
SIAM J. OPTIM. c© 2005 Society for Industrial and Applied Mathematics
Vol. 16, No. 2, pp. 341–357

A FILTER-TRUST-REGION METHOD FOR UNCONSTRAINED
OPTIMIZATION∗

NICK I. M. GOULD† , CAROLINE SAINVITU‡ , AND PHILIPPE L. TOINT‡

Abstract. A new filter-trust-region algorithm for solving unconstrained nonlinear optimization
problems is introduced. Based on the filter technique introduced by Fletcher and Leyffer, it ex-
tends an existing technique of Gould, Leyffer, and Toint [SIAM J. Optim., 15 (2004), pp. 17–38]
for nonlinear equations and nonlinear least-squares to the fully general unconstrained optimization
problem. The new algorithm is shown to be globally convergent to at least one second-order critical
point, and numerical experiments indicate that it is very competitive with more classical trust-region
algorithms.

Key words. unconstrained optimization, filter methods, trust-region algorithms, convergence
theory, numerical experiments

AMS subject classifications. 90C30, 65K05, 90C26, 90C06

DOI. 10.1137/040603851

1. Introduction. Since filter methods were first introduced for constrained non-
linear optimization by Fletcher and Leyffer [5], they have enjoyed considerable interest
in their original domain of application [1, 4, 6, 7, 16, 17]. More recently, they have
been extended by Gould, Leyffer, and Toint [8] and Gould and Toint [12] to the non-
linear feasibility problem (including nonlinear equations and nonlinear least-squares),
which is to minimize the norm of the violations of a set of (possibly nonlinear and/or
nonconvex) constraints. It is the purpose of the present paper to consider the further
extension of the filter techniques to general unconstrained optimization problems.

The presentation is organized as follows. Section 2 introduces the problem and the
new algorithm, whose global convergence to points satisfying second-order optimality
conditions is shown in section 3.1. The results of numerical experience with the new
method are discussed in section 4, and some conclusions and perspectives are finally
presented in section 5.

2. The problem and the new algorithm. We consider the unconstrained
minimization problem

min
x∈Rn

f(x),(2.1)

where f is a twice continuously differentiable function of the variables x ∈ R
n. An

efficient technique for solving this problem is to use Newton’s method, which, from a
current iterate xk, computes a trial step sk by minimizing a model of the objective

∗Received by the editors November 18, 2004; accepted for publication (in revised form) February
9, 2005; published electronically October 7, 2005.

http://www.siam.org/journals/siopt/16-2/60385.html
†Computational Science and Engineering Department, Rutherford Appleton Laboratory, Chilton,

Oxfordshire, UK (gould@rl.ac.uk). The work of this author was supported by EPSRC grant
GR/S42170.

‡Department of Mathematics, University of Namur, 61, rue de Bruxelles, B-5000 Namur, Belgium
(caroline.sainvitu@fundp.ac.be, philippe.toint@fundp.ac.be). The work of the third author was con-
ducted in the framework of the Interuniversity Attraction Poles Programme of the Belgian Science
Policy Agency.

341

342 N. I. M. GOULD, C. SAINVITU, AND PH. L. TOINT

function consisting of the first three terms of its Taylor’s expansion around xk, yielding
a trial point

x+
k = xk + sk.

Unfortunately, it is well known that such an algorithm may not always be well defined
(when the Taylor’s model is nonconvex), or convergent from any initial point x0. These
difficulties can be circumvented by restricting the model minimization to a trust region
containing xk, in a manner that is now well established (see Conn, Gould, and Toint [2]
for an extensive description of trust-region methods and their properties). We propose
to further extend such methods by introducing a multidimensional filter technique,
whose aim is to encourage convergence to first-order critical points by driving every
component of the objective’s gradient

∇xf(x)
def
= g(x) = (g1(x), . . . , gn(x))

T

to zero.

2.1. Computing a trial point. Before indicating how to apply our filter tech-
nique, we start by describing how to compute the trial point x+

k = xk + sk from a
current iterate xk. At each iteration, we define the model of the objective function to
be

mk(xk + s) = f(xk) + gTk s +
1

2
sTHks,

where gk = ∇xf(xk) and Hk is a symmetric approximation to ∇xxf(xk), and consider
a trust region centered at xk:

Bk = {xk + s | ‖s‖ ≤ Δk},

where we believe this model to be adequate. (In this definition and below, ‖ · ‖ stands
for the Euclidean �2 norm). A trial step sk is then computed by minimizing the model
(possibly only approximately). At variance with classical trust-region methods, we
do not require here that

‖sk‖ ≤ Δk(2.2)

at every iteration of our algorithm. The convergence analysis that follows requires, as
is common in trust-region methods [2, Chapter 6], that this step provides, at iteration
k, a sufficient decrease on the model, which is to say that

mk(xk) −mk(xk + sk) ≥ κmdc max

[
‖gk‖min

[
‖gk‖
βk

,Δk

]
, |τk|min[τ2

k ,Δ
2
k]

]
,(2.3)

where κmdc is a constant in (0, 1), βk is a positive upper bound on the norm of the
Hessian of the model mk, i.e.,

βk
def
= 1 + ‖Hk‖,

and τk = min [0, λmin[Hk]]. Although this condition seems technical, there are efficient
numerical methods to compute sk that guarantee that it holds (see [9, 13], or, more
generally, [2, Chapter 7]). Typical trust-region algorithms then evaluate the objective
function at the trial point and accept x+

k as the new iterate if the reduction achieved
in the objective function is at least a fraction of that predicted by the model. The
trust-region radius Δk is also possibly enlarged if this is the case, or it is reduced if
the achieved reduction is too small.

