
Comput Optim Appl
DOI 10.1007/s10589-016-9886-1

A dual gradient-projection method for large-scale
strictly convex quadratic problems

Nicholas I. M. Gould1 · Daniel P. Robinson2

Received: 18 February 2016
© Springer Science+Business Media New York 2016

Abstract The details of a solver for minimizing a strictly convex quadratic objec-
tive function subject to general linear constraints are presented. The method uses
a gradient projection algorithm enhanced with subspace acceleration to solve the
bound-constrained dual optimization problem. Such gradient projection methods are
well-known, but are typically employed to solve the primal problemwhen only simple
bound-constraints are present. Themain contributions of this work are threefold. First,
we address the challenges associated with solving the dual problem, which is usually a
convex problem even when the primal problem is strictly convex. In particular, for the
dual problem, one must efficiently compute directions of infinite descent when they
exist, which is precisely when the primal formulation is infeasible. Second, we show
how the linear algebra may be arranged to take computational advantage of sparsity
that is often present in the second-derivative matrix, mostly by showing how sparse
updates may be performed for algorithmic quantities. We consider the case that the
second-derivative matrix is explicitly available and sparse, and the case when it is
available implicitly via a limited memory BFGS representation. Third, we present the
details of our Fortran 2003 software package DQP, which is part of the GALAHAD

Electronic supplementary material The online version of this article (doi:10.1007/s10589-016-9886-1)
contains supplementary material, which is available to authorized users.

B Daniel P. Robinson
daniel.p.robinson@gmail.com

Nicholas I. M. Gould
nick.gould@stfc.ac.uk

1 Scientific Computing Department, STFC-Rutherford Appleton Laboratory,
Chilton, Oxfordshire OX11 0QX, England, UK

2 Department of Applied Mathematics and Statistics, The Johns Hopkins University,
Baltimore, MD 21218, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10589-016-9886-1&domain=pdf
http://orcid.org/0000-0003-0251-4227
http://dx.doi.org/10.1007/s10589-016-9886-1

N. I. M. Gould, D. P. Robinson

suite of optimization routines. Numerical tests are performed on quadratic program-
ming problems from the combined CUTEst and Maros and Meszaros test sets.

Keywords Convex optimization · Quadratic programming · Gradient projection ·
Large-scale optimization · Sparse factorizations · Dual method

1 Introduction

Quadratic problems (QPs) occur naturally in many application areas such as discrete-
time stabilization, economic dispatch, finite impulse response design, optimal and
fuzzy control, optimal power flow, portfolio analysis, structural analysis, support vec-
tor machines and VLSI design [40]. They are also a vital component of so-called
recursive/successive/sequential quadratic programming (SQP) methods for nonlinear
optimization, in which the general nonlinear problem is tackled by solving a sequence
of suitable approximating QPs [9,41]. Traditionally, QPs have been solved by either
active-set or interior-point methods [65, Ch. 6], but in certain cases gradient-projection
methods, which are the focus of this manuscript, may be preferred.

We consider the strictly convex QP

minimize
x∈Rn

q(x) := 1
2 〈x, Hx〉 + 〈g, x〉 subject to Ax ≥ c, (1)

where 〈·, ·〉 is the Euclidean inner product, the symmetric matrix H ∈ R
n×n is positive

definite, and A ∈ R
m×n is the constraint matrix for some positive integersm and n. We

are especially interested in the case when n is large and the structure of A and H may
be exploited, e.g., when A and H are sparse [40] or the inverse of H is represented in
the form

H−1 = H−1
0 + VWV T (2)

with thematrix H−1
0 ∈ R

n×n sparse and positive definite (often diagonal), thematrices
V ∈ R

n×t and W ∈ R
t×t dense with W symmetric and non-singular, and t a small

even integer typically in the range 0–20 [11]. Matrices of the form (2) often arise as
limited-memory secant Hessian approximations in SQP methods [44–48,61,76].

It is well known [21] that (1) has a related primal-dual problem

maximize
(x,y)∈Rn+m

− 1
2 〈x, Hx〉 + 〈c, y〉 subject to Hx − AT y + g = 0, y ≥ 0. (3)

The optimal objective values of (1) and (3) are equal. After eliminating x from (3),
an optimal dual vector y∗ of (3) is a solution to

y∗ = arg min
y∈Rm

qD(y) := 1
2 〈y, HDy〉 + 〈gD, y〉 subject to y ≥ 0, (4)

123

A dual gradient-projection method for large-scale strictly...

which is the dual problem to (1) with

HD := AH−1AT and gD := −AH−1g − c. (5)

Once y∗ is computed, the optimal x∗ may be recovered by solving Hx∗ = AT y∗ − g.
The advantage of this dual formulation is that the geometry of the feasible region is
simpler—finding a feasible point is trivial—but at the expense of a more complicated
and likely dense Hessian HD. The method that we consider does not require H−1 but
rather that we can find u = H−1w by solving Hu = w or by other means. Note that
(1) is infeasible if and only if (4) is unbounded; the latter is possible since HD may
only be positive semidefinite.

1.1 Prior work and our contributions

A great number of algorithms have been proposed to solve the general QP (1). They
may be classified as either interior-point algorithms, active-set methods, penalty meth-
ods, or projected gradient methods, all of which we summarize in turn.

Interior-point methods typically are primal-dual [20,49,56,60,74] in the sense that
they solve a linear systemduring each iteration that is obtained fromapplyingNewton’s
Method for zero finding to a certain primal-dual nonlinear equation based on a shifted
complementary condition. For problems that are convex but perhaps not strictly con-
vex, regularized formulations have been proposed [30] to address the issues associated
with potentially solving singular linear systems, or systems that are ill-conditioned.
Primal-dual interior-point methods are revered for requiring a small number of iter-
ations in practice, but are difficult to be warm-started, i.e., to solve (1) much more
efficientlywhen given a good estimate of a solution as compared to an arbitrary starting
point.

The class of active-set methods complements the set of interior-point solvers. They
typically are robust and benefit from warm-starts, but are less scalable than interior-
point methods. Active-set methods solve a sequence of equality-constrained quadratic
subproblems (equivalently, they solve a sequence of linear systems of equations)where
the constraints are defined using the current active set (more accurately, using a work-
ing set). The diminished capacity for active-set methods to scale is rooted in the fact
that the active-set estimates typically change by a single element during each itera-
tion. Thus, it is possible that an exponential number (exponential in the number of
constraints) of subproblems may need to be solved to obtain a solution to the original
problem (1), which is potentially problematic when the number of constraints is large.
Primal feasible active-set methods [5,34,35,43,49,56] require a primal-feasible point
that is often costly to obtain, whereas a trivial feasible point exists for dual feasible
active-set methods [3,10,36,67,71]. We also mention that non-traditional active-set
methods have recently been developed primarily motivated by solving certain prob-
lems that arise in optimal control [17,18,52], and that dual active-set methods have
also received attention [27,51].

The class of penalty methods may, in some sense, be considered as a com-
promise between interior-point and active-set methods. Penalty methods solve the

123

N. I. M. Gould, D. P. Robinson

original generally-constrained QP by solving a sequence of QP problems with sim-
pler constraint sets. For example, the method by Spellucci [72] uses a penalty
approach to formulate a new primal-dual quadratic objective function with simple
bound-constraints whose first-order solutions correspond to solutions of the original
generally-constrained problem (1). Although this is a reasonable approach, it typ-
ically does not perform well on moderately ill-conditioned problems because the
reformulated penalty problem has a condition number that is the cube of the condi-
tion number of the original problem. A more standard augmented Lagrangian penalty
approach is used by Friedlander and Leyffer [29]. They improve upon standard aug-
mented Lagrangian methods for general nonlinear optimization by using the structure
of the QP to more efficiently update problem parameters. The augmented Lagrangian
approach means that each subproblem is cheaper to solve, but to ensure convergence,
a penalty parameter and an estimate of a Lagrange multiplier vector must be itera-
tively updated. In our experience, such penalty methods typically warm-start better
than interior-point methods but not as well as traditional active-set methods, and scale
better than active-set methods, but not as well as interior-point methods. In this sense,
one may view them as a compromise between interior-point and active-set methods.

The final class of QP methods, which consists of gradient projection methods, is
well-known and typically employed to solve the primal problem when only simple
bound-constraints are present [22,23,62–64,69]. When applied to bound-constrained
problems, such methods have a modest cost per iteration and usually perform well
when the problems are well conditioned or moderately ill-conditioned. However,
they tend to perform poorly on ill-conditioned problems. Projection methods are
less commonly used to solve dual formulations. One such example is the primal-
dual projection method used to solve linear-QPs that arise in dynamic and stochastic
programming [77]. In this setting, however, both the primal and dual problems have
nonsmooth second derivatives. A second example is the dual projection method [2],
which focuses on the special structure of the QPs used to solve mixed-integer prob-
lems in predictive control. The projection method in [66] is perhaps the most similar
to ours. The authors present a gradient projection method called DPG for solving
the dual problem, and an accelerated version called DAPG. The formulation of their
method is motivated by obtaining an optimal worst-case complexity result, and has a
modest cost per iteration of O(mn). They prove that the convergence rate for DPG is
O(1/k), and that the convergence rate for DAPG is O(1/k2), where k is the iteration
number. Both of these methods require a single projected gradient iteration on the
dual problem during each iteration. Whereas their method was designed to obtain an
optimal complexity result, the method that we describe is designed to be efficient in
practice. For example, whereas DPG and DAPG perform a single gradient projection
computation, we allow for either a search along the projected gradient path or a sim-
ple projected gradient backtracking search. An additional enhancement to our method
is subspace acceleration computations that are routinely used in gradient projection
methods. These calculations improve upon a vanilla fixed step length gradient projec-
tion method, which is known to have a convergence rate of O(1/k) in terms of the
optimal objective value, so that the methods discussed in this paper inherit the same
rate.

123

A dual gradient-projection method for large-scale strictly...

The contributions of this paper can be summarized as follows. (i) We address the
challenges faced by gradient projection methods in the context of solving the dual
QP problem, which is typically a convex (not strictly convex) problem even when
the primal problem is strictly convex. In particular, for the dual problem, one must
efficiently compute directions of infinite descent when they exist, which is precisely
when the primal formulation is infeasible. (ii) We show how the linear algebra may
be arranged to take computational advantage of structure that is often present in the
second-derivative matrix. In particular, we consider the case that the second-derivative
matrix is explicitly available and sparse, and the case when it is available implicitly
via a limited memory BFGS representation. (iii) We present the details of our Fortran
2003 software package DQP, which is part of the GALAHAD suite of optimization
routines. Numerical tests are performed on quadratic programming problems from the
combined CUTEst and Maros and Meszaros test sets.

1.2 Notation

We let I be the appropriately-dimensioned identity matrix and e j its j th column. The
vector e will be the appropriately-dimensioned vector of ones. The standard inner
product of two vectors x and y in R

m is denoted by 〈x, y〉, with the induced vector
(Euclidean) norm being ‖x‖ := √〈x, x〉. For any index set S ⊆ {1, 2, . . . ,m}, we
defined 〈x, y〉S := ∑

j∈S x j y j with x j denoting the j th entry in x , i.e., 〈x, y〉S is the
standard inner produce over the sub-vectors of x and y that correspond to the index set
S. Throughout, H ∈ R

n×n is positive definite and A ∈ R
m×n is the constraint matrix.

The quantity max(y, 0) is the vector whose i th component is the maximum of y j and
0; a similar definition is used for min(y, 0).

2 The method

The method we use to solve the dual bound-constrained quadratic program (BQP) (4)
is fairly standard [12,15,62] and makes heavy use of projections onto the dual feasible
set. Thus, we let

PD[y] := max(y, 0)

be the projection of y onto the dual feasible set

D := {y ∈ R
m : y ≥ 0}

associated with (4). The well-studied gradient projection method for BQP is given by
Algorithm 1.

Computing only the Cauchy point yC during each iteration is sufficient to guarantee
convergence and, under suitable assumptions, to identify the set of variables that are
zero at the solution [14,58,62]. Subsequently, the subspace step ΔyS will identify
the solution, although empirically it also accelerates convergence before the optimal
active set is determined. The use of αmax allows for additional flexibility although the

123

N. I. M. Gould, D. P. Robinson

Algorithm 1 Accelerated gradient projection method for solving the BQP (4).
input: Solution estimate y ∈ D.
Choose ε > 0.
while ‖PD[y − ∇qD(y)] − y‖ > ε do

1. (Cauchy point)
Set d = −∇qD(y) and compute αC = argminα>0 q

D(
PD[y + αd]).

Set yC = PD[y + αCd].
2. (subspace step)

ComputeA = A(yC) = {i : yCi = 0}.
Compute ΔyS = argminΔy∈Rm qD(yC + Δy) subject to [Δy]A = 0.

3. (improved subspace point)

Select αmax > 0 and then compute αS =argminα∈[0,αmax] qD
(
PD[yC + αΔyS]

)
.

Set y = PD[yC + αSΔyS].
end while

choice αmax = ∞ would be common. Another choice would be to set αmax to the
largest α value satisfying (yC + αΔyS) ∈ D so that αS can easily be computed in
closed form.

