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Gould and Robinson (201G5IAM J. Optim.,20, 2023-2048; 201GGIAM J. Optim.,20, 2049-2079)
introduced a second-derivative sequential quadratic programming method (S2QP) for solving nonlinear
nonconvex optimization problems. We proved that the method is globally and locally superlinearly con-
vergent under common assumptions. A critical component of the algorithm is the so-called predictor
step, which is computed from a strictly convex quadratic program with a trust-region constraint. This
step is essential for proving global convergence but its propensity to identify the optimal active set is
paramount for achieving fast local convergence. Thus the global and local efficiency of the method is in-
timately coupled with the quality of the predictor step. In this paper we study the effects of removing the
trust-region constraint from the computation of the predictor step. This is reasonable since the resulting
problem is still strictly convex and thus well defined. Although it is interesting theoretically to verify that
the same convergence guarantees hold when no trust-region constraint is used, our motivation is based on
the practical behaviour of the algorithm. Preliminary numerical experience with S2QP indicates that the
trust-region constraint occasionally degrades the quality of the predictor step and diminishes its ability to
correctly identify the optimal active set. Moreover, removal of the trust-region constraint allows for re-use
of the predictor step over a sequence of failed iterations, thus reducing computation. We show that the
modified algorithm remains globally convergent and preserves local superlinear convergence provided
that a nonmonotone strategy is incorporated.

Keywords nonlinear programming; nonlinear inequality constraints; sequential quadratic programming;
£1-penaltyfunction; nonsmooth optimization.

1. Introduction

In Gould & Robinson(2010a,b) we presented a second-derivative sequential quadratic programming
(S2QP)—a sequential inequality/equality constrained quadratic programming algorithm (an SIQP/SEQP
‘hybrid’) for solving the problem

minimize ¢(x) = f(x) + o ll[c(X)] " Il1, (¢1-0)
xeRN
wherethe constraint vectar(x): R" — R™ andthe objective functiorf (x): R" — R areassumed to be
twice continuously differentiable, is a positive scalar known as the penalty parameter and we have used
the notation§]~ = min(0, v) for a generic vectos (the minimum is understood to be componentwise).

(© Theauthor 2011. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
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The motivation for solving this problem is that solutions of problefg-§) correspond (under certain
assumptions) to solutions of the nonlinear programming problem

minigize f(x) subjectto c(x) >0 (NP)
xeRN

(seePietrzykowski(1969) andConn & Pietrzykowski(1977) for more details on exactly how these
problems are related). ThHeh iteration of the method involves the computation of a trial step, which

is defined from at most two components. The first component is the predictoiGefi(& Robinson

2010a, Section 2.1). It is defined as the unique minimizer of a stracthwexquadratic approxima-

tion to ¢ subject to a trust-region constraint. To ensure global convergence the predictor step may be
scaled by performing a trivial one-dimensional minimization of a second-order approximatifn to
resulting in a so-called Cauchy steBdquld & Robinson 2010a, Section 2.2). Therefore the predic-

tor step affects global efficiency since a ‘better’ predictor step will generally result in a better Cauchy
step. In the neighbourhood of a solution, however, this distinction becomes less important provided
that we compute a second (optional) component, referred to as an accelerator step, whose responsibil-
ity is to drive fast local convergence of the algorithm. If an accelerator step is computed from any of
the subproblems considered@ould & Robinson(2010a, Section 2.3), then the iterates converge su-
perlinearly (under common assumptio@ould & Robinson2010b, Theorems 3.12 and 3.14). In the
special case that the accelerator step is computed from subproblem (GQH) & Robinson2010a,
Section 2.3.2), the proof requires that the predictor step correctly identifies the set of constraints that
are active at the local solution. Thus the predictor step also plays a role in guaranteeing fast local con-
vergence. It is also clear that the quality of the predictor step is important when the accelerator step is
not computed since then the efficiency of the method globally and locally is entirely controlled by the
predictor step. To summarize, the quality of the predictor step is extremely important both globally and
locally.

The justification provided by the previous paragraph combined with our preliminary numerical ex-
perience with S2QP (an implementation of the algorithm outline@auld & Robinson(2010a,b))
suggests that improvements in how we define the predictor step will lead to an improved algorithm.
This is the primary purpose of this paper. To be precise, we study the effect of removing the trust-region
constraint from the computation of the predictor step. This is reasonable since the problem is strictly
convex and therefore well defined. It is interesting theoretically to verify that the same convergence
guarantees hold when no trust-region constraint is used, but equally it is important from a practical
point of view since the trust-region constraint may degrade the step quality and/or interfere with opti-
mal active set identification. Moreover, removal of the trust-region constraint allows for re-use of the
predictor step over a sequence of failed iterations, thus reducing computation. Although this may be
considered a ‘minor’ change, new proofs of global convergence are needed. We must also mention that
our algorithm has commonalities with the work Bloraleset al. (2008), and a detailed comparison is
given within the conclusions of Sectid@n

In Section2 we formally state and describe the modified sequential quadratic programming (SQP)
method, while in SectioB3 we prove that it is both globally and locally superlinearly convergent. In Sec-
tion 4 we observe that, with essentially the same theory, we may prove global convergence of our method
if we include a fixed predictor step trust-region constraint. In Sechiove examine three problems
from the Hock—Schittkowski test suitélock & Schittkowski,1981) on which our algorithm exhibits
favourable, unfavourable and typical behaviour. We conclude by giving final comments in S&ction
Before proceeding, however, we list essential notation.
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1.1 Notation

We lete e R™ denotethe vector of all onegy(x) be the gradient of (x) and Vyy f (X) its (symmetric)
Hessian. The matri¥yxcij (x) is the Hessian ot (x), and J(x) is them x n Jacobian matrix of the
constraints withith row Vg; (x)T. For convenience, we use the notatifp = f(xx), ck = c(Xk),

ok = g(xx) and Jx = J(xx) for a given iteratexx. The Lagrangian function associated with (NP) is
L(x,y) = f(x)—y'c(x). The Hessian of the Lagrangian with respect ie Vxx £(X, Y) = Vi f (X) —
ernzl Yj VxxCj (X).

For a general vectar the notation [}~ = min(0, v) is used, where the minimum is understood to
be componentwise. Given two general vectoendw, the notatiory - w represents the vector whose
ith component i®; w;i. Given a general indexing sét a vectoro and a matrixV, we letog andVs
denotethe rows ofv andV that correspond to the indexing s&tIf V happens to be a function af
then we often writé/s(x) insteadof [V (X)]s.

2. Algorithm

In this section we state and describe our nonmonotone algorithm for minimizing problen). (This
method is a modification of that proposedGould & Robinson(2010a,b) that uses the new predictor
step subproblem. The algorithm is given as AlgoritArhon page 5.