A FILTER METHOD FOR UNCONSTRAINED OPTIMIZATION 343

2.2. The multidimensional filter. We now consider using a filter mechanism
to potentially accept x+

k as the new iterate more often. The notion of filter is based
on that of dominance: for our problem, we say that a point x1 dominates a point x2

whenever

|gi(x1)| ≤ |gi(x2)| for all i = 1, . . . , n.

Thus, if iterate x1 dominates iterate x2 and if we focus our attention on convergence
to first-order critical points only, the latter is of no real interest to us since x1 is at
least as good as x2 for each of the components of the gradient. All we need to do
is remember iterates that are not dominated by other iterates by using a structure
called a filter. We define a multidimensional filter F as a list of n-tuples of the form

(gk,1, . . . , gk,n), where gk,i
def
= gi(xk), such that if gk and g� belong to F , then

|gk,j | < |g�,j | for at least one j ∈ {1, . . . , n}.(2.4)

Filter methods propose to accept a new trial iterate x+
k if it is not dominated by any

other iterate in the filter.
However, we do not wish to accept a new point x+

k if one of the components of
g(x+

k) is arbitrarily close to being dominated by another point already in the filter.
In order to avoid this situation, we slightly strengthen our acceptability test and say
that a new trial point x+

k is acceptable for the filter F if and only if

for all g� ∈ F ∃ j ∈ {1, . . . , n} : |gj(x+
k)| ≤ |g�,j | − γg‖g�‖,(2.5)

where γg ∈ (0, 1/
√
n) is a small positive constant. If an iterate xk is acceptable in the

sense of (2.5), we may wish to add it to the filter and remove from it every g� ∈ F
such that |g�,j | > |gk,j | for all j ∈ {1, . . . , n}.

While the mechanism described so far is adequate for convex problems (where
a zero gradient is both necessary and sufficient for second-order criticality), it may
be unsuitable for nonconvex ones. Indeed it might prevent progress away from a
saddle point, in which case an increase in the gradient components is acceptable. We
therefore modify the filter mechanism to ensure that the filter is reset to the empty set
after each iteration, giving sufficient descent on the objective function at which the
model mk was detected to be nonconvex, and set an upper bound on the acceptable
objective function values to ensure that the obtained decrease is permanent.

We are now able to combine these ideas into an algorithm, whose main objective
is to let the filter play the major role in ensuring global convergence within “convex
basins,” falling back on the usual trust-region method only if things do not go well or
if negative curvature is encountered.

Algorithm 2.1. Filter-Trust-Region Algorithm.

Step 0 : Initialization.
An initial point x0 and an initial trust-region radius Δ0 > 0 are given. The
constants γg ∈ (0, 1/

√
n), η1, η2, γ1, γ2, and γ3 are also given and satisfy

0 < η1 ≤ η2 < 1 and 0 < γ1 ≤ γ2 < 1 ≤ γ3.(2.6)

Compute f(x0) and g(x0), set k = 0. Initialize the filter F to the empty
set and choose fsup ≥ f(x0). Define two flags RESTRICT and NONCONVEX, the
former to be unset.

344 N. I. M. GOULD, C. SAINVITU, AND PH. L. TOINT

Step 1: Determine a trial step.
Compute a finite step sk that “sufficiently reduces” the model mk, i.e., that
satisfies (2.3) and that also satisfies ‖sk‖ ≤ Δk if RESTRICT is set or if mk is
nonconvex. In the latter case, set NONCONVEX; otherwise unset it. Compute
the trial point x+

k = xk + sk.

Step 2: Compute f(x+
k) and define the following ratio:

ρk =
f(xk) − f(x+

k)

mk(xk) −mk(x
+
k)

.

If f(x+
k) > fsup, set xk+1 = xk, set RESTRICT and go to Step 4.

Step 3: Test to accept the trial step.
• Compute g+

k = g(x+
k).

• If x+
k is acceptable for the filter F and NONCONVEX is unset:

Set xk+1 = x+
k , unset RESTRICT and add g+

k to the filter F if either
ρk < η1 or ‖sk‖ > Δk.

• If x+
k is not acceptable for the filter F or NONCONVEX is set:

If ρk ≥ η1 and ‖sk‖ ≤ Δk, then
set xk+1 = x+

k , unset RESTRICT and if NONCONVEX is set, set
fsup = f(xk+1) and reinitialize the filter F to the empty set;

else set xk+1 = xk and set RESTRICT.
Step 4: Update the trust-region radius.

If ‖sk‖ ≤ Δk, update the trust-region radius by choosing

Δk+1 ∈

⎧⎨
⎩

[γ1Δk, γ2Δk] if ρk < η1,
[γ2Δk,Δk] if ρk ∈ [η1, η2),
[Δk, γ3Δk] if ρk ≥ η2;

(2.7)

otherwise, set Δk+1 = Δk. Increment k by one and go to Step 1.

Note that, as stated, our algorithm lacks a formal stopping criterion. In practice, one
would obviously stop the calculation if ‖gk‖ falls below some user-defined tolerance
and NONCONVEX is unset, or if some fixed maximum number of iterations is exceeded.
Also note that our conditions on the step might require us to recompute sk within the
trust region if negative curvature were discovered for the model only after computing
a step beyond the trust-region boundary. Fortunately, this is typically a very cheap
calculation and can be achieved by backtracking [14] or by other suitable restriction
techniques [9].

3. Global convergence. Global convergence properties of Algorithm 2.1 will
be proved under the following assumptions.

A1 f is twice continuously differentiable on R
n.

A2 The iterates xk remain in a closed, bounded domain of R
n.