The Cauchy point and improved subspace point computations both require that
we compute a minimizer of the convex dual objection function along a piecewise
linear arc. Of course, the exact minimizer suffices, but there may be a computational
advantage in accepting suitable approximations.We consider both possibilities in turn.

2.1 An exact Cauchy point in Algorithm 1

TheCauchy pointmay be calculated by stepping along the piecewise linear arc PD[y+
αd]while considering the objective functionon each linear segment [15, §3]. The entire
behavior can be predicted while moving from one segment to the next by evaluating
and using the product HD p, where p is a vector whose non-zeros occur only in
positions corresponding to components of y that become zero as the segment ends;
thus, p usually has a single nonzero entry. The required product can be obtained as
follows:

HD p = Au, where Hu = w and w = AT p.

Note that w is formed as a linear combination of the columns of AT indexed by the
non-zeros in p.

The details of the search along the piecewise linear path is given as Algorithm 2,
which is based on [16, Alg. 17.3.1 with typo corrections]. The segments are defined
by “breakpoints”, and the first and second derivatives of qD on the arc at the start of
the i th segment are denoted by q ′

i and q
′′
i , respectively.

Algorithm 2 seems to need a sequence of products with A and AT and solves
with H to form the products with HD, but fortunately, we may simplify the process
considerably. We consider two cases.

123

A dual gradient-projection method for large-scale strictly...

Algorithm 2 Finding the Cauchy point (preliminary version).
input: Solution estimate y ∈ D and search direction d.
Compute the gradient ∇gD(y) = −AH−1(g − AT y) − c and Hessian HD = AH−1AT .
Compute the vector of breakpoints

αBj =
{ −y j /d j if d j < 0

∞ if d j ≥ 0
for all j = 1, . . . n.

Compute the index sets I0 = { j : αBj = 0} andA0 = I ∪ { j : y j = 0 and d j = 0}.
Set α0 = 0, e0 = ∑

j∈I0 d j e j , d
0 = d − e0, and s0 = 0.

Compute �0 = 〈∇gD(y), d0〉 and HDd0.
Set q ′

0 = �0 and compute q ′′
0 = 〈d0, HDd0〉.

for i = 0, 1, 2, . . . do
1. (find the next breakpoint)

Determine the next breakpoint αi+1, and then set Δαi = αi+1 − αi .
2. (check the current interval for the Cauchy point)

if q ′
i ≥ 0 then return the exact Cauchy point yC = y + si . end

if q ′′
i > 0 then set Δα = −q ′

i /q
′′
i else set Δα = ∞. end

if q ′′
i > 0 and Δα < Δαi then return the Cauchy point yC = y + si + Δαdi . end

3. (prepare for the next interval)
Compute the index sets Ii+1 = { j : αBj = αi+1} andAi+1 = Ai ∪ Ii+1.

Compute ei+1 = ∑
j∈Ii+1 d j e j , s

i+1 = si + Δαi di , and di+1 = di − ei+1.

Compute HDei+1 and 〈∇gD(y), ei+1〉.
Update �i+1 = �i − 〈∇gD(y), ei+1〉 and HDdi+1 = HDdi − HDei+1.

4. (compute the slope and curvature for the next interval)
Use HDdi+1 to compute γ i+1 = 〈si+1, HDdi+1〉 and q ′′

i+1 = 〈di+1, HDdi+1〉.
Compute q ′

i+1 = �i+1 + γ i+1.
end for

2.1.1 Sparse H

Suppose that H is sparse and that we have the (sparse) Cholesky factorization

H = LLT , (6)

where L is a suitable row permutation of a lower triangular matrix. By defining x :=
−H−1(g − AT y), hi := L−1AT di , and pi := L−1AT si , and rearranging the inner
products, we obtain a simplified method (Algorithm 3), in which products with A and
back-solves with LT are avoided in the main loop.

Notice that the product r i = AT ei is with a sparse vector, and that each row of A
is accessed at most a single time during the entire solve. Advantage may also be taken
of sparsity in r i when performing the forward solve Lwi = r i since in many cases wi

will be sparse when L is very sparse. This depends, of course, on the specific sparse
factorization used, and in particular nested-dissection ordering favors sparse forward
solutions [31]. New subroutines to provide this (sparse right-hand side) functionality
have been added to each of the HSL packages MA57 [24], MA87 [53] and MA97 [55].
There may also be some gain on high-performance machines in performing a block
solve

123

N. I. M. Gould, D. P. Robinson

Algorithm 3 Finding the Cauchy point (preliminary sparse version).
input: Solution estimate y ∈ D and search direction d.
Solve LLT x = AT y − g and then set ∇gD(y) = Ax − c.
Compute the vector of breakpoints

αBj =
{ −y j /d j if d j < 0,

∞ if d j ≥ 0
for all j = 1, . . . n.

Compute the index sets I0 = { j : αBj = 0} andA0 = I ∪ { j : y j = 0 and d j = 0}.
Set α0 = 0, e0 = ∑

j∈I0 d j e j , d
0 = d − e0, and p0 = 0.

Compute �0 = 〈∇gD(y), d0〉 and r0 = AT d0, and solve Lh0 = r0.
Set q ′

0 = �0 and compute q ′′
0 = 〈h0, h0〉.

for i = 0, 1, 2, . . . do
1. (find the next breakpoint)

Determine the next breakpoint αi+1, and then set Δαi = αi+1 − αi .
2. (check the current interval for the Cauchy point)

if q ′′
i > 0 then set Δα := −q ′

i /q
′′
i else set Δα = ∞. end

if q ′
i ≥ 0, or q ′′

i > 0 and Δα < Δαi then define s component-wise by

s j =
{

α�d j for j ∈ I� for each � = 0, . . . , i,

αi d j for j /∈ ∪i
l=0I�.

end
if q ′

i ≥ 0 then return the exact Cauchy point yC = y + s. end

if q ′′
i > 0 and Δα < Δαi then return the Cauchy point yC = y + s + Δαdi . end

3. (prepare for the next interval)
Compute Ii+1 = { j : αBj = αi+1} andAi+1 = Ai ∪ Ii+1.

Compute ei+1 = ∑
j∈Ii+1 d j e j , d

i+1 = di − ei+1, and �i+1 = �i − 〈∇gD(y), ei+1〉.
Compute r i+1 = AT ei+1, and then solve Lwi+1 = r i+1.
Update pi+1 = pi + Δαi hi and hi+1 = hi − wi+1.

4. (compute the slope and curvature for the next interval)
Compute γ i+1 = 〈pi+1, hi+1〉, q ′

i+1 = �i+1 + γ i+1, and q ′′
i+1 = 〈hi+1, hi+1〉.

end for

L
(
wi . . . wi+ j) = (

r i . . . r i+ j)

in anticipation of future wi+ j for j > 0, as such solves may take advantage of
machine cache. The breakpoints may be found, as required, very efficiently using a
heapsort [75].

While this algorithm is an improvement on its predecessor, it may still be ineffi-
cient. In particular, the vectors {hi } will generally be dense, and this means that the
computation of γ i+1 and q ′′

i+1, as well as the update for p
i , may each require O(n)

operations. As we have already noted, by contrast wi is generally sparse, and so our
aim must be to rearrange the computation in Algorithm 3 so that products and updates
involve wi rather than hi .

Note that, using the recurrence hi+1 = hi − wi+1 allows us to write

〈hi+1, hi+1〉 = 〈hi , hi 〉 + 〈wi+1 − 2hi , wi+1〉,

123

A dual gradient-projection method for large-scale strictly...

while this and the recurrence pi+1 = pi + Δαi hi give

〈pi+1, hi+1〉 = 〈pi , hi 〉 + Δαi 〈hi , hi 〉 − 〈pi+1, wi+1〉.

Combining this with the relationship q ′′
i = 〈hi , hi 〉 yields the recursions

γ i+1 = γ i + Δαi q ′′
i − 〈pi+1, wi+1〉 and q ′′

i+1 = q ′′
i + 〈wi+1 − 2hi , wi+1〉, (7)

where we only need the inner products over components j for which wi+1
j �= 0.

Now let

ui+1 = pi+1 − αi+1hi , with u0 = 0. (8)

Using pi+1 = pi + Δαi hi , αi+1 = αi + Δαi , and hi+1 = hi − wi+1 we have

ui+1 = pi + Δαi hi − αi+1hi = pi + (
Δαi − αi+1)hi

= pi − αi hi = pi − αi (hi−1 − wi) = ui + αiwi .

Thus, rather than recurring pi , we may instead recur ui and obtain pi+1 = ui+1 +
αi+1hi from (8) as needed. The important difference is that the recursions for ui and
hi only involve the likely-sparse vector wi . Note that by substituting for pi+1, the
recurrence for γ i+1 in (7) becomes

γ i+1 = γ i + Δαi q ′′
i − 〈ui+1, wi+1〉 − αi+1〈hi , wi+1〉,

which only involves inner products with the likely-sparse vector wi+1.
Rearranging the steps in Algorithm 3 using the above equivalent formulations gives

our final method stated as Algorithm 4. We note that in practice, we compute q ′
i+1

afresh when |q ′
i+1/q

′
i | becomes small to guard against possible accumulated rounding

errors in the recurrences.

Remark 1 Weuse this remark to highlight for the reader the differences betweenAlgo-
rithms 2–4. The preliminary sparse Algorithm 3 differs fromAlgorithm 2 by using the
factorization (6) of the sparse matrix H along with the paragraph immediately follow-
ing (6) to efficiently compute the matrix-vector products with HD. While Algorithm 3
was an improvement, it still involved computations with the dense vectors {hi }. This
weakness was overcome in Algorithm 4 by showing that the calculations could be
rearranged to only involve calculations with the often sparse vectors {wi }.

2.1.2 Structured H

Suppose that H has the structure (2). We assume that we can cheaply obtain

H−1
0 = BBT (9)

123

N. I. M. Gould, D. P. Robinson

Algorithm 4 Finding the Cauchy point (sparse version).
input: Solution estimate y ∈ D and search direction d.
Solve LLT x = AT y − g and then set ∇gD(y) = Ax − c.
Compute the vector of breakpoints

αBj =
{ −y j /d j if d j < 0,

∞ if d j ≥ 0
for all j = 1, . . . n.

Compute the index sets I0 = { j : αBj = 0} andA0 = I ∪ { j : y j = 0 and d j = 0}.
Set α0 = 0, e0 = ∑

j∈I0 d j e j , d
0 = d − e0, u0 = 0, and r0 = AT d0.

Solve Lw0 = r0 and set h0 = w0.
Compute q ′

0 = 〈∇gD(y), d0〉 and q ′′
0 = 〈h0, h0〉.

for i = 0, 1, 2, . . . do
1. (find the next breakpoint)

Determine the next breakpoint αi+1, and then set Δαi = αi+1 − αi .
2. (check the current interval for the Cauchy point)

if q ′′
i > 0 then set Δα := −q ′

i /q
′′
i else set Δα = ∞. end

if q ′
i ≥ 0, or q ′′

i > 0 and Δα < Δαi then define s component-wise by

s j =
{

α�d j for j ∈ I� for each � = 0, . . . , i,

αi d j for j /∈ ∪i
l=0I�.

end
if q ′

i ≥ 0 then return the Cauchy point yC = y + s. end

if q ′′
i > 0 and Δα < Δαi then return the Cauchy point yC = y + s + Δαdi . end

if Δαi = ∞ and q ′′
i ≤ 0 then the problem is unbounded below. end

3. (prepare for the next interval)
Compute Ii+1 = { j : αBj = αi+1} andAi+1 = Ai ∪ Ii+1.

Compute ei+1 = ∑
j∈Ii+1 d j e j , d

i+1 = di − ei+1, and ui+1 = ui + αiwi .

Compute r i+1 = AT ei+1, and then solve Lwi+1 = r i+1.
4. (compute the slope and curvature for the next interval)

Compute q ′
i+1 = q ′

i − 〈∇gD(y), ei+1〉 + Δαi q ′′
i − 〈ui+1 + αi+1hi , wi+1〉.

Compute q ′′
i+1 = q ′′

i + 〈wi+1 − 2hi , wi+1〉, and hi+1 = hi − wi+1.
end for

for some sparse matrix B (this is trivial in the common case that H−1 is diagonal).
Now, consider Algorithm 2 and define the following:

hiB := BT AT di ∈ R
n,

hiV := V T AT di ∈ R
t ,

piB := BT AT si ∈ R
n,

piV := V T AT si ∈ R
t .

The key, as in Sect. 2.1.1, is to efficiently compute

q ′
i = �i + 〈piB, hiB〉 + 〈piV,WhiV〉 and q ′′

i = 〈hiB, hiB〉 + 〈hiV,WhiV〉.

The terms 〈piV,WhiV〉 and 〈hiV,WhiV〉 involve vectors of length t and a matrix of
size t × t , so are of low computational cost; the updates si+1 = si + Δαi di and

123

A dual gradient-projection method for large-scale strictly...

di+1 = di − ei+1 show that hi+1
V and pi+1

V may be recurred via

hi+1
V = hiV − wi+1

V ,

pi+1
V = piV + Δαi hiV,

where wi+1
V = V T ri+1 and r i+1 = AT ei+1.

