
Math. Prog. Comp. (2010) 2:21–57
DOI 10.1007/s12532-010-0011-7

FULL LENGTH PAPER

On solving trust-region and other regularised
subproblems in optimization

Nicholas I. M. Gould · Daniel P. Robinson ·
H. Sue Thorne

Received: 11 February 2009 / Accepted: 19 January 2010 / Published online: 10 February 2010
© Springer and Mathematical Programming Society 2010

Abstract The solution of trust-region and regularisation subproblems that arise in
unconstrained optimization is considered. Building on the pioneering work of Gay,
Moré and Sorensen, methods that obtain the solution of a sequence of parametrized
linear systems by factorization are used. Enhancements using high-order polynomial
approximation and inverse iteration ensure that the resulting method is both globally
and asymptotically at least superlinearly convergent in all cases, including the notori-
ous hard case. Numerical experiments validate the effectiveness of our approach. The
resulting software is available as packages TRS and RQS as part of the GALAHAD
optimization library, and is especially designed for large-scale problems.

Keywords Trust-region subproblem · Regularisation · Software

Mathematics Subject Classification (2000) 65F22 · 65H05 · 65K05 · 90C20 ·
90C26 · 90C30

N. I. M. Gould (B) · H. S. Thorne
Computational Science and Engineering Department, Rutherford Appleton Laboratory,
Chilton, Oxfordshire OX11 0QX, UK
e-mail: nick.gould@stfc.ac.uk

H. S. Thorne
e-mail: sue.thorne@stfc.ac.uk

D. P. Robinson
Numerical Analysis Group,
Mathematical Institute, Oxford University,
24–29 St Giles’, Oxford OX1 3LB, UK
e-mail: robinson@maths.ox.ac.uk

123

22 N. I. M. Gould et al.

1 Introduction

Given a symmetric matrix H ∈ R
n×n , a symmetric positive-definite matrix M ∈

R
n×n , a vector c ∈ R

n and positive scalars ∆, σ and p > 2, we are interested in
computing solutions of the optimization problems

minimize
x∈Rn

q(x)
def= cT x + 1

2
xT H x subject to ‖x‖M ≤ ∆ (1.1)

and

minimize
x∈Rn

r(x)
def= cT x + 1

2
xT H x + σ

p
‖x‖p

M , (1.2)

where the M-norm of x is ‖x‖M
def= √xT Mx . Both problems arise as subprob-

lems in unconstrained optimization; problem (1.1) occurs when computing the step
in trust-region methods [11,37], while (1.2) plays the same role in more recent reg-
ularisation approaches [7,29,39,49]; for the latter p = 3 is by far the most common
choice, although p < 3 has been mentioned for applications involving Hölder- but not
Lipschitz-continuous derivatives [29]. In addition, (1.1) occurs as an important sub-
problem in combinatorial optimization, e.g., [6,41] as well as in other application
areas, e.g., [5,36].

Although it is now common to try to find approximate solutions to (1.1) and (1.2)
using iterative methods [7,18,19,25,31,45,46], there are still many problems for which
a factorization of H + λM for given λ is both feasible and efficient. Our intention
here is to revisit the possibility of solving our problems using factorization, and in
particular to reassess the pioneering ideas of Gay-Moré-Sorensen [21,38] in the light
of modern sparse factorization.

In Sect. 2 we discuss optimality conditions for the trust-region subproblem and see
how they lead to a robust framework for its solution. Details are given in Sect. 3,
and here it is shown that the underlying method may always be made at least
superlinearly convergent. Theoretical and practical developments for the regulari-
sation problem (1.2) are similar [15], but for brevity we omit them here. The resulting
software is outlined in Sect. 4, and we follow by describing experiments which indicate
the effectiveness of our enhancements. We conclude and suggest future extensions in
Sect. 5.

Notation: I is the appropriately-dimensioned identity matrix, ei is its i th column, and
‖ · ‖ denotes the Euclidean norm ‖ · ‖2. We suppose that the matrix pencil (H, M)

has (necessarily real) eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn with associated eigenvectors
ui , 1 ≤ i ≤ n, and recall that the generalised Rayleigh quotient

ρM (x)
def= xT H x

xT Mx

satisfies the Rayleigh-quotient inequality λ1 ≤ ρM (x) ≤ λn for all non-zero x ; for

brevity we let ρ(x)
def= ρI (x). We denote the gap of the eigenvalue λi of the pencil to be

123

On solving trust-region and other regularised subproblems in optimization 23

gap(λi) = min
λ j �=λi

|λi − λ j |,

where by convention gap(λi) = ∞ if λ j = λi for all 1 ≤ j ≤ n.

2 Theoretical considerations

In this section, where appropriate, we reduce the problem to one for which M = I ,
and thus ‖ · ‖M = ‖ · ‖. From a theoretical viewpoint nothing is lost in general by this
since by assumption M may be decomposed as M = RT R for some non-singular R,
and problem (1.1) becomes

minimize
x∈Rn

cT x + 1

2
xT H x subject to ‖x‖ ≤ ∆

involving data c = R−T c, H = R−T H R−1 and the desired solution x = R−1x . In
practice, we may wish to avoid decomposing M and, in particular, forming H , and we
return to this when we describe practical issues. We note in passing that ‖c‖ = ‖c‖M−1

and that eigenvalues of H are generalised eigenvalues of the pencil (H, M); if u is an
eigenvector of H , u = R−1u is a generalised eigenvector of the pencil (H, M).

For any scalar λ, we let x(λ) be the (minimum-norm) solution to

(H + λI)x(λ) = −c (2.1)

whenever the system (2.1) is consistent; equivalently x(λ)
def= R−1x(λ) satisfies

(H + λM)x(λ) = −c. (2.2)

If H has eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn and a spectral decomposition H = U�U T ,
where � is the diagonal matrix of eigenvalues and U = (u1 . . . un) is the correspond-
ing orthogonal matrix of eigenvectors, it follows that

x(λ) = U y(λ), where yi (λ) = − γi

λ+ λi
and γi = uT

i c for 1 ≤ i ≤ n.

Throughout this paper we will be concerned with the behaviour of powers of the
M-norm of x(λ) as λ varies. To this end, we define

λS

def= max(0,−λ1),

and have the following general result.

Lemma 1 Let λS = max(0,−λ1), where λ1 is the leftmost eigenvalue of the pencil
(H, M), and suppose that x(λ) satisfies (2.2). Then the function

π(λ;β)
def= ‖x(λ)‖βM

123

24 N. I. M. Gould et al.

is strictly decreasing from π(λS;β) to zero and strictly convex for λ ∈ (λS,∞) when
β > 0, and strictly increasing from π(λS;β) to infinity and concave for λ ∈ (λS,∞)

when β ∈ [−1, 0).

Proof The result follows directly from [8, Lem. 2.1] since

‖x(λ)‖M = ‖x(λ)‖ = ‖y(λ)‖ =
√
√
√
√

n
∑

i=1

(
γi

λ+ λi

)2

. (2.3)

��

2.1 The trust-region problem

Quite remarkably, there is a characterisation of global optimality for the trust-region
problem (1.1).

Theorem 1 [21, Thm. 2.1], [38, Lem. 2.1] Any global minimizer x∗ of (1.1) satisfies
the equation

(H + λ∗M)x∗ = −c, (2.4)

where H+λ∗M is positive semi-definite, λ∗ ≥ 0, and λ∗(‖x∗‖M−∆) = 0. If H+λ∗M
is positive definite, then x∗ is unique.

This result is constructive. A minimizer lies strictly within the trust region only
if H is positive definite and ‖H−1c‖M < ∆, while if H is positive definite and
‖H−1c‖M = ∆ the trust-region constraint is active but effectively irrelevant at the
minimizer. Otherwise, with one notable exception—the “hard case” [38] which we
will discuss shortly—the multiplier λ∗ > λS and ‖x∗‖M = ∆. In this, by contrast
“easy” case, we seek the (unique) root of the scalar nonlinear “secular” equation

π(λ;β) ≡ ‖x(λ)‖βM = ∆β (2.5)

in the interval (λS,∞). We are helped in this task by Lemma 1, which shows that
π(λ;β) is either strictly convex and decreasing or strictly concave and increasing for
β ∈ [−1,∞)\{0}. In particular, if we partition the real line into

N def= {λ | λ ∈ (−∞, λs]} ≡ {λ | H + λM is negative semi-definite},
L def= {λ | λ ∈ (λS, λ∗]} ≡ {λ | H + λM is positive definite and ‖x(λ)‖M ≥ ∆} and

G def= {λ | λ ∈ (λ∗,∞)} ≡ {λ | H + λM is positive definite and ‖x(λ)‖M < ∆}

and denote F def= L ∪ G (see Fig. 1), both Newton’s and the secant method for (2.5)
are guaranteed to converge globally (monotonically, linearly and ultimately at least
superlinearly) to the required root if started from any value(s) in L [8, Lem. A.1].
Moreover, since this is true for all β ∈ [−1,∞)\{0}, we are at liberty to choose the

123

On solving trust-region and other regularised subproblems in optimization 25

Fig. 1 The sets N ,L and G and ‖x(λ)‖ for the problem of minimizing − 1
4 x2

1 + 1
4 x2

2 + 1
2 x1 + x2 within

a 	2-norm trust region of radius 4 (“easy” case, left) and those for − 1
4 x2

1 − 1
8 x2

2 + x2 within a trust region
of radius 5 (“hard” case, right)

β for which the Newton correction gives the best correction, and it can be shown that
this occurs when β = −1 [8, section 2.3.3]—this formalises earlier suggestions that
it might be wise to consider the secular equation 1/‖x(λ)‖M = 1/∆ with negative β,
since this avoids the poles present at λ = −λi when β > 0 [32,43]. With fast ultimate
convergence assured in the easy case, the art is thus to be able to find an initial λ ∈ L.
We return to this in Sect. 3.

The hard case may happen when uT
i c ≡ uT

i c = 0 for all i for which λi = λ1 ≤ 0.
Under these circumstances, (2.2) will be consistent when λ = λS—denote the mini-
mum norm solution in this case as xS—but if ‖xS‖ < ∆, there is no solution to the
secular equation in [λS,∞) or equivalently L is empty (again see Fig. 1). In fact
the required solution in this case is xS + αSu1, where the scalar αS is chosen so that
‖xS + αSu1‖M = ∆. Notice here that to obtain the exact solution in the hard case
requires the eigenvalue λ1, a corresponding eigenvector u1 of the pencil (H, M) and
the “trajectory” vector

xS = lim
λ→λS

x(λ)

from (2.2).

2.2 The regularisation problem

As in the trust-region case, we may characterize global optimality for the regularisation
problem (1.2).

Theorem 2 [15, Thm. 2.3] Any global minimizer x∗ of (1.2) when p > 2 satisfies the
equation

(H + λ∗M)x∗ = −c, (2.6)

123

26 N. I. M. Gould et al.

where H+λ∗M is positive semi-definite, and λ∗ = σ‖x∗‖p−2
M . If H+λ∗M is positive

definite, then x∗ is unique.

As in the trust-region case, the result suggests how to find the global minimizer of
r(x). Specifically, in all but a “hard” case, we seek the unique root λ∗ > λS of the
scalar nonlinear “secular” equation

‖x(λ)‖βM = (λ/σ)β/(p−2) (2.7)

for some appropriately chosen β. Further details are given in [15].

3 Algorithmic considerations

3.1 Matrix factorization

We aim to solve (2.2) via a factorization of the symmetric matrix H + λM . Since we
are only concerned with λ for which H + λM is positive semi-definite, Cholesky or
L DLT factorization (with permutations in the singular case) is appropriate. As we are
interested in the sparse case, symmetric permutations should be applied (implicitly)
to H + λM prior to the factorization (the “analysis” phase) in order to limit fill in the
factors. However, as a priori we do not know whether H + λM is definite, precau-
tions should be in place to report if an indefinite matrix has been encountered (and
immediately stop the factorization if this occurs). These features are common to a
number of well-known sparse, symmetric linear equation solvers—such methods are
generally reliable and effective [24,28]. We use the commercial package1 MA57 [16]
but provide a slightly-less effective alternative SILS (based on the earlier MA27 [17])
for those unable to access MA57.