A3 For all k, the model mk is twice differentiable on R
n and has a uniformly

bounded Hessian.
Note that A1, A2, and A3 together imply that there exist constants κl, κu ≥ κl,
κufh ≥ 1, and κumh ≥ 1 such that

f(xk) ∈ [κl, κu], ‖∇xxf(xk)‖ ≤ κufh, and ‖Hk‖ ≤ κumh − 1(3.1)

for all k. Combining this with the definition of βk, we have that

βk ≤ κumh(3.2)

A FILTER METHOD FOR UNCONSTRAINED OPTIMIZATION 345

for all k and all x in the convex hull of {xk}. For the purpose of our analysis, we shall
consider

S = {k | xk+1 = xk + sk},

the set of successful iterations;

A = {k | g+
k is added to the filter},

the set of filter iterations;

D = {k | ρk ≥ η1},

the set of sufficient descent iterations; and

N = {k | NONCONVEX is set},

the set of nonconvex iterations. Observe that A ⊆ S and

S ∩ N = D ∩N .(3.3)

We conclude this section by stating a crucial property of the algorithm.
Lemma 3.1. We have that, for all k ≥ 0,

f(x0) − f(xk+1) ≥
k∑

j=0

j∈S∩N

[f(xj) − f(xj+1)].(3.4)

Proof. Denoting S ∩ N = {ki}, we observe that the definition of fsup in the
algorithm ensures that

f(xki+1) ≤ f(x�) < f(xki)

for all i and all ki + 1 ≤ � ≤ ki+1. This directly implies the desired inequality.

3.1. Convergence to critical points. We first prove the convergence of our
algorithm to first-order critical points.

Our first step is to prove that, as long as a first-order critical point is not ap-
proached, we do not have infinitely many successful nonconvex iterations in the course
of the algorithm. We start by recalling two results from [2] in order to show that the
trust-region radius is bounded away from zero in this case.

Lemma 3.2. Suppose that A1–A3 hold and that ‖sk‖ ≤ Δk. Then we have that

|f(xk + sk) −mk(xk + sk)| ≤ κubhΔ
2
k,(3.5)

where xk + sk ∈ Bk and

κubh

def
= max[κufh, κumh].(3.6)

The proof is identical to that of Theorem 6.4.1 in [2], but we now need to make
the additional assumption that ‖sk‖ ≤ Δk explicit (instead of being implicit, in this
reference, in the definition of a trust-region step).

We now show that the trust-region radius must increase if the current iterate is
not first-order critical and the trust-region radius is small enough.

346 N. I. M. GOULD, C. SAINVITU, AND PH. L. TOINT

Lemma 3.3. Suppose that A1–A3 hold and that ‖sk‖ ≤ Δk. Suppose furthermore
that gk �= 0 and that

Δk ≤ κmdc‖gk‖(1 − η2)

κubh

.(3.7)

Then iteration ρk ≥ η2 and

Δk+1 ≥ Δk.(3.8)

The proof is the same as Theorem 6.4.2 in [2] when ‖sk‖ ≤ Δk. As a consequence, we
obtain that the radius cannot become too small as long as a first-order critical point
is not approached.

Lemma 3.4. Suppose that A1–A3 hold and that there exists a constant κlbg > 0
such that ‖gk‖ ≥ κlbg for all k. Then there is a constant κlbd > 0 such that

Δk ≥ κlbd(3.9)

for all k.

Proof. Assume that iteration k is the first such that

Δk+1 ≤ γ1 min

[
Δ0,

κmdc κlbg(1 − η2)

κubh

]
def
= γ1δ0.(3.10)

This means that the trust-region radius has been decreased at iteration k, which in
turn implies, from the condition in Step 4 of the algorithm, that ‖sk‖ ≤ Δk. We also
have that γ1Δk ≤ Δk+1 and hence that

Δk ≤ δ0 ≤ κmdc κlbg(1 − η2)

κubh

.

Our assumption on the norm of the gradient then implies that (3.7) holds. This and
the fact that ‖sk‖ ≤ Δk thus give that (3.8) is satisfied. But this contradicts the
fact that iteration k is the first such that (3.10) holds, and our initial assumption is
therefore impossible. This yields the desired conclusion with κlbd = γ1δ0.

We now prove the crucial result that the number of successful nonconvex iterations
must be finite unless a first-order critical point is approached.

Theorem 3.5. Suppose that A1–A3 hold and that there exists a constant κlbg > 0
such that ‖gk‖ ≥ κlbg for all k. Then there can be only finitely many successful
nonconvex iterations in the course of the algorithm, i.e., |S ∩ N | < +∞.

Proof. Suppose, for the purpose of obtaining a contradiction, that there are
infinitely many successful nonconvex iterations, which we index by S ∩ N = {ki}. It
follows from (3.3) that the algorithm also guarantees that ρk ≥ η1 for all iterations
in S ∩ N , which in turn implies, with (2.3), that for k ∈ S ∩ N ,

f(xk) − f(xk+1) ≥ η1[mk(xk) −mk(xk + sk)]

≥ η1 κmdc‖gk‖min

[
‖gk‖
βk

,Δk

]

≥ η1 κmdc κlbg min

[
κlbg

κumh

, κlbd

]
,

A FILTER METHOD FOR UNCONSTRAINED OPTIMIZATION 347

where we have used Lemma 3.4, (3.2), and our lower bound on the gradient norm to
obtain the last inequality. Combining now this bound with (3.4), we deduce that

f(x0) − f(xk+1) ≥
k∑

j=0

j∈S∩N

[f(xj) − f(xj+1)] ≥ ςk η1 κmdc κlbg min

[
κlbg

κumh

, κlbd

]
,

where ςk = |{1, . . . , k} ∩ S ∩ N|. As we have supposed that there are infinitely many
successful nonconvex iterations, we have that

lim
k→∞

ςk = +∞,

and [f(x0)− f(xk+1)] is unbounded above, which contradicts the fact that the objec-
tive function is bounded below, as stated in (3.1). Our initial assumption must then
be false, and the set S ∩ N of successful nonconvex iterations must be finite.