Note that wi+1
V is formed from the product of the likely-sparse vector r i+1 and the

t × n matrix V T . Thus, we focus on how to efficiently compute

q ′
B,i := �i + 〈piB, hiB〉 and q ′′

B,i := 〈hiB, hiB〉

since hiB and piB are generally dense. It follows from di+1 = di − ei+1 that

hi+1
B = hiB − wi+1

B and pi+1
B = piB + Δαi hiB, where wi+1

B = BT ri+1. (10)

Note that wi+1
B is likely to be sparse since it is formed from the product of the likely-

sparse vector r i+1 and the sparse matrix BT . We then follow precisely the reasoning
that lead to (7) to see that

q ′
B,i+1 = q ′

B,i − 〈∇gD(y), ei+1〉 + Δαi q ′′
B,i − 〈pi+1

B , wi+1
B 〉 and

q ′′
B,i+1 = q ′′

B,i + 〈wi+1
B − 2hiB, wi+1

B 〉,

wherewe only need to take the inner products over components j for which [wi+1
B] j �=

0. The only remaining issue is the dense update to piB, which is itself required to
compute 〈pi+1

B , wi+1
B 〉. However, we may proceed as before to define ui+1

B = pi+1
B −

αi+1hiB with uiB = 0 so that

ui+1
B = uiB + αiwi

B (11)

and

q ′
B,i+1 = q ′

B,i − 〈∇gD(y), ei+1〉 + Δαi q ′′
B,i − 〈ui+1

B , wi+1
B 〉 − αi+1〈hiB, wi+1

B 〉.

This recurrence for q ′
B,i+1 and the previous one for q ′′

B,i+1 merely require ui+1
B and

hiB, which may themselves be recurred using the same likely-sparse wi+1
B from (10)

and (11). We summarize our findings in Algorithm 5.

2.2 An approximate Cauchy point in Algorithm 1

In some cases, it may be advantageous to approximate the Cauchy point using a
backtracking projected linesearch [62]. The basic idea is to pick an initial step size
αinit > 0, a reduction factor β ∈ (0, 1) and a decrease tolerance η ∈ (0, 1

2), and then
compute the smallest nonnegative integer i for which

qD
(
yi+1) ≤ qD(y) + η〈∇gD(y), di+1〉 (12)

123

N. I. M. Gould, D. P. Robinson

Algorithm 5 Finding the Cauchy point (structured version).
input: Solution estimate y ∈ D and search direction d.
Compute x = (BBT + VWV T)(AT y − g) and then set ∇gD(y) = Ax − c.
Compute the vector of breakpoints

αBj =
{ −y j /d j if d j < 0,

∞ if d j ≥ 0
for all j = 1, . . . n.

Compute I0 = { j : αBj = 0} and A0 = I0 ∪ { j : y j = 0 and d j = 0}.
Set α0 = 0, e0 = ∑

j∈I0 d j e j , d
0 = d − e0, u0B = 0, and p0V = 0.

Compute r0 = AT d0, h0B = BT r0, h0V = V T r0.

Compute q ′
0 = 〈∇gD(y), d0〉 and q ′′

0 = 〈h0B, h0B〉 + 〈h0V,Wh0V〉.
for i = 0, 1, 2, . . . do

1. (find the next breakpoint)
Determine the next breakpoint αi+1, and then set Δαi = αi+1 − αi .

2. (check the current interval for the Cauchy point)
if q ′′

i > 0 then set Δα := −q ′
i /q

′′
i else set Δα = ∞. end

if q ′
i ≥ 0, or q ′′

i > 0 and Δα < Δαi then define s component-wise by

s j =
{

α�d j for j ∈ I� for each � = 0, . . . , i,

αi d j for j /∈ ∪i
l=0I�.

end
if q ′

i ≥ 0 then return the exact Cauchy point yC = y + si . end

if q ′′
i > 0 and Δα < Δαi then return the Cauchy point yC = y + si + Δαdi . end

3. (prepare for the next interval)
Update the index sets Ii+1 = { j : αBj = αi+1} andAi+1 = Ai ∪ Ii+1.

Compute ei+1 = ∑
j∈Ii+1 d j e j , d

i+1 = di − ei+1, and r i+1 = AT ei+1.

Compute, wi+1
B = BT ri+1, wi+1

V = V T ri+1, and ui+1
B = uiB + αiwi

B.

Set pi+1
V = piV + Δαi hiV and hi+1

V = hiV − wi+1
V .

4. (compute the slope and curvature for the next interval)
Compute q ′

B,i+1 = q ′
i − 〈∇gD(y), ei+1〉 + Δαi q ′′

i − 〈ui+1
B + αi+1hiB, wi+1

B 〉.
Compute q ′′

B,i+1 = q ′′
i + 〈wi+1

B − 2hiB, wi+1
B 〉.

Compute q ′
i+1 = q ′

B,i+1 + 〈pi+1
V ,Whi+1

V 〉 and q ′′
i+1 = q ′′

B,i+1 + 〈hi+1
V ,Whi+1

V 〉.
Compute hi+1

B = hiB − wi+1
B .

end for

with

yi+1 = PD
[
y + αi d

]
, αi = (β)iαinit, and di+1 = yi+1 − y,

for i ≥ 0. Thus, we must efficiently compute yi+1, qi+1 := qD(yi+1), and q ′
i+1 =

〈∇gD(y), di+1〉. To this end, we define Δyi := yi+1 − yi for i ≥ 1. We can then
observe, for all i ≥ 1, that

q ′
i+1 = 〈∇gD(y), di+1〉 = 〈∇gD(y), yi − y + Δyi 〉 = q ′

i + 〈∇gD(y),Δyi 〉. (13)

To achieve efficiency, we take advantage of the structure ofΔyi and basic properties of
the backtracking projected line search. In particular, we know that once a component,

123

A dual gradient-projection method for large-scale strictly...

say the j th, satisfies yij > 0, then it will also hold that y�
j > 0 for all � ≥ i . Thus,

in contrast to an exact Cauchy point search that moves forward along the piecewise
projected gradient path, the projected backtracking line search only starts to free up
variables as the iterations proceed. With this in mind, we compute the index sets

A = { j : y j = 0 and d j ≤ 0},
F = { j : d j > 0, or d j = 0 < y j }, and

U = {1, 2, . . . ,m} \ (A ∪ F),

(14)

at the beginning of the process, and maintain the index sets

Ai := { j ∈ U : yij = 0} and F i := { j ∈ U : yij > 0} for i ≥ 1, (15)

as well as, for all i ≥ 2, the index sets

S i
1 := F i+1 ∩ Ai ,

S i
2 := F i+1 ∩ F i ∩ Ai−1, and

S i
3 := F i+1 ∩ F i ∩ F i−1.

(16)

The set A (F) contains the indices of variables that we know are active (free) at the
Cauchy point that will be computed. We also know that

F i ⊆ F i+1 and Ai+1 ⊆ Ai for all i ≥ 1

as a consequence of the approximate Cauchy point search. Using these inclusions, it
follows that

S i+1
3 = S i

3 ∪ S i
2, S i+1

2 = S i
1, and S i+1

1 = F i+2 ∩ Ai+1.

These index sets become useful when noting that, for i ≥ 2, the following hold:

Δyij =

⎧
⎪⎨

⎪⎩

0 if j ∈ A ∪ Ai+1,

βΔyi−1
j if j ∈ F ∪ S i

3,

yi+1
j − yij if j ∈ S i

1 ∪ S i
2.

(17)

Also, for future reference, note that it follows from (17) that

Δyi = βΔyi−1 + δyi−1, with δyi−1
j :=

{
0 if j ∈ A ∪ Ai+1 ∪ F ∪ Si

3,

Δyij − βΔyi−1
j if j ∈ Si

1 ∪ Si
2,

(18)

where the vector δyi−1 is usually sparse. Second, the index sets are useful when com-
puting the inner products that involveΔyi (e.g., see (13)) as shown in Algorithm 6. By
combining the recursion performed for gi = 〈∇gD(y),Δyi 〉 in Algorithm 6 with (13)

123

N. I. M. Gould, D. P. Robinson

Algorithm 6 Efficiently computing ci = 〈Δyi , c〉 and gi := 〈∇gD(y),Δyi 〉.
input: y1, y2, Δy1, F ,A, F1, A1, F2, andA2.
Compute S1

1 = F2 ∩ A1, S1
2 = ∅, and S1

3 = F1 ∩ F2.

Compute g1F = 〈∇gD(y), Δy1〉F , g11 = 〈∇gD(y), Δy1〉S1
1
.

Compute g12 = 0, and g13 = 〈∇gD(y), Δy1〉S1
3
.

Compute c1F = 〈c, Δy1〉F , c11 = 〈c, Δy1〉S1
1
, c12 = 0, and c13 = 〈c,Δy1〉S1

3
.

Set g1 = g1F + g11 + g12 + g13 and c1 = c1F + c11 + c12 + c13.
for i = 2, 3, . . . do

1. (Compute required elements of yi+1 and update active sets.)
Set yi+1

j = y j + αi d j for all j ∈ Si−1
1 and yi+1

j = PD(y j + αi d j) for all j ∈ Ai .

Compute Ci = { j ∈ Ai : yi+1
j > 0}.

Set F i+1 = F i ∪ Ci andAi+1 = Ai \ Ci .
2. (Compute required elements of Δyi .)

Set Si
1 = F i+1 ∩ Ai .

Set Si
3 = Si−1

3 ∪ Si−1
2 and Si

2 = Si−1
1 .

Compute Δyij = yi+1
j − yij for all j ∈ Si

1 ∪ Si
2.

3. (Perform recursion.)
Set giF = βgi−1

F .

Set gi1 = 〈∇gD(y), Δyi 〉Si
1
, gi2 = 〈∇gD(y), Δyi 〉Si

2
, and gi3 = β(gi−1

2 + gi−1
3).

Set ciF = βci−1
F , ci1 = 〈c, Δyi 〉Si

1
, ci2 = 〈c, Δyi 〉Si

2
, and ci3 = β(ci−1

2 + ci−1
3).

Set gi = giF + gi1 + gi2 + gi3 and ci = ciF + ci1 + ci2 + ci3.
end for

we obtain an efficient recursion for the sequence {q ′
i }. The other sequence {ci } that is

recurred in Algorithm 6 will be used when considering the different representations
for H in the next two sections.

2.2.1 Sparse H

We may use (4), (5), (6), and ci = 〈Δyi , c〉 introduced in Algorithm 6 to derive

qi+1

= qD
(
yi+1) = qD

(
yi + Δyi

)

= qD(yi) − 〈Δyi , AH−1(g − AT y
) + c〉 + 1

2 〈Δyi , AH−1ATΔyi 〉
= qD(yi)−〈Δyi , c〉+〈

L−1ATΔyi L−1(AT y−g
)〉 + 1

2 〈L−1ATΔyi , L−1ATΔyi 〉
= qD(yi) − 〈Δyi , c〉 + 〈si , h〉 + 1

2 〈si , si 〉 = qi − 〈Δyi , c〉 + 〈si , h〉 + 1
2 〈si , si 〉

= qi − ci + 〈si , h〉 + 1
2 〈si , si 〉, (19)

where

Lsi = ATΔyi and Lh = AT y − g. (20)

123

A dual gradient-projection method for large-scale strictly...

Note that si is not likely to be sparse since Δyi is usually not sparse, which makes the
computation in (19) inefficient. However, by making use of (18), we can see that

si+1 = βsi + δsi , where L(δsi) = AT (δyi) (21)

since Lsi+1 = βLsi + L(δsi) = βATΔyi + AT (δyi) = AT
(
βΔyi + (δyi)

) =
ATΔyi+1. Moreover, since δyi is usually sparse, it follows from (21) that the vector
δsi will likely be sparse when L and A are sparse. We can also use (21) to obtain

〈si+1, h〉 = β〈si , h〉 + 〈δsi , h〉 and
〈si+1, si+1〉 = β2〈si , si 〉 + 〈δsi , 2si + δsi 〉,

which allow us to perform the sparse updates required to compute (19). These obser-
vations are combined with our previous comments to form Algorithm 7.

2.2.2 Structured H

When H is structured according to (2) and (9), an argument similar to (19) shows that

qi+1 = qD
(
yi+1) = qD

(
yi + Δyi

)

= qD(yi) − 〈Δyi , c〉 + 〈
ATΔyi H−1(AT y − g

)〉 + 1
2 〈ATΔyi , H−1ATΔyi 〉

= qi − 〈Δyi , c〉 + 〈hB, siB〉 + 〈hV,WsiV〉 + 1
2 〈siB, siB〉 + 1

2 〈siV,WsiV〉,
= qi − ci + 〈hB, siB〉 + 〈hV,WsiV〉 + 1

2 〈siB, siB〉 + 1
2 〈siV,WsiV〉, (22)

where
siB = BT ATΔyi ,

siV = V T ATΔyi ,

hB = BT (
AT y − g

)
,

hV = V T (
AT y − g

)
.