We first evaluate the problem functions at the current pdit yx). Next we approximate
Vix L(Xk, Yk) With a symmetric positive-definite matriBx (Gould & Robinson 2010b, Section 4.1)
and form the predictor step subproblem

% ME(S). 2.1)

N 1
minimize fx + gls+ =s'Bks+ o ll[ck + Kks] |11
seR" 2
By introducing elastic variable&ll et al.,2005) we may solve the equivalent strictly convex quadratic
programming problem

minimize fx +gls+ }STBkS—{— ce'v subjectto cx+ kS+0v =0, v >0 (2.2)
seRN,peRM 2

for the predictor stejg;. We lety; denotean optimal multiplier vector associated with the affine con-

straintck + Jks + v > 0. Next we defineHy to be any symmetric approximation #x £ (Xk, Y), but

for the local convergence results given in Sectbowe chooseHk = VixL(Xk, i) We note that all

the results of this paper still hold if; is replaced by any first-order multiplier estimatg suchthat

Yk —¥" = O(lx — x*[l2) and[y;{]lz = 0, where(x*, y*) is a local solution to problem (NP) and

7 def {i: ¢ (x*) > 0}. OnceHy is defined, we define the Cauchy stgf = axsy, wherea is the

solution to
def i

minimize M{(as,) foray = 2.3
primize Mcosg forau = @3
and
1
Mis) L' fi + gls + EsTHks +olck + ksl ™Il (2.4)

is the faithful model of¢. We emphasize that the predictor step computat®o?){ in contrast t@&ould
& Robinson(2010a,b), does not involve any trust-region constraint. The predictor trust-region radius
4y is only used during the Cauchy step computation (2.3) for constraining the length of the step.
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To further contrasGould & Robinson(2010a,b), the Cauchy stefy’ may now have darger infinity-
norm than the predictor step but will always satisfy

100 < 47 (2.5)

The next step is to compute the change in the faithful model at the Cauchy step, which is given by
AM(sF), where AMJ(s) def M(0) — M{(s). We then have the option of computing an accelerator
steps} asthe solution of any of the subproblems discusse@auld & Robinson(2010a, Section 2.3).

In particular, if we compute an accelerator step as the solution oéd@lity constrained quadratic

program

C . — 1
minimize 7 + (gk + HkS)Ts + =sTHys
seRn 2

. N (EQP)
subjectto  [Js]as) =0, [sll2 < 44,

where A(s) = {i: [ck + ksli < 0}, ff = fi + o st + 350" Hisg and 4 > O'is the accelerator
trust-region radius, then we define the trial steps

S+ S I AMS; + 50 = nAMESD),
S = (2.6)
s& otherwise

for some predefined constant » < 1 (independent ok). Otherwise, if we computs; from the
explicitly inequalityconstrained quadratic program

N - 1 _
minimize &+ (gk + HesgH) Ts + EST Hks + o ll[ck + (S + 9)]y, 11
Se

. (EIQP)
subjectto  [ck + k(S +9)]s, = 0,
(Ok + HSE + 03 2)Ts <0, [Sllos < 4,
where
-1 ifiek,
[z]i = . (2.7)
0 ifiedk,

Vi = {ir ok + kSTl < 0}, Sk = fit [k + XsThi = 0}, f&° = fi + glsP” + 35" Hes” and
(0k + HksE” + ok z)T's < Oiis the so-called ‘descent constraint’, then we define the trial step as
=8+ (2.8)

Note that Gould & Robinson(2010a, Section 2.3) ensures that in both cases the resulting trigdstep
will satisfy

AM(s0) = n AMi(s) > 0. (2.9)
We also note that if.A(s))| > n, then subproblem (EQP) will generally result in the unproductive

solutionsg = 0. To prevent this unwanted outcome various alternative subproblems and strategies may
be utilized. We do not consider any alternatives in this paper since subproblem (EQP) is sufficient for
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proving local superlinear convergence under certain assumptions (see Th8dt8mrsd3.11). In any
case, once the full step is defined, we evalyabe + sc) and 4 M ().

The strategy for updating the trust-region radii and for accepting or rejecting candidate steps is
similar to traditional methodsQonnet al., 2000) and based on the ratip of actual versus predicted
decrease . Differences are that we must account for nonmonotone steps, ensure that the predictor
trust-region radius is bigger than a predefined constant following a successful iteration (to ensure fast
asymptotic convergence) and update the accelerator trust-region radius. More precisely, if the ratio satis-
fiesrx > nys for some ‘very successful’ parametgg € (0, 1), then we believe that the model is a very
accurate representation of the merit function within the current trust region, and therefore we increase
the predictor trust-region radius by an expansion fagtor 1 with the belief that the current trust-
region radius may be overly restrictive. If the ratio satisfies< rk < 5ys for a ‘successful’ parameter
ns € (0, nys], then we believe that the model is sufficiently accurate and keep the current predictor trust-
region radius with the possibility of increasing it only to satis;fﬁ@1 > Areser for some predefined ‘re-
set’ valuedgeser > 0. Otherwise, the ratio indicates that there is poor agreement between the Mypdel
andthe merit function. It is precisely this case that differentiates the nonmonotone Alg&ithinom
its monotone variant. In fact, if every iteration is successful, then the two algorithms are identical. How-
ever, if a failure occurs then Algorith 1 still accepts the step (provided thaaxfails > 0) with the
hope that the next iterate will make progress, and we say that a ‘nonmonotone phase’ has been entere
If we enter a nonmonotone phase, then the matiaf actual to predicted decrease in the merit function is
computed based on the trial poit+ s« andthebest-knowrpoint, that is, the solution estimate directly
before the nonmonotone phase was entered. If the number of consecutive failures reaches the maximu
number allowed (as denoted by the parametaxkfails), then we check whether tHist Cauchy step
computed during the current nonmonotone phase makes progress, and this allows us to prove glob
convergence in Sectidh If it does not make sufficient progress, then the algorithm reverts to the best-
known point, reduces the predictor trust-region radius by a contraction factor0, 1) andproceeds
on. In less precise terms, the algorithm has ‘gone back in time’ and proceeds as if we were using the
monotone variant until the next failure occurs. We will show that Algorithfnis globally convergent
for maxfails > 0, but thatmaxfails > 0 is required to achieve fast local convergence (see The@ems
3.10and3.11). In all cases we define the accelerator trust-region radius to be a constant multiple of the
predictor trust-region radius, although the condititf ; < 71 - 4}, ; for some accelerator trust-region
scale factor s > 1is also sufficient. For more details on nonmonotone algorithms (sometimes known
as nonmonotone ‘watchdog’ techniques), Semnet al. (2000, Chapters 10.1 and 11.3).
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ALGORITHM 2.1. (Nonmonotone algorithm).

Input: (Xo, Yo)
Setparameters & 7s < 7vs < 1,0 < Ageser < 4y, 0 < 7 < 1, 7§ > 1and 0< maxfails € N.

Set expansion and contraction factors G;c < 1 < #e, fail counterfails «— 0 and countek « O.
do

Evaluatefy, gk, ck and Jk, and then computgy.

Define Bk to be a symmetric positive-definite approximationVig £ (X, Yk)-

Solve problem (2.2) for the predictor step and the multipligfs y;).

Define Hi to be a symmetric approximation 8 £(Xk, Y§)-

Solve problem (2.3) fog.” andcomputed M (S.").

Optionally, compute an accelerator step and the multipligfsyy).