We now establish the criticality of the limit point of the sequence of iterates when
there are only finitely many successful iterations.

Theorem 3.6. Suppose that A1–A3 and (2.3) hold and that there are only finitely
many successful iterations, i.e., |S| < +∞. Then xk = x∗ for all sufficiently large k,
and x∗ is first-order critical.

Proof. Let k0 be the index of the last successful iterate. Then x∗ = xk0+1 = xk0+j

and

ρk0+j < η1 for all j > 1.(3.11)

Now observe that RESTRICT is set by the algorithm in the course of every unsuccessful
iteration. This flag must thus be set at the beginning of every iteration of index
k0 + j + 1 for j > 0. As a consequence, ‖sk0+j+2‖ ≤ Δk0+j+2 for all j > 0. This,
(3.11), and the mechanism of Step 4 of the algorithm then imply that

lim
k→∞

Δk = 0.(3.12)

Assume now, for the purpose of establishing a contradiction, that ‖gk0+1‖ ≥ ε for
some ε > 0. Then Lemma 3.4 implies that (3.12) is impossible and we deduce that

‖gk0+j‖ = 0

for all j > 0.
Having proved the desired convergence property for the case where S is finite, we

restrict our attention, for the rest of this section, to the case where there are infinitely
many successful iterations, i.e., |S| = +∞. We first investigate what happens if
infinitely many values are added to the filter in the course of the algorithm.

Theorem 3.7. Suppose that A1–A3 hold and that |A| = |S| = +∞. Then

lim inf
k→∞

‖gk‖ = 0.(3.13)

Proof. Assume, for the purpose of obtaining a contradiction, that for all k large
enough,

‖gk‖ ≥ κlbg(3.14)

348 N. I. M. GOULD, C. SAINVITU, AND PH. L. TOINT

for some κlbg > 0 and define {ki} = A. The bound (3.14) and Theorem 3.5 then
imply that |S ∩N | is finite and therefore that the filter is no longer reset to the empty
set for k sufficiently large. Moreover, since our assumptions imply that {‖gki+1‖} is
bounded above and away from zero, there must exist a subsequence {k�} ⊆ {ki+1}
such that

lim
�→∞

gk�
= g∞ with ‖g∞‖ ≥ κlbg.(3.15)

By definition of {k�}, xk�
is acceptable for the filter in each iteration � − 1. This

implies, since the filter is not reset for � large enough, that, for each � sufficiently
large, there exists an index j� ∈ {1, . . . , n} such that

|gk�,j� | − |gk�−1,j� | < −γg‖gk�−1
‖.(3.16)

But (3.14) implies that ‖gk�−1
‖ ≥ κlbg for all � sufficiently large. Hence we deduce

from (3.16) that

|gk�,j� | − |gk�−1,j� | < −γgκlbg

for all � sufficiently large. But the left-hand side of this inequality tends to zero when
� tends to infinity because of (3.15), yielding the desired contradiction. Hence (3.13)
holds.

Consider now the case where the number of iterates added to the filter in the
course of the algorithm is finite.

Theorem 3.8. Suppose that A1–A3 hold and that |S| = +∞ but |A| < +∞.
Then (3.13) holds.

Proof. Assume, again for the purpose of obtaining a contradiction, that (3.14)
holds for all k large enough and for some κlbg > 0. The finiteness of |A| then implies
that ρk ≥ η1 and that ‖sk‖ ≤ Δk for all k ∈ S sufficiently large. If we define
ς̄p,k = |{p, . . . , k} ∩ S|, we then obtain that

f(xp) − f(xk+1) =

k∑
j=p

j∈S

[f(xj) − f(xj+1)] ≥ ς̄p,k η1 κmdc κlbg min

[
κlbg

κumh

, κlbd

]
,

for p and k sufficiently large, where, as above, we used (2.3), (3.2), (3.9), and (3.14)
to derive the inequality. But ς̄p,k tends to infinity with k for a fixed p sufficiently large
since |S| is infinite, and we again derive a contradiction from the fact that f(xk+1)
then becomes unbounded below. The limit (3.13) then follows.

By the two last theorems, we have that at least one of the limit points of the
sequence of iterates generated by the algorithm satisfies the first-order necessary con-
dition. As the following example shows, this cannot be improved without modifying
the algorithm.

Example 3.1. Consider the objective function

f(x) = x3(3x− 4),

which has a (degenerate1) first-order critical point at x = 0, which is not a minimizer,
and its global minimizer at x = 1. We will show that it is possible for Algorithm 2.1

1In other words, both its first and second derivatives vanish.

A FILTER METHOD FOR UNCONSTRAINED OPTIMIZATION 349

to construct iterates for which x2k = −(1
2)

k and x2k+1 = 5
4 for k = 0, 1, 2, . . .; clearly

there are two limit points, xL
∗ = 0 and xR

∗ = 5
4 , but only the first is critical.

Let Δ0 > 2, and suppose that γg < 1
2 and that the trust-region updating scheme

(2.7) is specifically

Δk+1 =

⎧⎨
⎩

1
2Δk if ρk < η1,
Δk if η1 ≤ ρk < η2,

2Δk if η2 ≤ ρk.
(3.17)

Now suppose that

F = {f ′(x2k)} ≡ {−12(1 + (1
2)

k)(1
2)

2k} and Δ2k > 2.(3.18)

We then show that the above iteration is possible for Algorithm 2.1 and that (3.18)
will persist.