3.2 The secular function and its properties

Suppose that x(λ) satisfies (2.2). We consider properties of the secular function

π(λ)
def= xT (λ)Mx(λ) ≡ ‖x(λ)‖2M . (3.1)

3.2.1 Derivatives

In order to solve the secular equations π(λ)−∆2 = 0 and π(λ)− (λ/σ)2/(p−2) = 0
by Newton-like or higher-order iteration, we need to evaluate π(λ) and its deriva-
tives. Denoting the k-th derivative with respect to λ by a superscript (k), we have the
following result.

Theorem 3 Suppose that H + λM is positive definite, that x(λ) satisfies (2.2), and

that x (0)(λ)
def= x(λ) and α0

def= 1. Then, for k = 0, 1, . . ., the derivatives of π(λ) =

1 MA57 is available without charge to academics.

123

On solving trust-region and other regularised subproblems in optimization 27

xT (λ)Mx(λ) satisfy

π(2k+1)(λ) = 2αk x (k)T (λ)Mx (k+1)(λ) (3.2)

and π(2k+2)(λ) = αk+1x (k+1)T (λ)Mx (k+1)(λ), (3.3)

where

(H + λM)x (k+1)(λ) = −(k + 1)Mx (k)(λ) (3.4)

and

αk+1 = 2
(2k + 3)

(k + 1)
αk . (3.5)

Proof It follows immediately by differentiating (2.2) that (H + λM)x (1)(λ) =
−Mx(λ) and then by induction and continued differentiation that (3.4) holds. Now
suppose that

π(2k) = αk x (k)T (λ)Mx (k)(λ);

this is true for k = 0 by definition. Differentiating gives (3.2), and a second differen-
tiation reveals

π(2k+2)(λ) = 2αk[x (k+1)T (λ)Mx (k+1)(λ)+ x (k)T (λ)Mx (k+2)(λ)]. (3.6)

But it follows from (3.4) that

(k + 1)x (k)T (λ)Mx (k+2)(λ) = −x (k+1)T (λ)(H + λM)x (k+2)(λ)

= (k + 2)x (k+1)T (λ)Mx (k+1)(λ)

and hence (3.6) gives

π(2k+2)(λ) = 2αk

(

1+ k + 2

k + 1

)

x (k+1)T (λ)Mx (k+1)(λ)

which is (3.3) and (3.5). ��
Corollary 1 Suppose that H + λM is positive definite with L DLT factorization
H + λM = L DLT . Let Ly(λ) = −c, Dz(λ) = y(λ) and LT x(λ) = z(λ). Start-
ing with x (0)(λ) = x(λ), define y(k+1)(λ), z(k+1)(λ) and x (k+1)(λ) recursively for
k = 0, 1, . . ., via

Ly(k+1)(λ) = −(k + 1)Mx (k)(λ), Dz(k+1)(λ) = y(k+1)(λ)

and LT x (k+1)(λ) = z(k+1)(λ).

123

28 N. I. M. Gould et al.

Let α0 = 1. Then, for k = 0, 1, . . ., the derivatives of π(λ) = xT (λ)Mx(λ) satisfy

π(2k+1)(λ) = 2αk x (k)T (λ)Mx (k+1)(λ) ≡ −βk y(k+1)T (λ)z(k+1)(λ)

and π(2k+2)(λ) = αk+1x (k+1)T (λ)Mx (k+1)(λ)

where

βk = 2

(k + 1)
αk and αk+1 = (2k + 3)βk .

Proof Since H+λM = L DLT , the definitions of y(k+1)(λ), z(k+1)(λ) and x (k+1)(λ)

correspond to solving (3.4) by parts. The alternative expression for π(2k+1)(λ) follows
from the identity

(k + 1)x (k)T (λ)Mx (k+1)(λ) = −(LT x (k+1)(λ))T (DLT x (k+1)(λ))

= −y(k+1)T (λ)z(k+1)(λ).

The remainder of the result follows immediately from Theorem 3. ��

Notice how each odd-power derivative of π requires a product with M and solves with
L and D, while every even powered derivative needs a solve with LT . A slight sim-
plification occurs if a Cholesky rather than L DLT factorization is used. In particular,
y(k)(λ) and z(k)(λ) are identical, and the odd-order derivatives become π(2k+1)(λ) =
−2βk‖y(k+1)(λ)‖2. Variants on this theme for regularised linear-least-squares prob-
lems have been given by Gander [20, Thm.5.1].

3.2.2 Taylor series approximations to π(λ)

Armed with derivatives of π(λ), it is now possible to contemplate Taylor series approx-
imations to π(λ;β). Consider first the special case when β = 2 and thus π(λ, 2) =
π(λ).

Theorem 4 Let π(λ) = ‖x(λ)‖2M , where x(λ) satisfies (2.2). Suppose that λC is a
given value such that λC > λS. Let πk(δ) be the k-th order Taylor series approximation
to π(λC + δ). Then

π(λC + δ) ≤ πk(δ) for even k > 0 and π(λC + δ) ≥ πk(δ) for odd k > 0 (3.7)

when δ > 0, while

π(λC + δ) ≥ πk+1(δ) ≥ πk(δ) for all k > 0 (3.8)

when λs − λC < δ < 0. The inequalities in (3.7)–(3.8) are strict whenever c �= 0.

123

On solving trust-region and other regularised subproblems in optimization 29

Proof It follows trivially from (2.3) that the j th derivative, π(j)(λ), of π(λ) is

π(j)(λ) = (−1) j (j + 1)!
n

∑

i=1

γ 2
i

(λ+ λi) j+2 . (3.9)

Thus if we define the kth order Taylor approximation

πk(δ)
def=

k
∑

j=0

π(j)(λC)

j ! δ j (3.10)

to π(λC + δ), we see from Taylor’s theorem that the error

π(λC + δ)− πk(δ) = 1

(k + 1)!π
(k+1)(λC + ξ)δk+1 (3.11)

for some ξ strictly between 0 and δ so long as δ > λs − λC. But, since (3.9) shows
that even derivatives of π(λ) are non-negative and odd derivatives non-positive for all
λC > λS, (3.11) gives (3.7) when δ > 0 and

π(λC + δ) ≥ πk(δ) for all k

when λs − λC < δ < 0. This and the relationship

πk+1(δ)− πk(δ) = (k + 2)(−δ)k+1
n

∑

i=1

γ 2
i

(λC + λi)k+3 ,

which follows from (3.9) and (3.10), give (3.8) for negative δ.
When c �= 0, at least one of the γi in (3.9) is nonzero, and this is sufficient to ensure

that the inequalities that result from (3.9) in the above arguments are strict. ��

Now suppose that τ(λ) is a given monotonically non-decreasing function on (λS,∞)

and that π(λS) > τ(λS). For example τ(λ) might be constant, e.g., ∆2 as in (2.5), or
increasing, e.g., (λ/σ)2/(p−2) as in (2.7). In this case, Lemma 1 implies that there is
a unique root, say λ∗ > λS of the equation

π(λ) = τ(λ), (3.12)

or equivalently

π(λC + δ) = τ(λC + δ). (3.13)

for the correction δ to λC.

123

30 N. I. M. Gould et al.

0.5 0.6 0.7 0.8 0.9 1 1.1
0

2

4

6

8

10

12

14

16

18

20

Fig. 2 The secular function π(λ) for the problem of minimizing − 1
4 x2

1 + 1
4 x2

2 + 1
2 x1 + x2 within an

	2-norm trust region (dashed line) along with the Taylor series approximants πk (λ− λC) of degrees k = 1
to 100 about λC = 0.75 (solid lines). Observe the threshold λB ≈ 0.98 above which no approximant is good

ConsiderλC < λ∗, in which caseπk(0) = π(λC) > τ(λC), and let δ∗
def= λ∗−λC > 0.

If k is odd, Theorem 4 implies that πk(δ∗) ≤ π(λC+ δ∗) = τ(λC+ δ∗). Thus the equa-
tion

πk(δ) = τ(λC + δ) (3.14)

has at least one root in (0, δ∗) for odd k, and Newton and other odd-degree
Taylor series methods for (3.12) based on finding corrections as positive real roots
of (3.14) will underestimate λ∗. Moreover, since τ(λC + δ) > π(λC + δ) ≥ πk(δ)

for λC + δ > λ∗, all positive roots of (3.14) give under-estimators. By contrast, if
k is even, πk(δ∗) ≥ π(λC + δ∗) = τ(λC + δ∗) and any positive root of (3.14) will
overestimate λ∗.

Now consider the alternative λC > λ∗, in which case πk(0) = π(λC) < τ(λC) and
δ∗ < 0. Theorem 4 gives that τ(λC + δ) > π(λC + δ) ≥ πk(δ) for all δ ∈ (δ∗, 0] and
thus the least-negative root (if any) of (3.14) will not lie to the right of δ∗. Moreover, as
k increases (3.8) indicates that the least-negative roots move to the right, and thus the
higher the degree of approximation used, the better the lower bound on λ∗ provided
by the least-negative root of (3.14).

We illustrate these properties in Fig. 2. Notice that, since the secular function is
not everywhere analytic, the Taylor series approximations deteriorate as δ increases
whatever degree of approximation is used. In particular there is a threshold λB—for our
example, λB ≈ 0.98—above which no approximant πk is close to π ; the actual value
depends on the distance of λC to the nearest singularity of π(λ) in the complex plane
[4, Thm. 16.20 et seq.]. This implies that the suggested root of (3.14) for odd-degree
approximations may be a poor estimate of λ∗ if λC ∈ L and τ(λB) is significantly

123

On solving trust-region and other regularised subproblems in optimization 31

smaller that π(λB). As a consequence many iterations may be required to determine
λ∗. Conversely, there appears to be good agreement for negative δ as the degree of
approximation increases, and thus scope for optimism that reasonable-order Taylor
approximations will perform well if λ ∈ G. Similar results concerning the monotonic
(and rapid) convergence of Taylor series methods for roots of more general functions,
whose derivatives satisfy appropriate sign conditions, are known [47, Thm 4.2].

There is as always a trade-off between using potentially less accurate lower order
approximants against more expensive higher-order ones. For our secular equations,
the dominant cost is likely to be in factorizing H + λM—although this will be prob-
lem/sparsity dependent—and a modest number of derivatives will incur little extra
relative cost. Thus better than-first-order (Newton)-like methods seem particularly
appealing in our context.

3.2.3 Taylor series approximations to powers of π(λ)

We now turn to the general case in which β may differ from 2, and consider the kth
order Taylor series approximation, πk(δ;β), to π(λC + δ;β) for modest values of
k ≤ 3; a higher-order analysis is possible but becomes increasingly messy and of
likely decreasing practical value given the increasing cost of evaluating derivatives.

Differentiating π(λ;β) = ‖x(λ)‖βM ≡ [π(λ)] β2 with respect to λ and using the
chain rule, we obtain

π(1)(λ;β) = β

2
[π(λ)]

β
2−1 π(1)(λ), (3.15)

π(2)(λ;β) = β

2
[π(λ)]

β
2−1 π(2)(λ)

+β

2

(
β

2
− 1

)

[π(λ)]
β
2−2

[

π(1)(λ)
]2

, (3.16)

π(3)(λ;β) = β

2
[π(λ)]

β
2−3

(

[π(λ)]2 π(3)(λ)

+3

(
β

2
− 1

)

π(λ)π(1)(λ)π(2)(λ)

+
(

β

2
− 1

) (
β

2
− 2

)
[

π(1)(λ)
]3

)

(3.17)

and

π(4)(λ;β) = β

2
[π(λ)]

β
2−4

(

[π(λ)]3 π(4)(λ)

+4

(
β

2
− 1

)

[π(λ)]2 π(1)(λ)π(3)(λ)

+3

(
β

2
− 1

)

[π(λ)]2
[

π(2)(λ)
]2

123

32 N. I. M. Gould et al.

+6

(
β

2
− 1

) (
β

2
− 2

)

π(λ)
[

π(1)(λ)
]2

π(2)(λ)

+
(

β

2
− 1

) (
β

2
− 2

) (
β

2
− 3

)
[

π(1)(λ)
]4

)

. (3.18)

From this we may deduce the following result.