Definea full steps, thatsatisfies 2.9) and then evaluatg(xx + sk) and 4 My(sq).
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if fails= 0 then
e ¢ (@) — ¢ (X + %))/ AM(s0) [standarddefinition]
If s« = s, then setaudy._tried« true; otherwise setaudy_tried < false.

else

Nk < (e — (X + )/ 43 [changein ¢ based on poinke]
endif
if rx > nys then [successful]

Xkl <= Xk + Sk Yk+1 < Yg (Ykr1 < Y if accelerator step not computed)
AE+1 — min(max(g - 4y, Areser), Au)
fails « 0
elseif ry > 55 then [successful]
Xkl <= Xk + Sk Yk+1 < Yg (Yke1 < Y if accelerator step not computed)
AE+1 < max(4y, Areser)
fails < 0
else
fails « fails+ 1
if fails=1 then [save current point]
Xz ¢ Xk, Yr < Yk» Pr < ki ST SO Ve < Vi
48 AME(sk), AP AM;‘(q‘zp), A% AE
endif
if < fails < maxfails then [unsuccessful]
Xk+1 ¢ Xk + S AE+1 — Ay
else
fails < 0
if caudy.tried then [revert to saved point]
Xkl € Xay kil < Yoo Ajiq < nedy
else
Evaluateg (xz + S50
if (P — P(Xe +S50))/ 45 > 55 then [successfulCauchy]
Xk+1 < Xg + SSP, Yk+1 < y;, AE+1 «— max(zfi';, Ageser)
else [revert to saved point]
Xk+1 < Xzs Yik+1 < Yr Ai+1 — nedh
endif
else if
end if
end if
Ajyr < T8 - Ajq
k«—k+1
enddo

Now that our entire algorithm has been stated, we proceed to the analysis.
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3. Convergence properties
We begin by defining a criticality measure based on the predictor step subproblem.

LEMMA 3.1 The quantity
e _ . 1 _
7. B) £ 100 + 00l = min [ 100 +900Ts + 38 Bs+ o lc(0 + 098] ] (3.1)

is a criticality measure in the following sense:

(i) for a givenx and positive-definite matriB it follows that 0< y(x, B) < oo;
(i) for any positive-definite matriX8 we have thaty (x, B) = 0 if and only if x is a first-order
critical point for problem ({-¢);
(ii)) if {x} = X, {Bx} is a sequence of matrices such that, for some positive scdfgrand 8,
we have

.
0<8 <UBw 8

min X UTD max

forallv # 0, 3.2)

andy (xk, Bx) — 0,thenx, is a first-order critical point for problen?{-¢).

Proof. Part (i) follows immediately from the fact that the minimization problem in (3.1) is strictly
convex and has the valugx) + o ||[c(X)] " ||1 ats = 0.

We now prove part (ii). The equatign(x, B) = 0 holds if and only ifs = 0 is the unique minimizer
of the strictly convex minimization problem used in equati8ri}. Optimality of that problem at the
points = 0 implies that

there existso € o ||[c(x)]|l1 suchthatg(x) + ¢ J(X)'w = 0, (3.3)

whered ||[c(x)] |11 is the sub-differential of ||[-]~ |1 atthe pointc(x) (seeFletcher1981, Section 14.2
for more details). This proves part (ii) since condition (3.3) is precisely the first-order conditiors for
to be a first-order critical point for problemis-c).

Given a symmetric matriB, we define the vector obtained by stacking all the entries of the lower
triangular part ofB (in a specified order) as(B) € R", wheren, def n(n + 1)/2. The assumption on
the matrix sequencgBy} in part (iii) guarantees that the vector sequeftweBy)} is bounded, so that
there exists a subsequen€esuch that limek b(Bx) = b,.. This implies that

lim xx = x,, and lim By = B, with B, positive definite, (3.4)
keK keK

whereB,, def b(b,.). Now we define the function

F(s,x,b(B)) = f(X) +g(x)"s+ %sT Bs + o |l[c(X) + J(X)S] " ||1, (3.5)

sothat F (s, x, b) is defined and continuous dR" x R" x R"e andconvex for each fixedx, b). It
follows from Connet al. (2000, Theorem 3.2.8 using the continuggnt-to-setmapC(x, b) = R")
that

F,.(x,b) def mﬂi@n F(s, x, b) (3.6)
seR"
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is continuous, so that we may deduce fradnl( thaty (x, B) is also continuous as a function @, B).
Thus we have

){(X*, B*) = lim X(Xka Bk) =0, (37)
keK

wherethe first equality follows by continuity and the second by assumption. Part (ii) 249l then
imply thatx, is a first-order critical point for problen?{-¢). O

We now give a lower bound for the change in the faithful model obtained from the Cauchy step. This
is the essential estimate for proving global convergence of Algor2mThe result uses the change in
the convex modeMg, which we define as

AME(S) E'ME(0) — ME(S). (3.8)

LEMMA 3.2 The predictor and Cauchy step satisfy
1 Ay AME(S) ) .
" lIstlleo ™ NI Bk — Hill2lIs{l1Z,

AV > 5 Aty min (3.9)

Proof. We consider two cases.

Casel: " Hs < S Bxs)-
Subcasd.: ||f]loo < 4.

This subcase implies thaf, > 1, so thate = 1 is in the domain of the Cauchy step computatids3).
This implies thatM{(sg") < M}(s)) < ME(S)), where the second inequality follows singg Hisf <
ST Bys) by assumption. Sinc#(0) = MZ(0), we conclude that

AM{(ST) = M{(0) — M{(ST) > MEO) — M) = AME(S)). (3.10)

Subcase: [|S;[lc > 4.
Notethat we now have & «y < 1. For a general & o < 1 we have

2
AMEas) = o (Il = ek +a ks~ — aghs — 55T Bes; (3.11)
> ao (I[ck] " Il1 — ll[ck + ksf] ™ ll1) — agl st — %szTquz (3.12)
— a AMESD), (3.13)
sothat
AMauS)) > au AMUS). (3.14)

Equation(3.11) follows from the definition off M, (3.12) follows since O< « < 1 and fromGould &
Robinson(2010a, Lemma 2.3) an@(13) follows from the definition off M¢. We may then deduce that

AME(s) = ME(0) — Mi(s¢") = M{(0) — Mi(awsy)  (usingdefinition of A My andsg?)
> ME(0) — M(ays)) (usingdefinitions ofMg andM} andthe fact thas}' Hes) < ' Bxs)
= AMg(oysy) = au AME(s)  (usingdefinition of AMg and(3.14))

P

= K _AMZs) (usingdefinition ofay). (3.15)
lIS¢lloo
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Case2: s Hks, > 5" Bcs > 0.

Sinceax < 4}/l Il by definition andax < 1 as a consequence ef Hks > ' Bcsp > 0,
we conclude that 0< ax < min (1, IISE’%) = min(l, ay). For ease of notation, we defing,, =
min(1, ay). Forall 0< a < a,,;, we must have

AMYST) > AM(ash) (3.16)
2
— o (lled 1 = ek + a k1™ 1) — agT st — %s;THks; (3.17)
2 2
— o (llcd Il — Nck + a kST 1) — agls — "‘755 Bist + %s;T(Bk — HOS. (3.18)

Equation(3.16) follows sinces” minimizesMy(as;) for 0 < a < a,,, while (3.17) and 8.18) follow
from the definition of4 M andsimple algebra. Continuing to bound the change in the faithful model,
we have

2
AMUST) > ao (l16d Il = e+ IS0 - agis, — S5 B + S8 (B — Hos, - (3.19)
2
= a AM{(S) + %5 (B — HOS, (3.20)

forall 0 < a < au,. Equation (3.19) follows from equatior8.(L8), Gould & Robinson(2010a,
Lemma 2.3) and the inequality® < «, which holds since < a < a,, < 1, while equation (3.20)
follows from the simplification of equatior8(19) and the definition off M¥(s}).

