. Optim.,20, 2023–2048; 2010,SIAM J. Optim.,20, 2049–2079)
introduced a second-derivative sequential quadratic programming method (S2QP) for solving nonlinear
nonconvex optimization problems. We proved that the method is globally and locally superlinearly con-
vergent under common assumptions. A critical component of the algorithm is the so-called predictor
step, which is computed from a strictly convex quadratic program with a trust-region constraint. This
step is essential for proving global convergence but its propensity to identify the optimal active set is
paramount for achieving fast local convergence. Thus the global and local efficiency of the method is in-
timately coupled with the quality of the predictor step. In this paper we study the effects of removing the
trust-region constraint from the computation of the predictor step. This is reasonable since the resulting
problem is still strictly convex and thus well defined. Although it is interesting theoretically to verify that
the same convergence guarantees hold when no trust-region constraint is used, our motivation is based on
the practical behaviour of the algorithm. Preliminary numerical experience with S2QP indicates that the
trust-region constraint occasionally degrades the quality of the predictor step and diminishes its ability to
correctly identify the optimal active set. Moreover, removal of the trust-region constraint allows for re-use
of the predictor step over a sequence of failed iterations, thus reducing computation. We show that the
modified algorithm remains globally convergent and preserves local superlinear convergence provided
that a nonmonotone strategy is incorporated.

Keywords: nonlinear programming; nonlinear inequality constraints; sequential quadratic programming;
`1-penaltyfunction; nonsmooth optimization.

1. Introduction

In Gould & Robinson(2010a,b) we presented a second-derivative sequential quadratic programming
(S2QP)—a sequential inequality/equality constrained quadratic programming algorithm (an SIQP/SEQP
‘hybrid’) for solving the problem

minimize
x∈Rn

φ(x) = f (x)+ σ‖[c(x)]−‖1, (`1-σ )

wherethe constraint vectorc(x):Rn→ Rm andthe objective functionf (x):Rn→ R areassumed to be
twice continuously differentiable,σ is a positive scalar known as the penalty parameter and we have used
the notation [v]− = min(0,v) for a generic vectorv (the minimum is understood to be componentwise).

c© Theauthor 2011. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
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Themotivation for solving this problem is that solutions of problem (`1-σ ) correspond (under certain
assumptions) to solutions of the nonlinear programming problem

minimize
x∈Rn

f (x) subjectto c(x) > 0 (NP)

(seePietrzykowski(1969) andConn & Pietrzykowski(1977) for more details on exactly how these
problems are related). Thekth iteration of the method involves the computation of a trial step, which
is defined from at most two components. The first component is the predictor step (Gould & Robinson,
2010a, Section 2.1). It is defined as the unique minimizer of a strictlyconvexquadratic approxima-
tion to φ subject to a trust-region constraint. To ensure global convergence the predictor step may be
scaled by performing a trivial one-dimensional minimization of a second-order approximation toφ,
resulting in a so-called Cauchy step (Gould & Robinson, 2010a, Section 2.2). Therefore the predic-
tor step affects global efficiency since a ‘better’ predictor step will generally result in a better Cauchy
step. In the neighbourhood of a solution, however, this distinction becomes less important provided
that we compute a second (optional) component, referred to as an accelerator step, whose responsibil-
ity is to drive fast local convergence of the algorithm. If an accelerator step is computed from any of
the subproblems considered inGould & Robinson(2010a, Section 2.3), then the iterates converge su-
perlinearly (under common assumptions;Gould & Robinson, 2010b, Theorems 3.12 and 3.14). In the
special case that the accelerator step is computed from subproblem (EQP) (Gould & Robinson, 2010a,
Section 2.3.2), the proof requires that the predictor step correctly identifies the set of constraints that
are active at the local solution. Thus the predictor step also plays a role in guaranteeing fast local con-
vergence. It is also clear that the quality of the predictor step is important when the accelerator step is
not computed since then the efficiency of the method globally and locally is entirely controlled by the
predictor step. To summarize, the quality of the predictor step is extremely important both globally and
locally.

The justification provided by the previous paragraph combined with our preliminary numerical ex-
perience with S2QP (an implementation of the algorithm outlined inGould & Robinson(2010a,b))
suggests that improvements in how we define the predictor step will lead to an improved algorithm.
This is the primary purpose of this paper. To be precise, we study the effect of removing the trust-region
constraint from the computation of the predictor step. This is reasonable since the problem is strictly
convex and therefore well defined. It is interesting theoretically to verify that the same convergence
guarantees hold when no trust-region constraint is used, but equally it is important from a practical
point of view since the trust-region constraint may degrade the step quality and/or interfere with opti-
mal active set identification. Moreover, removal of the trust-region constraint allows for re-use of the
predictor step over a sequence of failed iterations, thus reducing computation. Although this may be
considered a ‘minor’ change, new proofs of global convergence are needed. We must also mention that
our algorithm has commonalities with the work byMoraleset al. (2008), and a detailed comparison is
given within the conclusions of Section6.

In Section2 we formally state and describe the modified sequential quadratic programming (SQP)
method, while in Section3 we prove that it is both globally and locally superlinearly convergent. In Sec-
tion 4 we observe that, with essentially the same theory, we may prove global convergence of our method
if we include a fixed predictor step trust-region constraint. In Section5 we examine three problems
from the Hock–Schittkowski test suite (Hock & Schittkowski,1981) on which our algorithm exhibits
favourable, unfavourable and typical behaviour. We conclude by giving final comments in Section6.
Before proceeding, however, we list essential notation.
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1.1 Notation

We lete ∈ Rm denotethe vector of all ones,g(x) be the gradient off (x) and∇xx f (x) its (symmetric)
Hessian. The matrix∇xxcj (x) is the Hessian ofcj (x), and J(x) is them× n Jacobian matrix of the
constraints withi th row ∇ci (x)T. For convenience, we use the notationfk = f (xk), ck = c(xk),
gk = g(xk) and Jk = J(xk) for a given iteratexk. The Lagrangian function associated with (NP) is
L(x, y) = f (x)− yTc(x). The Hessian of the Lagrangian with respect tox is∇xxL(x, y) = ∇xx f (x)−∑m

j=1 yj∇xxcj (x).
For a general vectorv the notation [v]− = min(0,v) is used, where the minimum is understood to

be componentwise. Given two general vectorsv andw, the notationv ∙ w represents the vector whose
i th component isvi wi . Given a general indexing setS, a vectorv and a matrixV , we letvS andVS
denotethe rows ofv andV that correspond to the indexing setS. If V happens to be a function ofx,
then we often writeVS(x) insteadof [V(x)]S .

2. Algorithm

In this section we state and describe our nonmonotone algorithm for minimizing problem (`1-σ ). This
method is a modification of that proposed inGould & Robinson(2010a,b) that uses the new predictor
step subproblem. The algorithm is given as Algorithm2.1on page 5.

We first evaluate the problem functions at the current point(xk, yk). Next we approximate
∇xxL(xk, yk) with a symmetric positive-definite matrixBk (Gould & Robinson, 2010b, Section 4.1)
and form the predictor step subproblem

minimize
s∈Rn

fk + gT
k s+

1

2
sT Bks+ σ‖[ck + Jks]−‖1

def
= MB

k(s). (2.1)

By introducing elastic variables (Gill et al.,2005) we may solve the equivalent strictly convex quadratic
programming problem

minimize
s∈Rn,v∈Rm

fk + gT
k s+

1

2
sT Bks+ σeTv subjectto ck + Jks+ v > 0, v > 0 (2.2)

for the predictor stepsP
k. We let yP

k denotean optimal multiplier vector associated with the affine con-
straintck + Jks+ v > 0. Next we defineHk to be any symmetric approximation to∇xxL(xk, yP

k), but
for the local convergence results given in Section3 we chooseHk ≡ ∇xxL(xk, yP

k). We note that all
the results of this paper still hold ifyP

k is replaced by any first-order multiplier estimateyF
k suchthat

yF
k − y∗ = O(‖xk − x∗‖2) and [yF

k]I = 0, where(x∗, y∗) is a local solution to problem (NP) and

I
def
= {i : ci (x∗) > 0}. OnceHk is defined, we define the Cauchy stepsCP

k = αksP
k, whereαk is the

solution to

minimize
06α6αu

MH
k(αsP

k) for αu
def
=

ΔP
k

‖sP
k‖∞

(2.3)

and

MH
k(s)

def
= fk + gT

k s+
1

2
sT Hks+ σ‖[ck + Jks]−‖1 (2.4)

is the faithful model ofφ. We emphasize that the predictor step computation (2.2), in contrast toGould
& Robinson(2010a,b), does not involve any trust-region constraint. The predictor trust-region radius
ΔP

k is only used during the Cauchy step computation (2.3) for constraining the length of the step.
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4 of 22 N. I. M. GOULD AND D. P. ROBINSON

To further contrastGould & Robinson(2010a,b), the Cauchy stepsCP

k maynow have alarger infinity-
norm than the predictor step but will always satisfy

‖sCP

k ‖∞ 6 ΔP
k. (2.5)

The next step is to compute the change in the faithful model at the Cauchy step, which is given by

ΔMH
k(s

CP
k ), whereΔMH

k(s)
def
= MH

k(0) − MH
k(s). We then have the option of computing an accelerator

stepsA
k asthe solution of any of the subproblems discussed inGould & Robinson(2010a, Section 2.3).