Lemma 2 Let π(λ;β) = ‖x(λ)‖βM , where x(λ) satisfies (2.2). Suppose that λ > λS.
Then

(i) π(1)(λ;β) ≤ 0 for all β > 0 while π(1)(λ;β) ≥ 0 for all β < 0;
(ii) π(2)(λ;β) ≥ 0 for all β > 0 while π(2)(λ;β) ≤ 0 for all β ∈ [−1, 0);

The above inequalities are strict whenever c �= 0.

Proof Statements (i) follows directly from (3.15) and Theorem 3, while (ii) follows
from Lemma 1. ��
Theorem 5 Let π(λ;β) = ‖x(λ)‖βM , where x(λ) satisfies (2.2). Suppose that the
value λC and perturbation δ satisfy λC > λS and δ > λS − λC. Let π1(δ;β) be the
first-order Taylor series approximation to π(λC + δ;β). Then,

(i) for β > 0,

π(λC + δ;β) ≥ π1(δ;β); and (3.19)

(ii) otherwise for β ∈ [−1, 0),

π(λC + δ;β) ≤ π1(δ;β). (3.20)

The inequalities in (3.19)–(3.20) are strict whenever c �= 0.

Proof These results follow directly from the relationship π(λC + δ;β) = πk(δ;β)+
π(k+1)(λC + ξk;β)δk+1/(k + 1)! for some ξk between 0 and δ (Taylors’ theorem),
πk+1(δ;β) = πk(δ;β)+ π(k+1)(λC;β)δk+1/(k + 1)! (Taylor series) and Lemma 2.

��
There is also strong evidence that the following is true.

Conjecture 1 Let π(λ;β) and λ be as in Lemma 2. Then

(i) π(3)(λ;β) ≤ 0 for all β > 0 while π(3)(λ;β) ≥ 0 for all β ∈ [− 2
3 , 0); and

(ii) π(4)(λ;β) ≥ 0 for all β > 0 while π(4)(λ;β) ≤ 0 for all β ∈ [− 2
5 , 0).

The above inequalities are strict whenever c �= 0.

This conjecture is supported both by an unverified,2 essentially computer-generated
proof [14], and by considerable empirical evidence accrued while testing our software.
Of course, for the special case β = 2, the conjecture immediately follows from (3.9).

2 At around 250 pages, it is of course unreasonable to expect referees to corroborate such a proof.

123

On solving trust-region and other regularised subproblems in optimization 33

Theorem 6 Let π(λ;β) = ‖x(λ)‖βM , where x(λ) satisfies (2.2). Suppose that λC > λS

and let πk(δ;β) be the k-th order Taylor series approximation to π(λC + δ;β), and
suppose that Conjecture 1 is true. Then,

(i) for β > 0,

π(λC+δ;β)≤π2(δ;β) and π(λC+δ;β) ≥ πk(δ;β) for k = 1, 3 (3.21)

when δ > 0, while

π(λC + δ;β) ≥ π3(δ;β) ≥ π2(δ;β) ≥ π1(δ;β) (3.22)

when λs − λC < δ < 0; and
(ii) otherwise

π(λC + δ;β) ≤ π1(δ;β) for β ∈ [−1, 0)

π(λC + δ;β) ≥ π2(δ;β) for β ∈ [− 2
3 , 0)

π(λC + δ;β) ≤ π3(δ;β) for β ∈ [− 2
5 , 0)

(3.23)

when δ > 0, while

π(λC + δ;β) ≤ π3(δ;β) ≤ π2(δ;β) ≤ π1(δ;β) for β ∈ [− 2
5 , 0)

π(λC + δ;β) ≤ π2(δ;β) ≤ π1(δ;β) for β ∈ [− 2
3 , 0)

π(λC + δ;β) ≤ π1(δ;β) for β ∈ [−1, 0)

(3.24)

when λs − λC < δ < 0.

The inequalities in (3.21)–(3.24) are strict whenever c �= 0.

Proof Same as for Theorem 5. ��
The limiting ranges on negative β in (3.23) and (3.24) may seem inconvenient, but as
we see in Fig. 3 they may be necessary to ensure the Taylor polynomials over/under-
estimate π(λ;β).

We can repeat the discussion following Theorem 4 concerning π(λ) for the more
general function π(λ;β). For positive β, all we said about solving (3.12) remains true
for

π(λ;β) = τ(λ;β). (3.25)

In particular, if λC < λ∗, the largest positive roots of

πk(δ, β) = τ(λC + δ;β) (3.26)

for k = 1 (and k = 3 if Conjecture 1 holds) lead to under-estimators of λ∗, while if
λ∗ < λC, the least negative roots of (3.26) for k = 1 (and k = 2 and 3 if the conjecture

123

34 N. I. M. Gould et al.

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
0

0.5

1

1.5

Fig. 3 The function π(λ,−1) for the problem of minimizing− 1
4 x2

1 + 1
4 x2

2 + 1
2 x1+ x2 within an 	2-norm

trust region along with the Taylor series approximants π1(λ;−1) to π3(λ;−1) of degrees 1 to 3 about
λC = 0.55. Observe that π2(λ;β) and π3(λ;β) do not obey (3.23); magnifying the figure shows that they
also violate (3.24)

holds) will give estimates to the left of λ∗ with the best under-estimator resulting when
k = 3. If β is negative, and τ(λ;β) is a given monotonically non-increasing function
on (λS,∞) and that π(λS;β) < τ(λS;β) the same results are true, but now only so
long as β is constrained to be larger than −1 for a linear Taylor approximant (and
− 2

3 and − 2
5 , respectively, for the quadratic and cubic Taylor approximants if Conjec-

ture 1 holds). Finding the root of (3.26) for a given β and degree k as described and
adding this to λC gives what we shall call the best prediction, λk(β). We shall also
define Bk to be the interval of allowable values of β for which Taylor approximants
of degree k provide guaranteed under-estimates of λ∗; thus according to Theorems 4,
5 and 6, B1 = [−1,∞) and B3 = {2} (or B3 = [− 2

5 ,∞) if Conjecture 1 holds),
while B2 = {2} (or B2 = [− 2

3 ,∞) if the conjecture holds) when λ < λ∗ and is empty
otherwise.

Since the best prediction for each degree k and β in its allowed range gives a
viable estimate of λ∗, a natural question is which k and β gives the overall best esti-
mate of λ∗. In Fig. 4 we illustrate how the best predictions behave as a function of
β for Taylor approximations of degrees up to three in the trust-region case for which
τ(λ;β) = ∆β .

It is known for linear Taylor approximants that β = −1 is best in the trust-region
case [8, section 2.3.3]. The figure also suggests that the optimal choice for higher-
degree polynomials might occur at the lower end of their allowed β range. How this
translates for more general τ , such as for that for regularisation, is less clear, but cer-
tainly picking the best λk(β) from a sample of allowable β and k is an algorithmic
possibility.

123

On solving trust-region and other regularised subproblems in optimization 35

Fig. 4 A plot of the best prediction λk (β) of the scalar polynomial equation πk (λ;β) = ∆2β as a function
of β, for the Taylor series approximants πk (λ;β) of degrees k = 1, 2, 3 to π(λ;β) ≡ ‖x(λ)‖β about
λC = 1 for the problems of minimizing − 1

4 x2
1 + 1

4 x2
2 + 1

2 x1 + x2 within 	2-norm trust regions of radii
∆ = 5, 0.5 and 0.2

3.3 The trust-region problem

3.3.1 Finding a point in L

The standard method [21,38] for finding an initial point in L (if one exists) is to deter-
mine bounds λL ≥ 0 and λU for which λ∗ ∈ [λL, λU]. If λU > λ∗, then necessarily
λU ∈ G, while λL ∈ N ∪L. The bounds λL and λU are adjusted by iteration so that the
length of [λL, λU] shrinks by a non-trivial amount at each step and thus ultimately will
collapse to {λ∗}. If L is non-empty (the “easy case”), the interval will be adjusted a
finite number of times; as soon as a point in L has been determined, no further adjust-
ments of λL and λU are required as subsequent iterates remain in L. The cases when L
is empty (either the “hard case” or when the solution lies interior to the trust-region)
will be discussed later.

Suppose that we have found an interval [λL, λU] surrounding λ∗, but that the cur-
rent estimate λC ∈ [λL, λU] of λ∗ is not in L. If λC ∈ G, an improvement λ+ may
be sought by applying one or more iterations of a suitable root finder—Newton’s
method applied to (2.5) for β ≥ −1 is guaranteed to overshoot the root (and thus lie
in N ∪ L), but other iterations might not; we will return to this later. There are three
outcomes. With luck, λ+ ∈ L and we are done. Otherwise, we have the opportunity
to improve one of the interval bounds; the lower one if λ+ ∈ N and the upper if
λ+ ∈ G. If λC ∈ N , root-finding is unlikely to be fruitful as we lie on the wrong
side of the pole of ‖x(λ)‖. In addition—either as a by-product of the root-finding
when λC ∈ G or from some auxiliary calculation, for instance from a suitably cho-
sen Rayleigh-quotient, when λC ∈ N —we might obtain a new upper bound on λ1,
and this may lead to a further improvement in λL; again we will examine this in

123

36 N. I. M. Gould et al.

detail later. Having refined known lower and upper bounds, it remains to choose a
new estimate of λ∗ with the goal of ensuring that the bounding interval continues to
shrink at an at-worst linear rate. Many possibilities have been suggested in the past
[11, section 7.3.6], usually involving a convex and/or geometric combination of the
current bounds.

We formalize this discussion as Algorithm 3.1. The proposed formula for comput-
ing the next λC ensures that the ratio of widths of successive bounding intervals is at
most

max

[

1− θ, θ,
γ
√

λU√
λL +√λU

]

for some θ ∈ (θL, θU) ⊂ (0, 1) and γ ∈ {0, 1} [11, section 7.3.6], and thus that the
algorithm has the desired effect of ensuring finite convergence if L is non-empty.

Algorithm 3.1: Find λ ∈ L
Given initial λL ≤ λ∗ ≤ λU and λC. Set constants 0 < θL ≤ θU < 1.

Loop:

If λC ∈ L:

Exit loop with λ← λC.

Else if λC ∈ N :

Set λL ← max(λL, λC).

Possibly compute an estimate λE ≥ λ1 and if so set λL ← max(λL,−λE).

Select θ ∈ [θL, θU] and γ ∈ {0, 1}, and set

λC ← max(γ
√

λLλU, λL + θ(λU − λL)).

Else (i.e., λC ∈ G):

Set λU ← min(λU, λC).

Possibly compute an estimate λE ≥ λ1 and if so set λL ← max(λL,−λE).

Select θ1 ≤ θ2 ∈ [θL, θU] and γ1 ≤ γ2 ∈ {0, 1}, and set

λC ∈
[

max
(

γ1
√

λLλU, λL + θ1(λU − λL)
)

, max
(

γ2
√

λLλU, λL + θ2(λU − λL)
)]

. (3.27)

3.3.2 Initial values for λL and λU

To start Algorithm 3.1, we require suitable initial values λL and λU. Since the Ray-
leigh-quotient inequality and (2.2) give

(λ∗ + λ1)
2 ≤ xT∗ (H + λ∗ I)2x∗

xT∗ x∗
= ‖c‖

2

∆2 =
‖c‖2

M−1

∆2 ≤ (λ∗ + λn)
2 (3.28)

for solutions on the trust-region boundary, it follows immediately that

‖c‖M−1

∆
− λn ≤ λ∗ ≤ ‖c‖M−1

∆
− λ1. (3.29)

123

On solving trust-region and other regularised subproblems in optimization 37

For (3.29) to be useful, it is necessary to find outer bounds (i.e., a lower bound on λ1
and an upper bound on λn) on the extreme eigenvalues of the pencil (H, M). We also
know that λ∗ ≥ λS = max(0,−λ1), so any known upper bound on λ1 may be used.