Consider first x2k = −(1
2)

k and the convex model

m2k(x2k + s) = f(x2k) + sf ′(x2k) + 1
2s

2h2k, where h2k = − f ′(x2k)
5
4 − x2k

> 0.

Then the unconstrained global minimizer of m2k is s2k = 5
4 − x2k, and s2k will

sufficiently reduce the model within the trust region since Δ2k > 2 > 5
4 + (1

2)
k.

Moreover,

m2k(x2k) −m2k(x2k + s2k) =
1

2

(f ′(x2k))
2

h2k
=

1

2

(
5

4
− x2k

)
f ′(x2k) → 0

while

f(x2k) − f(x2k + s2k) = f(x2k) − f

(
5

4

)
> f(0) − f

(
5

4

)
=

125

256
> 0,

and thus

ρ2k ≥ η2(3.19)

for large enough k. The trial point x2k + s2k is not acceptable for the filter since its
gradient is f ′(5

4) = 75
16 � f ′(x2k), but it is an acceptable point because the trust-region

bound is inactive and because of (3.19). Thus x2k+1 = x2k + s2k = 5
4 , while (3.17)

and (3.19) ensure that Δ2k+1 = 2Δ2k.
Now consider x2k+1 = 5

4 and the convex model

m2k+1(x2k+1 + s) = f(x2k+1) + sf ′(x2k+1) + 1
2s

2h2k+1,

where

h2k+1 =
f ′(x2k+1)

x2k+1 + (1
2)

k+1
> 0.

As before, the unconstrained global minimizer of m2k+1 is s2k+1 = −x2k+1 − (1
2)

k+1,
and s2k+1 will sufficiently reduce the model within the trust region since Δ2k+1 >
4 > 5

4 + (1
2)

k. Although f(x2k+1) − f(x2k+1 + s2k+1) < 0 and hence

ρ2k+1 < 0,(3.20)

350 N. I. M. GOULD, C. SAINVITU, AND PH. L. TOINT

x2k+1 + s2k+1 = −(1
2)

k+1 is acceptable for the filter since it is easy to check that

|f ′(x2k+1 + s2k+1)| = |f ′(−(1
2)

k+1)| < 1
2 |f ′(x2k)|.

Hence x2k+2 = x2k+1 + s2k+1 = −(1
2)

k+1. Moreover, (3.17) and (3.20) imply that
f ′(x2k+2) replaces f ′(x2k) in the filter and that Δ2k+2 = 1

2Δ2k+1 = Δ2k, and thus
that (3.18) persists.

It is unclear how to enforce the property that all limit points are first-order critical
without adversely affecting the algorithm’s numerical behavior. We have considered
not allowing filter iterations when the ratio between the current gradient norm and
the smallest gradient norm found so far exceeds some prescribed (large) constant.
While such a modification does not appear to affect the results of our numerical
experiments, to date we have been unable to show that the modification yields the
desired conclusion. Since we believe that the likelihood of the algorithm converging
to more than a single limit point is very small (as with every trust-region method we
are aware of), the issue really is of mostly theoretical interest.

We thus pursue our analysis by examining convergence to second-order critical
points under the assumption that there is only one limit point. As in [2], we also
assume the following:

A4 The matrix Hk is arbitrarily close to ∇xxf(xk) whenever a first-order critical
point is approached; i.e.,

lim
k→∞

‖∇xxf(xk) −Hk‖ = 0 whenever lim
k→∞

‖gk‖ = 0.

(Notice that h2k → 0 and thus that A4 holds in the above example.)
We are then able to derive the following theorem.
Theorem 3.9. Suppose that A1–A4 hold and that the complete sequence of it-

erates {xk} converge to the unique limit point x∗. Then x∗ is a second-order critical
point.

Proof. Our proof is strongly inspired by Theorem 6.6.4 of [2]. Observe that our
previous results imply that

g(x∗) = 0.(3.21)

For the purpose of deriving a contradiction, assume now that

τ∗
def
= λmin[∇xxf(x∗)] < 0.(3.22)

Then, using A4 and (3.21), we deduce that there exists a k0 such that for k ≥ k0,

λmin[Hk] < 1
2τ∗ < 0

and, consequently, that k ∈ N and

‖sk‖ ≤ Δk(3.23)

for k ≥ k0. Our sufficient decrease condition (2.3) then ensures that for k ≥ k0,

mk(xk) −mk(xk + sk) ≥ 1
2κmdc|τ∗|min[1

4τ
2
∗ ,Δ

2
k].(3.24)

Consider now the ratio of achieved versus predicted reduction ρk in the case where
Δk ≤ 1

2 |τ∗|. Thus, (3.24) and (3.23) imply that

mk(xk) −mk(xk + sk) ≥ 1
2κmdc|τ∗|Δ2

k ≥ 1
2κmdc|τ∗|‖sk‖2(3.25)

A FILTER METHOD FOR UNCONSTRAINED OPTIMIZATION 351

for k ≥ k0. Using the mean value theorem and the Cauchy–Schwarz inequality suc-
cessively, we obtain that for some ξk in the segment [xk, xk + sk],

|ρk − 1| =

∣∣∣∣f(xk + sk) −mk(xk + sk)

mk(xk) −mk(xk + sk)

∣∣∣∣

≤ |sTk∇xxf(ξk)sk − sTkHksk|
κmdc|τ∗|‖sk‖2(3.26)

≤ 1

κmdc|τ∗|
‖∇xxf(ξk) −Hk‖

for k ≥ k0 and Δk ≤ 1
2 |τ∗|. Since ‖ξk − xk‖ ≤ ‖sk‖ ≤ Δk for k ≥ k0, A1, (3.21),

and A4 imply that the rightmost term of (3.26) must be arbitrarily small for Δk

sufficiently small and k sufficiently large. Thus, there must exist a k1 ≥ k0 and a
δ1 ∈ (0, 1

2 |τ∗|] such that

ρk ≥ η2 for all k ≥ k1 such that Δk ≤ δ1.