In particular, if we compute an accelerator step as the solution of theequalityconstrained quadratic
program

minimize
s∈Rn

f̄ P
k + (gk + HksP

k)
Ts+

1

2
sT Hks

(EQP)
subjectto [Jks]A(sP

k)
= 0, ‖s‖2 6 ΔA

k,

whereA(sP
k) = {i : [ck + JksP

k]i 6 0}, f̄ P
k = fk + gT

k sP
k +

1
2sP

k
T HksP

k andΔA
k > 0 is the accelerator

trust-region radius, then we define the trial stepsk as

sk =






sP
k + sA

k if ΔMH
k(s

P
k + sA

k) > ηΔMH
k(s

CP

k ),

sCP

k otherwise
(2.6)

for some predefined constant 0< η 6 1 (independent ofk). Otherwise, if we computesA
k from the

explicitly inequalityconstrained quadratic program

minimize
s∈Rn

f̄ CP

k + (gk + HksCP

k )Ts+
1

2
sT Hks+ σ‖[ck + Jk(sCP

k + s)]−Vk
‖1

(EIQP)
subjectto [ck + Jk(sCP

k + s)]Sk > 0,

(gk + HksCP

k + σ JT
k zk)

Ts6 0, ‖s‖∞ 6 ΔA
k,

where

[zk]i =

{
−1 if i ∈ Vk,

0 if i ∈ Sk,
(2.7)

Vk = {i : [ck + JksCP

k ]i < 0}, Sk = {i : [ck + JksCP

k ]i > 0}, f̄ CP

k = fk + gT
k sCP

k +
1
2sCP

k
T HksCP

k and
(gk + HksCP

k + σk JT
k zk)

Ts6 0 is the so-called ‘descent constraint’, then we define the trial step as

sk = sCP

k + sA
k . (2.8)

Note thatGould & Robinson(2010a, Section 2.3) ensures that in both cases the resulting trial stepsk

will satisfy

ΔMH
k(sk) > ηΔMH

k(s
CP

k ) > 0. (2.9)

We also note that if|A(sP
k)| > n, then subproblem (EQP) will generally result in the unproductive

solutionsA
k = 0. To prevent this unwanted outcome various alternative subproblems and strategies may

be utilized. We do not consider any alternatives in this paper since subproblem (EQP) is sufficient for
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proving local superlinear convergence under certain assumptions (see Theorems3.10and3.11). In any
case, once the full step is defined, we evaluateφ(xk + sk) andΔMH

k(sk).
The strategy for updating the trust-region radii and for accepting or rejecting candidate steps is

similar to traditional methods (Connet al., 2000) and based on the ratiork of actual versus predicted
decrease inφ. Differences are that we must account for nonmonotone steps, ensure that the predictor
trust-region radius is bigger than a predefined constant following a successful iteration (to ensure fast
asymptotic convergence) and update the accelerator trust-region radius. More precisely, if the ratio satis-
fiesrk > ηVS for some ‘very successful’ parameterηVS ∈ (0,1), then we believe that the model is a very
accurate representation of the merit function within the current trust region, and therefore we increase
the predictor trust-region radius by an expansion factorηe > 1 with the belief that the current trust-
region radius may be overly restrictive. If the ratio satisfiesηS 6 rk < ηVS for a ‘successful’ parameter
ηS ∈ (0,ηVS], then we believe that the model is sufficiently accurate and keep the current predictor trust-
region radius with the possibility of increasing it only to satisfyΔP

k+1 > ΔRESET for some predefined ‘re-
set’ valueΔRESET > 0. Otherwise, the ratio indicates that there is poor agreement between the modelMH

k
andthe merit function. It is precisely this case that differentiates the nonmonotone Algorithm2.1 from
its monotone variant. In fact, if every iteration is successful, then the two algorithms are identical. How-
ever, if a failure occurs then Algorithm2.1still accepts the step (provided thatmax fails > 0) with the
hope that the next iterate will make progress, and we say that a ‘nonmonotone phase’ has been entered.
If we enter a nonmonotone phase, then the ratiork of actual to predicted decrease in the merit function is
computed based on the trial pointxk+sk andthebest-knownpoint, that is, the solution estimate directly
before the nonmonotone phase was entered. If the number of consecutive failures reaches the maximum
number allowed (as denoted by the parametermax fails), then we check whether thefirst Cauchy step
computed during the current nonmonotone phase makes progress, and this allows us to prove global
convergence in Section3. If it does not make sufficient progress, then the algorithm reverts to the best-
known point, reduces the predictor trust-region radius by a contraction factorηc ∈ (0,1) andproceeds
on. In less precise terms, the algorithm has ‘gone back in time’ and proceeds as if we were using the
monotone variant until the next failure occurs. We will show that Algorithm2.1 is globally convergent
for max fails> 0, but thatmax fails >0 is required to achieve fast local convergence (see Theorems3.4,
3.10and3.11). In all cases we define the accelerator trust-region radius to be a constant multiple of the
predictor trust-region radius, although the conditionΔA

k+1 6 τ f ∙ΔP

k+1 for some accelerator trust-region
scale factorτ f > 1 is also sufficient. For more details on nonmonotone algorithms (sometimes known
as nonmonotone ‘watchdog’ techniques), seeConnet al. (2000, Chapters 10.1 and 11.3).

ALGORITHM 2.1. (Nonmonotone algorithm).
Input: (x0, y0)
Setparameters 0< ηS 6 ηVS < 1, 0 < ΔRESET6 Δu, 0 < η < 1, τ f > 1 and 06 max fails ∈ N.
Set expansion and contraction factors 0< ηc < 1 < ηe, fail counterfails← 0 and counterk← 0.
do

Evaluatefk, gk, ck andJk, and then computeφk.
DefineBk to be a symmetric positive-definite approximation to∇xxL(xk, yk).
Solve problem (2.2) for the predictor step and the multipliers(sP

k, yP
k).

DefineHk to be a symmetric approximation to∇xxL(xk, yP
k).

Solve problem (2.3) forsCP

k andcomputeΔMH
k(s

CP

k ).
Optionally, compute an accelerator step and the multipliers(sA

k, yA
k).

Definea full stepsk thatsatisfies (2.9) and then evaluateφ(xk + sk) andΔMH
k(sk).
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6 of 22 N. I. M. GOULD AND D. P. ROBINSON

if fails= 0 then
rk ← (φ(xk)− φ(xk + sk))/ΔMH

k(sk) [standarddefinition]
If sk = sCP

k , then setcauchy tried← true; otherwise setcauchy tried← false.
else

rk ← (φR − φ(xk + sk))/Δ
H
R [changein φ based on pointxR]

end if
if rk > ηVS then [successful]

xk+1← xk + sk, yk+1← yA
k (yk+1← yP

k if accelerator step not computed)
ΔP

k+1← min(max(ηe ∙ΔP
k,ΔRESET),Δu)

fails← 0
elseif rk > ηS then [successful]

xk+1← xk + sk, yk+1← yA
k (yk+1← yP

k if accelerator step not computed)
ΔP

k+1← max(ΔP
k, ΔRESET)

fails← 0
else

fails← fails+ 1
if fails= 1 then [save current point]

xR← xk, yR← yk, φR← φk, sCP
R ← sCP

k , yP
R← yP

k

ΔH
R ← ΔMH

k(sk), ΔHCP
R ← ΔMH

k(s
CP

k ), ΔP
R← ΔP

k

end if
if 6 fails6 max fails then [unsuccessful]

xk+1← xk + sk, ΔP

k+1← ΔP
k

else
fails← 0
if cauchy tried then [revert to saved point]

xk+1← xR, yk+1← yR, ΔP

k+1← ηcΔ
P
R

else
Evaluateφ(xR + sCP

R )

if (φR − φ(xR + sCP
R ))/ΔHCP

R > ηS then [successfulCauchy]
xk+1← xR + sCP

R , yk+1← yP
R, ΔP

k+1← max(ΔP
k,ΔRESET)

else [revert to saved point]
xk+1← xR, yk+1← yR, ΔP

k+1← ηcΔ
P
R

end if
else if

end if
end if
ΔA

k+1← τ f ∙ΔP

k+1

k← k+ 1
enddo

Now that our entire algorithm has been stated, we proceed to the analysis.
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3. Convergence properties

We begin by defining a criticality measure based on the predictor step subproblem.