(23)

Similar to (21), we can use (18) to obtain

si+1
B = βsiB + δsiB, with δsiB = BT AT (δyi), (24)

which in turn leads to

〈si+1
B , hB〉 = β〈siB, hB〉 + 〈δsiB, hB〉 and

〈si+1
B , si+1

B 〉 = β2〈siB, siB〉 + 〈δsiB, 2siB + δsiB〉.

These updates allow for the sparse updates required to compute (22). These observa-
tions are combined with our previous comments to form Algorithm 8.

2.3 The subspace step in Algorithm 1

LetA be the active set at theCauchy point (seeAlgorithm1) andF = {1, 2, . . . ,m}\A
with mF = |F |. By construction, the components of yC that correspond to A are

123

N. I. M. Gould, D. P. Robinson

Algorithm 7 Finding an inexact Cauchy point (sparse version).
input: Current point y ∈ D and search direction d.
Choose constants αinit > 0, β ∈ (0, 1), and η ∈ (0, 1

2).

Solve Lh = AT y − g and LT x = h, and then set ∇gD(y) = Ax − c.
Solve Lw = AT y, set v = w − h, solve LT z = v, and then set qD(y) = 1

2 〈w,w〉 − 〈y, c + Az〉.
Define A, F , and U using (14).
Set y1j = y j + d j for j ∈ F and y1j = PD[y j + αd j] for j ∈ U .

Compute F1 and A1 using (15).
Solve Lv = g, then solve LT z = v.
Set q1 = 1

2 〈w,w〉 − 〈y1, c + Az〉 and q ′
1 = 〈∇qD(y), y1 − y〉F∪U .

if q1 ≤ qD(y) + ηq ′
1 then return the approximate Cauchy point y1. end

Compute y2j = y j + α2d j for all j ∈ F ∪ F1 and y2j = PD(y j + α2d j) for all j ∈ A1.

Compute C1 = { j ∈ A1 : y2j > 0}.
Set F2 = F1 ∪ C1 andA2 = A1 \ C1.
Compute S1

1 = F2 ∩ A1, S1
2 = ∅, and S1

3 = F1 ∩ F2.

Compute Δy1j = y2j − y1j for all j ∈ F ∪ S1
1 ∪ S1

3 .

Compute g1F = 〈∇gD(y), Δy1〉F .

Compute g11 = 〈∇gD(y), Δy1〉S1
1
, g12 = 0, and g13 = 〈∇gD(y), Δy1〉S1

3
.

Compute c1F = 〈c, Δy1〉F , c11 = 〈c, Δy1〉S1
1
, c12 = 0, and c13 = 〈c,Δy1〉S1

3
.

Set g1 = g1F + g11 + g12 + g13 and c1 = c1F + c11 + c12 + c13.

Solve for s1 using (20), and then compute 〈s1, h〉 and 〈s1, s1〉.
Set q2 = q1 − c1 + 〈s1, h〉 + 1

2 〈s1, s1〉 and q ′
2 = q ′

1 + g1.
for i = 2, 3, . . . do

if qi ≤ qD(y) + ηq ′
i then return the approximate Cauchy point yi . end

Set αi = (β)iαinit .
Compute yi+1

j = y j + αi d j for all j ∈ Si−1
1 and yi+1

j = PD(y j + αi d j) for all j ∈ Ai .

Compute Ci = { j ∈ Ai : yi+1
j > 0}.

Set F i+1 = F i ∪ Ci andAi+1 = Ai \ Ci .
Set Si

1 = F i+1 ∩ Ai , Si
3 = Si−1

3 ∪ Si−1
2 , and Si

2 = Si−1
1 .

Set Δyij = yi+1
j − yij for all j ∈ Si

1 ∪ Si
2.

Set giF = βgi−1
F .

Set gi1 = 〈∇gD(y), Δyi 〉Si
1
, gi2 = 〈∇gD(y), Δyi 〉Si

2
, and gi3 = β(gi−1

2 + gi−1
3).

Set ciF = βci−1
F , ci1 = 〈c, Δyi 〉Si

1
, ci2 = 〈c, Δyi 〉Si

2
, and ci3 = β(ci−1

2 + ci−1
3).

Set gi = giF + gi1 + gi2 + gi3 and ci = ciF + ci1 + ci2 + ci3.

Compute δsi−1 from (21) with δyi−1 defined by (18).
Compute 〈si , h〉 = β〈si−1, h〉 + 〈δsi−1, h〉.
Compute 〈si , si 〉 = β2〈si−1, si−1〉 + 〈δsi−1, 2si−1 + δsi−1〉.
Set qi+1 = qi − ci + 〈si , h〉 + 1

2 〈si , si 〉 and q ′
i+1 = q ′

i + gi .
end for

zero, and those corresponding to F are strictly positive. With Δy = (ΔyA,ΔyF), the
subspace phase requires that we approximately

minimize
Δy∈Rm

1
2 〈Δy, HDΔy〉 + 〈Δy, gD + HDyC〉 subject to ΔyA = 0,

123

A dual gradient-projection method for large-scale strictly...

Algorithm 8 Finding an inexact Cauchy point (structured version).
input: Current point y ∈ D and search direction d.
Choose constants αinit > 0, β ∈ (0, 1), and η ∈ (0, 1

2).

Compute x = (BBT + VWV T)(AT y − g), and then set ∇gD(y) = Ax − c.
Compute w = BT AT y, z = V T AT y, bg = BT g, and vg = V T g.
Compute hB = w − bg and hV = z − vg .
Set qD(y) = 1

2 〈w,w〉 + 1
2 〈z,Wz〉 − 〈y, c〉 − 〈w, bg〉 − 〈z,Wvg〉.

Define A, F , and U using (14).
Set y1j = y j + d j for j ∈ F and y1j = PD[y j + αd j] for j ∈ U .

Compute F1 and A1 using (15).
Compute q1 = 1

2 〈y1, A(BBT + VWV T)AT y1〉 + 〈A(BB + VWV T)T g + c, y1〉.
Compute q ′

1 = 〈∇qD(y), y1 − y〉F∪U .

if q1 ≤ qD(y) + ηq ′
1 then return the approximate Cauchy point y1. end

Compute y2j = y j + α2d j for all j ∈ F ∪ F1 and y2j = PD(y j + α2d j) for all j ∈ A1.

Compute C1 = { j ∈ A1 : y2j > 0}.
Set F2 = F1 ∪ C1 andA2 = A1 \ C1.
Compute S1

1 = F2 ∩ A1, S1
2 = ∅, and S1

3 = F1 ∩ F2.

Compute Δy1j = y2j − y1j for all j ∈ F ∪ S1
1 ∪ S1

3 .

Compute g1F = 〈∇gD(y), Δy1〉F .

Compute g11 = 〈∇gD(y), Δy1〉S1
1
, g12 = 0, and g13 = 〈∇gD(y), Δy1〉S1

3
.

Compute c1F = 〈c, Δy1〉F , c11 = 〈c, Δy1〉S1
1
, c12 = 0, and c13 = 〈c,Δy1〉S1

3
.

Set g1 = g1F + g11 + g12 + g13 and c1 = c1F + c11 + c12 + c13.

Solve for s1B using (23), and then compute 〈s1B, hB〉 and 〈s1B, s1B〉.
Set q2 = q1 − c1 + 〈s1B, hB〉 + 1

2 〈s1B, s1B〉 and q ′
2 = q ′

1 + g1.
for i = 2, 3, . . . do

if qi ≤ qD(y) + ηq ′
i then return the approximate Cauchy point yi . end

Set αi = (β)iαinit .
Compute yi+1

j = y j + αi d j for all j ∈ Si−1
1 and yi+1

j = PD(y j + αi d j) for all j ∈ Ai .

Compute Ci = { j ∈ Ai : yi+1
j > 0}.

Set F i+1 = F i ∪ Ci andAi+1 = F i \ Ci .
Set Si

1 = F i+1 ∩ Ai , Si
3 = Si−1

3 ∪ Si−1
2 , and Si

2 = Si−1
1 .

Compute Δyij = yi+1
j − yij for all j ∈ Si

1 ∪ Si
2.

Set giF = βgi−1
F .

Set gi1 = 〈∇gD(y), Δyi 〉Si
1
, gi2 = 〈∇gD(y), Δyi 〉Si

2
, and gi3 = β(gi−1

2 + gi−1
3).

Set ciF = βci−1
F , ci1 = 〈c, Δyi 〉Si

1
, ci2 = 〈c, Δyi 〉Si

2
, and ci3 = β(ci−1

2 + ci−1
3).

Set gi = giF + gi1 + gi2 + gi3 and ci = ciF + ci1 + ci2 + ci3.

Compute δsi−1
B from (24) with δyi−1 defined by (18).

Compute 〈siB, hB〉 = β〈si−1
B , hB〉 + 〈δsi−1

B , hB〉.
Compute 〈siB, siB〉 = β2〈si−1

B , si−1
B 〉 + 〈δsi−1

B , 2si−1
B + δsi−1

B 〉.
Set qi+1 = qi − ci + 〈siB, hB〉 + 1

2 〈siB, siB〉 and q ′
i+1 = q ′

i + gi .
end for

123

N. I. M. Gould, D. P. Robinson

whose solution (when it exists) we denote by Δy∗ = (ΔyA∗ ,ΔyF∗) = (0,ΔyF∗) with

ΔyF∗ = argmin
ΔyF∈RmF

qF(
ΔyF

) := 1
2 〈ΔyF , HFΔyF 〉 + 〈ΔyF , gF 〉, (25)

where

HF := AF H−1(AF)T and gF := −AF H−1
(
g − (AF)T (yC)F

)
− cF . (26)

here, AF and (yC)F /cF denote, respectively, the rows of A and components of yC/c
that correspond to the index setF . There are then two distinct possibilities. Either (25)
has a finite solution or qF (ΔyF) is unbounded below. Moreover, we may attempt to
find such a solution using either a direct (factorization-based) or iterative approach.
We consider these aspects over the next several sections.

2.3.1 Finite subspace minimizer

Since the objective in (25) is convex and quadratic, when qF (ΔyF) is bounded below
its stationarity conditions give that

HFΔyF∗ = −gF , (27)

that is to say

AF H−1(AF)TΔyF∗ = AF H−1
(
g − (AF)T (yC)F

)
+ cF . (28)

Given x , if we then define Δx∗ via

x + Δx∗ = H−1
[
(AF)T

(
(yC)F + ΔyF∗

)
− g

]
,

then we have

(
H (AF)T

AF 0

) (
x + Δx∗

−(yC)F − ΔyF∗

)

=
(−g
cF

)

(29)

or equivalently

(
H (AF)T

AF 0

)(
x + Δx∗
−ΔyF∗

)

=
(

(AF)T (yC)F − g
cF

)

. (30)

Notice that, so long as (29) (equivalently (30)) is consistent, we have

Δx∗ = argmin
Δx∈Rn

1
2 〈x + Δx, H(x + Δx)〉 + 〈x + Δx, g〉 subject to AF (x + Δx) = cF ,

123

A dual gradient-projection method for large-scale strictly...

with (yC)F +ΔyF∗ the Lagrangemultiplier vector. Of course the previous optimization
problem is nothing other than a subproblem that would be solved by a primal active-set
method for a correction Δx to a given x , and this indicates that the dual generalized
Cauchy pointmay alternatively be viewed as amechanism for identifying primal active
constraints. Finally, we note that ΔyF∗ may be computed using any of the many direct
or iterative methods for solving (28) or (30) [4].

2.3.2 Subspace minimizer at infinity

Since HF is positive semi-definite and possibly singular, the linear system (28) (equiv-
alently (27)) may be inconsistent. We shall use the following well-known generic
result.1 (The proof follows by minimizing ‖Mu − b‖22 and letting v = b − Mu
whenever Mu �= b).

Theorem 1 [The Fredholm Alternative [57, Thm 4, p. 174]] Let M ∈ R
m×n and

b ∈ R
m. Then, either there exists u ∈ R

n for which Mu = b or there exists v ∈ R
m

such that MT v = 0 and 〈b, v〉 > 0.

It follows from Theorem 1 that if (27) is inconsistent, there must be a direction of
linear infinite descent [13], i.e., a vector ΔyF∞ for which

HFΔyF∞ = 0 and 〈ΔyF∞, gF 〉 < 0 (31)

along which

qF(
αΔyF∞

) = α〈ΔyF∞, gF 〉
decreases linearly to minus infinity as α increases. Alternatively, examining (26), it is
clear that inconsistency of (28) is only possible when cF does not lie in the range of
AF . In this case, the Fredholm alternative implies that there exists a ΔyF∞ satisfying

(AF)TΔyF∞ = 0 and 〈ΔyF∞, cF 〉 > 0, (32)

which is also a direction of linear infinite descent since

qF(
αΔyF∞

) = −α〈ΔyF∞, cF 〉.

We now consider how to use HF to find aΔyF∞ that satisfies (31), and leave the details
of how we might instead satisfy (32) to the Supplementary Material.