As a consequence, each iteration where these two conditions hold must be very suc-
cessful and the algorithm then guarantees that Δk+1 ≥ Δk. This and the inequality
γ1δ1 < δ1 ≤ 1

2 |τ∗| in turn imply that

Δk ≥ min[γ1δ1,Δk0
]

def
= δ2(3.27)

for all k ≥ k1. For every successful iteration k ≥ k1, we then obtain from (3.24) that

f(xk) − f(xk+1) ≥ 1
2η1κmdc|τ∗|min[1

4τ
2
∗ , δ

2
2] > 0.

Remembering now that k ∈ N for k ≥ k1 (and thus that |N | = ∞), we obtain from
(3.4) that |S ∩N |, and hence |S|, must be finite, which in turn implies that the trust-
region radius tends to zero. But this contradicts (3.27). Hence our initial assumption
(3.22) must be false and the proof is complete.

We finally note that, at least in theory, nothing prevents the filter size from
growing, possibly to infinity. Practically, a very large number of points might therefore
be required, and this could, again in principle, be a serious drawback, especially for
large-scale instances where each filter point has itself a large number of components.
Fortunately, this problem can be fixed without sacrificing our convergence guarantee.
Should the problem arise in that, at some iteration, the total storage for filter points
reaches a user-defined upper limit, two different techniques can be used to continue
the calculation. The first is simply to revert to a pure trust-region scheme from
that iteration on. Admittedly, we would then lose some of the potential benefits of
using a filter technique, but convergence is not put at risk. The second strategy is
a progressive form of the first. As indicated in [8], the components of the gradient
can be grouped in progressively larger sets (the filter entries being then defined as the
Euclidean norm of the subvector of components belonging to the set). This results in
a progressive decrease of the amount of storage required to store the entire filter. In
the limit where a single component set is considered and assuming dominated filter
points are removed, the filter reduces to a single number (an upper bound on the
Euclidean norm of the gradient), thus eliminating all storage problems.

352 N. I. M. GOULD, C. SAINVITU, AND PH. L. TOINT

4. Numerical experiments. We now report the results obtained by running
our algorithm on the set of 159 unconstrained2 problems from the CUTEr collection
[10]. The names of the problems with their dimensions3 are detailed in Table 4.1.

In each case, the starting point supplied with the problem was used. All tests were
performed in double precision on a Dell Latitude C840 portable computer (1.6 Mhz,
1 Gbyte of RAM) under Red Hat 9.0 Linux and the Lahey Fortran compiler (version
L6.10a) with default options. All attempts to solve the test problems were limited
to a maximum of 1000 iterations or 1 hour of CPU time. The values γ1 = 0.0625,
γ2 = 0.25, γ3 = 2, η1 = 0.01, η2 = 0.9, Δ0 = 1, and

γg = min

[
0.001,

1

2
√
n

]

were used.
Two particular variants were tested. The first (called default) is the algorithm

as described above, where exact first and second derivatives are used and where, at
each iteration, the trial point is computed by approximately minimizing mk(xk + s)
using the generalized Lanczos trust-region algorithm of [9] (without preconditioning)
as implemented in the GALAHAD library [11]. This procedure is terminated at the
first s for which

‖∇mk(xk + s)‖ ≤ min
[
0.1,

√
max(εM , ‖∇mk(xk)‖)

]
‖∇mk(xk)‖,(4.1)

where εM is the machine precision. In addition, we choose

fsup = min(106|f(x0)|, f(x0) + 1000)

at Step 0 of the algorithm. Based on practical experience [12], we also impose that
‖sk‖ ≤ 1000Δk at all iterations following the first one at which a restricted step was
taken. The algorithm stops if

‖∇f(xk)‖ ≤ 10−6
√
n.(4.2)

Finally, dominated filter points are always removed from the filter. The second algo-
rithmic variant is the pure trust-region version, which is the same algorithm with the
exception that no trial point is ever accepted for the filter and RESTRICT is always set.

On the 159 problems, both the default and the pure trust-region versions success-
fully solve 143. For the problems where both variants succeed, they report the same
final objective function value. Failure occurs because the maximal iteration count is
reached before convergence is declared, except for problems ARGLINB and ARGLINC

that are judged to be too ill-conditioned by the default version, and for problems
MEYER3, SCURLY20, and SCURLY30, where the pure trust-region variant stops for the
same reason. The filter variant is thus just as reliable4 as the trust-region version.

Figures 4.1, 4.2, and 4.3 give the performance profiles for the two variants for
iterations, CPU time, and the total number of conjugate-gradient iterations, respec-
tively. Performance profiles give, for every σ ≥ 1, the proportion p(σ) of test problems
on which each considered algorithmic variant has a performance within a factor σ of

2We excluded problem BROYDN7D because of its multiple local minima.
3The number of free variables.
4The two variants consistently fail on CHAINWOO, HYDC20LS, LMINSURF, LOGHAIRY, MEYER3, NLMSURF,

NONCVXU2, NONCVXUN, SBRYBND, SCOSINE, and SCURLY10.

A FILTER METHOD FOR UNCONSTRAINED OPTIMIZATION 353

Table 4.1

The test problems and their dimensions.