The previous string of inequalities holds for allQ o < a.,. So it must hold for the value af
that maximizes the right-hand side & 20). As a function o, the right-hand side may be written as
q(a) = aa? + ba, where

a= %sﬁT(Bk — Hs, <0 and b= AMZ(s;) > 0.

Thereare two subcases to consider.
Subcasd.: —b/2a < oy
In this case the maximizer on the interva] §Q,,] must occur at: = —b/2a, so that the maximum is
b? —b b?
—b/2a)=a-— +b— = ——.
a(=b/2a) 4a2 + 2a 4a

Substitutingfor a andb, using the Cauchy—Schwarz inequality and applying norm inequalities shows
that

UMD UM (M)’
2|T(B— Hs:| ~ 20Bk — Hell2lisl3 ~ 2nlBx — Hll2lIstl2,”

Subcas@: —b/2a > o,.
In this case the maximizer gf on the interval [Qa.,,] IS a = a.;,, andthe maximum is bounded by

q(=b/2a) =

(3.21)

a;m b— M AM(SP) (322)

sincethe inequality—b/2a > a.,,;, impliesthataa,,, > —b/2 becausa < 0.

q(amin) = aanzqin + bamin = amin(aamin + b) >
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If we denote the maximizer of(a) on the interval [0, ¢.] by a*, then equations3(21) and 8.22)
show that

1 Ay AME(S]
q(@®) > = AMXS) min (1, k| (8 _ . ) (3.23)
2 lIsglloo ™ NIIBk — Hill2llsgll5
Returningto equation (3.20), we have
1 _ A AME(S)
AMIST) = q(a*) = = AMY( F')mm(l, k. Rk )
K 27K 10l00” NI B— Hill2lIS; 12,
Combiningthis with equations (3.10) an@.(5) gives the required result. O

We now show that, under reasonable assumptions on the convex ¢t predictor steps will
be uniformly bounded.

LEMMA 3.3 Let f andc be continuously differentiable functions. Assume thag is any vector se-
quence such thdk}k>o0 C B c R" for some compact sé and that{ By} is any matrix sequence such
that

-
0</B <D Bxv

A
min oTo

for allv#0eR" (3.24)
for some positive constaii,, thatis independent ok. Then there exists a positive constag, such
that s llco < xyer Wheresy is the predictor step, that is, the unique minimizer of proble@m);

Proof. The first-order optimality conditions for probler.p) are

gk + Bes = Jy,
ce=y+z
min(ck + ks, y) =0,
min(v, z) = 0,
wherey is a multiplier vector for the affine constraiat + Js > 0, z is the multiplier vector for the

simple bound constraint > 0 and the minimum is taken componentwise. From these conditions we
deduce that

s =-B (g — N ¥5) and Iyflleo < o, (3.25)

wherey; is the vector of Lagrange multipliers. It is now easy to see that the required result holds by
using B.25), standard norm inequalitie8,24), the fact thafxy} is contained in the compact sBt the
continuity of norms and the continuity gfandJ. O

The main global convergence proof for Algorittrl requires the following sets:

S = {k e N | iteratek is labelled either successful or ‘successful Cauchy’ by Algorithir};
U = {k e N | iteratek is labelled ‘unsuccessful’ by Algorithra.1}; (3.26)
R = {k € N | iteratek is labelled ‘revert to saved point’ by Algorithéh1}.

THEOREM3.4 Let f andc be twice continuously differentiable functions andf{bet}, { Hk}, { Bk}, { 4}
and{ 4} besequences generated by Algorit2mi. Assume that the following conditions hold:
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1. {Xk}k=0 C B c R" for some compact séi;
2. there exist positive constant§,,, 22, andby suchthat 0< 28, < (0" Byo)/|lv1|3 < 2B, for all
v #0eR", and||Hg|l2 < bn.
Then, either xk is a first-order critical point for problem¢{-o) for someK > 0 or there exists a
subsequence gk} thatconverges to a first-order solution of problem-¢).

Proof. If xk is a first-order point for problemé{-o) for someK > 0 then the proof is complete.

Therefore we assume that is not a first-order solution to problend;(o) for all k. We consider two
cases.
Casel.: there exists a subsequencd df} thatconverges to zero.

Since 4} is only decreased following an unsuccessful nonmonotone phase and since the first Cauchy

step of each nonmonotone phase is always checked for sufficient progress, we may conclude that there

exists a subsequengeC N such that

lim = 3.27
fim X = X, (3.27)
lim 4, =0 3.28
kIEr?C k 5 ( )
li Plloc = 0 3.29
Jim, 15"l oo (3.29)
and

re < ns forall ke K, (3.30)

where

o def Pk — @ (X +5¢")
T
Subcasd.: There exists a subsequence afMg(s;) Jkexc thatconverges to zero.
It follows immediately from Lemma.1thatx, is a first-order critical point for problen?{-¢) since
X (X, B) = AM(S).
Subcase: There does not exist a subsequenceAMg(s,)jkexc thatconverges to zero.
This implies the existence of a positive scalauch that

AMXS)) > 6> 0 forallk e K. (3.31)
A Taylor expansion off atXx in a general direction gives

f(xk +ev) = fx + eglv +0(e) = fx + 8ggv + g—zszHkv + o(e) (3.32)
since{H} is bounded by assumption, while a Taylor expansion afxy gives
c(Xk + ev) = ¢k + e kv + 0(¢). (3.33)
Combining these two equations gives

2
¢ (X +ev) = fx + gglv + %DTHkU +0(e) +a|l[ck + e ko + 0(e)] " |1

(3.34)

2
&
fi + eggv + EI)THkl) +oll[ck + e ko] ll1 + 0(e)

Miie0) + 0(e),
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wherethe first equality follows from the definition @f and the Taylor expansions, the second equality
follows from the boundedness of||[-] ™ [l1 andthe last equality follows from the definition &fij(cv).
Choosingy = s77/II5 llo @ande = |57]l0 in equation (3.34) yields

¢ + 57 = M8 + 0(llS Ml oo)- (3.35)
Equation(3.35) then implies the equation
o B0 AMESD) + 0T lloo) _ L Ol o)
k AMESS) AME(SD) AMK(S)
sincegx = MY(0). We now proceed to bound M(s"). For allk e K sufficiently large we have for
some constant,., > 0 that

(3.36)

AM(SD) >

AME(S) min( Ai AMIS) )

1’ b
lIsglloo” NiBk — Hicll2llSE 13,

(A 5
MmN L B b
Kpred n(/lmax—i_bH)Kpred

0

2Kpred

>

NI NI

A7 (3.37)

Wherethe first inequality follows from Lemma.2, the second inequality follows fror8.81), assump-
tion 2 of this theorem, and Lemn&a3, and the final equality follows from (3.28).

It now follows that there exists a positive sequefmg suchthat, fork e K sufficiently large, we
have

01"l
AM{(S)

< 2Kpredzk”§(<:P||OO

< S (using(3.37) and definition of ‘0")
o4y,

< 2KpredzkAE — 2Kpred
YT J

Zx (usingdefinition of Cauchy step and simplifying) (3.38)

and where the subsequerag}x converges to zero. It then follows fron3 (36) and 8.38) that
rd =14+0() forkeKk. (3.39)

Thisis a contradiction since this implies that, fore X sufficiently large, the identity™ > #s holds,
which violates equation3.30). Thus Subcase 2 cannot occur. Therefore, if Case 1 occurss’tliea
first-order critical point as shown in Subcase 1.

Case2: there does not exist a subsequenceAjf} thatconverges to zero.