LEMMA 3.1 The quantity

χ(x, B)
def
= f (x)+ σ‖[c(x)]−‖1− min

s∈Rn

[
f (x)+ g(x)Ts+

1

2
sT Bs+ σ‖[c(x)+ J(x)s]−‖1

]
(3.1)

is a criticality measure in the following sense:

(i) for a givenx and positive-definite matrixB it follows that 06 χ(x, B) <∞;

(ii) for any positive-definite matrixB we have thatχ(x, B) = 0 if and only if x is a first-order
critical point for problem (1̀-σ );

(iii) if {xk} → x∗, {Bk} is a sequence of matrices such that, for some positive scalarsλB
min andλB

max,
wehave

0 < λB
min 6

vT Bkv

vTv
6 λB

max for all v 6= 0, (3.2)

andχ(xk, Bk)→ 0, thenx∗ is a first-order critical point for problem (`1-σ ).

Proof. Part (i) follows immediately from the fact that the minimization problem in (3.1) is strictly
convex and has the valuef (x)+ σ‖[c(x)]−‖1 ats= 0.

We now prove part (ii). The equationχ(x, B) = 0 holds if and only ifs= 0 is the unique minimizer
of the strictly convex minimization problem used in equation (3.1). Optimality of that problem at the
points= 0 implies that

there existsw ∈ ∂ ‖[c(x)]−‖1 suchthatg(x)+ σ J(x)Tw = 0, (3.3)

where∂ ‖[c(x)]−‖1 is the sub-differential of∂ ‖[∙]−‖1 atthe pointc(x) (seeFletcher,1981, Section 14.2
for more details). This proves part (ii) since condition (3.3) is precisely the first-order conditions forx
to be a first-order critical point for problem (`1-σ ).

Given a symmetric matrixB, we define the vector obtained by stacking all the entries of the lower

triangular part ofB (in a specified order) asb(B) ∈ RnB , wherenB

def
= n(n+ 1)/2. The assumption on

the matrix sequence{Bk} in part (iii) guarantees that the vector sequence{b(Bk)} is bounded, so that
there exists a subsequenceK such that limk∈K b(Bk) = b∗. This implies that

lim
k∈K

xk = x∗ and lim
k∈K

Bk = B∗ with B∗ positive definite, (3.4)

whereB∗
def
= b(b∗). Now we define the function

F(s, x, b(B)) = f (x)+ g(x)Ts+
1

2
sT Bs+ σ‖[c(x)+ J(x)s]−‖1, (3.5)

so that F(s, x, b) is defined and continuous onRn × Rn × RnB andconvex for each fixed(x, b). It
follows from Connet al. (2000, Theorem 3.2.8 using the continuouspoint-to-setmapC(x, b) = Rn)
that

F∗(x, b)
def
= min

s∈Rn
F(s, x, b) (3.6)

 at R
adcliffe S

cience Library, B
odleian Library on A

ugust 1, 2011
im

ajna.oxfordjournals.org
D

ow
nloaded from

 

http://imajna.oxfordjournals.org/


8 of 22 N. I. M. GOULD AND D. P. ROBINSON

is continuous, so that we may deduce from (3.1) thatχ(x, B) is also continuous as a function of(x, B).
Thus we have

χ(x∗, B∗) = lim
k∈K

χ(xk, Bk) = 0, (3.7)

wherethe first equality follows by continuity and the second by assumption. Part (ii) and (3.4) then
imply thatx∗ is a first-order critical point for problem (`1-σ ). �

We now give a lower bound for the change in the faithful model obtained from the Cauchy step. This
is the essential estimate for proving global convergence of Algorithm2.1. The result uses the change in
the convex modelMB

k, which we define as

ΔMB
k(s)

def
= MB

k(0)− MB
k(s). (3.8)

LEMMA 3.2 The predictor and Cauchy step satisfy

ΔMH
k(s

CP

k ) >
1

2
ΔMB

k(s
P
k) min

(
1,

ΔP
k

‖sP
k‖∞

,
ΔMB

k(s
P
k)

n‖Bk − Hk‖2‖sP
k‖

2
∞

)
. (3.9)

Proof. We consider two cases.

Case1: sP
k

T HksP
k 6 sP

k
T BksP

k.
Subcase1: ‖sP

k‖∞ 6 ΔP
k.

This subcase implies thatαu > 1, so thatα = 1 is in the domain of the Cauchy step computation (2.3).
This implies thatMH

k(s
CP

k ) 6 MH
k(s

P
k) 6 MB

k(s
P
k), where the second inequality follows sincesP

k
T HksP

k 6
sP
k

T BksP
k by assumption. SinceMH

k(0)= MB
k(0), we conclude that

ΔMH
k(s

CP

k ) = MH
k(0)− MH

k(s
CP

k ) > MB
k(0)− MB

k(s
P
k) = ΔMB

k(s
P
k). (3.10)

Subcase2: ‖sP
k‖∞ > ΔP

k.
Notethat we now have 06 αu < 1. For a general 06 α 6 1 we have

ΔMB
k(αsP

k) = σ(‖[ck]−‖1− ‖[ck + αJksP
k]−‖1)− αgT

k sP
k −

α2

2
sP
k

T BksP
k (3.11)

> ασ(‖[ck]−‖1− ‖[ck + JksP
k]−‖1)− αgT

k sP
k −

α

2
sP
k

T BksP
k (3.12)

= αΔMB
k(s

P
k), (3.13)

sothat

ΔMB
k(αusP

k) > αuΔMB
k(s

P
k). (3.14)

Equation(3.11) follows from the definition ofΔMB
k, (3.12) follows since 06 α 6 1 and fromGould &

Robinson(2010a, Lemma 2.3) and (3.13) follows from the definition ofΔMB
k. We may then deduce that

ΔMH
k(s

CP

k ) = MH
k(0)− MH

k(s
CP

k ) > MH
k(0)− MH

k(αusP
k) (usingdefinition ofΔMH

k andsCP

k )

> MB
k(0)− MB

k(αusP
k) (usingdefinitions ofMB

k andMH
k andthe fact thatsP

k
T HksP

k 6 sP
k

T BksP
k)

= ΔMB
k(αusP

k) > αuΔMB
k(s

P
k) (usingdefinition ofΔMB

k and(3.14))

=
ΔP

k

‖sP
k‖∞

ΔMB
k(s

P
k) (usingdefinition ofαu). (3.15)
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A SECOND-DERIVATIVE SQP METHOD WITH A ‘TRUST-REGION-FREE’ PREDICTOR STEP 9 of 22

Case2: sP
k

T HksP
k > sP

k
T BksP

k > 0.
Sinceαk 6 ΔP

k/‖s
P
k‖∞ by definition andαk < 1 as a consequence ofsP

k
T HksP

k > sP
k

T BksP
k > 0,

we conclude that 06 αk 6 min
(
1,

ΔP
k

‖sP
k‖∞

)
= min(1,αu). For ease of notation, we defineαmin =

min(1,αu). For all 06 α 6 αmin wemust have

ΔMH
k(s

CP

k ) > ΔMH
k(αsP

k) (3.16)

= σ(‖[ck]−‖1− ‖[ck + αJksP
k]−‖1)− αgT

k sP
k −

α2

2
sP
k

T HksP
k (3.17)

= σ(‖[ck]−‖1− ‖[ck + αJksP
k]−‖1)− αgT

k sP
k −

α2

2
sP
k

T BksP
k +

α2

2
sP
k

T(Bk − Hk)s
P
k. (3.18)

Equation(3.16) follows sincesCP

k minimizesMH
k(αsP

k) for 0 6 α 6 αmin, while (3.17) and (3.18) follow
from the definition ofΔMH

k andsimple algebra. Continuing to bound the change in the faithful model,
we have

ΔMH
k(s

CP

k ) > ασ(‖[ck]−‖1− ‖[ck + JksP
k]−‖1)− αgT

k sP
k −

α

2
sP
k

T BksP
k +

α2

2
sP
k

T(Bk − Hk)s
P
k (3.19)

= αΔMB
k(s

P
k)+

α2

2
sP
k

T(Bk − Hk)s
P
k (3.20)

for all 0 6 α 6 αmin. Equation (3.19) follows from equation (3.18), Gould & Robinson(2010a,
Lemma 2.3) and the inequalityα2 6 α, which holds since 06 α 6 αmin 6 1, while equation (3.20)
follows from the simplification of equation (3.19) and the definition ofΔMB

k(s
P
k).

The previous string of inequalities holds for all 06 α 6 αmin. So it must hold for the value ofα
that maximizes the right-hand side of (3.20). As a function ofα, the right-hand side may be written as
q(α) = aα2+ bα, where

a =
1

2
sP
k

T(Bk − Hk)s
P
k < 0 and b = ΔMB

k(s
P
k) > 0.

Thereare two subcases to consider.
Subcase1:−b/2a 6 αmin.
In this case the maximizer on the interval [0, αmin] must occur atα = −b/2a, so that the maximum is

q(−b/2a) = a
b2

4a2
+ b
−b

2a
= −

b2

4a
.