Problem n Problem n Problem n
AIRCRFTB 5 DQRTIC 5000 OSBORNEA 5
ALLINITU 4 EDENSCH 10000 OSBORNEB 11
ARGLINA 200 EG2 1000 PALMER1C 8
ARGLINB 200 EIGENALS 2550 PALMER1D 7
ARGLINC 200 EIGENBLS 2550 PALMER2C 8
ARWHEAD 5000 EIGENCLS 2652 PALMER3C 8
BARD 3 ENGVAL1 10000 PALMER4C 8
BDQRTIC 5000 ENGVAL2 2 PALMER5C 6
BEALE 2 ERRINROS 50 PALMER6C 8
BIGGS3 3 EXPFIT 2 PALMER7C 8
BIGGS5 5 EXTROSNB 1000 PALMER8C 8
BIGGS6 6 FMINSRF2 5625 PARKCH 15
BOX2 2 FMINSURF 49 PENALTY1 1000
BOX3 3 FREUROTH 5000 PENALTY2 200
BRKMCC 2 GENROSE 500 PENALTY3 200
BROWNAL 200 GROWTHLS 3 POWELLSG 5000
BROWNBS 2 GULF 3 POWER 100
BROWNDEN 4 HAIRY 2 QUARTC 5000
BRYBND 5000 HATFLDD 3 RAYBENDL 2046
CHAINWOO 4000 HATFLDE 3 RAYBENDS 2046
CHNROSNB 50 HEART6LS 6 ROSENBR 2
CLIFF 2 HEART8LS 8 S308 2
CLPLATEA 10100 HELIX 3 SBRYBND 500
CLPLATEB 4970 HIELOW 3 SCHMVETT 5000
CLPLATEC 4970 HILBERTA 2 SCOSINE 5000
COSINE 10000 HILBERTB 10 SCURLY10 100
CRAGGLVY 5000 HIMMELBB 2 SCURLY20 100
CUBE 2 HIMMELBF 4 SCURLY30 100
CURLY10 10000 HIMMELBG 2 SENSORS 100
CURLY20 10000 HIMMELBH 2 SINEVAL 2
CURLY30 1000 HYDC20LS 99 SINQUAD 10000
DECONVU 61 JENSMP 2 SISSER 2
DENSCHNA 2 KOWOSB 4 SNAIL 2
DENSCHNB 2 LIARWHD 5000 SPARSINE 5000
DENSCHNC 2 LMINSURF 5329 SPARSQUR 10000
DENSCHND 3 LOGHAIRY 2 SPMSRTLS 4900
DENSCHNE 3 MANCINO 100 SROSENBR 5000
DENSCHNF 2 MARATOSB 2 SSC 4900
DIXMAANA 9000 MEXHAT 2 STRATEC 10
DIXMAANB 9000 MEYER3 3 TESTQUAD 5000
DIXMAANC 9000 MINSURF 36 TOINTGOR 50
DIXMAAND 9000 MOREBV 5000 TOINTGSS 5000
DIXMAANE 9000 MSQRTALS 1024 TOINTPSP 50
DIXMAANF 9000 MSQRTBLS 1024 TOINTQOR 50
DIXMAANG 9000 NCB20 5010 TQUARTIC 5000
DIXMAANH 9000 NCB20B 5000 TRIDIA 5000
DIXMAANI 9000 NLMSURF 5329 VARDIM 200
DIXMAANJ 9000 NONCVXU2 5000 VAREIGVL 50
DIXMAANK 9000 NONCVXUN 5000 VIBRBEAM 8
DIXMAANL 9000 NONDIA 5000 WATSON 12
DIXON3DQ 10000 NONDQUAR 5000 WOODS 10000
DJTL 2 NONMSQRT 100 YFITU 3
DQDRTIC 5000 ODC 4900 ZANGWIL2 2

the best (see [3] for a more complete discussion). When comparing CPU times, we
must take into account the variability of reported CPU times for identical runs on the
same machine. We have chosen to round all reported times to the nearest multiple

354 N. I. M. GOULD, C. SAINVITU, AND PH. L. TOINT

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

p(
σ)

Default
Pure trust region
LANCELOT B

Fig. 4.1. Iteration performance profiles for the two variants and LANCELOT B.

of 0.1 second. Problems for which all variants required zero seconds (after rounding)
are not included in the comparison since the ranking of algorithms with CPU times
less than clock accuracy is, in our opinion, of doubtful relevance, both because it
is very unreliable and also because its practical impact is negligible (all algorithms
are extremely quick in this case). We have also chosen to replace all remaining zero
times by the average of the class of times that are rounded to zero (assuming uniform
distribution), that is, in our case, by 0.025 (the middle of the interval [0, 0.05]).

It is not difficult to see in these figures that the filter variant is significantly more
efficient than the pure trust-region method in terms of the number of iterations (which
is identical to the number of function evaluations minus one). Its advantage is smaller
but significant in terms of CPU time and conjugate-gradient iterations. Interestingly,
the cost of managing the filter does not appear to dominate the calculation, despite
the potentially large number of entries. A closer look at the results shows that the
maximum number of filter entries does not exceed 5 for 119 problems, lies between
6 and 10 for 11 problems, lies between 11 and 50 for 11 problems, and exceeds 50
for 4 problems only: EIGENBLS (85 entries), RAYBENDS (340 entries), SCURLY20 (176
entries), and SCURLY30 (233 entries). None of the three last problems could be solved
by the pure trust-region method. Moreover, we did not observe any obvious correlation
between filter size and number of variables.

The profiles also include a comparison with LANCELOT-B, one of the GALAHAD
codes [11]. This is a nonmonotone trust-region algorithm (see [15] or [2, section 10.1]),
which we used unpreconditioned with Δ0 = 1 and with its other settings at their
default values. Again this method, which successfully solves 141 out of 159 problems,
appears to be consistently inferior to the new filter algorithm. It does not solve
RAYBENDS, SCURLY20, or SCURLY30 either. This comparison is interesting in that it
suggests not only that the improved performance of the new algorithm might be due

A FILTER METHOD FOR UNCONSTRAINED OPTIMIZATION 355

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

p(
σ)

Default
Pure trust region
LANB

Fig. 4.2. CPU performance profiles for the two variants and LANCELOT B.