An examination of the algorithm shows that this implies the existence of a positive nunalmer an
infinite subsequencEs C S (recallthe definition ofS given by @.26)) such that

lim Xek—j) = X 3.40
o X109 = X (3.40)
Ay > 6> 0 forall k, (3.41)

where for eactk € S we definel (k) to be the number ofails that occurred in that nonmonotone
phase before that successful iteration was computed. For consistency, ifkter@desuccessful but was
not part of a nonmonotone phase, then we ddfikke = 0. Thus every successful iterate is part of a
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I
lieg=1 / \
=O 110—0 111—0 kfﬁ:20 llg=2 120=0 121=0
=11 kiy=11 ki, =16 Eig =20 ki, =22 ki =22

FiG. 1. lllustration of the quantities used in Case 2 of TheoBedrassuming thataxfails = 2. Thex-axis represents the iterate
and they-axis represents the value of the merit functipifor a given iterate. The labels S, U and R below fhaxis indicate
whether that iterate belongs to the indexingSetf or R (see (3.26)), respectively. Every S is enclosed in either a circle or a
sgquare—the circle indicates that the corresponding iterate is in the subsed{ienaehile the square indicates that the iterate was
not in Cs. The horizontal solid lines indicate the least valug@fccepted as a successful iterate up until that point. The length of
a dotted vertical line or a dashed vertical line located above an iteiatécates the improvement in the merit function obtained
from the successful step_, ascompared to the previous best successful value. We have introduced the ngtatidfxy) and

K= K'0x).

nonmonotoneequence, but it may have length zero. Also, for daehS we definek'(k) € g to be
the smallest number iis thatis strictly greater thark (see Figl). Note that this implies that

@ (Xks1) = ¢ (Xl (k*kyy) forallk e S and klnlj k'(k) = oo. (3.42)
€

For the remainder of this proof we writd M" insteadof 4My, and 4M® insteadof 4M—the
‘missing’ argument is always assumed to be the subscript of the step, thes;) means4 M?(Sj)
for any iteratej .

If k e Ks andk is classified as a successful iteration by AlgoritBm, then it follows from 2.9)
that

P (X1 () — P Xit1) = ns AM™(Sc—i k) = ns AM™(ST ))- (3.43)

Onthe other hand, ik € Ks andk is classified as a successful Cauchy iteration by Algorithin then
we have by construction that

P (X1 () — P (Xit1) = nsAM™(SE i))- (3.44)
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Sincey € (0, 1), we conclude that

d (Xk—1 (k) — ¢ (Xk41) = nysd MH(SEP_KK)) forallk e s. (3.45)

Equation (3.45), Lemmé&3.2and3.3, (3.41) and assumption 2 of this theorem imply that

s . 0 4 MB(SE_|(|())
& (Xk-1(k) — P (Xkt+1) = > 4 MB(SE_uk)) mln(la Kred, W

pred

(3.46)

for some positive constan,., thatis independent ok. If we letk € S and sum over ak € Kg less
thank, then we have

S , 5 AMES )
> %AMB(sli_,(k))mm(l, %)S D $0k-ik) — p(Xkr1) (347)

)
Kpfed (/1 Eax + bH)Kpred

keKs,k<k keKs,k<k
< D $0k-im) — dln)  (3.48)
keS8, k<k
= ¢ (%0) = ¢ (X¢y1) (3.49)
< P (X0) — B Kiesy—1 (k) - (3.50)

Equation(3.47) follows from 8.46), then (3.48) follows since we are adding more positive terms to
the sum, (3.49) follows from the construction of the algorithm and the facktkatS by assumption,

and (3.50) follows from (3.42). To help the reader understand we note that, for thekvalu2l, the
right-hand side 0f3.47) is equal to the sum of the lengths of the dotted lines inFighile the right-

hand side of3.48) is equal to the sum of the lengths of the dotted lines and the dashed lines. If we now
let k converge to infinity in the previous string of inequalities and &d2) and (3.40), then we may
conclude that

nns . s AMAS_ )
- AMA(S ) min{ 1, —, —————- ) < #(X0) — p(XF), (3.51)
S 2 K-1(k) ( Koes: (2B + BH)KZ,
whichimplies that
lim AM®(s, =0 3.52
kel%s (Sk_l(k)) ( )

because the series on the left-hand side is convergent. Sid étates that liga kg Xk—1 (k) = X4 and
it follows from (3.1) and 8.52) that

lim  y (Xk—1(k), Bk— = lim AM®s] =0, 3.53
kEKS){( k—1(k)> Bk—1(k)) . (Sk—i k) (3.53)

we conclude from part (jii) of Lemma&.1thatx, is a first-order critical point for problen?{-c).

In both cases we have shown that there exists a limit pqjrthat is a first-order critical point for
problem (4-c). The proof is now complete since one of these cases must occur. O

We conclude this section by giving local convergence results for problem (NP). These results assume
that the penalty parameteiis sufficiently large so that minimizers of thig-penaltyfunction correspond
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to minimizers of problem (NP) (sdRietrzykowski(1969) andConn & Pietrzykowski{(1977) for more

details on exactly how these two problems are related). We note that many authors have provided frame-
works for guaranteeing that this condition holds in practieewell,1978b;Mayne & Maratos,1979;
Sahba,1987; Pantoja & Mayne1991;Burke, 1992; Mongeau & Sartenagfl995; Yuan, 1995; Byrd

et al.,2005;Byrd et al.,2008;Gould & Robinson2010b). We use the following definitions related to a
solution of problem (NP).

DEerFINITION 3.5 [First-order Karush-Kuhn-Tucker (KKT) point]. We say that the pdixt, y*) is a
first-order KKT point for problem (NP) if

g(x*) = JI(x)Ty* =0, c(x*)>0, y*>0 and c(x*)-y* =0. (3.54)

Given a first-order KKT poin{x*, y*), we let. A def {i: ¢i(x*) = 0} denotethe index set of con-
straints active at*.

DEerFINITION 3.6 (Second-order sufficient conditions). A poixt*, y*) satisfieghe second-order suffi-
cient conditions for problem (NP) {i*, y*) is a first-order KKT point and if there existg! > 0such
thatsT Vex £(x*, y*)s > AH sTsfor all s satisfyingJ 4 (x*)s = 0.

min
DEFINITION 3.7 (Strict complementarity). We say that strict complementarity holds at a KKT point
(x*, y*) for problem (NP) ify;; > O.

DEerINITION 3.8 (Linear independence constraint qualification). We say that the linear independence
constraint qualification holds at a KKT poiat*, y*) for problem (NP) if the matrixJ 4 (x*) hasfull
row rank.

DEFINITION 3.9 We say that thestrongsecond-order sufficient conditions hold at a paixit, y*) if it
satisfies Definition8.5-3.8.

Our local superlinear convergence results require it fails > 0, that is, that Algorithn®.1is
truly nonmonotone. This ensures that trial steps will be temporarily accepted in the neighbourhood of a
local solution even if the merit functiofiincreases. This approach guarantees that the so-called Maratos
effect Maratos,1978), which is known to lead to slow local convergence, is avoided.