Usable outer bounds when M = I are normally found from Gershgorin’s theorems
or computable overestimates of ‖H‖ such as

−min(‖H‖∞, ‖H‖F) ≤ −‖H‖ ≤ λ1 ≤ λn ≤ ‖H‖ ≤ min(‖H‖∞, ‖H‖F)

involving the infinity norm ‖H‖∞ or the Frobenius norm ‖H‖F [11, section 7.3.8],
[21,38]. For non-unit M , Gershgorin-like methods are also possible so long as M is
strictly diagonally dominant. To see this, suppose that (H − λM)u = 0 and that k is
such that |uk | ≥ |ui | for i = 1, . . . , n. In this case

(hk,k − λmk,k)uk = −
n

∑

i=1,i �=k

(hk,i − λmk,i)ui

and thus

|hk,k − λmk,k | ≤
∣
∣
∣
∣
∣
∣

n
∑

i=1,i �=k

(hk,i − λmk,i)

∣
∣
∣
∣
∣
∣

≤ oH
k + |λ|oM

k , (3.30)

where

oH
k

def=
n

∑

i=1,i �=k

|hk,i | and oM
k

def=
n

∑

i=1,i �=k

|mk,i |.

Hence the eigenvalues of (H, M) lie in the union of the regions defined by

|hk,k − λmk,k | ≤ oH
k + |λ|oM

k , k = 1, . . . , n; (3.31)

it is easy to see that each region (3.31) is a trivially computable closed interval because
M is both positive definite and strictly diagonally-dominant and thus mk,k > oM

k . Thus
outer bounds may easily be found by computing the extrema of each of these interval
bounds, and gives

λL = min
1≤k≤n

(
hk,k − oH

k

mk,k − oM
k
,

hk,k − oH
k

mk,k + oM
k

)

and λU = max
1≤k≤n

(
hk,k + oH

k

mk,k − oM
k
,

hk,k + oH
k

mk,k + oM
k

)

.

This technique fails if M is not strictly diagonally dominant as then at least one of
the sets defined by (3.31) may be unbounded; it is not clear to us how to get suitable
outer bounds in this case. Note also that the first inequality in (3.30) may provide a
tighter bound albeit at a slightly higher computational cost. It is also possible to apply
optimized diagonal scalings, as suggested by Gay [21], to improve the interval bounds,
but we have not done so.

123

38 N. I. M. Gould et al.

In exceptional cases finding λ1 may be practicable—for example, if H is tri-diago-
nal and M = I , the Lanczos method is a possibility. But usually the cost of computing
λ1 is high, and an upper bound is preferable. Suitable bounds may be deduced from
the Rayleigh-quotient inequality λ1 ≤ ρM (x) for especially chosen x . In particular, if
HS and MS are symmetric sub-matrices of H and M , if λS1 is the leftmost eigenvalue of
the pencil (HS, MS) with associated eigenvector uS, then appropriately padding uS with
zeros to obtain a vector u ∈ R

n , we have that λ1 ≤ ρM (u) = uT
S HSuS/uT

S MSuS = λS1.
Thus, for example, considering one-by-one symmetric sub-matrices gives the bound

λ1 ≤ min
1≤i≤n

hi,i/mi,i .

3.3.3 New estimates from G

Next we suppose that we have found a λC ∈ G and now wish to find an improvement
λ+. Since x(λ) exists and thus the value and derivatives of π(λ;β) may be computed,
the obvious idea outlined in Sect. 3.2.3 is to estimate the root of (2.5) by replacing
π(λ;β) by its k-th order Taylor approximant πk(δ;β) for some suitable β. As we
mentioned in Sect. 3.2.3, every estimate found in this way must lie in N ∪ L, and to
encourage the estimate to lie in L ideally we should pick the largest best prediction,

max
k∈N,β∈Bk

λk(β),

where the best prediction λk(β) is as defined on p. 34. In practice, the computationally
viable under-estimate λ+ = λT for

λT = max

(

λ1(−1), λ2

(

−2

3

)

, λ3

(

−2

5

))

(3.32)

seems to suffices—of course, unless one accepts Conjecture 1, only a guaranteed
estimate such as

λT = max (λ1(−1), λ2(2), λ3(2)) (3.33)

should really be used; although we have never observed an instance for which (3.32)
is inappropriate, a precaution to use (3.33) should (3.32) fail is imposed. Note addi-
tionally that such a λT may be used to improve λL.

Since we cannot be sure that λ+ ∈ L, we might at the same time try to improve the
current lower bound λL. More specifically, we aim to construct a close upper bound
λE on λ1. As we already have a factorization of H + λC M , we reuse this to apply one
or more inverse iterations

u ← (H + λC M)−1 Mu, u ← u/‖u‖M (3.34)

to estimate the extreme eigenvector of (H, M), and then use the Rayleigh quotient
λE = ρM (u) as our estimate of λ1. Although the starting vector u used is not critical,

123

On solving trust-region and other regularised subproblems in optimization 39

it is prudent to use the result from the last λ calculation (if any) as this is already an
approximation to the desired eigenvector. We will return to this in Sect. 3.3.6.

An alternative is to use the so-called LINPACK technique to provide a suitable
estimate of u1; this is a vital component of Moré and Sorensen’s [38] method and
meshes well with their goal to provide a usable, low accuracy solution to (1.1). The
LINPACK technique depends crucially on the ability to intercept and alter compo-
nents of the solution to linear systems involving the Cholesky or L DLT factors of
H+λC M and specially-crafted right-hand sides as the solution-process proceeds [10].
Unfortunately this limits its utility for modern sparse-factorization packages, where
the factors are generally hidden from the user, and thus the LINPACK technique forms
no part of our algorithm.

Another possibility is to use the method at the heart of the LAPACK condition
number estimator [30,33] to provide a lower bound λH, say, on ‖(H + λC I)−1‖1. We
may then use the inequalities

1

λ+ λC

≥ ‖(H + λC I)−1‖2 ≥ ‖(H + λC I)−1‖1√
n

≥ λH√
n

to derive the upper bound

λ1 ≤ √n/λH − λC

on λ1. The LAPACK method, like the LINPACK technique, uses multiple applications
of the Cholesky or L DLT factors of H+λC M to provide the estimate λH. This method
has been used successfully in the trust-region context [22, section 5], but as we see
little advantage over (3.34) we have not tried it.

3.3.4 New estimates from N

If λC ∈ N , it lies to the left of the rightmost pole of π(λ) and there is little point in
using Taylor series approximations to try to estimate λ∗. Moreover, since we use the
failure of the factorization to identify that λC ∈ N , we are unable to use the factors
to apply inverse iteration to estimate λ1—even if we had used an indefinite factoriza-
tion, there would of course be no guarantee that inverse iteration from an arbitrary
−λC > λ1 would converge to the desired eigenvalue. However, as Gay [21] points out,
an LDLT or Cholesky factorization will continue so long as the leading sub-matrix
of H + λC M is positive definite, and the factors generated up until this point may
be used to improve the upper bound on λ1. Specifically, if failure first occurs when
factorizing the k by k sub-matrix of H + λC M , this sub-matrix may be factorized as
Lk Dk LT

k , where Lk is k by k unit lower triangular and Dk = diag(di,i), 1 ≤ i ≤ k,
with dk,k ≤ 0. If yk satisfies LT

k yk = ek and wk = (yT
k 0)T , it follows that

wT
k (H + λC M)wk = yT

k Lk Dk LT
k yk = dk,k ≤ 0,

123

40 N. I. M. Gould et al.

and hence

ρM (wk) = dk,k

wT
k Mwk

− λc

provides an upper bound on λ1 which may be used to improve λL. In practice, a partial
factorization of H + λC M—or more especially the means to find yk—is not always
easy to recover from sophisticated sparse factorization packages; we are currently
discussing this need with the authors of MA57/MA27.

3.3.5 Improving an estimate in L

Once we have found λC ∈ L, fast (quadratic) convergence is assured using Newton’s
method. However, as we discussed in Sect. 3.2.3, there is an opportunity to get even
faster convergence using a higher-order Taylor approximation to generate an improve-
ment λ+. In particular, we know that the approximation π2k+1(δ) ≡ π2k+1(δ, 2)

underestimates π(λC + δ) ≡ π(λC + δ; 2), and the best prediction λ2k+1(2) (see
p. 34) computed from the largest root of π2k+1(δ) = ∆2 will lead to a globally con-
vergent method with asymptotic Q-order 2k+2 (see Theorem A.8); largest roots from
π2k+1(δ;β) = ∆β for other β ∈ B2k+1 may be better. Ideally, the impractical

max
k∈N,β∈B2k+1

λ2k+1(β)

would be chosen, but λ+ = λT for

λT = max

(

λ1(−1), λ3(2), λ3

(

−2

5

))

(3.35)

will give quartic global convergence, which suffices for all practical purposes. Again,
in theory the guaranteed value

λT = max (λ1(−1), λ3(2))

should be used, but in practice we only use this if (3.35) lies in G. For completeness,
we summarize the resultant algorithm as follows:

Algorithm 3.2: Given λ ∈ L, find an estimate of λ∗.
Given initial λ ∈ L and some small ε > 0.
Loop:

Compute

λ+ = max (λ1(−1), λ3(2)).

If |λ+ − λ| ≤ ε

exit loop with λ∗ ← λ+.

Else

set λ← λ+.

123

On solving trust-region and other regularised subproblems in optimization 41

If the cost of multiplications by M and solves with L and LT are significantly cheaper
than factorization of H +λM , higher-order roots λ2k+1(β) for k > 1 might be added.

3.3.6 Fast convergence in the hard case

We now consider an inverse-iteration/Rayleigh-quotient-based algorithm for comput-
ing approximations to−λ1 that are asymptotically greater than−λ1. In the easy case,
the algorithm generates iterates that will ultimately lie in L, but the main purpose is
to cope with the hard-case or near hard-case when |L| may be quite small.

Algorithm 3.3: Potential hard case.

Given λA
0 > −λ1 and z0 such that ‖z0‖M = 1. Set real constants 0 < ωL ≤ ωU, 0 < γU ≤ 1 and

1 < γL ≤ 2− γU, and integer constant 1 ≤ nu ≤ ∞.

For k = 0 until converged

Choose 1 ≤ nk ≤ nu. [number of inverse iterations]

Initialize w0 = zk .

For i = 1 : nk [inverse iteration]

Set wi = (H + λA
k M)−1 Mwi−1 and normalize wi ← wi /‖wi‖M .

Set zk+1 = wnk and compute ρM (zk+1) = zT
k+1 H zk+1. [Rayleigh quotient]

Choose ωk ∈ [ωL, ωU] and γk ∈ [γL, 2nk − γU].
Set λA

k+1 = −ρM (zk+1)+ ωk
(

λA
k + ρM (zk+1)

)γk .

Algorithm 3.3 assumes that an initial estimate λA
0 is available that satisfies λA

0 >

−λ1, i.e., λA
0 ∈ G region. The algorithm then repeats the following steps until conver-

gence. First, a positive integer nk is chosen which represents the number of inverse
iterations that will be performed. Next, the requested number of inverse iterations are
computed using −λA

k as the fixed estimate of λ1 and results in a new best approx-
imation zk+1 to (−/+)u1—for simplicity, in this discussion we presume that λ1 has
algebraic multiplicity one, although our analysis below does not require this. The
second-order Rayleigh-quotient ρM (zk+1) is then computed to (over-)estimate λ1.
Values ωk ∈ [ωL, ωU] and γk ∈ [γL, 2nk − γU] are now assigned; the restrictions
imposed by ωL and 2nk − γU are required to guarantee (ultimately) that λA

k > −λ1,
while the restrictions ωk ≤ ωU and γk ≥ γL > 1 are needed to ensure that the
sequence {λA

k } is monotonically decreasing (see Lemma 5). Using these, an improved
estimate λA

k+1 of −λ1 is computed with the aim of being greater than −λ1 and thus
in F ; this is in contrast to the negative of the Rayleigh-quotient estimate−ρM (zk+1),
which is always less than −λ1 and thus lies in the N region. The exact form of
the correction is chosen so that it does not interfere with the superlinear conver-
gence of the Rayleigh-quotient iteration, but at the same time is ultimately large
enough to ensure that iteration converges from G in the hard case. This process is
then repeated.