To find ΔyF∞ satisfying (31), we require HFΔyF∞ ≡ AF H−1(AF)TΔyF∞ = 0.
Now, if we define Δw∞ := H−1(AF)TΔyF∞, then we have that

(
H (AF)T

AF 0

) (
Δw∞
−ΔyF∞

)

=
(
0
0

)

. (33)

1 Note that the sign of the inner product 〈b, v〉 is arbitrary, since, for −v, MT (−v) = 0 and 〈b,−v〉 < 0.
We shall refer to a negative Fredholm alternative as that for which the signs of the components of v are
flipped.

123

N. I. M. Gould, D. P. Robinson

Moreover, the second requirement in (31) is that

0 > 〈ΔyF∞, gF 〉 = 〈−ΔyF∞, cF 〉 + 〈Δw∞, (AF)T (yC)F − g〉, (34)

where we have used (26) and the definition of Δw∞. Notice that (33)–(34) together
satisfy the negative Fredholm alternative to (30), which can be seen by applying
Theorem 1 with the following data:

M = K :=
(

H (AF)T

AF 0

)

,

b :=
(

(AF)T (yC)F − g
cF

)

,

u =
(
x + Δx
−ΔyF

)

,

v =
(

Δw

−ΔyF∞

)

.

To see how we might compute the required direction of linear infinite descent in
this case, suppose that

K = LBLT , (35)

where L is a permuted unit-lower-triangular matrix and B is a symmetric block diag-
onal matrix comprised of one-by-one and two-by-two blocks—the sparse symmetric-
indefinite factorization packagesMA27 [25],MA57 [24],MA77 [68],MA86 [54],MA97
[55], PARDISO [70] and WSMP [50] offer good examples. Crucially, any singularity
in K is reflected solely in B. Our method will return either a solution to (30) or to
(33)–(34). To this end, we define w so that

Lw = b,

and then consider trying to solve the system

Bz = w. (36)

If the system (36) is consistent, and thus there is a z satisfying (36), the vector u for
which LT u = z also solves Ku = b and thus its components solve (30). By contrast,
if (36) is inconsistent, Theorem 1 implies that there is a vector p for which

Bp = 0 and 〈p, w〉 > 0. (37)

In this case, the vector v for which LT v = p also satisfies

Kv = LBLT v = LBp = 0

and

〈v, b〉 = 〈v, Lw〉 = 〈LT v,w〉 = 〈p, w〉 > 0

123

A dual gradient-projection method for large-scale strictly...

because of (37). Thus the Fredholm alternative for data K and b may be resolved by
considering the Fredholm alternative for the far-simpler block-diagonal B and w.

To investigate the consistency of (36), we form the spectral factorizations Bi =
Qi Di QT

i for an orthonormal Qi and diagonal Di for each of the � (say) one-by-one
and two-by-two diagonal blocks, and build the overall factorization

B =
⎛

⎜
⎝

Q1 0 0

0
. . . 0

0 0 Q�

⎞

⎟
⎠

⎛

⎜
⎝

D1 0 0

0
. . . 0

0 0 D�

⎞

⎟
⎠

⎛

⎜
⎝

QT
1 0 0

0
. . . 0

0 0 QT
�

⎞

⎟
⎠ = QDQT .

Singularity of B is thus readily identifiable from the block diagonal matrix D, and
the system (36) is consistent if and only if (QTw)i = 0 whenever Dii = 0, where
Dii is the i th diagonal entry of the matrix D. If the system is inconsistent, then
a direction p of linear infinite descent satisfying (37) can be obtained by defining
J = { j : Dj j = 0 and (QTw) j �= 0} �= ∅ and then setting p = Qs, where

s j =
{

0 for j /∈ J ,

(QTw) j for j ∈ J .

In particular, it follows that

〈p, w〉 = 〈Qs, w〉 = 〈s, QTw〉 =
∑

j∈J

(
QTw

)2
j > 0 and

Bp = QDQT p = QDs = 0

sinceDs = 0byconstruction.Thus,wehaveverified that this choice for p satisfies (37)
as required. New subroutines to implement the Fredholm alternative as just described
have been added to the HSL packages MA57, MA77 and MA97, and versions will be
added to MA27 and MA86 in due course.

When H−1 is structured according to (2), it is easy to show that

H = H0 − ZU−1ZT ,

where U = W−1 + Y T H0Y ∈ R
t×t and Z = H0Y ∈ R

n×t . Although the decom-
position (35) is possible for such an H , it will most likely result in a dense factor L
since H is dense, and thus a sparse alternative is preferable. The trick is to see that
(30), with (Δx,ΔyF) = (Δx∗,ΔyF∗), may be expanded to give

⎛

⎝
H0 (AF)T Z
AF 0 0
ZT 0 U

⎞

⎠

⎛

⎝
x + Δx
−ΔyF

−Δz

⎞

⎠ =
⎛

⎝
(AF)T (yC)F − g

cF

0

⎞

⎠ , (38)

where we introduced the variables Δz := U−1ZT (x +Δx). The leading (n+mF)×
(n + mF) block of this system is sparse, and only the last t rows and columns are
dense. If we consider Theorem 1 with data

123

N. I. M. Gould, D. P. Robinson

Algorithm 9 The conjugate gradient method for solving (25).

input: gF and HF as defined in (26).
Set ΔyF0 = 0, g0 = gF , and p0 = −g0, and then choose ε > 0.
for j = 0, 1, 2, . . . do

if ‖g j‖ ≤ ε then return the subspace step ΔyF∗ := Δy j . end
if 〈p j , HF p j 〉 ≤ ε then return the direction of linear infinite descent ΔyF∞ = p j . end
Set α j = ‖g j‖22/〈p j , HF p j 〉.
Set ΔyFj+1 = ΔyFj + α j p j .

Set g j+1 = g j + α j H
F p j .

Set β j = ‖g j+1‖22/‖g j‖22.
Set p j+1 = −g j+1 + β j p j .

end for

M = K+ :=
⎛

⎝
H0 (AF)T Z
AF 0 0
ZT 0 U

⎞

⎠ and b =
⎛

⎝
(AF)T (yC)F − g

cF

0

⎞

⎠,

we can conclude that there either exists a vector

u =
⎛

⎝
x + Δx
−ΔyF

−Δz

⎞

⎠ or v =
⎛

⎝
Δw

−ΔyF∞
−Δz∞

⎞

⎠

such that the first two block components of u and v provide, respectively, either a
solution to (30) or its Fredholm alternative (33)–(34). A decomposition of the form
(35) for K+ and its factors then reveals the required solution to the subspace problem
or a direction of linear infinite descent precisely as outlined above for the sparse H
case. Sparse factorizations of K+ generally aim to preserve sparsity, with the few
dense rows pivoted to the end of the factors.

2.3.3 Iterative methods

The obvious iterative approach for solving (25) is to use the conjugate gradient method
to generate a sequence {ΔyFj } for j ≥ 0 starting from ΔyF0 = 0 (see Algorithm 9).

Here, g j = ∇qF (ΔyFj) so that g0 = gF . The iteration is stopped with ΔyF∗ = ΔyFj
as an approximate solution to (25) when the gradient g j = ∇qF (ΔyFj) is small, or

with ΔyF∞ = p j as a linear infinite descent direction when 〈p j , HF p j 〉 is small. We
note that a basic property of CG is that qF (ΔyFj) < qF (0) for all j ≥ 1.

The input gradient gF and each product HF p j requires products with A, AT and
H−1 and as always the latter are obtained using the Cholesky factors (6) or the struc-
tured decomposition (2). Note that if 〈p j , HF p j 〉 = 0 then HF p j = 0 since HF is
positive semi-definite, and in this case

〈p j , g
F 〉 = 〈p j ,∇qF (

ΔyFj
)〉 − 〈p j , H

FΔyFj 〉 = 〈p j ,∇qF (
ΔyFj

)〉 = 〈p j , g j 〉 < 0,

123

A dual gradient-projection method for large-scale strictly...

where we have used ∇qF (ΔyFj) = HFΔyFj + gF and the well-known fact that the

CG iterations satisfy 〈p j , g j 〉 < 0. Thus, the vector yF∞ = p j is a direction of linear
infinite descent satisfying (31) at yC. On the other hand, when 〈p j , HF p j 〉 > 0, then

qF(
ΔyFj

) − qF(
ΔyFj+1

) = 1
2 〈p j , g j 〉2/〈p j , H

F p j 〉, (39)

which follows from ΔyFj+1 = ΔyFj +α j p j and the fact that α j in Algorithm 9 can be

equivalently written as α j = −〈g j , p j 〉/〈p j , HF p j 〉. Thus, for some small ε∞ > 0,
we stop the iteration whenever

〈p j , H
F p j 〉 ≤ 1

2ε∞〈p j , g j 〉2

since (39) then gives a decrease in the dual objective function of at least 1/ε∞, which
indicates that it is likely unbounded below.

3 The method for the general problem formulation

In practice most problems have the general form

minimize
x∈Rn

q(x) = 1
2 〈x, Hx〉 + 〈g, x〉 subject to cL ≤ Ax ≤ cU , xL ≤ x ≤ xU ,

(40)

where any of the components for cL , cU , xL , and xU may be infinite (i.e., we permit
one-sided or free constraints/variables) and individual pairs may be equal (i.e., we
allow equality constraints/fixed variables).We now briefly describe how our algorithm
applies to this general formulation.

The constraints in (40) may be written as

Ag :=

⎛

⎜
⎜
⎝

A
−A
I
−I

⎞

⎟
⎟
⎠ x ≥

⎛

⎜
⎜
⎝

cL
−cU
xL
−xU

⎞

⎟
⎟
⎠ =: cg, with dual variables yg :=

⎛

⎜
⎜
⎝

yL
−yU
zL
−zU

⎞

⎟
⎟
⎠ .

Then using the recipe (4), we have the dual problem

minimize
yg

1
2 y

T
g HD

g yg + yTg g
D
g subject to yg ≥ 0, (41)

with

HD
g = AgH

−1AT
g and gDg = −AgH

−1g − cg. (42)

123

N. I. M. Gould, D. P. Robinson

If we now introduce the notation

v =

⎛

⎜
⎜
⎝

yL
yU
zL
zU

⎞

⎟
⎟
⎠ , J =

⎛

⎜
⎜
⎝

A
A
I
I

⎞

⎟
⎟
⎠ , b =

⎛

⎜
⎜
⎝

cL
cU
xL
xU

⎞

⎟
⎟
⎠ , and

HD := J H−1 J T ,

gD := −J H−1g − b,
(43)

then it is easy to show that

yTg HD
g yg = vT J H−1 J T v = vT HDv and yTg g

D
g = vT (−J H−1g − b) = vT gD.

Using these relationships, we see that problem (41) is equivalent to the problem

v∗ = argmin
v∈Rnv

qD(v) := 1
2v

T HDv + vT gD subject to (yL , zL) ≥ 0, (yU , zU) ≤ 0,

(44)

where nv = 2m + 2n, in the sense that a solution to (41) is trivially obtained from a
solution to (44).

Notice that since

qD(v) = 1
2

[
(AT (yL + yU) + (zL + zU)

]T
H−1[AT (yL + yU) + zL + zU

]

− [
(yL + yU)T A + (zL + zU)T

]
H−1g −

(
cTL yL + cTU yU + xTL zL + xTU zU

)
,

that if (cL)i = (cU)i , for any i (i.e., the i th constraint is an equality constraint), thenwe
may replace the corresponding variables (yL)i and (yU)i in (44) by yi = (yL)i+(yU)i ,
where yi is not restricted in sign. Also, anytime an infinite bound occurs, we omit the
relevant dual variable, its bound and the corresponding row of A or I from the formal
description above.

To solve (44), we simply generalize the method used to solve (4). Let

PD[v] = [max(yL , 0),min(yU , 0),max(zL , 0),min(zU , 0)]T

be the projection of v = [yL , yU , zL , zU]T onto the feasible region

D = {v = [yL , yU , zL , zU]T : (yL , zL) ≥ 0 and (yU , zU) ≤ 0}

for (44). Then we apply Algorithm 10.
The only significant differences for finding the Cauchy and improved subspace

points using the obvious extension of Algorithm 4—aside from the implicit increase
in dimension when considering v rather than y—are that (i) we need to compute
additional breakpoints for the upper bounded variables using

αB
i =

{−v j/d j if d j > 0,
∞ if d j ≤ 0,

123

A dual gradient-projection method for large-scale strictly...

Algorithm 10 Gradient projection method for solving the BQP (44).
input: Solution estimate v ∈ D.
while PD[v − ∇qD(v)] �= v do

1. (Cauchy point)
Set d = −∇qD(v) and compute αC = argminα>0 q

D(
PD[v + αd]).

Set vC = PD[v + αCd].
2. (subspace step)

ComputeA = A(vC) := {i : vCi = 0}.
Compute ΔvS = argminΔv∈Rnv qD(vC + Δv) subject to [Δv]A = 0.

3. (improved subspace point)

Select αmax > 0 and then compute αS =argminα∈[0,αmax] qD
(
PD[vC + αΔvS]

)
.

Set v = PD[vC + αSΔvS].
end while

(ii) the index sets Ii+1 need to take into account these extra breakpoints, and (iii) any
mention of A and c should now refer to J and b from (43).