For our first result we assume that an accelerator step is computed from subproblem (EQP) as give
in Section 2 and discussed @®ould & Robinson(2010a, Section 2.3.2). Since this subproblem only
defines multipliersy; for the constraints whose indices are in the.4€f) asdefined in Section 2, we
form multipliers for problem (NP) by ‘scatteringj; into the appropriate locations of a zero vector of
lengthm. The following theorem is the same as Theorem 3.1Gdunld & Robinson(2010b).

|pog ‘Aleiqr 80UBIOS ByIoPeY 18 BI0°S[euINOolpIojX0 BUfew WOl PapeojUMOq
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THEOREM 3.10 ((EQP) local convergence result). Let*, y*) bea minimizer for problem (NP) that
satisfies the strong second-order sufficient conditions as given by DefiBiforLet the assumptions

of Theorem3.4 hold and suppose that > ||y*||«, the accelerator step is computed from subproblem
(EQP) with the choiceHk = VxxL(Xk, i), andmaxfails > 1 in Algorithm 2.1. It follows that there
exists an open neighbourhood(@f, y*) suchthat, if the accelerator step is computed for every iteration
once the first successful iterate of Algorittriis contained in this neighbourhood, then the sequences
of iterates{xx} and{yk} generatedy Algorithm 2.1 converge tax* andy* ata Q-superlinear and an
R-superlinear rate, respectively. Moreovelyik L(X, y) is Lipschitz continuous in a neighbourhood of
(x*, y*), then they convergence at a Q-quadratic and an R-quadratic rate, respectively.

Proof. The only reason why the proof of Theorem 3.1Z5ould & Robinson(2010b) would not apply
here is because of the modification to how the predictor step is computed. However, the only property
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requiredis that the predictor trust-region constraint ultimately is inactive following a successful step.
Since we have removed the trust-region constraint altogether, the result is immediate. O

Finally, we consider the rate of convergence of AlgoritBrh when the accelerator step is com-
puted from subproblem (EIQP) as given in Section 2 and describ&bird & Robinson(2010a,
Section 2.3.1).

THEOREM 3.11 ((EIQP) local convergence result). Let*, y*) bea minimizer for problem (NP) that
satisfies the strong second-order sufficient conditions as given by Defiiiorhet the assumptions
of Theorem3.4 hold and assume that > |y* |, the accelerator step is computed from subproblem
(EIQP) with the choiceHk = Vxx L(Xk, i), andmaxfails > 1 in Algorithm 2.1. It follows that there
exists an open neighbourhood(@f, y*) suchthat, if the accelerator step is a solution of minimal norm
and is computed for every iteration once the first successful iterate of Algofithmnters the open
neighbourhood, then the sequences of iterptgsand{yk} corverge tox* andy* ata Q-superlinear and
an R-superlinear rate, respectively. Moreove¥if L(X, y) is Lipschitz continuous in a neighbourhood
of (x*, y*), then they converge at a Q-quadratic and an R-quadratic rate, respectively.

The proof of Theorem 3.11 follows the proof of Theorem 3.1&ould & Robinsor(2010b) exactly.

4. Inclusion of a trust region

The ‘trust-region-free’ method described in Sectiepends on the sequenda} of positive-definite
matrices. If this sequence is chosen well, then the algorithm typically performs very well in practice.
However, we recognize that by removing the trust-region constraint altogether, we have removed the
‘safety net’ enjoyed by trust-region methods. If the sequerg is defined poorly (or degeneracy
exists), then tests indicate that Algorititrl without a predictor trust-region constraint may occasion-

ally perform poorly when compared with its counterpart (Gould & Robin&f10a,b) that includes

one. (It also depends on precisely how one implements the nonmonotone behaviour of the algorithm.)
Therefore, in this section we examine the inclusion of a trust-region constraint of the form

[Slloe < Max(4s, 4y) (4.1)

in the computation of the predictor step, whetg > 0is a lower bound on the size of the trust-region
radius. Note that this is counterintuitive since trust-region methods may need to make the trust-region
radius relatively small to make progress. The predictor subproblem becomes

. 1 )
minimize fx+g s+ =s'Bcs+oe’v subjectto cx+ ks+v >0, v > 0, [Sloo < Max(4s, 45).
seRN,peRM 2
4.2)

Provided that4,; is chosen to be reasonably large, sy > 1, then this new subproblem shares the
advantages of Algorithrd.1and that described iGould & Robinson(2010a,b), that is, (i) the ‘large’
trust region will not interfere with optimal active set identification near a solution, (ii) predictor steps
may be ‘recycled’ during a sequence of failed iterations, preventing excessive computation, and (iii) the
trust-region constraint prevents excessively large steps that may occasionally result from poor choices
of Bk, degeneracy, or otherwise.

Two observations are needed for the proofs of Theordms3.10and3.11to hold when Algo-
rithm 2.1uses subproblen#(2) in place of (2.2). First, definition (3.1) of the criticality measy(e, B)
must be modified to include the new trust-region constraint. Second, Leh8stll holds since a pre-
dictor step computed from subproblem) cannot be larger than that computed from subprobkes).(
The proofs of Theorem3.4,3.10and3.11now follow exactly as in SectioB. Thus Algorithm2.1with
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a predictor step computed from subprobleh?®] is both globally and superlinearly convergent when an
accelerator step is computed from either subproblem (EQP) or (EIQP).

5. Numerical experiments

A numerical comparison of Algorithn2.1 with and without a predictor step trust-region constraint
is difficult since computational nonlinear programming is sensitive to choices of the initial point and
adjustments of control parameters. These often lead to a dramatically different sequence of iterates.
Therefore we do not expect either variant of our algorithm to be uniformly better. However, this paper
does provide us the freedom to remove the predictor step trust-region constraint as we see appropriate.
In this section we highlight our preliminary numerical experience by considering three optimization
problems from the Hock—Schittkowski test set (Hock & Schittkow$8B1). These problems have been
chosen carefully to display certain interesting behaviour. The first example shows that some problems
may be solved much more efficiently by removing the trust-region constraint in the predictor step com-
putation. By contrast, the second example shows that no trust-region constraint in the predictor step
combined with a poor choice of the positive-definite maBixmaylead to bad performance. However,
this poor performance may be rectified by using an artificial trust-region constraint simply as a safety
net as described in Sectign Finally, we give an example that exhibits, in our experiencetythieal
behaviour of Algorithm2.1when executed with and without a predictor step trust-region constraint.
The following parameters were used in all cases: sufficient model decreaserfaetd.5, suc-
cessful/very successful tolerancgs = 0.01 andnys = 0.7, maximum predictor trust-region radius
Ay = 1000, trust-region reset radiugl.eser = 1074, accelerator trust-region scale factar = 3.0,
numberof nonmonotone steps allowedaxfails = 1, trust-region contraction and expansion factors
nc = 0.1 andne = 5.0, and an initial penalty parameter @f= 1.0. All runs are terminated when the
primal feasibility, dual feasibility and complementarity violations are all less thah10
Sinceour examples are of small dimension, we chose to update the positive-definite Badtrithe
predictor subproblen®(2) by using the Broyden-Fletcher-Goldfarb-Shanno updébeédal & Wright,
1999). To perform this update we used the trial Sepnddy = Vx L(Xk + S, Yk+1) — WL Xk, Ykr1)- If
these vectors did not result in a sufficiently positive-definite update, then we used the damping techniqueg
introduced byPowell (1978a). For simplicity, we chodgy = | .
We solved problem (EQP) (see Section 2) to compute an accelerator step. Using this subproblem,u‘)f
instead of subproblem (EIQP) (see Section 2), allows us to study how effectively the predictor step
identifies the optimal active set.
Finally, we updated the penalty parameter using the concept of ‘steering’ as descifityed @t al.
(2008). Consequently, to update the penalty parameter we occasionally solved more than one predictor
subproblem for a given iterate.
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5.1 Hock-Schittkowski8b

We first ran Algorithm2.1 with a predictor trust-region constraint as describe®ould & Robinson
(2010a,b). The problem was successfully solved but required 97 function evaluations and 67 gradient
evaluations. For comparison, we ran AlgoritBm without the trust-region constraint. This version only
needed 13 function evaluations and 12 gradient evaluations.

