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In recent years, a number of new direct solvers for the solution of large sparse, symmetric linear
systems of equations have been added to the mathematical software library HSL. These include
solvers that are designed for the solution of positive-definite systems as well as solvers that are
principally intended for solving indefinite problems. The available choice can make it difficult for
users to know which solver is the most appropriate for their use. In this study, we use performance
profiles as a tool for evaluating and comparing the performance of the HSL solvers on an extensive
set of test problems taken from a range of practical applications.

Categories and Subject Descriptors: G.1.0 [Numerical Analysis]: General—Numerical
algorithms; G.1.3 [Numerical Analysis]: Numerical Linear Algebra—Sparse, structured, and very
large systems (direct and iterative methods)

General Terms: Algorithms, Performance
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1. INTRODUCTION

The solution of linear systems of equations Ax = b (or systems with multiple
right-hand sides AX = B) is one of the cornerstones of scientific computation.
In many cases, particularly when discretizing continuous problems, the system
is large and the associated matrix A is sparse. Furthermore, for many
applications, the matrix is symmetric; sometimes, such as in finite-element
applications, A is positive definite, while in other cases, for example for
constrained optimization, it may be indefinite.

HSL 2002 is an ISO Fortran library of packages for many areas in scientific
computation [HSL 2002]. It is probably best known for its codes for the
direct solution of sparse linear systems, there being a number of different
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Table I. HSL Codes Used in Our Numerical Experiments

Code Description

MA27 Sparse symmetric linear solver. Multifrontal algorithm. Minimum degree ordering.
MA4T7 Sparse symmetric indefinite linear solver.

MA55 Variable band symmetric positive-definite linear solver.

MA5B7 Sparse symmetric linear solver. Multifrontal algorithm. Approximate minimum
degree ordering.

MA62 Sparse symmetric positive-definite linear solver for equations in elemental form.
(Uni)frontal algorithm.

MA67 Sparse symmetric indefinite linear solver. Analyze-factorize code.

FA14 Generates pseudo-random numbers.

MC30 Matrix scaling routine.

MC37 Given a symmetric sparse matrix, computes a set of element matrices that,

if assembled, would yield the same matrix.

MC60 Orders a matrix with symmetric sparsity pattern for small bandwidth or profile.
MC63 Orders element matrices for a frontal solver.

MC73 Computes spectral ordering.

packages for both the symmetric and unsymmetric cases. Since a potential
user may be bewildered by such choice, our intention in this article is to
compare the alternatives on a significant set of large test examples from many
different application areas, and, as far as is possible, to make recommendations
concerning the efficacy of the various packages. This study forms part of a
wider comparison of both HSL and non-HSL codes for the direct solution of
symmetric linear systems, which will be reported on shortly. We note that there
has recently been a comparison of some codes designed for the unsymmetric case
by Gupta [2002].

For ease of reference, all the HSL codes that are used in this study
are listed with a very brief description in Table I. The linear equation
solvers given in the top half of the table will be discussed in more detail in
Section 2. The interested reader is also referred to the webpage www.cse.clrc.
ac.uk/nag/hsl/contents.shtml; a complete catalogue for HSLis available from
this site.

2. AN INTRODUCTION TO HSL SPARSE SYMMETRIC SOLVERS

2.1 Phases of a Sparse Direct Solver

Sparse direct methods solve systems of linear equations by factorizing the
coefficient matrix A, employing graph models to control the storage and work
required. Many sparse direct solvers have three distinct computational phases:
analyze, factorize, and solve. The analyze phase (which is sometimes referred to
as the symbolic factorization or ordering step) determines a pivotal sequence.
During the factorization phase, this sequence is used to compute the matrix
factors. Forward elimination followed by back substitution is performed during
the solve phase using the stored factors. Of the three phases, the factorization
is usually the most time-consuming. An introduction to sparse direct solvers is
given in the book by Duff et al. [1986].
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For symmetric matrices that are positive definite, the pivotal sequence may
be chosen using the sparsity pattern alone and so the analyze phase involves
no computation on real numbers and the factorization phase can use the chosen
sequence without modification. For symmetric indefinite problems, many codes
again select a tentative pivot sequence based upon the sparsity pattern and
then modify this sequence if necessary during the factorization to maintain
numerical stability. However, some codes, including MA67 (see Section 2.7 below)
work on the actual numbers so that a factorization results from the analysis.
In such cases, the code is sometimes described as an analyze-factorize code.