Substitutingfor a andb, using the Cauchy–Schwarz inequality and applying norm inequalities shows
that

q(−b/2a) =
(ΔMB

k(s
P
k))

2

2
∥
∥sP

k
T(Bk − Hk)sP

k

∥
∥
>

(ΔMB
k(s

P
k))

2

2‖Bk − Hk‖2‖sP
k‖

2
2

>
(ΔMB

k(s
P
k))

2

2n‖Bk − Hk‖2‖sP
k‖

2
∞

. (3.21)

Subcase2:−b/2a > αmin.
In this case the maximizer ofq on the interval [0, αmin] is α = αmin andthe maximum is bounded by

q(αmin) = aα2
min + bαmin = αmin(aαmin + b) >

αmin

2
b =

min(1,αu)

2
ΔMB

k(s
P
k) (3.22)

sincethe inequality−b/2a > αmin impliesthataαmin > −b/2 becausea < 0.
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10of 22 N. I. M. GOULD AND D. P. ROBINSON

If we denote the maximizer ofq(α) on the interval [0, αmin] by α∗, then equations (3.21) and (3.22)
show that

q(α∗) >
1

2
ΔMB

k(s
P
k) min

(
1,

ΔP
k

‖sP
k‖∞

,
ΔMB

k(s
P
k)

n‖Bk − Hk‖2‖sP
k‖

2
∞

)
. (3.23)

Returningto equation (3.20), we have

ΔMH
k(s

CP

k ) > q(α∗) >
1

2
ΔMB

k(s
P
k) min

(
1,

ΔP
k

‖sP
k‖∞

,
ΔMB

k(s
P
k)

n‖Bk − Hk‖2‖sP
k‖

2
∞

)
.

Combiningthis with equations (3.10) and (3.15) gives the required result. �
We now show that, under reasonable assumptions on the convex modelsMB

k, the predictor steps will
be uniformly bounded.

LEMMA 3.3 Let f andc be continuously differentiable functions. Assume that{xk} is any vector se-
quence such that{xk}k>0 ⊂ B ⊂ Rn for some compact setB and that{Bk} is any matrix sequence such
that

0 < λB
min 6

vT Bkv

vTv
for all v 6= 0 ∈ Rn (3.24)

for some positive constantλB
min that is independent ofk. Then there exists a positive constantκpred such

that‖sP
k‖∞ 6 κpred, wheresP

k is the predictor step, that is, the unique minimizer of problem (2.2).

Proof. The first-order optimality conditions for problem (2.2) are

gk + Bks= JT
k y,

σe= y+ z,

min(ck + Jks, y) = 0,

min(v, z) = 0,

wherey is a multiplier vector for the affine constraintck + Jks > 0, z is the multiplier vector for the
simple bound constraintv > 0 and the minimum is taken componentwise. From these conditions we
deduce that

sP
k = −B−1

k

(
gk − JT

k yP
k

)
and ‖yP

k‖∞ 6 σ, (3.25)

whereyP
k is the vector of Lagrange multipliers. It is now easy to see that the required result holds by

using (3.25), standard norm inequalities, (3.24), the fact that{xk} is contained in the compact setB, the
continuity of norms and the continuity ofg andJ. �

The main global convergence proof for Algorithm2.1requires the following sets:

S = {k ∈ N | iteratek is labelled either successful or ‘successful Cauchy’ by Algorithm2.1};

U = {k ∈ N | iteratek is labelled ‘unsuccessful’ by Algorithm2.1};

R = {k ∈ N | iteratek is labelled ‘revert to saved point’ by Algorithm2.1}.

(3.26)

THEOREM3.4 Let f andc be twice continuously differentiable functions and let{xk}, {Hk}, {Bk}, {ΔP
k}

and{ΔA
k} besequences generated by Algorithm2.1. Assume that the following conditions hold:
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A SECOND-DERIVATIVE SQP METHOD WITH A ‘TRUST-REGION-FREE’ PREDICTOR STEP 11of 22

1. {xk}k>0 ⊂ B ⊂ Rn for some compact setB;

2. there exist positive constantsλB
min, λ

B
max andbH suchthat 06 λB

min 6 (vT Bkv)/‖v‖22 6 λB
max for all

v 6= 0 ∈ Rn, and‖Hk‖2 6 bH.

Then,either xK is a first-order critical point for problem (`1-σ ) for someK > 0 or there exists a
subsequence of{xk} thatconverges to a first-order solution of problem (`1-σ ).

Proof. If xK is a first-order point for problem (`1-σ ) for someK > 0 then the proof is complete.
Therefore we assume thatxk is not a first-order solution to problem (`1-σ ) for all k. We consider two
cases.
Case1: there exists a subsequence of{ΔP

k} thatconverges to zero.
SinceΔP

k is only decreased following an unsuccessful nonmonotone phase and since the first Cauchy
step of each nonmonotone phase is always checked for sufficient progress, we may conclude that there
exists a subsequenceK ⊆ N such that

lim
k∈K

xk = x∗, (3.27)

lim
k∈K

ΔP
k = 0, (3.28)

lim
k∈K
‖sCP

k ‖∞ = 0 (3.29)

and

r CP

k < ηS for all k ∈ K, (3.30)

where

r CP

k
def
=

φk − φ(xk + sCP

k )

ΔMH
k(s

CP

k )
.

Subcase1: There exists a subsequence of{ΔMB
k(s

P
k)}k∈K thatconverges to zero.

It follows immediately from Lemma3.1 that x∗ is a first-order critical point for problem (`1-σ ) since
χ(xk, Bk) ≡ ΔMB

k(s
P
k).

Subcase2: There does not exist a subsequence of{ΔMB
k(s

P
k)}k∈K thatconverges to zero.

This implies the existence of a positive scalarδ such that

ΔMB
k(s

P
k) > δ > 0 for all k ∈ K. (3.31)

A Taylor expansion off at xk in a general directionv gives

f (xk + εv) = fk + εgT
k v + o(ε) = fk + εgT

k v +
ε2

2
vT Hkv + o(ε) (3.32)

since{Hk} is bounded by assumption, while a Taylor expansion ofc at xk gives

c(xk + εv) = ck + εJkv + o(ε). (3.33)

Combining these two equations gives

φ(xk + εv) = fk + εgT
k v +

ε2

2
vT Hkv + o(ε)+ σ‖[ck + εJkv + o(ε)]−‖1

= fk + εgT
k v +

ε2

2
vT Hkv + σ‖[ck + εJkv]−‖1+ o(ε)

= MH
k(εv)+ o(ε),

(3.34)
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12of 22 N. I. M. GOULD AND D. P. ROBINSON

wherethe first equality follows from the definition ofφ and the Taylor expansions, the second equality
follows from the boundedness of∂ ‖[∙]−‖1 andthe last equality follows from the definition ofMH

k(εv).
Choosingv = sCP

k /‖sCP

k ‖∞ andε = ‖sCP

k ‖∞ in equation (3.34) yields

φ(xk + sCP

k ) = MH
k(s

CP

k )+ o(‖sCP

k ‖∞). (3.35)

Equation(3.35) then implies the equation

r CP

k =
φk − φ(xk + sCP

k )

ΔMH
k(s

CP

k )
=

ΔMH
k(s

CP

k )+ o(‖sCP

k ‖∞)

ΔMH
k(s

CP

k )
= 1+

o(‖sCP

k ‖∞)

ΔMH
k(s

CP

k )
(3.36)

sinceφk = MH
k(0). We now proceed to boundΔMH

k(s
CP

k ). For all k ∈ K sufficiently large we have for
some constantκpred > 0 that

ΔMH
k(s

CP

k ) >
1

2
ΔMB

k(s
P
k) min

(
1,

ΔP
k

‖sP
k‖∞

,
ΔMB

k(s
P
k)

n‖Bk − Hk‖2‖sP
k‖

2
∞

)

>
δ

2
min

(
1,

ΔP
k

κpred

,
δ

n(λB
max+ bH )κ2

pred

)

=
δ

2κpred

ΔP
k (3.37)

Wherethe first inequality follows from Lemma3.2, the second inequality follows from (3.31), assump-
tion 2 of this theorem, and Lemma3.3, and the final equality follows from (3.28).