Numerous standard results relating to both inverse iteration and the Rayleigh quo-
tient may be found in [12,40,48]; for simplicity, these results typically assume that the

123

42 N. I. M. Gould et al.

eigenvalue for which convergence occurs is simple and that M = I . Lemmas 3 and 4
extend two of these results to the generalized eigenvalue problem and they account for
the possibility that eigenvalues may not be simple. The analysis that follows may be
simplified if we consider the iteration in the scaled variables zk = Rzk and wi = Rwi ,
in which case the iteration becomes

Initialize w0 = zk .
For i = 1 : nk

Set wi = (H + λA
k I)−1wi−1 and normalize wi ← wi/‖wi‖.

Set zk+1 = wnk and compute ρ(zk+1) = zT
k+1 H zk+1.

Lemma 3 Let λ1 be the left-most eigenvalue of the pencil (H, M) with corresponding
eigenspace eig(λ1). Then

|ρM (x)− λ1| = O(‖x − u‖2)

as x → u for any u ∈ eig(λ1).

Proof The proof follows by applying [48, see p. 204] to the transformed problem in
the “bar” variables and then transforming back. ��
Lemma 4 Let λ1 be the left-most eigenvalue of the pencil (H, M) with corresponding
eigenspace eig(λ1). Define n1 = max{i : λi = λ1} and assume that gap(λ1) < ∞.
Suppose that inverse iteration is applied to an initial vector z0 =∑n

i=1 αi ui such that
z0 �⊥ eig(λ1) and with eigenvalue approximation µ that satisfies |λ1−µ| < gap(λ1)/2.
If {zk} denotes the sequence of inverse iterates, then there is a constant � for which

|zk − (−/+)u| ≤ �

∣
∣
∣
∣

µ− λ1

µ− λJ

∣
∣
∣
∣

k

and |ρM (zk)− λ1| ≤ �

∣
∣
∣
∣

µ− λ1

µ− λJ

∣
∣
∣
∣

2k

for all k ≥ 1, where λJ is defined by |λJ − λ1| = gap(λ1) and

u =
∑n1

i=1 αi ui

‖∑n1
i=1 αi ui‖M

,

and where the (−/+) means that for each value of k either the plus or the minus applies.

Here the statement z0 �⊥ eig(λ1) should be interpreted to say that zT
0 Mu �= 0 for

all u ∈ eig(λ1).

Proof Essentially, the proof follows from [48, see pp. 204–207]. Specifically, we may
apply [48, Thm 27.2]—taking multiple eigenvalues into account—to the transformed
problem in “bar” variables and then transform back. ��
We note that in the previous lemma, the assumption that gap(λ1) < ∞ was used to
make the lemma easier to state. If gap(λ1) = ∞, then λ1 has multiplicity n and every
vector in R

n is an eigenvector associated with λ1. Therefore, z0 is an eigenvector
associated with λ1 and ρM (z0) = λ1.

The next lemma gives two important properties of the sequence {λA
k } generated by

Algorithm 3.3.

123

On solving trust-region and other regularised subproblems in optimization 43

Lemma 5 Let λ1 be the left-most eigenvalue of the pencil (H, M). Then the sequence
{λA

k } generated by Algorithm 3.3 satisfies

(i) λA
k+1 < λA

k and
(ii) λA

k+1 > −λ1

for all k ≥ 0 provided λA
0 is sufficiently close to −λ1.

Proof Suppose that λA
k satisfies

0 < �(λA
k + λ1)

γU/κ ≤ ωL/2, where κ
def= min

(

1, gap(λ1)2nu

)

, (3.36a)

|λA
k + λ1| < 1, and (3.36b)

0 < λA
k + ρM (zk+1) = (λA

k + λ1)+ (−λ1 + ρM (zk+1))

< min
(

1, ω−1/(γL−1)
U

)

. (3.36c)

Using condition (3.36c), the inequalities ωk ≤ ωU and γk ≥ γL, and the definition of
λA

k+1, we may write

λA
k+1 = −ρM (zk+1)+ ωk

(

λA
k + ρM (zk+1)

)γk

≤ −ρM (zk+1)+ ωU

(

λA
k + ρM (zk+1)

)γL

< −ρM (zk+1)+ λA
k + ρM (zk+1) = λA

k ,

so that part (i) holds for all λA
k satisfying (3.36). Moreover, we have

λA
k+1 + λ1 = −ρM (zk+1)+ λ1 + ωk

(

λA
k + ρM (zk+1)

)γk (3.37)

≥ −�

(
λA

k + λ1

gap(λ1)

)2nk

+ ωk(λ
A
k + λ1)

γk (3.38)

= (λA
k + λ1)

γk

(

ωk − �(λA
k + λ1)

2nk−γk

gap(λ1)2nk

)

(3.39)

≥ (λA
k + λ1)

γk

(

ωL − �(λA
k + λ1)

γU

κ

)

(3.40)

≥ 1

2
ωL(λ

A
k + λ1)

γk > 0. (3.41)

Equation (3.37) follows from the definition of λA
k+1, while inequality (3.38) follows

from Lemma 4 and the inequality λA
k +ρM (zk+1) ≥ λA

k +λ1. The relationships (3.39)–
(3.41) follow from factorization, the restrictions that ωL and γU place on ω0 and γ0,
and (3.36a)–(3.36b). Therefore, part (ii) holds for all λA

k satisfying (3.36).
Finally, we show by induction that λA

k satisfies (3.36) for all k ≥ 0. First, note that
Lemma 4 guarantees that (3.36) will hold for λA

0 by choosing λA
0 sufficiently close to

−λ1. Now suppose that λA
k satisfies (3.36). In then follows from (i) and (ii) that λA

k+1
will also satisfy (3.36). This completes the induction step. ��

123

44 N. I. M. Gould et al.

Theorem 7 Let λ1 be the left-most eigenvalue of the pencil (H, M). Suppose that
there exists positive constants γ̄ and n̄ such that γk = γ̄ and nk = n̄ for all k suffi-
ciently large. Then the sequence {λA

k } generated by Algorithm 3.3 converges to −λ1
with Q-rate equal to γ̄ , provided λA

0 is chosen sufficiently close to −λ1.

Proof For k sufficiently large and λA
0 sufficiently close to −λ1, we have

|λA
k+1 + λ1| = | − ρM (zk+1)+ λ1 + ωk

(

λA
k + ρM (zk+1)

)γ̄ | (3.42)

≤ | − ρM (zk+1)+ λ1| + ωk |λA
k + ρM (zk+1)|γ̄ (3.43)

≤ | − ρM (zk+1)+ λ1| + 2γ̄ ωk |λA
k + λ1|γ̄ (3.44)

≤ �

∣
∣
∣
∣

λA
k + λ1

gap(λ1)

∣
∣
∣
∣

2n̄

+ 2γ̄ ωU|λA
k + λ1|γ̄ (3.45)

=
[

�(λA
k + λ1)

2n̄−γ̄

gap(λ1)2n̄ + 2γ̄ ωU

]

|λA
k + λ1|γ̄ (3.46)

≤
[
�(λA

0 + λ1)
γU

gap(λ1)2n̄ + 2γ̄ ωU

]

|λA
k + λ1|γ̄ = c|λA

k + λ1|γ̄ , (3.47)

where

c = �(λA
0 + λ1)

γU

gap(λ1)2n̄ + 2γ̄ ωU and � was defined in the statement of Lemma 4.

Equations (3.42) and (3.43) follow from the definition of λA
k+1 and the triangle inequal-

ity. Equation (3.44) follows from the inequality λA
k + ρM (zk+1) ≤ 2(λA

k + λ1), which
follows from Lemma 4 for λA

0 sufficiently close to −λ1. Equations (3.45) and (3.46)
follow from Lemma 4, the definition of gap(λ1), the inequality ωk ≤ ωU, and factor-
ization. Finally, Eq. (3.47) follows from the properties of {λA

k } described in Lemma 5
and definition of γk . ��
This theorem essentially says that we can obtain any Q-order convergence we wish at
the expense of performing an ever increasing number of inverse iterations. More pre-
cisely, we can obtain the Q-convergence “goal” γ̄ by setting γk = γ̄ and consequently
choosing nk , the number of inverse iterations performed, to satisfy 2nk −γU > γ̄ (this
should be done for all k sufficiently large). For example, we could obtain superlin-
ear convergence by ultimately setting γk = 1.5 and by performing a single inverse
iteration (nk = 1), or we could obtain super-cubic-convergence by ultimately setting
γk = 3.5 and by performing two steps of inverse iteration (nk = 2).

A reasonable implementation would be to use Algorithm 3.3 once λU − λL is rela-
tively small. In the easy case, Algorithm 3.3 will quickly produce an iterate that lands
in the L-region, while in the hard-case the algorithm converges rapidly to −λ1 = λs .
We also note that the algorithm produces iterates zk that approximate the eigenspace
associated with λ1, which is required for computing a solution to problem (1.1) in the
hard-case. Initially, using a single step of inverse iteration with γk ≈ 1.5 is reason-
able. In general, this will force λ+ into L rapidly, with subsequent fast convergence

123

On solving trust-region and other regularised subproblems in optimization 45

as described in Sect. 3.3.5. If the hard-case is suspected, it may be wise to increase
γk from 1.5 to 3 and to perform two steps of inverse iteration, but only after the value
γk = 1.5 has been “successful”; the resultant cubic-convergence seems sufficient for
all practical purposes.

Formally, if λC ∈ G, we compute a new estimate λ+ as follows. Let λT be the
Taylor series under-estimate (3.32), let λE be the closest upper bound of λ1 found so
far, let γ̄ be the desired order of convergence in the hard case, and let θG and θH be
given constants in (0, 1) and ωL > 0—for example, in practice we use θG = 0.5 = θH

and ωL = 1. Then whenever |λC + λE| ≤ θHλC, we suspect we might be in the hard
case, so use the Rayleigh quotient ρM (zk+1) to try to improve λE and λL by assigning
λE ← min(λE, ρM (zk+1)) and λL ← max(λL,−λE), and subsequently set

λ+ = min

(

λL + θG(λC − λL), max

(

λT, λL,−λE + ωL

(
λC + λE

λC

)̄γ
))

(3.48)

so as to mimic Algorithm 3.3. Otherwise, if λT ≥ λL, the Taylor estimate gives the
best estimate in F found so far, and we assign

λ+ = λT. (3.49)

If neither happens, we simply revert to improving the interval of uncertainty by setting

λ+ = λL + θG(λC − λL). (3.50)

3.3.7 Interior solution, sequences of related problems and initial values

The one remaining issue is when, if at all, to test for the possibility that the solution
to (1.1) lies interior to the trust region, and thus that the required λ∗ = 0. Clearly this
is impossible if λL > 0, so any investigation should be delayed until the initial λL has
been computed [38].

In a trust-region context, a sequence of problems of the form (1.1) will be solved.
There will generally be two possibilities. In the first, the data H and c will be
unchanged, but ∆ will have been reduced to ∆+. Define the usual sets G,L and
N with respect to λ, and let G+,L+ and N+ be their analogs with respect to λ+. In
this case, if the previous λ− ∈ L ∪ {λS}, then λ− ∈ L+ and is a good starting point
for the new problem. Potentially better, λ may have been sampled at points λ+ > λ−
when solving the previous problem, and corresponding values of π(λ+) will be known.
Thus finding the largest previous λ+ for which π(λ+) ≥ ∆+ will also give a value
in L+. The other possibility is that H and c might have changed but ∆+ ≥ ∆. Little
useful information is then available, but as a heuristic starting from λ− is a possibility;
if small changes to H and c have occurred, it is likely that λ− ∈ G+.

In the absence of better initial information, we simply choose the initial λ as 0 if
λL = 0, and as

123

46 N. I. M. Gould et al.

λC = max
(

γ
√

λLλU, λL + θ(λU − λL)
)

(3.51)

for some θ ∈ (0, 1) and γ ∈ {0, 1} (c.f., Algorithm 3.1) otherwise.