Careful examination of the output from Algorithtnl with a predictor step trust-region constraint re-
vealed that the trust-region first became active on iterate 8. The remaining 89 iterates alternated between
successful and unsuccessful iterates and entered many nonmonotone phases. Moreover, the predictor
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TABLE 1 Outputfrom Algorithm 2.1 (no predictor trust-region constraint) on test problem Hock-
Schittkowski #85 with initial point given by the eighth iterate of the algorithm when using a trustregion
constaint

lter Penalty Merit Primal Dual Comp [Y] TRpred #QP

0 1.00E+00 -1.87E+00 8.92E-02 2.44E-03 1.80E-04 3.92E-02 1.00E+02 -
1 1.00E+00 -1.97E+00 2.72E-06 3.15E-02 0.00E+00 0.00E+00 1.00E+02 1
2 1.00E+00 3.82E+00 5.93E+00 6.24E-03 5.34E-03 4.97E-02 1.00E+02 1
3 1.00E+00 —-2.21E+00 1.63E-03 1.27E-04 9.54E-05 5.86E-02 9.68E+02 1
4 1.00E+00 -2.22E+00 3.86E-07 2.61E-06 2.32E-08 6.02E-02 9.68E+(2

stepsduring successful iterates were constrained by the trust-region constraint, which appeared to
impede progress. For verification, we used the eighth iterate from Algo@thinwith a trust-region
constraint as a starting value for the same algorithm without a trust-region constraint. The result-
ing output was as shown in Table 1, where column Iter represents the number of major iterations,
Penalty represents the value of the penalty parameter, Merit represents the valug oféngfunction

¢, Primal represents the two-norm of the primal feasibility violation, Dual the two-norm of the dual
feasibility violation, Comp represents the two-norm of the complementarity slackMésspresents the
infinity-norm of the current multiplier estimate, TRpred represents the valut§ aind#QP represents

the number of predictor step quadratic programs solved during that iteration. The output clearly shows
that this problem benefits greatly from removing the trust-region constraint from the computation of
the predictor step. In particular, if we remove the trust-region constraint on iteration eight, then the
algorithm solves the problem with-8 4 = 12 function evaluations instead of the original 97.

5.2 Hock-Schittkowski@t

Here, once again, we first ran AlgorithZnl with a predictor trust-region constraint. The problem was
successfully solved and required 10 function evaluations, 6 gradient evaluations and the computation of
9 predictor steps. (Note that this problem has a siegigalityconstraint and thus the two-norm of the
complementarity violation is always zero by definition.) Next we removed the trust-region constraint and
resolved the problem. This resulted in 120 function evaluations, 65 gradient evaluations and the compu-
tation of 65 predictor steps. Thus, for our current implementation the trust-region constraint is vital for
solving this problem efficiently. Upon careful inspection of the output, we observed that our algorithm
generated very poor approximatioBg thatled to relatively large stepgg. Additionally, the trial steps
were poor directions of descent, the resulting Cauchy steps were very small, and progress was slow.
Inefficient descent directions resulting from poor positive-definite approximaBgnsay easily be
remedied. For example, we may include a stabilizing trust-region constraint suth xis the predictor
step subproblem. This strategy with the choit,ge = 5.0 resulted in the output shown in Table 2.
This solution required 20 function evaluations, 8 gradient evaluations and 7 predictor QP subproblems.
For this particular problem we may conclude that the stabilizing trust-region constraint described in
Sectiond remedies poor approximatiofx andresults in superior performance.

5.3 Hock-Schittkowski#00

This example exhibits the ‘average’ performance of Algorithrhwith and without a predictor step
trust-region constraint for our current implementation. The resulting output with a predictor trust-region
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trust-region constraint given big.1)

Iter Penalty Merit Primal Dual Comp Y| TRpred #QP
0 1.00E+00 9.24E+00 4.40E+00 4.40E+00 O0.00E+00 O0.00E+00 1.00E+02
1 1.00E+00 9.24E+00 4.40E+00 1.85E+00 O0.00E+00 1.85E-01 7.49E-01
2 1.00E+00 9.24E+00 4.40E+00 1.70E+00 0.00E+00 1.70E-01 3.74E-01
3 1.00E+00 9.24E+00 4.40E+00 1.63E+00 0.00E+00 1.63E-01 1.87E-01
4 1.00E+00 8.40E+00 4.85E+00 1.60E+00 O0.00E+00 1.60E-01 3.74E-01
5 1.00E+00 8.40E+00 4.85E+00 1.60E+00 0.00E+00 1.60E-01 3.37E-01
6 1.00E+00 8.40E+00 4.85E+00 1.72E+00 0.00E+00 1.72E-01 1.68E-01
7 1.00E+00 8.28E+00 5.94E+00 1.67E+00 0.00E+00 1.67E-01 3.37E-01
8 1.00E+00 8.28E+00 5.94E+00 1.67E+00 0.00E+00 1.67E-01 3.03E-01
9 1.00E+00 8.28E+00 5.94E+00 1.73E+00 0.00E+00 1.73E-01 1.52E-01

10 1.00E+00 8.28E+00 5.94E+00 1.63E+00 0.00E+00 1.63E-01 7.58E-02

11 1.00E+00 8.07E+00 6.39E+00 1.66E+00 0.00E+00 1.58E-01 1.52E-01

12 1.00E+00 8.07E+00 6.39E+00 1.79E+00 0.00E+00 1.79E-01 1.36E-01

13 1.00E+00 8.07E+00 6.39E+00 1.87E+00 0.00E+00 1.21E-01 6.82E-02

14 1.00E+00 7.75E+00 6.64E+00 1.98E+00 0.00E+00 1.18E-01 1.36E-01

15 1.00E+00 7.75E+00 6.64E+00 2.08E+00 0.00E+00 2.63E-02 1.23E-01

16 1.00E+00 7.75E+00 6.64E+00 2.08E+00 0.00E+00 2.29E-02 6.14E-02

17 1.00E+00 7.50E+00 6.84E+00 1.70E+00 0.00E+00 2.26E-02 1.23E-01

18 1.00E+00 6.55E+00 6.55E+00 6.53E-05 0.00E+00 4.33E-19 2.17E+00

19 1.00E+00 1.07E-08 1.07E-08 1.68E-09 0.00E+00 4.37E-23 2.17E+1

TABLE 3 Outputfrom Algorithm 2.1 on test problem Hock-Schittkowski #100 with a predictor trust-
region constaint