It now follows that there exists a positive sequence{zk} suchthat, fork ∈ K sufficiently large, we
have

∣
∣
∣
∣
o(‖sCP

k ‖∞)

ΔMH
k(s

CP

k )

∣
∣
∣
∣ 6

2κpredzk‖sCP

k ‖∞
δΔP

k
(using(3.37) and definition of ‘o’)

6
2κpredzkΔ

P
k

δΔP
k
=

2κpred

δ
zk (usingdefinition of Cauchy step and simplifying) (3.38)

and where the subsequence{zk}K converges to zero. It then follows from (3.36) and (3.38) that

r CP

k = 1+ o(1) for k ∈ K. (3.39)

This is a contradiction since this implies that, fork ∈ K sufficiently large, the identityr CP

k > ηS holds,
which violates equation (3.30). Thus Subcase 2 cannot occur. Therefore, if Case 1 occurs, thenx∗ is a
first-order critical point as shown in Subcase 1.
Case2: there does not exist a subsequence of{ΔP

k} thatconverges to zero.
An examination of the algorithm shows that this implies the existence of a positive numberδ and an
infinite subsequenceKS ⊆ S (recallthe definition ofS given by (3.26)) such that

lim
k∈KS

xk−l (k) = x∗, (3.40)

ΔP
k > δ > 0 for all k, (3.41)

where for eachk ∈ S we definel (k) to be the number offails that occurred in that nonmonotone
phase before that successful iteration was computed. For consistency, if iteratek was successful but was
not part of a nonmonotone phase, then we definel (k) = 0. Thus every successful iterate is part of a
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A SECOND-DERIVATIVE SQP METHOD WITH A ‘TRUST-REGION-FREE’ PREDICTOR STEP 13of 22

FIG. 1. Illustration of the quantities used in Case 2 of Theorem3.4assuming thatmax fails= 2. Thex-axis represents the iterate
and they-axis represents the value of the merit functionφ for a given iterate. The labels S, U and R below thex-axis indicate
whether that iterate belongs to the indexing setS, U orR (see (3.26)), respectively. Every S is enclosed in either a circle or a
square—the circle indicates that the corresponding iterate is in the subsequenceKS , while the square indicates that the iterate was
not inKS . The horizontal solid lines indicate the least value ofφ accepted as a successful iterate up until that point. The length of
a dotted vertical line or a dashed vertical line located above an iteratek indicates the improvement in the merit function obtained
from the successful stepsk−1 ascompared to the previous best successful value. We have introduced the notationlk = l (xk) and
k+
l = k+(xl ).

nonmonotonesequence, but it may have length zero. Also, for eachk ∈ S we definek+(k) ∈ KS to be
the smallest number inKS thatis strictly greater thank (see Fig.1). Note that this implies that

φ(xk+1) > φ(xk+(k)−l (k+(k))) for all k ∈ S and lim
k∈S

k+(k) = ∞. (3.42)

For the remainder of this proof we writeΔMH insteadof ΔMH
k, andΔMB insteadof ΔMB

k—the
‘missing’ argument is always assumed to be the subscript of the step, that is,ΔMB(sj ) meansΔMB

j(sj )
for any iteratej .

If k ∈ KS andk is classified as a successful iteration by Algorithm2.1, then it follows from (2.9)
that

φ(xk−l (k))− φ(xk+1) > ηSΔMH(sk−l (k)) > ηηSΔMH(sCP

k−l (k)). (3.43)

On the other hand, ifk ∈ KS andk is classified as a successful Cauchy iteration by Algorithm2.1, then
we have by construction that

φ(xk−l (k))− φ(xk+1) > ηSΔMH(sCP

k−l (k)). (3.44)
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14of 22 N. I. M. GOULD AND D. P. ROBINSON

Sinceη ∈ (0,1), we conclude that

φ(xk−l (k))− φ(xk+1) > ηηSΔMH(sCP

k−l (k)) for all k ∈ KS . (3.45)

Equation (3.45), Lemmas3.2and3.3, (3.41) and assumption 2 of this theorem imply that

φ(xk−l (k))− φ(xk+1) >
ηηS

2
ΔMB(sP

k−l (k)) min

(

1,
δ

κpred

,
ΔMB(sP

k−l (k))

(λB
max+ bH)κ2

pred

)

(3.46)

for some positive constantκpred that is independent ofk. If we let k̄ ∈ S and sum over allk ∈ KS less
thank̄, then we have

∑

k∈KS ,k6k̄

ηηS

2
ΔMB(sP

k−l (k)) min

(

1,
δ

κpred

,
ΔMB(sP

k−l (k))

(λB
max+ bH)κ2

pred

)

6
∑

k∈KS ,k6k̄

φ(xk−l (k))− φ(xk+1) (3.47)

6
∑

k∈S,k6k̄

φ(xk−l (k))− φ(xk+1) (3.48)

= φ(x0)− φ(xk̄+1) (3.49)

6 φ(x0)− φ(xk+(k̄)−l (k+(k̄))). (3.50)

Equation(3.47) follows from (3.46), then (3.48) follows since we are adding more positive terms to
the sum, (3.49) follows from the construction of the algorithm and the fact thatk̄ ∈ S by assumption,
and (3.50) follows from (3.42). To help the reader understand we note that, for the valuek̄ = 21, the
right-hand side of (3.47) is equal to the sum of the lengths of the dotted lines in Fig.1, while the right-
hand side of (3.48) is equal to the sum of the lengths of the dotted lines and the dashed lines. If we now
let k̄ converge to infinity in the previous string of inequalities and use (3.42) and (3.40), then we may
conclude that

∑

k∈KS

ηηS

2
ΔMB(sP

k−l (k)) min

(

1,
δ

κpred

,
ΔMB(sP

k−l (k))

(λB
max+ bH )κ2

pred

)

6 φ(x0)− φ(x∗), (3.51)

which implies that

lim
k∈KS

ΔMB(sP

k−l (k)) = 0 (3.52)

because the series on the left-hand side is convergent. Since (3.40) states that limk∈KS xk−l (k) = x∗ and
it follows from (3.1) and (3.52) that

lim
k∈KS

χ(xk−l (k), Bk−l (k)) = lim
k∈KS

ΔMB(sP

k−l (k)) = 0, (3.53)

weconclude from part (iii) of Lemma3.1thatx∗ is a first-order critical point for problem (`1-σ ).
In both cases we have shown that there exists a limit pointx∗ that is a first-order critical point for

problem ( 1̀-σ ). The proof is now complete since one of these cases must occur. �
We conclude this section by giving local convergence results for problem (NP). These results assume

that the penalty parameterσ is sufficiently large so that minimizers of the`1-penaltyfunction correspond
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A SECOND-DERIVATIVE SQP METHOD WITH A ‘TRUST-REGION-FREE’ PREDICTOR STEP 15of 22

to minimizers of problem (NP) (seePietrzykowski(1969) andConn & Pietrzykowski(1977) for more
details on exactly how these two problems are related). We note that many authors have provided frame-
works for guaranteeing that this condition holds in practice (Powell,1978b;Mayne & Maratos,1979;
Sahba,1987;Pantoja & Mayne,1991;Burke, 1992;Mongeau & Sartenaer, 1995;Yuan, 1995;Byrd
et al.,2005;Byrd et al.,2008;Gould & Robinson, 2010b). We use the following definitions related to a
solution of problem (NP).

DEFINITION 3.5 [First-order Karush-Kuhn-Tucker (KKT) point]. We say that the point(x∗, y∗) is a
first-order KKT point for problem (NP) if

g(x∗)− J(x∗)Ty∗ = 0, c(x∗) > 0, y∗ > 0 and c(x∗)∙∙∙ y∗ = 0. (3.54)

Given a first-order KKT point(x∗, y∗), we letA
def
= {i : ci (x∗) = 0} denotethe index set of con-

straints active atx∗.

DEFINITION 3.6 (Second-order sufficient conditions). A point(x∗, y∗) satisfiesthe second-order suffi-
cient conditions for problem (NP) if(x∗, y∗) is a first-order KKT point and if there existsλH

min > 0 such
thatsT∇xxL(x∗, y∗)s> λH

mins
Ts for all s satisfyingJA(x∗)s= 0.

DEFINITION 3.7 (Strict complementarity). We say that strict complementarity holds at a KKT point
(x∗, y∗) for problem (NP) ify∗A > 0.

DEFINITION 3.8 (Linear independence constraint qualification). We say that the linear independence
constraint qualification holds at a KKT point(x∗, y∗) for problem (NP) if the matrixJA(x∗) hasfull
row rank.

DEFINITION 3.9 We say that thestrongsecond-order sufficient conditions hold at a point(x∗, y∗) if it
satisfies Definitions3.5–3.8.

Our local superlinear convergence results require thatmax fails >0, that is, that Algorithm2.1 is
truly nonmonotone. This ensures that trial steps will be temporarily accepted in the neighbourhood of a
local solution even if the merit functionφ increases. This approach guarantees that the so-called Maratos
effect (Maratos,1978), which is known to lead to slow local convergence, is avoided.

For our first result we assume that an accelerator step is computed from subproblem (EQP) as given
in Section 2 and discussed inGould & Robinson(2010a, Section 2.3.2). Since this subproblem only
defines multipliersyA

k for the constraints whose indices are in the setA(sP
k) asdefined in Section 2, we

form multipliers for problem (NP) by ‘scattering’yA
k into the appropriate locations of a zero vector of

lengthm. The following theorem is the same as Theorem 3.12 inGould & Robinson(2010b).