3.3.8 Summary

In summary, our complete algorithm is as follows. First choose λL and λU as Sect. 3.3.2.
If λL = 0 choose the initial estimate λC = 0, but otherwise use (3.51). Now use Algo-
rithm 3.1 to try to find a λ ∈ L, choosing the new estimate when λC ∈ G by projecting
λ+ from (3.48)–(3.50) as appropriate into the interval (3.27), and finding approxima-
tions to λE as mentioned in Sect. 3.3.3 and 3.3.4. If Algorithm 3.1 succeeds, use the
resulting λ as input to Algorithm 3.2 to find an approximation to λ∗. If by contrast,
λU − λL < ε for some specified small ε > 0 in Algorithm 3.1, terminate with the
approximate hard-case estimate λ∗ = 1

2 (λl + λu).

3.3.9 Early termination

While our current implementation iterates to find a highly-accurate solution, there is
no reason why a lower-accuracy estimate along the lines of those proposed by Moré
and Sorensen [38] or Gertz and Gill [22, Section 5] should not be produced. Gertz and
Gill [22, Lem. 5.2], based on [38, Lem. 3.4], show that any x = x(λ) + u for which
‖x(λ)+ u‖M ≤ (1+ η)∆ and

uT (H + λM)u ≤ η(2− η)
[

xT (λ)(H + λM)x(λ)+ λ∆2
]

(3.52)

for some (possibly zero) u and (small) η ∈ (0, 1) gives a suitable approximate solution
to (1.1). These rules may be applied to terminate our algorithm: we reduce the interval
[λL, λU] until either ‖x(λ)‖M ≤ (1+η)∆ (in which case u = 0 suffices), or ultimately,
if the hard-case occurs, the eigenvector estimates u = zk generated by Algorithm 3.3
will satisfy (3.52).

4 Software and numerical experiments

The ideas developed in this paper have been implemented as a pair of thread-safe For-
tran 95 packages—respectively, TRS and RQS for problems (1.1) and (1.2)—as part
of version 2.3 of the GALAHAD optimization library3 [27]. The packages provide a
number of options. The matrix H (and optionally M) may be given in a variety of
sparse and dense matrix formats. The highest degree of the Taylor polynomials used
may be specified (up to three), as may the number of inverse iterations performed.
Iterative refinement may be used when solving (2.2), and this is particularly impor-
tant in the “hard” or “nearly hard” cases since then (2.2) may be very ill conditioned.
Any a priori knowledge of initial λL, λU and λ may optionally be provided, and this

3 Available from http://galahad.rl.ac.uk/galahad-www/.

123

http://galahad.rl.ac.uk/galahad-www/

On solving trust-region and other regularised subproblems in optimization 47

proves useful when a sequence of problems is solved. Finally, there is an option to
replace the trust region constraint in TRS by the equation ‖x‖M = ∆ since there is
currently much interest in solving optimization problems on Riemannian manifolds
including the hyper-ellipsoid [1,2]; in this case there is no longer the requirement that
λ be positive, merely that λ ≥ −λ1, and the algorithm is adapted in the obvious way.
Currently the possible improvement when λC ∈ N mentioned in Sect. 3.3.4 has not
been implemented, as we await the necessary features from the sparse factorization
packages we are using.

As a comparison, we use the MINPACK-2 package4 dgqt which is an imple-
mentation of the Moré-Sorensen [38] approach; we slightly modified this software to
record and print required details, and to allow consistent stopping rules (namely, (4.1)
and (4.2) below).

By way of a simple example, consider the data

H =
⎛

⎝

1 0 4
0 2 0
4 0 3

⎞

⎠ , c1 =
⎛

⎝

5
0
4

⎞

⎠ , c2 =
⎛

⎝

0
2
0

⎞

⎠ , and c3 =
⎛

⎝

0
2

0.0001

⎞

⎠

with M = I and ∆ = 1. If we pick c = c1, the resulting problem (1.1) is an example
of the “easy case”. By contrast, c = c2 gives rise to the “hard case”, and c = c3 is
the “nearly hard case”. By default, TRS picks its initial value of λ automatically as
described in Sect. 3.3.7. Running TRS when c = c1 and stopping as soon as

|‖x(λ)‖ −∆| < 10−12 max(1,∆) (4.1)

gives

it lambda_l lambda lambda_u
G 1 2.123105625617661E+00 4.468089744720383E+00 4.468089744720383E+00

it ||x||-radius lambda d_lambda
L 2 3.479156233026082E-04 3.999056146822190E+00 0.000000000000000E+00
L 3 9.769962616701378E-15 3.999999999999973E+00 9.438531777834491E-04
Normal stopping criteria satisfied
3 factorizations. Solution and Lagrange multiplier = -4.5000E+00 4.0000E+00

Here the characters G and L indicate that the current value of λ lies in the G
and L regions, respectively, while lambda_l, lambda_u, ||x||-radius and
d_lambda are, respectively, the current λL and λU, the residual |‖x(λ)‖−∆| and the
change in λ. By contrast dgqt (started with the same initial λ) yields

it lambda_l lambda lambda_u
G 1 0.000000000000000E+00 4.468089744720383E+00 4.468089744720383E+00

it ||x||-radius lambda d_lambda
L 2 1.398428589050060E-02 3.962817739881419E+00 3.693192836831821E-02
L 3 9.224016079900643E-05 3.999749668249738E+00 2.503204418455550E-04
L 4 4.166259115478965E-09 3.999999988691583E+00 1.130841750579190E-08
L 5 0.000000000000000E+00 4.000000000000001E+00 0.000000000000000E+00
5 factorizations. Solution and Lagrange multiplier = -4.5000E+00 4.0000E+00

4 Available from ftp://info.mcs.anl.gov/pub/MINPACK-2/gqt/.

123

ftp://info.mcs.anl.gov/pub/MINPACK-2/gqt/

48 N. I. M. Gould et al.

Notice how using the higher (third)-order Taylor model improves the ultimate rate
of convergence; this is both typical in practice in the “easy case”, and to be expected;
as confirmation, when TRS is run with just the traditional (first-order) Taylor model,
it too requires 5 factorizations.

Running TRS when c = c2 and stopping as soon as

λU − λL < 10−12 max(1, λU) (4.2)

gives
it lambda_l lambda lambda_u

G 1 2.123105625617661E+00 3.258147959821393E+00 3.258147959821393E+00
G 2 2.123105625617661E+00 2.328723983198157E+00 2.328723983198157E+00
G 3 2.123105625617661E+00 2.123310177530242E+00 2.123310177530242E+00
G 4 2.123105625617661E+00 2.123105625617669E+00 2.123105625617669E+00
G 5 2.123105625617661E+00 2.123105625617661E+00 2.123105625617669E+00
Hard-case stopping criteria satisfied. Interval width = 8.8818E-15
4 factorizations. Solution and Lagrange multiplier = -1.5466E+00 2.1231E+00

By contrast dgqt (again started with the same initial λ) yields

it lambda_l lambda lambda_u
G 1 0.000000000000000E+00 3.258147959821393E+00 3.258147959821393E+00
G 2 2.026074553757914E+00 2.569289916255538E+00 2.569289916255538E+00
G 3 2.102919568297307E+00 2.324437575312084E+00 2.324437575312084E+00
.
G 36 2.123105625617661E+00 2.123105625639012E+00 2.123105625639012E+00
G 37 2.123105625617661E+00 2.123105625628336E+00 2.123105625628336E+00
G 38 2.123105625617661E+00 2.123105625622999E+00 2.123105625622999E+00
38 factorizations. Solution and Lagrange multiplier = -1.5466E+00 2.1231E+00

Notice now how the inverse Rayleigh-quotient iteration and improved lower bound
on λ obtained using the higher (second- and third)-order Taylor models dramatically
improves convergence; in the absence of better lower bounds dqdt essentially reverts
to bisection to ensure convergence. Once again TRS is superlinearly convergent, and
the performance indicated is typical in practice in the “hard case”.

Finally, running TRS when c = c3 and stopping as for the previous case, we obtain

it lambda_l lambda lambda_u
G 1 2.123105625617661E+00 3.258147960635930E+00 3.258147960635930E+00

G 2 2.123105625617661E+00 2.328723983342385E+00 2.328723983342385E+00

G 3 2.123105625617661E+00 2.123310177530700E+00 2.123310177530700E+00
it ||x||-radius lambda d_lambda

L 4 2.275299065674614E-01 2.123160201503088E+00 0.000000000000000E+00
L 5 5.309901864716249E-04 2.123175951499089E+00 1.574999600073568E-05

G 6 2.611244553918368E-13 2.123176000326642E+00 4.882755266777394E-08

Normal stopping criteria satisfied
6 factorizations. Solution and Lagrange multiplier = -1.5467E+00 2.1232E+00

By comparison, for dgqt, we find

it lambda_l lambda lambda_u
G 1 0.000000000000000E+00 3.258147960635930E+00 3.258147960635930E+00
G 2 2.026074553651017E+00 2.569289916508920E+00 2.569289916508920E+00
G 3 2.102919568276703E+00 2.324437575415315E+00 2.324437575415315E+00
.
G 12 2.123105561462512E+00 2.123463910456750E+00 2.123463910456750E+00
G 13 2.123105609581684E+00 2.123284752461381E+00 2.123284752461381E+00

123

On solving trust-region and other regularised subproblems in optimization 49

G 14 2.123105621609018E+00 2.123195185146074E+00 2.123195185146074E+00
it ||x||-radius lambda d_lambda

L 15 2.402191047985047E-02 2.123173864436229E+00 2.113422099896687E-06
L 16 2.442362429893041E-04 2.123175977858329E+00 2.246578161241124E-08
L 17 2.750231753445576E-08 2.123176000324110E+00 2.530956130439299E-12
L 18 3.371303236576750E-12 2.123176000326641E+00 3.102986617653514E-16

it lambda_l lambda lambda_u
G 19 2.123176000326641E+00 2.123176000326642E+00 2.123176000326642E+00
19 factorizations. Solution and Lagrange multiplier = -1.5467E+00 2.1232E+00

Here TRS immediately refines the lower bound on the interval of uncertainty to
obtain a λ in L, and thereafter converges rapidly to the required root. By contrast, the
linear Taylor model used by dgqt is less able to find a good λL, and this results in a
number of essentially bisection steps until L is reached. This again is indicative of the
behaviour of the methods in practice in the “nearly hard case”. As a further compari-
son, when TRS is restricted to first- and second-order Taylor models, it requires 9 and
8 factorizations, respectively.

We should be cautious not to infer too much from these examples, particularly
as dgqt was originally designed to terminate fast with a low-accuracy but usable
solution. However, they do illustrate well the new design features we have added.

To see more generally the effect of improved convergence in both easy and hard
cases, we consider all the unconstrained problems contained in the CUTEr [26] test
set; we restrict our attention to those problems involving 2000 or fewer variables, since
the dense Cholesky factorization used by dgqt struggles with larger cases, and this
leads to 97 examples. We construct instances of (1.1) by setting c = ∇x f (x0) and
H = ∇xx f (x0) for the given objective function f (x) and starting point x0; a spherical
trust-region of radius 1 is used. We provided the same initial “guess” λ = 0 for both
packages.

In Table 1 we report the number of factorizations required by TRS and dgqt on
each problem; the algorithms terminate as soon as either (4.1) or (4.2) occurs. We also
provide a graphical interpretation of this data using performance profiles of the fac-
torization counts in Fig. 5; briefly, given a set of test problems and a set of competing
algorithms, the i-th performance profiles pi (α) indicates the fraction of problems for
which the i-th algorithm is within a factor α of the best for a given metric—see [13]
for a formal definition of performance profiles and a discussion of their properties.