Once the factors have been computed, they may be used to solve repeatedly
for different right-hand sides 5. Some packages offer the option of solving
for more than one right-hand side at once because this enables them to
take advantage of higher level Basic Linear Algebra Subprograms (BLAS)
[Dongarra et al. 1990] for greater efficiency.

A number of codes offer an option of automatically performing iterative
refinement to improve the quality of the computed solution and to help assess
its accuracy.

2.2 MA27

The code MA27 has been an important routine within HSL since the early 1980s
(although, since the release of the code MA57 in 2000, it has been part of the HSL
Archive). MA27 uses the multifrontal algorithm of Duff and Reid [1983] (see also
Liu [1992] for a useful overview of the multifrontal method). During the analyze
phase, pivots are selected using the sparsity pattern alone, assuming that the
matrix is definite so that all the diagonal entries are nonzero and suitable as
1 x 1 pivots. By default, a minimum degree algorithm is used for selecting a
pivotal sequence that aims to preserve sparsity. The implementation used is
able to avoid the worst slow-downs that can result from dense rows. The code
also allows the user to specify the pivotal sequence.

During the factorization, the pivot order may be modified to maintain
numerical stability by delaying the use of a pivot if it is too small (i.e, if it
does not satisfy the threshold stability criterion) or by replacing two pivots by a
2 x 2 block pivot. By this means, MA27 can stably factorize symmetric indefinite
problems. For efficiency, if the matrix is known to be positive definite (and thus
the pivot order need not be altered), the user can set a parameter in the calling
sequence so that a logically simpler path in the code is followed. In our tests
using MA27 to solve positive-definite systems, this option is used.

Having computed the factors, a separate solve routine may be called
repeatedly for solving for different right-hand sides b. The solve routine uses the
factors to solve the linear systems either by loading the appropriate parts of the
vectors into a local array and using full matrix code or by indirect addressing
at each stage, whichever performs better.

2.3 MA4T

For problems with a significant number of nonzeros on the diagonal (such
as those that arise from equality constrained least-squares problems and
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quadratic programming problems), the fill-in during the factorization phase of
MA27 can be significantly greater than was predicted during the analyze phase.
In an attempt to overcome this problem, MA47 [Duff and Reid 1996] was designed
to use the multifrontal principle but also to follow the sparsity structure of the
matrix more closely in the case when some of the diagonal entries are zero.
MA47 is thus primarily designed for solving symmetric indefinite systems and,
in particular, augmented systems where A is of the form

H CT @2.1)
c o) ’

The analyze phase chooses diagonal pivots of orders 1 and 2 using a
generalization of the Markowitz criterion. The search for pivots can be
restricted to a user-specified number of rows. An option also exists to accept
a sequence of such pivots supplied by the user. Because of the facility for
handling matrices with zeros on the diagonal, the 2 x 2 pivots can have one
or both diagonal entries of value zero. These are termed tile and oxo pivots,
respectively.

The factorization uses the assembly and elimination ordering generated by
the analyze phase, but with additional numerical pivoting. This can yield full
2 x 2 pivots in addition to tile and oxo pivots. Level 3 BLAS are used during
the eliminations.

As in MA27, the solve phase uses the factors to solve systems of equations
either by loading the appropriate parts of the vectors into a local array and using
full matrix code or by indirect addressing at each stage. This is determined by
a parameter that may be selected by the user.

The pivoting strategy is discussed by Duff et al. [1991]. An explanation of
the whole algorithm is given by Duff and Reid [1995, 1996].

2.4 MASS

MAS55 is a variable-band solver for systems of linear equations whose matrix is
symmetric and positive definite. It has advantages for systems that can be
preordered so that the bandwidth and profile (the total number of entries
between the first entries of the rows and the diagonals) are small. MA55
performs no interchanges and takes advantage of variation in the bandwidth.
To minimise in-core storage requirements, the code optionally uses a direct-
access file to store the real values of the matrix factor. Use of this option may
significantly increase the overall solution time because of the added i/o cost.
MA55 uses a reverse communication interface to pass the rows of the matrix to
the factorization routine; the user can choose to input any number of rows at
once.