THEOREM 3.10 ((EQP) local convergence result). Let(x∗, y∗) bea minimizer for problem (NP) that
satisfies the strong second-order sufficient conditions as given by Definition3.9. Let the assumptions
of Theorem3.4 hold and suppose thatσ > ‖y∗‖∞, the accelerator step is computed from subproblem
(EQP) with the choiceHk ≡ ∇xxL(xk, yP

k), andmax fails > 1 in Algorithm 2.1. It follows that there
exists an open neighbourhood of(x∗, y∗) suchthat, if the accelerator step is computed for every iteration
once the first successful iterate of Algorithm2.1is contained in this neighbourhood, then the sequences
of iterates{xk} and{yk} generatedby Algorithm 2.1 converge tox∗ and y∗ at a Q-superlinear and an
R-superlinear rate, respectively. Moreover, if∇xxL(x, y) is Lipschitz continuous in a neighbourhood of
(x∗, y∗), then they convergence at a Q-quadratic and an R-quadratic rate, respectively.

Proof. The only reason why the proof of Theorem 3.12 inGould & Robinson(2010b) would not apply
here is because of the modification to how the predictor step is computed. However, the only property
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16of 22 N. I. M. GOULD AND D. P. ROBINSON

requiredis that the predictor trust-region constraint ultimately is inactive following a successful step.
Since we have removed the trust-region constraint altogether, the result is immediate. �

Finally, we consider the rate of convergence of Algorithm2.1 when the accelerator step is com-
puted from subproblem (EIQP) as given in Section 2 and described inGould & Robinson(2010a,
Section 2.3.1).

THEOREM 3.11 ((EIQP) local convergence result). Let(x∗, y∗) bea minimizer for problem (NP) that
satisfies the strong second-order sufficient conditions as given by Definition3.9. Let the assumptions
of Theorem3.4 hold and assume thatσ > ‖y∗‖∞, the accelerator step is computed from subproblem
(EIQP) with the choiceHk ≡ ∇xxL(xk, yP

k), andmax fails > 1 in Algorithm 2.1. It follows that there
exists an open neighbourhood of(x∗, y∗) suchthat, if the accelerator step is a solution of minimal norm
and is computed for every iteration once the first successful iterate of Algorithm2.1 enters the open
neighbourhood, then the sequences of iterates{xk} and{yk} converge tox∗ andy∗ ata Q-superlinear and
an R-superlinear rate, respectively. Moreover, if∇xxL(x, y) is Lipschitz continuous in a neighbourhood
of (x∗, y∗), then they converge at a Q-quadratic and an R-quadratic rate, respectively.

The proof of Theorem 3.11 follows the proof of Theorem 3.14 inGould & Robinson(2010b) exactly.

4. Inclusion of a trust region

The ‘trust-region-free’ method described in Section2 depends on the sequence{Bk} of positive-definite
matrices. If this sequence is chosen well, then the algorithm typically performs very well in practice.
However, we recognize that by removing the trust-region constraint altogether, we have removed the
‘safety net’ enjoyed by trust-region methods. If the sequence{Bk} is defined poorly (or degeneracy
exists), then tests indicate that Algorithm2.1without a predictor trust-region constraint may occasion-
ally perform poorly when compared with its counterpart (Gould & Robinson, 2010a,b) that includes
one. (It also depends on precisely how one implements the nonmonotone behaviour of the algorithm.)
Therefore, in this section we examine the inclusion of a trust-region constraint of the form

‖s‖∞ 6 max(ΔLB,Δ
P
k) (4.1)

in the computation of the predictor step, whereΔLB > 0 is a lower bound on the size of the trust-region
radius. Note that this is counterintuitive since trust-region methods may need to make the trust-region
radius relatively small to make progress. The predictor subproblem becomes

minimize
s∈Rn,v∈Rm

fk+ gT
k s+

1

2
sT Bks+σeTv subjectto ck+ Jks+v > 0, v > 0, ‖s‖∞ 6 max(ΔLB,Δ

P
k).

(4.2)
Provided thatΔLB is chosen to be reasonably large, sayΔLB > 1, then this new subproblem shares the

advantages of Algorithm2.1 and that described inGould & Robinson(2010a,b), that is, (i) the ‘large’
trust region will not interfere with optimal active set identification near a solution, (ii) predictor steps
may be ‘recycled’ during a sequence of failed iterations, preventing excessive computation, and (iii) the
trust-region constraint prevents excessively large steps that may occasionally result from poor choices
of Bk, degeneracy, or otherwise.

Two observations are needed for the proofs of Theorems3.4, 3.10 and3.11 to hold when Algo-
rithm 2.1uses subproblem (4.2) in place of (2.2). First, definition (3.1) of the criticality measureχ(x, B)
must be modified to include the new trust-region constraint. Second, Lemma3.3still holds since a pre-
dictor step computed from subproblem (4.2) cannot be larger than that computed from subproblem (2.2).
The proofs of Theorems3.4,3.10and3.11now follow exactly as in Section3. Thus Algorithm2.1with
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a predictor step computed from subproblem (4.2) is both globally and superlinearly convergent when an
accelerator step is computed from either subproblem (EQP) or (EIQP).

5. Numerical experiments

A numerical comparison of Algorithm2.1 with and without a predictor step trust-region constraint
is difficult since computational nonlinear programming is sensitive to choices of the initial point and
adjustments of control parameters. These often lead to a dramatically different sequence of iterates.
Therefore we do not expect either variant of our algorithm to be uniformly better. However, this paper
does provide us the freedom to remove the predictor step trust-region constraint as we see appropriate.

In this section we highlight our preliminary numerical experience by considering three optimization
problems from the Hock–Schittkowski test set (Hock & Schittkowski,1981). These problems have been
chosen carefully to display certain interesting behaviour. The first example shows that some problems
may be solved much more efficiently by removing the trust-region constraint in the predictor step com-
putation. By contrast, the second example shows that no trust-region constraint in the predictor step
combined with a poor choice of the positive-definite matrixBk maylead to bad performance. However,
this poor performance may be rectified by using an artificial trust-region constraint simply as a safety
net as described in Section4. Finally, we give an example that exhibits, in our experience, thetypical
behaviour of Algorithm2.1when executed with and without a predictor step trust-region constraint.

The following parameters were used in all cases: sufficient model decrease factorη = 0.5, suc-
cessful/very successful tolerancesηS = 0.01 andηVS = 0.7, maximum predictor trust-region radius
Δu = 1000,trust-region reset radiusΔRESET = 10−4, accelerator trust-region scale factorτ f = 3.0,
numberof nonmonotone steps allowedmax fails = 1, trust-region contraction and expansion factors
ηc = 0.1 andηe = 5.0, and an initial penalty parameter ofσ = 1.0. All runs are terminated when the
primal feasibility, dual feasibility and complementarity violations are all less than10−5.

Sinceour examples are of small dimension, we chose to update the positive-definite matrixBk in the
predictor subproblem (2.2) by using the Broyden-Fletcher-Goldfarb-Shanno update (Nocedal & Wright,
1999). To perform this update we used the trial stepsk anddk = ∇xL(xk+sk, yk+1)−∇xL(xk, yk+1). If
these vectors did not result in a sufficiently positive-definite update, then we used the damping technique
introduced byPowell(1978a). For simplicity, we choseB0 = I .

We solved problem (EQP) (see Section 2) to compute an accelerator step. Using this subproblem,
instead of subproblem (EIQP) (see Section 2), allows us to study how effectively the predictor step
identifies the optimal active set.

Finally, we updated the penalty parameter using the concept of ‘steering’ as described inByrd et al.
(2008). Consequently, to update the penalty parameter we occasionally solved more than one predictor
subproblem for a given iterate.

5.1 Hock–Schittkowski #85

We first ran Algorithm2.1 with a predictor trust-region constraint as described inGould & Robinson
(2010a,b). The problem was successfully solved but required 97 function evaluations and 67 gradient
evaluations. For comparison, we ran Algorithm2.1without the trust-region constraint. This version only
needed 13 function evaluations and 12 gradient evaluations.

Careful examination of the output from Algorithm2.1with a predictor step trust-region constraint re-
vealed that the trust-region first became active on iterate 8. The remaining 89 iterates alternated between
successful and unsuccessful iterates and entered many nonmonotone phases. Moreover, the predictor
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18of 22 N. I. M. GOULD AND D. P. ROBINSON

TABLE 1 Output from Algorithm 2.1 (no predictor trust-region constraint) on test problem Hock-
Schittkowski #85 with initial point given by the eighth iterate of the algorithm when using a trustregion
constraint

Iter Penalty Merit Primal Dual Comp |Y| TRpred #QP
0 1.00E+00 –1.87E+00 8.92E-02 2.44E-03 1.80E-04 3.92E-02 1.00E+02 –
1 1.00E+00 –1.97E+00 2.72E-06 3.15E-02 0.00E+00 0.00E+00 1.00E+02 1
2 1.00E+00 3.82E+00 5.93E+00 6.24E-03 5.34E-03 4.97E-02 1.00E+02 1
3 1.00E+00 –2.21E+00 1.63E-03 1.27E-04 9.54E-05 5.86E-02 9.68E+02 1
4 1.00E+00 –2.22E+00 3.86E-07 2.61E-06 2.32E-08 6.02E-02 9.68E+021

stepsduring successful iterates were constrained by the trust-region constraint, which appeared to
impede progress. For verification, we used the eighth iterate from Algorithm2.1 with a trust-region
constraint as a starting value for the same algorithm without a trust-region constraint. The result-
ing output was as shown in Table 1, where column Iter represents the number of major iterations,
Penalty represents the value of the penalty parameter, Merit represents the value of the`1 merit function
φ, Primal represents the two-norm of the primal feasibility violation, Dual the two-norm of the dual
feasibility violation, Comp represents the two-norm of the complementarity slackness,|Y| represents the
infinity-norm of the current multiplier estimate, TRpred represents the value ofΔP

k and#QP represents
the number of predictor step quadratic programs solved during that iteration. The output clearly shows
that this problem benefits greatly from removing the trust-region constraint from the computation of
the predictor step. In particular, if we remove the trust-region constraint on iteration eight, then the
algorithm solves the problem with 8+ 4= 12 function evaluations instead of the original 97.