Both the detailed and summary results indicate the improvements offered by the
enhancements discussed in this paper. In most cases, the number of factorizations
falls, and for those cases where dgqt requires fewer factorizations, TRS is usually
not significantly worse. The average number of factorizations required over all of
these examples by TRS is 3.7 compared to 4.7 for dgqt. The worst performance is
for problem GROWTHLS, and in detail we see the following for TRS:

it lambda_l lambda lambda_u
N 1 0.000000000000000E+00 0.000000000000000E+00 6.516158914938158E+06
G 2 0.000000000000000E+00 3.258079457469079E+06 3.258079457469079E+06
G 3 0.000000000000000E+00 3.258079457469079E+04 3.258079457469079E+04
G 4 0.000000000000000E+00 3.258079457469079E+02 3.258079457469079E+02
N 5 0.000000000000000E+00 3.258079457469079E+00 3.258079457469079E+02
G 6 3.258079457469079E+00 3.551306608641297E+01 3.551306608641297E+01
N 7 3.258079457469079E+00 1.075659756093366E+01 3.551306608641297E+01

123

50 N. I. M. Gould et al.

Table 1 The numbers of factorizations required to solve the sample set of CUTEr problems using dgqt
compared to those using TRS

Problem dgqt TRS Problem dgqt TRS Problem dgqt TRS

3PK 8 7 EXTROSNB 2 3 PALMER5C 3 3
AKIVA 1 1 FLETCHCR 4 3 PALMER6C 4 3
ALLINITU 6 5 FMINSURF 6 5 PALMER7C 4 3
ARGLINA 1 1 GENROSE 6 4 PALMER8C 10 3
ARGLINB 2 2 GENROSEB 6 4 PARKCH 9 8
ARGLINC 2 2 GROWTHLS 14 14 PENALTY1 2 2
BARD 6 5 GULF 6 3 PENALTY2 4 3
BEALE 7 3 HAIRY 6 4 PENALTY3 2 2
BIGGS6 7 8 HATFLDD 5 4 PFIT1LS 8 3
BOX3 6 4 HATFLDE 5 4 PFIT2LS 7 3
BRKMCC 1 1 HEART6LS 11 4 PFIT3LS 7 3
BROWNAL 2 2 HEART8LS 5 4 PFIT4LS 7 3
BROWNBS 1 1 HELIX 7 4 POWELLSG 7 5
BROWNDEN 4 3 HIELOW 7 9 POWER 3 3
CHNROSNB 5 4 HIMMELBB 8 6 ROSENBR 1 1
CLIFF 2 3 HIMMELBF 8 4 S308 1 1
CUBE 5 4 HIMMELBG 6 3 SENSORS 4 3
DECONVU 6 4 HIMMELBH 4 3 SINEVAL 2 2
DENSCHNA 1 1 HUMPS 4 3 SISSER 1 1
DENSCHNB 7 5 HYDC20LS 6 4 SNAIL 4 3
DENSCHNC 1 1 JENSMP 1 1 SPARSINE 3 3
DENSCHND 4 3 KOWOSB 7 6 SPARSQUR 4 3
DENSCHNE 4 4 LOGHAIRY 5 8 STRATEC 9 8
DENSCHNF 1 1 MANCINO 3 2 STREG 2 2
DJTL 4 3 MEXHAT 1 1 TOINTGOR 4 3
EDENSCH 2 2 MEYER3 4 4 TOINTPSP 3 2
EG2 1 1 MSQRTALS 5 4 VARDIM 2 4
EIGENALS 4 4 MSQRTBLS 5 4 VAREIGVL 5 4
EIGENBLS 5 3 NONCVXU2 2 2 VIBRBEAM 15 13
EIGENCLS 5 4 NONCVXUN 2 2 WATSON 7 6
ENGVAL2 6 4 OSBORNEA 6 7 WOODS 4 3
ERRINROS 8 7 OSBORNEB 8 10 YFITU 8 5
EXPFIT 6 3

G 8 1.075659756093366E+01 2.313483182367331E+01 2.313483182367331E+01
N 9 1.869105479497000E+01 1.869105479497000E+01 2.313483182367331E+01
N 10 1.869105479497000E+01 1.913543249784033E+01 2.313483182367331E+01
G 11 1.913543249784033E+01 2.113513216075682E+01 2.113513216075682E+01

it ||x||-radius lambda d_lambda
L 12 8.884499521913303E-02 2.054711382755286E+01 0.000000000000000E+00
L 13 1.199973391163844E-05 2.058132199997437E+01 3.420817242151486E-02
L 14 1.088906742552354E-12 2.058132716354694E+01 5.163572570410224E-06
Normal stopping criteria satisfied

Here, the characterN records that the current value of λ lies in the N region. Observe
that the initial interval [λL, λU] is large, the first few iterations refine estimates from G
which eventually underestimate λ∗. This leads to a cycle to and from N and eventually
to L from whence fast convergence occurs. It is difficult to imagine how this might
be improved in general, and so we feel reassured that TRS behaves as well as might
be expected.

123

On solving trust-region and other regularised subproblems in optimization 51

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5

dgqt

TRS

Fig. 5 Performance profile for the numbers of factorizations required to solve the sample set of CUTEr
problems using dgqt compared to those using TRS

Table 2 The numbers of
factorizations and the CPU time
(in seconds) required to solve
the CUTEr problem BOX in the
trust-region (TRS) and cubic
regularisation (RQS) cases, as
the dimension n increases

n TRS RQS

Factorizations CPU Factorizations CPU

1000 3 0.00 3 0.00

3162 3 0.02 3 0.02

10000 3 0.14 3 0.13

31622 2 1.04 3 1.04

100000 3 0.39 3 0.29

316228 2 1.03 3 1.01

1000000 3 4.04 2 2.56

3162278 3 12.92 2 8.10

10000000 1 24.58 2 28.82

Since bothTRS andRQS are designed to cope with large problems, we illustrate their
performance on bigger problems from the CUTEr test set. In Table 2, we consider the
problemBOX as we increase its dimension n from a thousand to ten million; the Hessian
has non-zeros along the diagonal, and in positions (1, i), (i, 1), (n, i), (i, n), (n/2, i)
and (i, n/2), for all 1 ≤ i ≤ n. Here and elsewhere the experiments were per-
formed on a single CPU of a Dell Precision T3400, single Core2 Quad Q9550 pro-
cessor(2.83 GHz, 1333MHz FSB, 12MB L2 Cache) with 4GB RAM; the code is in
double precision and compiled with the g95 compiler using default (-O) optimization.
For TRS we use the radius ∆ = 1, while for RQS, cubic (p = 3) regularisation with
a weight σ = 10 is used.

The dominant cost here, as might be expected, is for the ordering (particularly for
the larger examples) and factorization of H +λI , although for the largest problem the
cost of the Rayleigh-quotient iteration also starts to become significant.

123

52 N. I. M. Gould et al.

Table 3 The numbers of factorizations (“facts”) and the CPU time (in seconds) required to solve a variety
of large CUTEr problems in the trust-region (TRS) and cubic regularisation (RQS) cases

Problem n nnz (H) nnz (fact) TRS RQS

Facts CPU Facts CPU

SCURLY10 100000 1099945 1849840 14 2.41 12 1.40

SCOSINE 100000 199999 949984 20 1.34 18 0.91

NONCVXUN 100000 399984 11946824 2 287.17 2 299.98

INDEF 100000 299997 1049968 5 0.65 2 0.31

FLETCBV2 100000 199999 949984 4 0.61 3 0.31

DIXMAANA 90000 269999 959911 3 0.42 3 0.38

FMINSRF2 90000 448202 6317096 5 15.05 4 12.07

The number of nonzeros in H (“nnz(H)”) and its factors (“nnz(fact)”) are also given

In Table 3, we illustrate the behaviour on other large CUTEr examples. Although
the actual behaviour clearly depends on sparsity, and particularly on fill-in—the prob-
lem NONCVXUN is an example which fills in significantly during factorization—the
main message is that both TRS and RQS are capable of solving large problems, and
thus often provide good alternatives to iterative methods. We leave a more general
comparison between direct and iterative approaches for solving the subproblems to
follow-up work, in which we plan to investigate such subproblems in the context of
general methods for unconstrained optimization.

5 Comments and conclusions

Our aim has been to revisit the popular Gay-Moré-Sorensen [21,38] algorithm(s) for
the direct solution of the trust-region subproblem and to provide flexible modern soft-
ware for this and the related regularized quadratic subproblem. We have provided
enhancements so that the method is both globally and superlinearly convergent in all
(“easy” and “hard”) cases. The resulting software is freely available as the packages
TRS and RQS as part of the GALAHAD optimization library[27].

Our next goal will be to investigate the use of these subproblem solvers as part of
general trust-region/regularisation methods for unconstrained and constrained opti-
mization methods. Of particular importance here is whether it pays off to solve the
subproblems more accurately than is currently done, and whether these methods are
competitive with iterative methods [7,18,19,25,31,45,46] for large problems. We are
encouraged here as the sparse-matrix factorization technology has advanced rapidly
of late, and both parallel/multi-core and out-of-core factorizations are now available
and capable of coping with matrices of high (in the millions) order [3,34,35,42,44].

Some iterative methods [7,25] for the solution of (1.1) and (1.2) solve sequences of
problems of the same form, albeit now with simpler tridiagonal matrices H . Clearly
the improvements suggested in Sect. 3 are equally appropriate in this case. We plan
to update the relevant GALAHAD packages GLTR and GLRT to take account of this.

123

On solving trust-region and other regularised subproblems in optimization 53

Problems involving linear equality constraints may be dealt with in essentially the
same way. For example, if we add the restrictions Ax = 0 to (1.1) or (1.2), the essential
difference is that the required x(λ), together with some auxiliary y(λ), satisfies

(

H + λM AT

A 0

)(

x(λ)

y(λ)

)

= −
(

c
0

)

(5.1)

rather than (2.2). Thus rather than assessing whether a given λ ∈ F by the success
of the Cholesky factorization of H + λM as we do in the unconstrained case, here
instead we note that λ ∈ F if and only if the leading block of the matrix

(

H + λM AT

A 0

)

(5.2)

is positive definite in the null-space of A, or equivalently that (5.2) is non-singular and
has precisely rank(A) negative eigenvalues [9,23]. To verify the latter condition and
then to solve (5.1), any inertia-revealing symmetric, indefinite factorization package
is appropriate (see Sect. 3.1), although now numerical pivoting will be required for
stability, and thus non-static data structures for the factors may be required. All other
aspects are essentially as for the unconstrained cases covered in Sect. 3.3, although
non-trivial initial values (cf. Sect. 3.3.2) for λL and λU are not obvious.

Acknowledgments This work was supported by the EPSRC grants EP/E053351/1 and EP/F005369/1.
We are extremely grateful for the helpful comments made by three referees and an associate editor on our
original manuscript.

Appendix A

Let φ ∈ Cm+1, θ ∈ C1 : R → R, and suppose we wish to find a root of the scalar
equation

φ(λ) = θ(λ). (A.1)

Now suppose that a given λk is closest to the simple root λ∗, of (A.1)—the root is
simple if θ(1)(λ∗)− φ(1)(λ∗) �= 0—and let

φm(δ; λk)
def=

m
∑

i=0

φ(i)(λk)

i ! δi

be the m-th order Taylor approximation to φ(λk+δ). To improve on λk , we compute the
root δk of smallest magnitude to the approximating equation φm(δ; λk) = θ(λk + δ),
update λk+1 = λk + δk , increment k by 1, and repeat.

Theorem A.8 Suppose that φ ∈ Cm+1, θ ∈ C1 : R→ R, that λ∗ is a simple root of
φ(λ) = θ(λ). Then for all λk sufficiently close to λ∗,

|λk + δk − λ∗| = O(|λk − λ∗|m+1),

123

54 N. I. M. Gould et al.

where δk is the root of smallest magnitude of φm(δ; λk) = θ(λk + δ) and φm(δ; λk) is
the m-th order Taylor approximation to φ(λk + δ).

Proof We first show that δk is small when λk is close to λ∗. Define the function

F(δ, λ) =
m

∑

i=0

φ(i)(λ)

i ! δi − θ(λ+ δ).