The computation of the subspace step is likewise very similar. The Cauchy point
fixes components of v at zero, and this results in expanded systems of the form

(
H (J F)T

J F 0

)(
x + Δx
−ΔvF

)

=
(

(J F)T (vC)F − g
bF

)

(45)

for (30), and

⎛

⎝
H0 (J F)T Z
J F 0 0
ZT 0 U

⎞

⎠

⎛

⎝
x + Δx
−ΔvF

−Δz

⎞

⎠ =
⎛

⎝
(J F)T (vC)F − g

bF

0

⎞

⎠

for (38), where J F and bF consist of the components of (43) that are free at the Cauchy
point vC.

3.1 A special block-diagonal Hessian

An important special case occurswhen H has a particular block-diagonal structure, and
covers applications that include performing �2-projections onto a polytope [1], solving
bound-constrained least-squares problems [6,8, §7.7], and globalization strategies
within modern SQP algorithms [28,46]. An obvious simplification is that any solve
involving H can be decomposed into blocks, and is trivial if H is diagonal. A more
significant advantage comes in the subspace phase. Suppose,without loss of generality,
that

J F =
(
AF
1 AF

2
I 0

)

, H =
(
H1 0
0 H2

)

, bF =
(
cF

x1

)

, x =
(
x1
x2

)

and g=
(
g1
g2

)

123

N. I. M. Gould, D. P. Robinson

with AF
1 ∈ R

m1×n1 , H1 ∈ R
n1×n1 and g1 ∈ R

n1 . Problem (45) can then be written as

⎛

⎜
⎜
⎝

H1 0 (AF
1)T I

0 H2 (AF
2)T 0

AF
1 AF

2 0 0
I 0 0 0

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

x1 + Δx1
x2 + Δx2

−(yC)F − ΔyF

−(zC)F − ΔzF

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

−g1
−g2
cF

x1

⎞

⎟
⎟
⎠ , (46)

or equivalently Δx1 = 0, ΔzF = g1 + H1x1 − (AF
1)T

(
(yC)F + ΔyF

) − (zC)F , and

(
H2 (AF

2)T

AF
2 0

) (
x2 + Δx2

−(yC)F − ΔyF

)

=
(−g2
cF − AF

1 x1

)

. (47)

Thus the subspace phase is equivalent to finding a Fredholm alternative to the
“reduced” system (47) or equivalently a Fredholm alternative to

AF
2 H

−1
2

(
AF
2

)T
ΔyF = AF

2 H
−1
2

(
g2 − (AF)T (yC)F

)
+ cF − AF

1 x1,

where we subsequently recover Δx2 by solving trivially

H2(x2 + Δx2) = (
AF
2

)T
(
(yC)F + ΔyF

)
− g2.

4 Regularized problems

A related problem of interest—for example, in Sl pQP methods for constrained opti-
mization [26]—is to

minimize
x∈Rn

q(x) + σ‖(Ax − c)−‖1, (48)

for given σ > 0, where w− = max(0,−w) for any given w. Introducing the auxiliary
vector v allows us to write (48) equivalently as

minimize
(x,v)∈Rn+m

q(x) + σeT v subject to Ax + v ≥ c, v ≥ 0.

This problem has the associated primal-dual problem

maximize
(x,v,y,z)∈R2n+2m

− 1
2 〈x, Hx〉 + 〈c, y〉

subject to Hx − AT y + g = 0, y + z = σe, (y, z) ≥ 0,

whose optimal y value can equivalently be computed from the problem

minimize
y∈Rm

1
2 〈AT y − g, H−1(AT y − g

)〉 − 〈c, y〉 subject to 0 ≤ y ≤ σe. (49)

123

A dual gradient-projection method for large-scale strictly...

We may thus apply essentially the same accelerated gradient-projection method as
before, but now we project (trivially) into [0, σe]. Similarly, if we wish to

minimize
x∈Rn

q(x) + σ‖(Ax − c)‖1, (50)

we may instead solve the problem

minimize
y∈Rm

1
2 〈AT y − g, H−1(AT y − g

)〉 − 〈c, y〉 subject to − σe ≤ y ≤ σe (51)

using gradient projection onto [−σe, σe], and recover x from Hx = AT y − g.
If we consider the same problem in the infinity norm, namely

minimize
x∈Rn

q(x) + σ‖(Ax − c)−‖∞, (52)

then by introducing the auxiliary vector ν we see that (52) is equivalent to

minimize
(x,ν)∈Rn+1

q(x) + σν subject to Ax + νe ≥ c, ν ≥ 0. (53)

The primal-dual problem to (53) is then

maximize
(x,ν,y,ξ)∈Rn+m+2

− 1
2 〈x, Hx〉 + 〈c, y〉

subject to Hx − AT y + g = 0, 〈e, y〉 + ξ = σ, (y, ξ) ≥ 0,

whose optimal y value may be equivalently computed as the solution to

minimize
y∈Rm

1
2 〈AT y − g, H−1(AT y − g

)〉 − 〈c, y〉 subject to y ≥ 0, 〈e, y〉 ≤ σ.

(54)

Once again, we may apply the accelerated gradient-projection method, but now the
projection is onto the orthogonal simplex Sm(σ) := {y ∈ R

m : y ≥ 0 and 〈e, y〉 ≤
σ } for which there are nonetheless efficient projection algorithms [73]. In addition, in
the subspace step computation (30), the defining matrix may have an additional row
and column e whenever the dual constraint 〈e, y〉 ≤ σ is active. Similarly, to

minimize
x∈Rn

q(x) + σ‖(Ax − c)‖∞, (55)

we can solve the optimization problem

minimize
(yL ,yU)∈S2m (σ)

1
2 〈AT (yL − yU) − g, H−1(AT (yL − yU) − g

)〉 − 〈c, yL − yU 〉
(56)

123

N. I. M. Gould, D. P. Robinson

using accelerated gradient projection within S2m(σ), and subsequently obtain x from
Hx = AT (yL − yU) − g.

5 Computational experience

5.1 Implementation and test problems

We implemented the algorithm outlined in Sects. 2 and 3 for strictly-convex quadratic
programs, in the general form (40), as a Fortran 2003 package called DQP that is
available as part ofGALAHAD [38]. Details, including a complete description of user
control parameters, are provided in the package documentation provided as part of
GALAHAD.2 Features such as problem pre-processing, removal of dependent con-
straints, general strategies for solving symmetric systems, exploiting parallelism in the
linear algebra, presolve strategies, and problem scaling are similar to those described
in [37] for the interior-point QP solver CQP withinGALAHAD; package default val-
ues are chosen unless otherwise specified.DQP offers a choice of (dual) starting point
strategies. These include allowing the user to specify the starting point, picking a point
that is free from each dual bound (yL , zL) ≥ 0 and (yU , zU) ≤ 0, a point for which
every component is equal to one of its bounds, and the point that solves a separable
approximation to (44) in which HD is replaced by the zero or identity matrix; our
experiments start with all dual values at zero.

Both folklore and empirical evidence [62] on bound-constrained QPs suggest that
the dual active set A(k) (equivalently the fixed variables/constraints at the Cauchy
point) changes rapidly. Thus solving (45) (or finding its Fredholm alternative) is
unlikely to benefit from matrix factorization updating techniques [33] usually asso-
ciated with active-set methods, and it is better to solve successive systems (45) ab
initio. While we can confirm this behavior on well-conditioned problems, our expe-
rience with more difficult ones is that although there can be rapid changes in the
active set between iterations, in many cases the active set changes gradually in some
phases of its iteration history, especially towards the end. Thus while our initial
instinct was not to provide special code to cope with gradual active-set changes,
we are now convinced that there should be some provision to update factorizations if
requested.

Specifically, during the kth iteration of DQP, if the coefficient matrix for (45) is of
full rank (thus we are not required to seek a Fredholm alternative), and if the change in
the active set at iteration k+1 is modest, we may use the Schur-complement updating
technique [7,32,33,42] implemented as SCU inGALAHAD to solve (45) at this new
iteration rather than resorting to refactorization. The details are quite standard [42,
§3], but we choose to remove constraints that are present in A(k) but not in A(k+1)

before we add constraints that are inA(k+1) but not inA(k) since removing constraints
maintains full rank, while adding them may result in a rank-deficient system. If rank-
deficiency is detected, the Schur-complement update is abandoned, and the Fredholm
alternative is sought instead. In addition, we limit the size of the Schur complement

2 Available from http://galahad.rl.ac.uk/galahad-www/ along with a Matlab interface.

123

http://galahad.rl.ac.uk/galahad-www/

A dual gradient-projection method for large-scale strictly...

to 100 new rows (by default) before refactorization; setting the limit to zero disables
Schur-complement updating. We stop each run when

‖PD[v − ∇qD(v)] − v‖ ≤ max(εa, εr · ‖PD[v0 − ∇qD(v0)] − v0‖), (57)

where εa = 10−6 and εr = 10−16, so long as a limit of 30 min or 10,000 iterations
has not already been reached.

Our tests involved the quadratic programming examples from the combined
CUTEst [39] and Maros and Meszaros [59] test sets—multiple instances of simi-
lar nature were excluded. We only considered the 68 strictly convex problems, which
ranged from the smallest (DUAL4) with n = 75 and m = 1 to the largest (QPBAND)
with n = 50,000 and m = 25,000; note that most instances have additional simple-
bound constraints on the primal variables, as shown in the general formulation (40).
(See Table 1 in the Supplementary Material for additional details.) A problem was
identified as being strictly convex by using theGALAHAD package SLS, which pro-
vides a common interface to a variety of solvers, from the Harwell Subroutine Library
(HSL) and elsewhere, for dense and sparse symmetric linear systems of equations.
We used the HSL solver MA97 [55]—a direct method designed for solving sparse
symmetric systems—to determine if the Hessian matrix H was numerically positive
definite.

All numerical experiments were performed on eight cores of a workstation com-
prised of thirty-two Intel Xeon ES-2687W CPUs (3.1GHz, 1200MHz FSB, 20MB L3
Cache) with 65.9 GiB of RAM. GALAHAD and its dependencies were compiled in
double precisionwith gfortran 4.6 using fast (-O3) optimization andOpenMP enabled
(-fopenmp).

5.2 Evaluation of DQP

We first considered the performance of DQP when approximate solutions to the sub-
space subproblem were computed using the iterative CG method (see Sect. 2.3.3).
The complete set of detailed results can be found in Table 1 of the Supplementary
Material. This instance of DQP failed on 12 problems, where a failure means that the
termination test (57) was never achieved. Of the 12 failures, 10 were because the max-
imum allowed iteration limit was reached and 2 was because the maximum allotted
time limit was reached.

For comparison, we also considered the performance ofDQP in the case when high
accuracy solutions to the subspace subproblem were computed using factorizations
(see Sects. 2.3.1 and 2.3.2). The complete set of results can be found in Table 2
of the Supplementary Material. (Note that problems FIVE20B and FIVE20C were
excluded because of an error in the factorization subroutine.) We can see that this
instance of DQP failed on 25 problems, which is twice as many as when CG was
used. However, note that 18 of these failures were because the maximum allowed
time limit was reached, 2 because the maximum allowed iterations was reached, and
5 because local infeasibility was detected. Thus we conclude that the degradation in

123

N. I. M. Gould, D. P. Robinson

0 1 2 3 4 5 6
AUG2DC
AUG2DCQP
AUG3DC
AUG3DCQP
BTS4
CBS
CONT-050
CONT1-100
DALE
DEGENQP
DUAL1
DUAL2
DUAL3
DUAL4
FIVE20B
FIVE20C
HIE1327D
HIE1372D
HIER13
HIER133A
HIER133B
HIER133C
HIER133D
HIER133E
HIER16
HIER163A
HIER163B
HIER163C
HIER163D
HIER163E
HUES-MOD
HUESTIS
JJTABEL3
LISWET2
LISWET3
LISWET4
LISWET5
LISWET6
MOSARQP1
MOSARQP2
NINE12
NINE5D
NINENEW
OSORIO
POWELL20
STCQP1
STCQP2
TABLE1
TABLE3
TABLE4
TABLE5
TABLE6
TABLE7
TABLE8
TARGUS
TWO5IN6

Fig. 1 A comparison of iterations for DQP when using an iterative subproblem solver

performance is primarily due to reaching the time limit, which is a consequence of
using the more expensive factorizations in lieu of CG.

Interestingly, between the two variants of DQP, the only problems not solved
were CONT1-200, LASER, and QPBAND. Together with our previous discussion,
this highlights the trade-off between using iterative and direct methods for solving
the subspace subproblem. Namely, that the direct methods tend to be more expensive
and more frequently struggle to solve problems in the time allotted, while iterative
methods are much cheaper per iteration but more frequently find it difficult to achieve
the requested accuracy.

The previous paragraphmotivates us to investigate how effectivelyDQP can obtain
approximate solutions for various levels of accuracy. To answer this problem we
tracked the iterates computed by DQP and saved the total number of iterations and

123

A dual gradient-projection method for large-scale strictly...