5.2 Hock–Schittkowski #6

Here, once again, we first ran Algorithm2.1 with a predictor trust-region constraint. The problem was
successfully solved and required 10 function evaluations, 6 gradient evaluations and the computation of
9 predictor steps. (Note that this problem has a singleequalityconstraint and thus the two-norm of the
complementarity violation is always zero by definition.) Next we removed the trust-region constraint and
resolved the problem. This resulted in 120 function evaluations, 65 gradient evaluations and the compu-
tation of 65 predictor steps. Thus, for our current implementation the trust-region constraint is vital for
solving this problem efficiently. Upon careful inspection of the output, we observed that our algorithm
generated very poor approximationsBk thatled to relatively large stepspk. Additionally, the trial steps
were poor directions of descent, the resulting Cauchy steps were very small, and progress was slow.

Inefficient descent directions resulting from poor positive-definite approximationsBk mayeasily be
remedied. For example, we may include a stabilizing trust-region constraint such as (4.1) in the predictor
step subproblem. This strategy with the choiceΔLB = 5.0 resulted in the output shown in Table 2.
This solution required 20 function evaluations, 8 gradient evaluations and 7 predictor QP subproblems.
For this particular problem we may conclude that the stabilizing trust-region constraint described in
Section4 remedies poor approximationsBk andresults in superior performance.

5.3 Hock–Schittkowski #100

This example exhibits the ‘average’ performance of Algorithm2.1 with and without a predictor step
trust-region constraint for our current implementation. The resulting output with a predictor trust-region
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TABLE 2 Outputfrom Algorithm 2.1 on test problem Hock-Schittkowski #6 with a stabilized predictor
trust-region constraint given by(4.1)

Iter Penalty Merit Primal Dual Comp |Y| TRpred #QP
0 1.00E+00 9.24E+00 4.40E+00 4.40E+00 0.00E+00 0.00E+00 1.00E+02 –
1 1.00E+00 9.24E+00 4.40E+00 1.85E+00 0.00E+00 1.85E-01 7.49E-01 1
2 1.00E+00 9.24E+00 4.40E+00 1.70E+00 0.00E+00 1.70E-01 3.74E-01 –
3 1.00E+00 9.24E+00 4.40E+00 1.63E+00 0.00E+00 1.63E-01 1.87E-01 –
4 1.00E+00 8.40E+00 4.85E+00 1.60E+00 0.00E+00 1.60E-01 3.74E-01 –
5 1.00E+00 8.40E+00 4.85E+00 1.60E+00 0.00E+00 1.60E-01 3.37E-01 1
6 1.00E+00 8.40E+00 4.85E+00 1.72E+00 0.00E+00 1.72E-01 1.68E-01 –
7 1.00E+00 8.28E+00 5.94E+00 1.67E+00 0.00E+00 1.67E-01 3.37E-01 –
8 1.00E+00 8.28E+00 5.94E+00 1.67E+00 0.00E+00 1.67E-01 3.03E-01 1
9 1.00E+00 8.28E+00 5.94E+00 1.73E+00 0.00E+00 1.73E-01 1.52E-01 –

10 1.00E+00 8.28E+00 5.94E+00 1.63E+00 0.00E+00 1.63E-01 7.58E-02 –
11 1.00E+00 8.07E+00 6.39E+00 1.66E+00 0.00E+00 1.58E-01 1.52E-01 –
12 1.00E+00 8.07E+00 6.39E+00 1.79E+00 0.00E+00 1.79E-01 1.36E-01 1
13 1.00E+00 8.07E+00 6.39E+00 1.87E+00 0.00E+00 1.21E-01 6.82E-02 –
14 1.00E+00 7.75E+00 6.64E+00 1.98E+00 0.00E+00 1.18E-01 1.36E-01 –
15 1.00E+00 7.75E+00 6.64E+00 2.08E+00 0.00E+00 2.63E-02 1.23E-01 1
16 1.00E+00 7.75E+00 6.64E+00 2.08E+00 0.00E+00 2.29E-02 6.14E-02 –
17 1.00E+00 7.50E+00 6.84E+00 1.70E+00 0.00E+00 2.26E-02 1.23E-01 –
18 1.00E+00 6.55E+00 6.55E+00 6.53E-05 0.00E+00 4.33E-19 2.17E+00 1
19 1.00E+00 1.07E-08 1.07E-08 1.68E-09 0.00E+00 4.37E-23 2.17E+011

TABLE 3 Outputfrom Algorithm 2.1 on test problem Hock-Schittkowski #100 with a predictor trust-
region constraint

Iter Penalty Merit Primal Dual Comp |Y| TRpred #QP
0 1.00E+00 7.14E+02 0.00E+00 1.00E+02 0.00E+00 0.00E+00 1.00E+02 –
1 1.00E+01 4.13E+14 2.42E+04 1.33E+13 1.48E+01 2.61E-01 1.00E+02 2
2 1.00E+01 7.14E+02 0.00E+00 1.00E+02 0.00E+00 0.00E+00 5.77E+00 1
3 1.00E+01 1.25E+03 3.40E+01 7.56E+02 0.00E+00 0.00E+00 1.00E+01 1
4 1.00E+01 7.14E+02 0.00E+00 1.00E+02 0.00E+00 0.00E+00 9.04E-01 1
5 1.00E+01 3.46E+03 3.77E+01 5.28E+03 2.94E+01 1.05E+00 1.00E+01 1
6 1.00E+01 7.14E+02 0.00E+00 1.00E+02 0.00E+00 0.00E+00 4.52E-01 1
7 1.00E+01 8.16E+02 8.87E+00 6.60E+01 9.34E+00 1.05E+00 1.00E+01 1
8 1.00E+01 7.14E+02 0.00E+00 1.00E+02 0.00E+00 0.00E+00 2.26E-01 1
9 1.00E+01 7.03E+02 2.11E+00 8.67E+00 2.30E+00 1.09E+00 4.52E-01 1

10 1.00E+01 7.00E+02 1.12E+00 3.27E+01 5.65E-01 1.15E+00 9.04E-01 1
11 1.00E+01 6.82E+02 2.13E-02 9.44E+00 2.41E-02 1.13E+00 9.04E+00 1
12 1.00E+01 6.81E+02 7.64E-03 2.07E+00 2.82E-03 1.14E+00 9.04E+01 1
13 1.00E+01 6.81E+02 8.27E-05 2.08E-01 9.42E-05 1.14E+00 9.04E+02 1
14 1.00E+01 6.81E+02 1.49E-06 2.89E-03 1.25E-06 1.14E+00 9.04E+03 1
15 1.00E+01 6.81E+02 3.27E-10 5.82E-07 3.72E-10 1.14E+00 1.00E+041

constraintis as shown in Table3, and took 16 function evaluations, 12 gradient evaluations and computed
16 predictor steps. The output without a predictor trust-region constraint is as shown in Table4, and
took 22 function evaluations, 12 gradient evaluations and computed 12 predictor steps. Therefore, by
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TABLE 4 Output from Algorithm 2.1 on test problem Hock-Schittkowski #100 without a predictor
trust-region constraint

Iter Penalty Merit Primal Dual Comp |Y| TRpred #QP
0 1.00E+00 7.14E+02 0.00E+00 1.00E+02 0.00E+00 0.00E+00 1.00E+02 –
1 1.00E+01 4.13E+14 2.42E+04 1.33E+13 1.48E+01 2.61E-01 1.00E+02 2
2 1.00E+01 7.14E+02 0.00E+00 1.00E+02 0.00E+00 0.00E+00 5.77E+00 1
3 1.00E+01 1.09E+03 3.30E+01 1.04E+02 0.00E+00 0.00E+00 1.00E+01 –
4 1.00E+01 7.14E+02 0.00E+00 1.00E+02 0.00E+00 0.00E+00 1.13E+00 1
5 1.00E+01 7.50E+02 7.07E+00 1.02E+02 0.00E+00 0.00E+00 1.00E+01 –
6 1.00E+01 7.14E+02 0.00E+00 1.00E+02 0.00E+00 0.00E+00 5.67E-01 1
7 1.00E+01 7.01E+02 1.48E+00 2.07E+01 4.80E+00 1.07E+00 1.13E+00 –
8 1.00E+01 7.01E+02 1.48E+00 7.62E+00 2.60E+00 1.02E+00 4.22E-01 1
9 1.00E+01 7.01E+02 1.48E+00 1.03E+01 1.52E+00 1.03E+00 2.11E-01 –