From the assumptions of this theorem and the fact that

F(0, λ∗) = φ(λ∗)− θ(λ∗) = 0 and F ′(0, λ∗) = φ′(λ∗)− θ ′(λ∗) �= 0,

it follows by the implicit function theorem [4, Theorem 13.7] that there exists an open
neighborhood T of λ∗ such that λ∗ ∈ T ⊆ R and a unique continuously differentiable
function G : T → R such that

G(λ∗) = 0 and F (G(λ), λ) = 0. (A.2)

This implies that for λk sufficiently close to λ∗, we have G(λk) ≡ δk so that

lim
λk→λ∗

δk = lim
λk→λ∗

G(λk) = G(λ∗) = 0, (A.3)

where the last two equalities follow from the continuity of G and Eq. (A.2). Therefore,
δk converges to zero as λk approaches λ∗.

Now let εk = λ∗ − λk . Taylor’s theorem and the fact that λ∗ is a root give

φ(λ∗) = φm(εk; λk)+ φ(m+1)(ζk)

(m + 1)! εm+1
k = θ(λ∗) (A.4)

for some ζk between λk and λ∗, while the definition of δk and Taylor’s theorem give

φm(δk; λk) = θ(λk+1) = θ(λ∗)+ θ(1)(χk)(λk+1 − λ∗) (A.5)

for some other χk between λk+1 (= λk + δk) and λ∗. Hence, combining (A.4) and
(A.5),

φm(δk; λk)− φm(εk; λk)− θ(1)(χk)(λk+1 − λ∗) = φ(m+1)(ζk)

(m + 1)! εm+1
k . (A.6)

But

φm(δk; λk)− φm(εk; λk) =
m

∑

i=1

φ(i)(λk)

i ! (δi
k − εi

k)

= (λk+1 − λ∗)

⎛

⎝φ(1)(λk)+
m

∑

i=2

φ(i)(λk)

i !
i−1
∑

j=0

δ
j
k ε

i− j−1
k

⎞

⎠ (A.7)

123

On solving trust-region and other regularised subproblems in optimization 55

in which case (A.6) gives

λk+1 − λ∗ = κk

(m + 1)! (λ∗ − λk)
m+1 (A.8)

where

κk = φ(m+1)(ζk)

φ(1)(λk)− θ(1)(χk)+∑m
i=2

φ(i)(λk)
i !

∑i−1
j=0 δ

j
k ε

i− j−1
k

.

Then (A.3) implies that for sufficiently small λk − λ∗,

|κk | ≤ 2|max[1, φ(m+1)(λ∗)]/(φ(1)(λ∗)− θ(1)(λ∗))| <∞

as x∗ is a simple root, and the required convergence estimate follows from (A.8). ��

References

1. Absil, P.-A., Baker, C.G., Gallivan, K.A.: Trust-region methods on Riemannian manifolds. Found.
Comput. Math. 7(3), 303–330 (2007)

2. Absil, P.-A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton
University Press, Princeton (2008)

3. Amestoy, P., Duff, I.S., Pralet, S., Voemel, C.: Adapting a parallel sparse direct solver to SMP archi-
tectures. Parallel Comput. 29(11–12), 1645–1668 (2003)

4. Apostol, T.M.: Mathematical Analysis. 2nd edn. Addison-Wesley, Reading (1974)
5. Berkes, P., Wiskott, L.: Analysis and interpretation of quadratic models of receptive fields. Nat. Protoc.

2(2), 400–407 (2007)
6. Busygin, S., Ag, C., Butenko, S., Pardalos, P.M.: A heuristic for the maximum independent set problem

based on optimization of a quadratic over a sphere. J. Comb. Optim. 6(3), 287–297 (2002)
7. Cartis, C., Gould, N.I.M., Toint, Ph.L.: Adaptive cubic regularisation methods for unconstrained opti-

mization. Part I: motivation, convergence and numerical results. Math. Program. Ser. A 51 pages (2009)
doi:10.1007/s10107-009-0286-5

8. Cartis, C., Gould, N.I.M., Toint, Ph.L.: Trust-region and other regularisations of linear least-squares
problems. BIT 49(1), 21–53 (2009)

9. Chabrillac, Y., Crouzeix, J.-P.: Definiteness and semidefiniteness of quadratic forms revisited. Linear
Algebra Appl. 63, 283–292 (1984)

10. Cline, A.K., Moler, C.B., Stewart, G.W., Wilkinson, J.H.: An estimate for the condition number of a
matrix. SIAM J. Numer. Anal. 16(2), 368–375 (1979)

11. Conn, A.R., Gould, N.I.M., Toint, Ph.L.: Trust-Region Methods. SIAM, Philadelphia (2000)
12. Demmel, J.W.: Applied Numerical Linear Algebra. SIAM, Philadelphia (1997)
13. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Pro-

gram. 91(2), 201–213 (2002)
14. Dollar, H.S.: On Taylor series approximations for trust-region and regularized subproblems in optimi-

zation. Internal Technical Report Internal-2009-1, Rutherford Appleton Laboratory, Chilton, Oxford-
shire, England (2009)

15. Dollar, H.S., Gould, N.I.M., Robinson, D.P.: On solving trust-region and other regularised subproblems
in optimization. Technical Report RAL-TR-2009-003, Rutherford Appleton Laboratory (2009)

16. Duff, I.S.: MA57—a code for the solution of sparse symmetric definite and indefinite systems. ACM
Trans. Math. Softw. 30(2), 118–144 (2004)

17. Duff, I.S., Reid, J.K.: The multifrontal solution of indefinite sparse symmetric linear equations. ACM
Trans. Math. Softw. 9(3), 302–325 (1983)

123

http://dx.doi.org/10.1007/s10107-009-0286-5

56 N. I. M. Gould et al.

18. Erway, J.B., Gill, P.E.: A subspace minimization method for the trust-region step. SIAM J. Optim.
20(3), 1439–1461 (2009)

19. Erway, J.B., Gill, P.E., Griffin, J.D.: Iterative methods for finding a trust-region step. SIAM J. Optim.
20(2), 1110–1131 (2009)

20. Gander, W.: On the Linear Least Squares Problem with a Quadratic Constraint. Technical Report
STAN-CS-78-697. Computer Science Department, Stanford University, California (1978)

21. Gay, D.M.: Computing optimal locally constrained steps. SIAM J. Sci. Stat. Comput. 2(2), 186–197
(1981)

22. Gertz, E.M., Gill, P.E.: A primal-dual trust region algorithm for nonlinear optimization. Math. Program.
Ser. B 100(1), 49–94 (2004)

23. Gould, N.I.M.: On practical conditions for the existence and uniqueness of solutions to the general
equality quadratic-programming problem. Math. Program. 32(1), 90–99 (1985)

24. Gould, N.I.M., Hu, Y., Scott, J.A.: A numerical evaluation of sparse direct solvers for the solution of
large sparse symmetric linear systems of equations. ACM Trans. Math. Softw. 32(2), Article 10 (2007)

25. Gould, N.I.M., Lucidi, S., Roma, M., Toint, Ph.L.: Solving the trust-region subproblem using the
Lanczos method. SIAM J. Optim. 9(2), 504–525 (1999)

26. Gould, N.I.M., Orban, D., Toint, Ph.L.: CUTEr (and SifDec), a Constrained and Unconstrained Testing
Environment, revisited. ACM Trans. Math. Softw. 29(4), 373–394 (2003)

27. Gould, N.I.M., Orban, D., Toint, Ph.L.: GALAHAD—a library of thread-safe fortran 90 packages for
large-scale nonlinear optimization. ACM Trans. Math. Softw. 29(4), 353–372 (2003)

28. Gould, N.I.M., Scott, J.A.: A numerical evaluation of HSL packages for the direct solution of large
sparse, symmetric linear systems of equations. ACM Trans. Math. Softw. 30(3), 300–325 (2004)

29. Griewank, A.: The Modification of Newton’s Method for Unconstrained Optimization by Bounding
Cubic Terms. Technical Report DAMTP/NA12. Department of Applied Mathematics and Theoretical
Physics, Cambridge University, Cambridge (1981)

30. Hager, W.W.: Condition estimates. SIAM J. Sci. Stat. Comput. 5(2), 311–316 (1984)
31. Hager, W.W.: Minimizing a quadratic over a sphere. SIAM J. Optim. 12(1), 188–208 (2001)
32. Hebden, M.D.: An Algorithm for Minimization Using Exact Second Derivatives. Technical Report

T.P. 515. AERE, Harwell Laboratory, Harwell (1973)
33. Higham, N.J.: Fortran codes for estimating the one-norm of a real or complex matrix, with applications

to condition estimation. ACM Trans. Math. Softw. 14(4), 381–396 (1988)
34. Hogg, J.D.: A DAG-Based Parallel Cholesky Factorization for Multicore Systems. Technical Report

RAL-TR-2008-029. Rutherford Appleton Laboratory, Chilton (2008)
35. Hogg, J.D., Reid, J.K., Scott, J.A.: A DAG-Based Sparse Cholesky Solver for Multicore Architectures.

Technical Report RAL-TR-2009-004. Rutherford Appleton Laboratory, Chilton (2009)
36. Montero, A.: Study of SU(3) vortex-like configurations with a new maximal center gauge fixing method.

Phys. Lett. B467, 106–111 (1999)
37. Moré, J.J.: Recent developments in algorithms and software for trust region methods. In: Bachem,

A., Grötschel, M., Korte, B. (eds.) Mathematical Programming: The State of the Art, pp. 258–287.
Springer, Heidelberg (1983)

38. Moré, J.J., Sorensen, D.C.: Computing a trust region step. SIAM J. Sci. Stat. Comput. 4(3), 553–572
(1983)

39. Nesterov, Yu., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Math.
Program. 108(1), 177–205 (2006)

40. Parlett, B.N.: The Symmetric Eigenvalue Problem. Prentice-Hall, Englewood Cliffs, New Jersey, USA,
1980. Reprinted as Classics in Applied Mathematics 20, SIAM, Philadelphia, USA (1998)

41. Poljack, S., Wolkowicz, H.: Convex relaxations of (0,1)–quadratic programming. Math. Oper. Res.
20(3), 550–561 (1995)

42. Reid, J.K., Scott, J.A.: An Out-of-Core Sparse Cholesky Solver. Technical Report RAL-TR-2006-
013. Rutherford Appleton Laboratory, Chilton (2006)

43. Reinsch, C.: Smoothing by spline functions II. Numerische Mathematik 16(5), 451–454 (1971)
44. Schenk, O., Christen, M., Burkhart, H.: Algorithmic performance studies on graphics processing

units. J. Parallel Distrib. Comput. 68, 1360–1369 (2008)
45. Steihaug, T.: The conjugate gradient method and trust regions in large scale optimization. SIAM

J. Numer. Anal. 20(3), 626–637 (1983)
46. Toint, Ph.L.: Towards an efficient sparsity exploiting Newton method for minimization. In: Duff,

I.S. (ed.) Sparse Matrices and Their Uses, pp. 57–88. Academic Press, London (1981)

123

On solving trust-region and other regularised subproblems in optimization 57

47. Traub, J.F.: Iterative Methods for the Solution of Equations. Prentice-Hall, Englewood Cliffs (1964)
48. Trefethen, L.N., Bai, D.: Numerical Linear Algebra. SIAM, Philadelphia (1997)
49. Weiser, M., Deuflhard, P., Erdmann, B.: Affine conjugate adaptive Newton methods for nonlinear

elastomechanics. Optim. Methods Softw. 22(3), 413–431 (2007)

123

	On solving trust-region and other regularised subproblems in optimization
	Abstract
	1 Introduction
	2 Theoretical considerations
	2.1 The trust-region problem
	2.2 The regularisation problem

	3 Algorithmic considerations
	3.1 Matrix factorization
	3.2 The secular function and its properties
	3.2.1 Derivatives
	3.2.2 Taylor series approximations to π(λ)
	3.2.3 Taylor series approximations to powers of π(λ)

	3.3 The trust-region problem
	3.3.1 Finding a point in L
	3.3.2 Initial values for λL and λ nu
	3.3.3 New estimates from G
	3.3.4 New estimates from N
	3.3.5 Improving an estimate in L
	3.3.6 Fast convergence in the hard case
	3.3.7 Interior solution, sequences of related problems and initial values
	3.3.8 Summary
	3.3.9 Early termination

	4 Software and numerical experiments
	5 Comments and conclusions
	Acknowledgments
	Appendix A
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