Iter  Penalty Merit Primal Dual Comp Y] TRpred #QP
0O 1.00E+00 7.14E+02 O0.00E+00 1.00E+02 O0.00E+00 O0.00E+00 1.00E+02
1 1.00E+01 4.13E+14 2.42E+04 1.33E+13 1.48E+01 2.61E-01 1.00E+02
2 1.00E+01 7.14E+02 O0.00E+00 1.00E+02 0.00E+00 O0.00E+00 5.77E+00
3 1.00E+01 1.25E+03 3.40E+01 7.56E+02 0.00E+00 0.00E+00 1.00E+01
4 1.00E+01 7.14E+02 0.00E+00 1.00E+02 O0.00E+00 0.00E+00 9.04E-01
5 1.00E+01 3.46E+03 3.77E+01 5.28E+03 2.94E+01 1.05E+00 1.00E+01
6 1.00E+01 7.14E+02 0.00E+00 1.00E+02 0.00E+00 0.00E+00 4.52E-01
7 1.00E+01 8.16E+02 8.87E+00 6.60E+01 9.34E+00 1.05E+00 1.00E+01
8 1.00E+01 7.14E+02 O0.00E+00 1.00E+02 0.00E+00 0.00E+00 2.26E-01
9 1.00E+01 7.03E+02 2.11E+00 8.67E+00 2.30E+00 1.09E+00 4.52E-01

10 1.00E+01 7.00E+02 1.12E+00 3.27E+01 5.65E-01 1.15E+00 9.04E-01

11 1.00E+01 6.82E+02 2.13E-02 9.44E+00 2.41E-02 1.13E+00 9.04E+00

12 1.00E+01 6.81E+02 7.64E-03 2.07E+00 2.82E-03 1.14E+00 9.04E+01

13 1.00E+01 6.81E+02 8.27E-05 2.08E-01 9.42E-05 1.14E+00 9.04E+02

14 1.00E+01 6.81E+02 1.49E-06 2.89E-03 1.25E-06 1.14E+00 9.04E+03

15 1.00E+01 6.81E+02 3.27E-10 5.82E-07 3.72E-10 1.14E+00 1.00E+Q4

constrainis as shown in Tabl®, and took 16 function evaluations, 12 gradient evaluations and computed
16 predictor steps. The output without a predictor trust-region constraint is as shown ir4Taiple

PRPRRPRRRPRRPRPRPRPRPRERPEPDNI
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TABLE 4 Outputfrom Algorithm 2.1 on test problem Hock-Schittkowski #100 without a predictor
trust-region constint

Iter Penalty Merit Primal Dual Comp Y] TRpred #QP
0 1.00E+00 7.14E+02 O0.00E+00 1.00E+02 O0.00E+00 O0.00E+00 1.00E+02 -
1 1.00E+01 4.13E+14 2.42E+04 1.33E+13 1.48E+01 2.61E-01 1.00E+02 2
2 1.00E+01 7.14E+02 0.00E+00 1.00E+02 0.00E+00 0.00E+00 5.77E+00 1
3 1.00E+01 1.09E+03 3.30E+01 1.04E+02 0.00E+00 O0.00E+00 1.00E+01 -
4 1.00E+01 7.14E+02 O0.00E+00 1.00E+02 0.00E+00 O0.00E+00 1.13E+00 1
5 1.00E+01 7.50E+02 7.07E+00 1.02E+02 0.00E+00 0.00E+00 1.00E+01 -
6 1.00E+01 7.14E+02 0.00E+00 1.00E+02 O0.00E+00 0.00E+00 5.67E-01 1
7 1.00E+01 7.01E+02 1.48E+00 2.07E+01 4.80E+00 1.07E+00 1.13E+00 -
8 1.00E+01 7.01E+02 1.48E+00 7.62E+00 2.60E+00 1.02E+00 4.22E-01 1
9 1.00E+01 7.01E+02 1.48E+00 1.03E+01 1.52E+00 1.03E+00 2.11E-01 -
10 1.00E+01 7.01E+02 1.48E+00 9.88E+00 1.61E+00 1.09E+00 1.05E-01 -
11 1.00E+01 6.97E+02 1.57E+00 7.78E+00 1.68E+00 1.07E+00 2.11E-01 -
12 1.00E+01 6.97E+02 1.57E+00 6.12E+00 1.73E+00 1.09E+00 1.90E-01 1
13 1.00E+01 6.97E+02 1.57E+00 7.12E+00 1.81E+00 1.15E+00 9.49E-02 -
14 1.00E+01 6.97E+02 1.57E+00 6.97E+00 1.84E+00 1.17E+00 4.74E-02 -
15 1.00E+01 6.95E+02 1.52E+00 6.04E+00 1.73E+00 1.14E4+00 2.37E-01 -
16 1.00E+01 6.95E+02 1.52E+00 4.89E+00 1.66E+00 1.09E+00 1.19E-01 1
17 1.00E+01 6.91E+02 1.04E+00 1.87E+00 1.19E+00 1.14E+00 2.37E-01 -
18 1.00E+01 6.84E+02 3.70E-01 8.18E-01 1.36E-01 1.14E+00 4.74E-01 1
19 1.00E+01 6.81E+02 3.47E-02 1.14E-01 1.28E-02 1.14E+00 4.74E+00 1
20 1.00E+01 6.81E+02 1.24E-03 3.71E-03 4.56E-04 1.14E+00 4.74E+01 1

21 1.00E+01 6.81E+02 1.50E-06 4.31E-06 5.55E-07 1.14E+00 4.74E+Q2

removing the predictor trust-region constraint, we have increased the number of function evaluations
but decreased the number of predictor step quadratic programs solved. We believe this trend accurately
characterizes the ‘average’ performance of Algoritirhwith and without a predictor step trust-region
constraint.

6. Conclusions and future work

In Gould & Robinson(2010a,b) we introduced S2QP—a second derivative trust-region SQP method
for solving nonlinear nonconvex optimization problems. This method utilizes a so-called predictor
step for proving both global and fast local convergence. Computation of this step involves solving
a strictly convex quadratic program with a trust-region constraint. This is not always ideal since the
trust-region constraint (i) may occasionally degrade the quality of the predictor step; (i) may dimin-
ish its ability to identify an optimal active set, and (iii) prevents the re-use of the same predictor step
during a sequence of unsuccessful iterates. In this paper werdisngvedthe trust-region constraint
and proved that the resulting algorithm is still globally convergent, while maintaining local superlinear
convergence.

We conclude by comparing our method with the worki\bgraleset al. (2008). Roughly, they com-
puted a predictor steg} (withouta trust-region constraint) followed by an accelerator sfegefinedas
the solution to the equality constrained subproblem (EQP) defined in Section 2 and discuSsettin
& Robinson(2010a, Section 2.3.2). They then reducedieneritfunction by performing a line search
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along the ‘bent’ path defined by the stegjsandsg. Our methods differ in the following ways. Firstly,
Algorithm 2.1is based on trust-region methodology even though the predictor step is comptited

out a trust-region radius, while their algorithm is based on line-search philosophy. Secondly, global
convergence of our algorithm is guaranteed by the Cauchy step, while convergence of their algorithm is

ensured by the predictor step with a suitable line search. Thirdly, we allow and have analysed an accel-

erator step computed as the minimizer of an inequality constrained subproblem, which allows for active

set refinement. They have not considered such a subproblem, although one could imagine that such an

analysis is possible. Finally, our algorithms differ even when using the equality constrained subproblem

(EQP) for computing an accelerator step. Following the rejection of a trial Btepaleset al. (2008)

performed a line search in the direction of the predictor step. We, on the other hand, performed the

equivalent of a backtracking line search with each trial point enhancechkyvaccelerator direction.

Since convergence of our method relies on the Cauchy point, we could easily use more sophisticated

line search techniques without sacrificing convergence.
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