10 1.00E+01 7.01E+02 1.48E+00 9.88E+00 1.61E+00 1.09E+00 1.05E-01 –
11 1.00E+01 6.97E+02 1.57E+00 7.78E+00 1.68E+00 1.07E+00 2.11E-01 –
12 1.00E+01 6.97E+02 1.57E+00 6.12E+00 1.73E+00 1.09E+00 1.90E-01 1
13 1.00E+01 6.97E+02 1.57E+00 7.12E+00 1.81E+00 1.15E+00 9.49E-02 –
14 1.00E+01 6.97E+02 1.57E+00 6.97E+00 1.84E+00 1.17E+00 4.74E-02 –
15 1.00E+01 6.95E+02 1.52E+00 6.04E+00 1.73E+00 1.14E+00 2.37E-01 –
16 1.00E+01 6.95E+02 1.52E+00 4.89E+00 1.66E+00 1.09E+00 1.19E-01 1
17 1.00E+01 6.91E+02 1.04E+00 1.87E+00 1.19E+00 1.14E+00 2.37E-01 –
18 1.00E+01 6.84E+02 3.70E-01 8.18E-01 1.36E-01 1.14E+00 4.74E-01 1
19 1.00E+01 6.81E+02 3.47E-02 1.14E-01 1.28E-02 1.14E+00 4.74E+00 1
20 1.00E+01 6.81E+02 1.24E-03 3.71E-03 4.56E-04 1.14E+00 4.74E+01 1
21 1.00E+01 6.81E+02 1.50E-06 4.31E-06 5.55E-07 1.14E+00 4.74E+021

removing the predictor trust-region constraint, we have increased the number of function evaluations
but decreased the number of predictor step quadratic programs solved. We believe this trend accurately
characterizes the ‘average’ performance of Algorithm2.1with and without a predictor step trust-region
constraint.

6. Conclusions and future work

In Gould & Robinson(2010a,b) we introduced S2QP—a second derivative trust-region SQP method
for solving nonlinear nonconvex optimization problems. This method utilizes a so-called predictor
step for proving both global and fast local convergence. Computation of this step involves solving
a strictly convex quadratic program with a trust-region constraint. This is not always ideal since the
trust-region constraint (i) may occasionally degrade the quality of the predictor step; (ii) may dimin-
ish its ability to identify an optimal active set, and (iii) prevents the re-use of the same predictor step
during a sequence of unsuccessful iterates. In this paper we haveremovedthe trust-region constraint
and proved that the resulting algorithm is still globally convergent, while maintaining local superlinear
convergence.

We conclude by comparing our method with the work byMoraleset al. (2008). Roughly, they com-
puted a predictor stepsP

k (withouta trust-region constraint) followed by an accelerator stepsA
k definedas

the solution to the equality constrained subproblem (EQP) defined in Section 2 and discussed inGould
& Robinson(2010a, Section 2.3.2). They then reduced the`1-merit function by performing a line search
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along the ‘bent’ path defined by the stepssP
k andsA

k . Our methods differ in the following ways. Firstly,
Algorithm 2.1 is based on trust-region methodology even though the predictor step is computedwith-
out a trust-region radius, while their algorithm is based on line-search philosophy. Secondly, global
convergence of our algorithm is guaranteed by the Cauchy step, while convergence of their algorithm is
ensured by the predictor step with a suitable line search. Thirdly, we allow and have analysed an accel-
erator step computed as the minimizer of an inequality constrained subproblem, which allows for active
set refinement. They have not considered such a subproblem, although one could imagine that such an
analysis is possible. Finally, our algorithms differ even when using the equality constrained subproblem
(EQP) for computing an accelerator step. Following the rejection of a trial step,Moraleset al. (2008)
performed a line search in the direction of the predictor step. We, on the other hand, performed the
equivalent of a backtracking line search with each trial point enhanced by anewaccelerator direction.
Since convergence of our method relies on the Cauchy point, we could easily use more sophisticated
line search techniques without sacrificing convergence.

Acknowledgment

The authors thank two anonymous referees whose comments and suggestions greatly improved the
presentation.

Funding

Engineering and Physical Sciences Research Council (EP/E053351/1, EP/F005369/1).

REFERENCES

BURKE, J. V. (1992) A robust trust region method for constrained nonlinear programming problems.SIAM J.
Optim.,2, 324–347.

BYRD, R. H., GOULD, N. I. M., NOCEDAL, J. & WALTZ, R. A. (2005) On the convergence of successive linear–
quadratic programming algorithms.SIAM J. Optim., 16, 471–489.

BYRD, R. H., NOCEDAL, J. & WALTZ, R. A. (2008) Steering exact penalty methods for nonlinear programming.
Optim. Methods Softw.,23, 197–213.

CONN, A. R., GOULD, N. I. M. & T OINT, PH. L. (2000)Trust-Region Methods. Philadelphia, PA: Society for
Industrial and Applied Mathematics (SIAM).

CONN, A. R. & PIETRZYKOWSKI, T. (1977) A penalty function method converging directly to a constrained
optimum.SIAM J. Numer. Anal., 14, 348–375.

FLETCHER, R. (1981)Practical Methods of Optimization, Volume 2: Constrained Optimization. Chichester: Wiley.
GILL , P. E., MURRAY, W. & SAUNDERS, M. A. (2005) SNOPT: an SQP algorithm for large-scale constrained

optimization.SIAM Rev., 47, 99–131.
GOULD, N. I. M. & ROBINSON, D. P. (2010a) A second derivative SQP method: global convergence.SIAM J.

Optim.,20, 2023–2048.
GOULD, N. I. M. & ROBINSON, D. P. (2010b) A second derivative SQP method: local convergence and practical

issues.SIAM J. Optim., 20, 2049–2079.
HOCK, W. & SCHITTKOWSKI, K. (1981) Test Examples for Nonlinear Programming Codes. Lecture Notes in

Economics and Mathematical Systems, vol. 187. Berlin: Springer.
MARATOS, N. (1978) Exact penalty function algorithms for finite-dimensional and control optimization problems.

Ph.D. Thesis, Department of Computing and Control, University of London.
MAYNE, D. Q. & MARATOS, N. (1979) A first-order, exact penalty function algorithm for equality constrained

optimization problems.Math. Program.,16, 303–324.

 at R
adcliffe S

cience Library, B
odleian Library on A

ugust 1, 2011
im

ajna.oxfordjournals.org
D

ow
nloaded from

 

http://imajna.oxfordjournals.org/


22of 22 N. I. M. GOULD AND D. P. ROBINSON

MONGEAU, M. & SARTENAER, A. (1995) Automatic decrease of the penalty parameter in exact penalty function
methods.Eur. J. Oper. Res., 83, 686–699.

MORALES, J. L., NOCEDAL, J. & WU, Y. (2008) A sequential quadratic programming algorithm with an ad-
ditional equality constrained phase.Technical Report OTC-05. Optimization Center, McCormick School of
Engineering and Applied Science, Northwestern University, Evanston, IL: (to appear inIMA J. Numer. Anal.).

NOCEDAL, J. & WRIGHT, S. J. (1999)Numerical Optimization. New York: Springer.
PANTOJA, J. F. A. & MAYNE, D. Q. (1991) Exact penalty functions with simple updating of the penalty parameter.

J. Optim. Theory Appl., 69, 441–467.
PIETRZYKOWSKI, T. (1969) An exact potential method for constrained maxima.SIAM J. Numer. Anal.,6, 299–304.
POWELL M. J. D. (1978a) The convergence of variable metric methods for nonlinearly constrained optimization

calculations.Nonlinear Programming 3(O. L. Mangasarian, R. R. Meyer & S. M. Robinson eds). New York:
Academic Press, pp. 27–63.

POWELL, M. J. D. (1978b) A fast algorithm for nonlinearly constrained optimization calculations.Numerical
Analysis(G. A. Watson ed.). Lecture Notes in Mathematics, vol. 630. Berlin: Springer, pp. 144–157.

SAHBA, M. (1987) Globally convergent algorithm for nonlinearly constrained optimization problems.J. Optim.
Theory Appl., 52, 291–309.

YUAN, Y.-X. (1995) On the convergence of a new trust region algorithm.Numer. Math.,70, 515–539.

 at R
adcliffe S

cience Library, B
odleian Library on A

ugust 1, 2011
im

ajna.oxfordjournals.org
D

ow
nloaded from

 

http://imajna.oxfordjournals.org/

	Introduction
	Notation

	Algorithm
	Convergence properties
	Inclusion of a trust region
	Numerical experiments
	Hock--Schittkowski #85
	Hock--Schittkowski #6
	Hock--Schittkowski #100

	Conclusions and future work