0 1 2 3 4 5 6
AUG2DC
AUG2DCQP
AUG3DC
AUG3DCQP
BTS4
CBS
CONT-050
CONT1-100
DALE
DEGENQP
DUAL1
DUAL2
DUAL3
DUAL4
FIVE20B
FIVE20C
HIE1327D
HIE1372D
HIER13
HIER133A
HIER133B
HIER133C
HIER133D
HIER133E
HIER16
HIER163A
HIER163B
HIER163C
HIER163D
HIER163E
HUES-MOD
HUESTIS
JJTABEL3
LISWET2
LISWET3
LISWET4
LISWET5
LISWET6
MOSARQP1
MOSARQP2
NINE12
NINE5D
NINENEW
OSORIO
POWELL20
STCQP1
STCQP2
TABLE1
TABLE3
TABLE4
TABLE5
TABLE6
TABLE7
TABLE8
TARGUS
TWO5IN6

Fig. 2 A comparison of times for DQP when using an iterative subproblem solver

total time required to satisfy the termination condition (57) for the values εr = 0
and εa ∈ {10−1, 10−2, 10−3, 10−4, 10−5, 10−6}. The full set of results for when CG
is used as the subproblem solver is given in Table 4 of the Supplementary Material,
while the results for the case when factorizations are used can be found in Table 5 of
the Supplementary Material. For illustrative purposes, we represent the data found in
these tables in the form of stacked bar graphs in Figs. 1 and 2 for the CG case, and
Figs. 3 and 4 for the factorization case. (We only include problems that DQP was
able to achieve the finest stopping tolerance of 10−6.) These plots have a stack of 6
rectangles for each test problem. For each of these 6 rectangles, the fraction filled with
blue represents the fraction of the total iterations (Figs. 1 and 3) or total time (Figs. 2
and 4) needed to achieve the various accuracy levels: the j th stacked block (counting

123

N. I. M. Gould, D. P. Robinson

0 1 2 3 4 5 6

AUG2DC
AUG2DCQP
AUG3DC
AUG3DCQP
CBS
DALE
DUAL1
DUAL2
DUAL3
DUAL4
HIE1327D
HIE1372D
HUES-MOD
HUESTIS
KSIP
LISWET1
LISWET2
LISWET3
LISWET4
LISWET5
LISWET6
LISWET7
LISWET8
LISWET9
LISWET10
LISWET12
MOSARQP1
MOSARQP2
NINE12
OSORIO
POWELL20
STCQP1
STCQP2
TABLE1
TABLE3
TABLE4
TABLE5
TABLE7
TABLE8
TARGUS
YAO

Fig. 3 A comparison of iterations for DQP when using a direct method to solve each subproblem

from left to right) for each problem corresponds to the accuracy level 10− j for each
j ∈ {1, 2, 3, 4, 5, 6}.
To help clarify the meaning of the figures, we describe a few illustrative examples.

We comment that additional details for any problem can be obtained from Section 3
of the Supplementary Material.

– NINENEW From Section 3 of the Supplementary material, we see that the number
of iterations required to reach the 6 different tolerance levels are 7, 8, 9, 10, 12,
and 12, respectively. This means that it took 7 iterations to reach the tolerance
level 10−1, 8 iterations to reach the tolerance level 10−2, 9 iterations to reach
the tolerance level 10−3, 10 iterations to reach the tolerance level 10−4, and then
iteration 12 was the first to fall below 10−5 and, in fact, it also fell below 10−6.

123

A dual gradient-projection method for large-scale strictly...

0 1 2 3 4 5 6

AUG2DC
AUG2DCQP
AUG3DC
AUG3DCQP
CBS
DALE
DUAL1
DUAL2
DUAL3
DUAL4
HIE1327D
HIE1372D
HUES-MOD
HUESTIS
KSIP
LISWET1
LISWET2
LISWET3
LISWET4
LISWET5
LISWET6
LISWET7
LISWET8
LISWET9
LISWET10
LISWET12
MOSARQP1
MOSARQP2
NINE12
OSORIO
POWELL20
STCQP1
STCQP2
TABLE1
TABLE3
TABLE4
TABLE5
TABLE7
TABLE8
TARGUS
YAO

Fig. 4 A comparison of times for DQP when using a direct method to solve each subproblem

– LISWET2 FromSection 3 of the Supplementarymaterial, we have that the number
of iterations required to reach the 6 different tolerance levels are 0, 4, 22, 54, 441,
and 5920, respectively. The initial point satisfied the tolerance 10−1 but not 10−2.
The level of 10−2 was reached by iteration 4. Bars 2–6 are all nonempty, but since
5920 iterations were needed to achieve the final accuracy of 10−6, bars 2–4 appear
empty to the eye.

– HUESTIS From Section 3 of the Supplementary material, we see that the number
of iterations needed to reach the 6 different tolerance levels are 4, 4, 4, 4, 4, and
4, respectively. This means the 4th iterate was the first to satisfy every tolerance,
i.e., the errors associated with the first 3 iterates were all greater than 10−1, and
then iterate 4 had an error of less than 10−6. Such performance is not completely
uncommon for active-set methods.

123

N. I. M. Gould, D. P. Robinson

Figures 1 and 2 for DQP when CG was used as the subspace solver clearly show
a very tight relationship between the number of iterations and times required to reach
the 6 different accuracies. In fact, for most problems, the difference in the bars for
the fraction of iterations (Fig. 1) and the times (Fig. 2) are indistinguishable; two
exceptions are DUAL3 and TABLE7. We also remark that two problems in Fig. 2 do
not have any stacked bars because no significant time was needed to reach the final
desired accuracy. As expected, observe that in most cases the majority of iterations are
needed to reach the first optimality tolerance of 10−1, although LISWET2–LISWET6
are exceptions.

Figures 3 and 4, which are based on using factorizations to solve the subspace
subproblem, also illustrate the close relationship between the number of iterations
(Fig. 3) and times required (Fig. 4) to reach the 6 different accuracy levels; there
is somewhat more variability here when compared to using CG. As before, there
is one problem (DUAL4) in Fig. 4 that does not have any stacked bars because no
significant time was needed to reach the final desired accuracy. One can also observe
that the figures associated with the use of a direct method (Figs. 3 and 4) tend to be
“denser” towards the bottom when compared to the use of CG (Figs. 1 and 2). This
is perhaps no surprise since it is often the case that only a couple of iterations are
required to obtain a high accuracy solution for direct methods once the active set at
the solution has been identified; this appears to often be the case once the tolerance of
10−2 is reached. We also mention that obtaining high accuracy solutions for problems
LISWET2–LISWET6 seems to be somewhat challenging, much as we observed when
CG was used.

Overall, we are satisfied with these results. They clearly show the trade-off that
exists between using iterative and direct subproblem solvers. By allowing for the use
of both, we are able to solve 65 of the 68 problems to an accuracy of at least 10−6.

6 Final comments and conclusions

We presented the details of a solver for minimizing a strictly convex quadratic
objective function subject to general linear constraints. The method uses a gradi-
ent projection strategy enhanced by subspace acceleration calculations to solve the
bound-constrained dual optimization problem. The main contributions of this work
are threefold. First, we address the challenges associated with solving the dual prob-
lem, which is usually a convex problem even when the primal problem is strictly
convex. Second, we show how the linear algebra may be arranged to take computa-
tional advantage of sparsity that is often present in the second-derivative matrix. In
particular, we consider the case that the second-derivative matrix is explicitly available
and sparse, and the case when it is available implicitly via a limited memory BFGS
representation. Third, we present the details of our Fortran 2003 software package
DQP, which is part of theGALAHAD suite of optimization routines. Numerical tests
showed the trade-off between using an iterative subproblem solver versus a direct
factorization method. In particular, iterative subproblem solvers are typically compu-
tationally cheaper per iteration but less reliable at achieving high accuracy solutions,
while direct methods are typically more expensive per iteration but more reliable at

123

A dual gradient-projection method for large-scale strictly...

obtaining high accuracy solutions given enough time. Both options are available in
the package DQP.

The numerical results showed that DQP is often able to obtain high accuracy
solutions, and is very reliable at obtaining low accuracy solutions. This latter fact
makes DQP an attractive option as the subproblem solver in the recently developed
inexact SQO method called iSQO [19]. The solver iSQO is one of the few SQO
methods that allows for inexact subproblem solutions, a feature that is paramount
for large-scale problems. The conditions that iSQO requires to be satisfied by an
approximate subproblem solution can readily be obtained by DQP.

Although not presented in this paper, we experimented with using DQP as the
second stage of a cross-over method with the first stage being an interior-point solver.
Specifically, we used the GALAHAD interior-point solver CQP and changed over to
DQP once the optimality measures were below 10−2. Our tests showed thatDQPwas
not especially effective in this capacity. The reason seemed to be because CQP [37]
was designed to be effective on degenerate problems and have the capacity of obtaining
high accuracy solutions; thiswas achieved by using nonstandard parameterizations and
high-order Taylor approximations of the central path. As a consequence, we believe
that CQP remains the best solver for solving QP problems when good estimates of
the solution are not known in advance. However, we still believe that when solving a
sequence of QP problems (e.g., in SQO methods) or more generally anytime a good
solution estimate is available, the method DQP is an attractive option.

In terms of cross-over methods, one could also consider using DQP as a first stage
solver that provides a starting point to a traditional active-set method. Although we
have not yet used DQP in this capacity, it does have the potential to be efficient and
more stable than usingDQP alone. The potential for improved stability is because the
performance of DQP is tied to its ability to identify the optimal active set. Although
such a feature holds under certain assumptions for gradient projection methods, per-
formance often steeply degrades when such assumptions do not hold; this is typically
not true of a traditional active-set method.

Finally, although duality via (3) holds more generally when H is positive semi-
definite, it is not always then possible to eliminate the variables x as in (4) to arrive
at a dual with simple non-negativity constraints. In particular, the dual may involve
additional general linear inequality constraints on y, and projection into this region
may prove to be very expensive—indeed, the projection may itself be posed as a
strictly-convex QP. Fortunately for problems involving regularization, such as those
discussed in Sect. 4, very minor modifications are required to fit our basic framework.

Acknowledgements The authors are very grateful to Iain Duff for providing extensions to MA57 to cope
with both sparse forward solution and the Fredholm alternative, and to Jonathan Hogg and Jennifer Scott
for doing the same for MA77 and MA97. We are also grateful to Iain, Jonathan, Jennifer, Mario Arioli and
Tyrone Rees for helpful discussions on Fredholm issues. N.I.M. Gould’s research supported by EPSRC
Grants EP/I013067/1 and EP/M025179/1.

References

1. Arioli, M., Laratta, A., Menchi, O.: Numerical computation of the projection of a point onto a polyhe-
dron. J. Optim. Theory Appl. 43(4), 495–525 (1984)

123

N. I. M. Gould, D. P. Robinson

2. Axehill, D. Hansson, A.: A dual gradient projection quadratic programming algorithm tailored for
model predictive control. In: Proceedings of the 47th IEEE Conference on Decision and Control, pp.
3057–3064, Cancun (2008)

3. Bartlett, R.A., Biegler, L.T.: QPSchur: a dual, active-set, Schur-complement method for large-scale
and structured convex quadratic programming. Optim. Eng. 7(1), 5–32 (2006)

4. Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta Numer. 14,
1–137 (2005)

5. Betts, J.T., Frank, P.D.: A sparse nonlinear optimization algorithm. J. Optim. TheoryAppl. 82, 519–541
(1994)

6. Bierlaire, M., Toint, P.L., Tuyttens, D.: On iterative algorithms for linear least squares problems with
bound constraints. Linear Algebra Appl. 143, 111–143 (1991)

7. Bisschop, J., Meeraus, A.: Matrix augmentation and partitioning in the updating of the basis inverse.
Math. Program. 13(3), 241–254 (1977)

8. Björck, Å.: Numerical Methods for Least Squares Problems. SIAM, Philadelphia (1996)
9. Boggs, P.T., Tolle, J.W.: Sequential quadratic programming. Acta Numer. 4, 1–51 (1995)

10. Boland, N.L.: A dual-active-set algorithm for positive semi-definite quadratic programming. Math.
Program. Ser. A 78(1), 1–27 (1997)

11. Byrd, R.H., Nocedal, J., Schnabel, R.B.: Representations of quasi-Newton matrices and their use in
limited memory methods. Math. Program. 63(2), 129–156 (1994)

12. Calamai, P.H., Moré, J.J.: Projected gradient methods for linearly constrained problems. Math. Pro-
gram. 39(1), 93–116 (1987)

13. Conn, A.R., Gould, N.I.M.: On the location of directions of infinite descent for nonlinear programming
algorithms. SIAM J. Numer. Anal. 21(6), 302–325 (1984)

14. Conn, A.R., Gould, N.I.M., Toint, P.L.: Global convergence of a class of trust region algorithms for
optimization with simple bounds. SIAM J. Numer. Anal. 25(2), 433–460 (1988). See also same journal
26, 764–767 (1989)

15. Conn, A.R., Gould, N.I.M., Toint, P.L.: Testing a class of methods for solving minimization problems
with simple bounds on the variables. Math. Comput. 50, 399–430 (1988)

16. Conn, A.R., Gould, N.I.M., Toint, P.L.: Trust-Region Methods. SIAM, Philadelphia (2000)
17. Curtis, F.E., Han, Z.: Globally Convergent Primal-Dual Active-Set Methods with Inexact Subproblem

Solves. Technical Report 14T-010, COR@L Laboratory, Department of ISE, Lehigh University, 2014.
In second review for SIAM Journal on Optimization

18. Curtis, F.E., Han, Z., Robinson, D.P.: A globally convergent primal-dual active-set framework for large-
scale convex quadratic optimization. Comput. Optim. Appl. (2014). doi:10.1007/s10589-014-9681-9

19. Curtis, F.E., Johnson, T.C., Robinson, D.P., Wachter, A.: An inexact sequential quadratic optimization
algorithm for nonlinear optimization. SIAM J. Optim. 24(3), 1041–1074 (2014)

20. Dominguez, J., González-Lima, M.D.: A primal-dual interior-point algorithm for quadratic program-
ming. Numer. Algorithms 42(1), 1–30 (2006)

21. Dorn, W.: Duality in quadratic programming. Q. Appl. Math. 18, 155–162 (1960)
22. Dostál, Z.: Optimal Quadratic ProgrammingAlgorithms:WithApplications toVariational Inequalities.