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

p(
σ)

Default
Pure trust region
LANCELOT B

Fig. 4.3. CG iteration performance profiles for the two variants and LANCELOT B.

356 N. I. M. GOULD, C. SAINVITU, AND PH. L. TOINT

0 50 100 150 200 250

0

2

4

6
lo

g1
0

of
 o

bj
ec

tiv
e

fu
nc

tio
n

va
lu

e

iterations

Default
Pure trust region
LANB

–2

–4

–6

Fig. 4.4. The objective function value as a function of the iteration progress on the EXTROSNB

problem for the two variants and LANCELOT B. The default variant oscillates the most and converges
first, followed by the moderately nonmonotone LANCELOT B, itself followed by the monotone pure
trust-region variant.

to the nonmonotone nature of the mechanism to accept new iterates, but also that the
capability to use steps that extend beyond the trust-region boundaries is also crucial.

We finally present in Figure 4.4 a plot of the evolution of the objective function
value for the default and trust-region variants, as well as for LANCELOT B. This plot
is typical of the cases where the new algorithm outperforms the others. For this algo-
rithm, we note the large oscillations in objective value prior to convergence. Looking
at this figure, it is remarkable that the algorithm is nevertheless provably convergent.

5. Conclusion. We have presented a filter algorithm for unconstrained opti-
mization and have shown, under standard assumptions, that it produces at least a
first-order critical point, irrespective of the chosen starting point. Under mild addi-
tional conditions, we also proved that convergence of the complete sequence of iterates
can occur only to a second-order critical point. Preliminary numerical experience on
the set of unconstrained test problems from the CUTEr collection indicates that sig-
nificant gains in CPU time and in the number of iterations and function/gradient
evaluations can be achieved.

Acknowledgment. The authors are indebted to two anonymous referees for
their constructive comments.

REFERENCES

[1] C. M. Chin and R. Fletcher, On the global convergence of an SLP-filter algorithm that takes
EQP steps, Math. Program., 96 (2003), pp. 161–177.

[2] A. R. Conn, N. I. M. Gould, and Ph. L. Toint, Trust-Region Methods, MPS-SIAM Ser.
Optim. 1, SIAM, Philadelphia, 2000.

[3] E. D. Dolan and J. J. Moré, Benchmarking optimization software with performance profiles,
Math. Program., 91 (2002), pp. 201–213.

A FILTER METHOD FOR UNCONSTRAINED OPTIMIZATION 357

[4] R. Fletcher, N. I. M. Gould, S. Leyffer, Ph. L. Toint, and A. Wächter, Global conver-
gence of a trust-region SQP-filter algorithm for nonlinear programming, SIAM J. Optim.,
13 (2002), pp. 635–659.

[5] R. Fletcher and S. Leyffer, Nonlinear programming without a penalty function, Math.
Program., 91 (2002), pp. 239–269.

[6] R. Fletcher, S. Leyffer, and Ph. L. Toint, On the global convergence of a filter–SQP
algorithm, SIAM J. Optim., 13 (2002), pp. 44–59.

[7] C. C. Gonzaga, E. Karas, and M. Vanti, A globally convergent filter method for nonlinear
programming, SIAM J. Optim., 14 (2003), pp. 646–669.

[8] N. I. M. Gould, S. Leyffer, and Ph. L. Toint, A multidimensional filter algorithm for
nonlinear equations and nonlinear least-squares, SIAM J. Optim., 15 (2004), pp. 17–38.

[9] N. I. M. Gould, S. Lucidi, M. Roma, and Ph. L. Toint, Solving the trust-region subproblem
using the Lanczos method, SIAM J. Optim., 9 (1999), pp. 504–525.

[10] N. I. M. Gould, D. Orban, and Ph. L. Toint, CUTEr, a constrained and unconstrained
testing environment, revisited, ACM Trans. Math. Software, 29 (2003), pp. 373–394.

[11] N. I. M. Gould, D. Orban, and Ph. L. Toint, GALAHAD—a library of thread-safe Fortran
90 packages for large-scale nonlinear optimization, ACM Trans. Math. Software, 29 (2003),
pp. 353–372.

[12] N. I. M. Gould and Ph. L. Toint, FILTRANE, a Fortran 95 Filter-Trust-Region Package
for Solving Systems of Nonlinear Equalities, Nonlinear Inequalities and Nonlinear Least-
Squares Problems, Technical report 03/15, Rutherford Appleton Laboratory, Chilton, Ox-
fordshire, UK, 2003.

[13] J. J. Moré and D. C. Sorensen, Computing a trust region step, SIAM J. Sci. Statist. Comput.,
4 (1983), pp. 553–572.

[14] J. Nocedal and Y. Yuan, Combining trust region and line search techniques, in Advances
in Nonlinear Programming, Appl. Optim. 14, Y. Yuan, ed., Kluwer Academic Publishers,
Dordrecht, The Netherlands, 1998, pp. 153–175.

[15] Ph. L. Toint, A non-monotone trust-region algorithm for nonlinear optimization subject to
convex constraints, Math. Programming, 77 (1997), pp. 69–94.

[16] M. Ulbrich, S. Ulbrich, and L. N. Vicente, A globally convergent primal-dual interior-point
filter method for nonlinear programming, Math. Program., 100 (2004), pp. 379–410.

[17] A. Wächter and L. T. Biegler, Global and Local Convergence of Line Search Filter Methods
for Nonlinear Programming, Technical report CAPD B-01-09, Department of Chemical
Engineering, Carnegie Mellon University, Pittsburgh, PA, 2001.