Springer Optimization and Its Applications, vol. 23. Springer, New York (2009)
23. Dostál, Z., Schöberl, J.: Minimizing quadratic functions subject to bound constraints with the rate of

convergence and finite termination. Comput. Optim. Appl. 30(1), 23–43 (2005)
24. Duff, I.S.: MA57—a code for the solution of sparse symmetric definite and indefinite systems. ACM

Trans. Math. Softw. 30(2), 118–144 (2004)
25. Duff, I.S., Reid, J.K.: The multifrontal solution of indefinite sparse symmetric linear equations. ACM

Trans. Math. Softw. 9(3), 302–325 (1983)
26. Fletcher, R.: An �1 penalty method for nonlinear constraints. In: Boggs, P.T., Byrd, R.H., Schnabel,

R.B. (eds.) Numerical Optimization 1984, pp. 26–40. SIAM, Philadelphia (1985)
27. Forsgren, A., Gill, P.E., Wong, E.: Primal and dual active-set methods for convex quadratic program-

ming. Math. Program. 159(1), 469–508 (2016)
28. Friedlander, M.P., Gould, N.I.M., Leyffer, S., Munson, T.: A filter active-set trust-region method.

Technical Report Preprint ANL/MCS-P1456-0907, Argonne National Laboratory, Illinois (2007)
29. Friedlander, M.P., Leyffer, S.: Global and finite termination of a two-phase augmented Lagrangian

filter method for general quadratic programs. SIAM J. Sci. Comput. 30(4), 1706–1729 (2008)
30. Friedlander, M.P., Orban, D.: A primal-dual regularized interior-point method for convex quadratic

programs. Math. Program. Comput. 4(1), 71–107 (2012)

123

http://dx.doi.org/10.1007/s10589-014-9681-9

A dual gradient-projection method for large-scale strictly...

31. George, A., Liu, J.W.H.: Computer Solution of Large Sparse Positive Definite Systems. Prentice-Hall,
Englewood Cliffs (1981)

32. Gill, P.E., Murray, W., Saunders, M.A., Wright, M.H.: A Schur-complement method for sparse
quadratic programming. In: Cox, M.G., Hammarling, S.J. (eds.) Reliable Scientific Computation,
pp. 113–138. Oxford University Press, Oxford (1990)

33. Gill, P.E.,Murray,W., Saunders,M.A.,Wright,M.H.: Inertia-controllingmethods for general quadratic
programming. SIAM Rev. 33(1), 1–36 (1991)

34. Gill, P.E., Murray, W., Saunders, M.A.: User’s guide for QPOPT 1.0: a Fortran package for quadratic
programming. Report SOL 95-4, Department of Operations Research, Stanford University, Stanford
(1995)

35. Gill, P.E., Murray, W., Saunders, M .A., Wright, M .H.: A Schur-complement method for sparse
quadratic programming. In: Cox, M .G., Hammarling, S .J. (eds.) Reliable Numerical Computation,
pp. 113–138. Oxford University Press, Oxford (1990)

36. Goldfarb, D., Idnani, A.: A numerically stable dual method for solving strictly convex quadratic
programs. Math. Program. 27(1), 1–33 (1983)

37. Gould, N.I.M., Orban, D., Robinson, D.P.: Trajectory-following methods for large-scale degenerate
convex quadratic programming. Math. Program. Comput. 5(2), 113–142 (2013)

38. Gould, N.I.M., Orban, D., Toint, P.L.: GALAHAD—a library of thread-safe fortran 90 packages for
large-scale nonlinear optimization. ACM Trans. Math. Softw. 29(4), 353–372 (2003)

39. Gould, N.I.M., Orban, D., Toint, P.L.: CUTEst: a constrained and unconstrained testing environment
with safe threads for mathematical optimization. Comput. Optim. Appl. 60(3), 545–557 (2015)

40. Gould, N.I.M., Toint, P.L.: A quadratic programming bibliography. Numerical Analysis Group Internal
Report 2000-1,RutherfordAppletonLaboratory,Chilton,Oxfordshire, England, 2000. See http://www.
numerical.rl.ac.uk/qp/qp.html

41. Gould, N.I.M., Toint, P.L.: SQP methods for large-scale nonlinear programming. In: Powell, M.J.D.,
Scholtes, S. (eds.) System Modelling and Optimization. Methods, Theory and Applications, pp. 149–
178. Kluwer Academic Publishers, Dordrecht (2000)

42. Gould, N.I.M., Toint, P.L.: An iterative working-set method for large-scale non-convex quadratic
programming. Appl. Numer. Math. 43(1–2), 109–128 (2002)

43. Gould, N.I.M., Toint, P.L.: Numerical methods for large-scale non-convex quadratic programming. In:
Siddiqi, A.H., Kočvara, M. (eds.) Trends in Industrial and Applied Mathematics, pp. 149–179. Kluwer
Academic Publishers, Dordrecht (2002)

44. Gould, N.I.M., Loh, Y., Robinson, D.P.: A filter method with unified step computation for nonlinear
optimization. SIAM J. Optim. 24(1), 175–209 (2014)

45. Gould, N.I.M., Loh, Y., Robinson, D.P.: A filter SQPmethod: local convergence and numerical results.
SIAM J. Optim. 25(3), 1885–1911 (2015)

46. Gould, N.I.M., Robinson, D.P.: A second derivative SQPmethod: global convergence. SIAM J. Optim.
20(4), 2023–2048 (2010)

47. Gould, N.I.M., Robinson, D.P.: A second derivative SQP method: local convergence and practical
issues. SIAM J. Optim. 20(4), 2049–2079 (2010)

48. Gould, N.I.M., Robinson, D.P.: A second derivative SQP method with a ‘trust-region-free’ predictor
step. IMA J. Numer. Anal. 32(2), 580–601 (2012)

49. Gu, Z., Rothberg, E., Bixby, R.: Gurobi Optimizer, version 5.5. 0. Software program (2013)
50. Gupta, A.: WSMP: Watson Sparse Matrix Package Part I—Direct Solution of Symmetric Sparse

System. Research Report RC 21886, IBM T. J. Watson Research Center, Yorktown Heights (2010)
51. Hager, W.W., Hearn, D.W.: Application of the dual active set algorithm to quadratic network optimiza-

tion. Comput. Optim. Appl. 1(4), 349–373 (1993)
52. Hintermüller, M., Kunisch, K.: The primal-dual active set strategy as a semismooth Newton method.

SIAM J. Optim. 13(3), 865–888 (2002). (electronic) (2003)
53. Hogg, J.D., Reid, J.K., Scott, J.A.: Design of a multicore sparse Cholesky factorization using DAGs.

SIAM J. Sci. Comput. 32(6), 36273649 (2010)
54. Hogg, J.D., Scott, J.A.: An indefinite sparse direct solver for large problems on multicore machines.

Technical Report RAL-TR-2010-011, Rutherford Appleton Laboratory, Chilton (2010)
55. Hogg, J.D., Scott, J.A.: HSL_MA97: a bit-compatible multifrontal code for sparse symmetric systems.

Technical Report RAL-TR-2011-024, Rutherford Appleton Laboratory, Chilton (2011)
56. ILOG CPLEX. High-performance software for mathematical programming and optimization (2005)

123

http://www.numerical.rl.ac.uk/qp/qp.html
http://www.numerical.rl.ac.uk/qp/qp.html

N. I. M. Gould, D. P. Robinson

57. Lancaster, P., Tismenetsky, M.: The Theory of Matrices: With Applications, 2nd edn. Academic Press,
London (1985)

58. Lescrenier, M.: Convergence of trust region algorithms for optimization with bounds when strict
complementarity does not hold. SIAM J. Numer. Anal. 28(2), 476–495 (1991)

59. Maros, I., Meszaros, C.: A repository of convex quadratic programming problems. Optim. Methods
Softw. 11–12, 671–681 (1999)

60. Mészáros, C.: TheBPMPD interior point solver for convex quadratic problems. Optim.Methods Softw.
11(1–4), 431–449 (1999)

61. Morales, J.L., Nocedal, J., Wu, Y.: A sequential quadratic programming algorithm with an additional
equality constrained phase. IMA J. Numer. Anal. 32, 553–579 (2012)

62. Moré, J.J., Toraldo, G.: On the solution of large quadratic programming problems with bound con-
straints. SIAM J. Optim. 1(1), 93–113 (1991)

63. Moré, J.J., Thuente, D.J.: Line search algorithms with guaranteed sufficient decrease. ACM Trans.
Math. Softw. 20(3), 286–307 (1994)

64. Moyh-ud Din, H., Robinson, D.P.: A solver for nonconvex bound-constrained quadratic optimization.
SIAM J. Optim. 25(4), 2385–2407 (2015)

65. Nocedal, J., Wright, S.J.: Numerical Optimization. Series in Operations Research, 2nd edn. Springer,
Heidelberg (2006)

66. Polyak, R.A., Costa, J., Neyshabouri, S.: Dual fast projected gradient method for quadratic program-
ming. Optim. Lett. (2012). doi:10.1007/s11590-012-0476-6

67. Powell, M.J.D.: ZQPCVX a FORTRAN subroutine for convex quadratic programming. University,
Department of Applied Mathematics and Theoretical Physics (1983)

68. Reid, J.K., Scott, J.A.: An out-of-core sparse Cholesky solver. ACM Trans. Math. Softw. 36(2), 9
(2009)

69. Robinson, D.P., Feng, L., Nocedal, J., Pang, J.-S.: Subspace accelerated matrix splitting algorithms
for asymmetric and symmetric linear complementarity problems. SIAM J. Optim. 23(3), 1371–1397
(2013)

70. Schenk, O., Gärtner, K.: On fast factorization pivoting methods for symmetric indefinite systems.
Electron. Trans. Numer. Anal. 23, 158–179 (2006)

71. Schmid, C., Biegler, L.T.: Quadratic programming methods for reduced hessian sqp. Comput. Chem.
Eng. 18(9), 817–832 (1994)

72. Spellucci, P.: Solving general convex QP problems via an exact quadratic augmented Lagrangian with
bound constraints. Techn. Hochsch, Fachbereich Mathematik (1993)

73. Stefanov, S.M.: Polynomial algorithms for projecting a point onto a region defined by a linear constraint
and box constraints in Rn . J. Appl. Math. 2004(5), 409–431 (2004)

74. Vanderbei, R.J.: LOQO: an interior point code for quadratic programming. Optim. Methods Softw.
11(1–4), 451–484 (1999)

75. Williams, J.W.J.: Algorithm 232. Heapsort. Commun. ACM 7, 347–348 (1964)
76. Yuan, G., Lu, S., Wei, Z.: A modified limited SQP method for constrained optimization. Appl. Math.

1(1), 8–17 (2010)
77. Zhu, C., Rockafellar, R.T.: Primal-dual projected gradient algorithms for extended linear-quadratic

programming. SIAM J. Optim. 3(4), 751–783 (1993)

123

http://dx.doi.org/10.1007/s11590-012-0476-6

	A dual gradient-projection method for large-scale strictly convex quadratic problems
	Abstract
	1 Introduction
	1.1 Prior work and our contributions
	1.2 Notation

	2 The method
	2.1 An exact Cauchy point in Algorithm 1
	2.1.1 Sparse H
	2.1.2 Structured H

	2.2 An approximate Cauchy point in Algorithm 1
	2.2.1 Sparse H
	2.2.2 Structured H

	2.3 The subspace step in Algorithm 1
	2.3.1 Finite subspace minimizer
	2.3.2 Subspace minimizer at infinity
	2.3.3 Iterative methods

	3 The method for the general problem formulation
	3.1 A special block-diagonal Hessian

	4 Regularized problems
	5 Computational experience
	5.1 Implementation and test problems
	5.2 Evaluation of DQP

	6 Final comments and conclusions
	Acknowledgements
	References