For efficiency, MA55 blocks the rows together to allow the use of Level 3 BLAS.
The size of the blocks is control by a parameter BSIZE that may be set by
the user (the default value is 4). The best choice for the blocking parameter
varies with the matrix structure and the relative efficiency of the BLAS on
the computer in use. As BSIZE increases, more floating-point operations and
storage are needed, since the matrix is held as a set of rectangular blocks,
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each corresponding to the smallest rectangular submatrix that contains all
the lower-triangular entries of the block of rows, including the diagonal. Given
BSIZE, the analyze routine computes the number of floating-point operations
(flops) that will be needed to factorize the matrix and the real storage required
for the matrix factor. Since this analyze routine is inexpensive compared with
the total factorization cost, the user may choose to call it for several values of
BSIZE and look at the different flop counts and storage requirements. A modest
increase in the flop count is likely to be justified by the increase of speed caused
by giving larger blocks to the Level 3 BLAS.

MAS55 offers an option for solving for one or more right-hand sides b or B at
the same time as the numerical factorization. There is also a separate solve
routine for solving for further right-hand sides and an additional routine that
computes residuals.

Since the efficiency of MA55 depends upon the equations being ordered for a
small profile, the user is advised to preorder the matrix prior to calling MA5S5.
HSL offers routine MC60 [Reid and Scott 1999] for doing this. In our numerical
experiments, the time taken for MC60 is included in the “analyze” time for MA55.
We remark that, although the reverse communication interface avoids the need
to hold the whole matrix, in our experiments it was necessary to store A for the
reordering phase. Thus, the memory statistics reported on in Section 4 include
storage for A.

2.5 MA57

The multifrontal code MA57 was designed by Duff [2002] to supersede MA27
for the solution of symmetric indefinite systems. In addition to being more
efficient (partly through its use of the Level 3 BLAS), MA57 has a number of
added features. These include: a fast mapping of data prior to a numerical
factorization, the ability to modify pivots if the matrix is not definite, the
efficient solution of several right-hand sides, a routine implementing iterative
refinement, and the possibility of restarting the factorization should it run out
of space while retaining the part of the factors computed so far.

By default, the analyze phase chooses pivots from the diagonal using an
approximate minimum degree (AMD) algorithm [Amestoy et al. 1996]. A
version of AMD that avoids some of the problems caused by (nearly) dense
rows is also offered (see Duff [2002] for details); this version is called MC50.
Alternatively, the pivot sequence may be chosen as in MA27 using the minimum
degree algorithm. An option also exists for the user to supply a pivotal sequence.

The ordering generated by the analyze phase is passed to the factorization. At
each stage in the multifrontal approach, pivoting and elimination are performed
on full submatrices and, when diagonal 1 x 1 pivots would be numerically
unstable, 2 x 2 diagonal blocks are used. Thus, the code can be used to factor
indefinite systems.

As for MA27 and MA47, systems of equations are solved either by loading
the appropriate parts of the vectors into a local array and using full matrix code
or by indirect addressing at each stage. The user may solve for either a single
or multiple right-hand sides. A parameter (with default value 10) controls the
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number of columns in a block pivot above which, provided the number of rows
in the block is at least 4, Level 2 and Level 3 BLAS are used in the solve phase.
An additional routine may be called to perform iterative refinement, using the
strategy of Arioli et al. [1989].

There are Fortran 77 and Fortran 90 versions of MA57. HSL_MA57 is a Fortran 90
encapsulation of MA57 but also offers some additional facilities, including
dynamic storage allocation and an option to perturb the matrix if a nonpositive
pivot is found. In our numerical experiments, the Fortran 77 version is used.

2.6 MA62

MA62 [Duff and Scott 1999] is designed for solving systems of symmetric
positive-definite unassembled finite-element equations. The code uses a frontal
algorithm [Irons 1970, Hood 1976, Duff 1984] and optionally holds the matrix
factor in direct-access files (one file for real data and one for the integer data).
Use of direct-access files substantially reduces the main memory requirements
but the extra i/o cost can impose a time penalty.

MA62 uses reverse communication to obtain information from the user. This
adds to the complexity of the interface but reduces the amount of data that must
be held by the user; in particular, the user can choose to generate the data for
a single element at a time as it is required. The structure of the problem is
first provided by calling a subroutine for each element. The order in which the
elements are entered is termed the assembly order. These calls establish when
variables are fully summed (i.e., are not involved in any elements still to be
assembled) and hence are candidates for use as pivots. A further set of calls to
another subroutine computes the size of the files required to hold the factors
and the maximum order of the frontal matrix (at each stage, the frontal matrix
holds the variables involved in one or more of the elements assembled so far
that have not yet been eliminated).

In the innermost loop of the numerical factorization, MA62 uses Level 3 BLAS
routines. In particular, if at some stage the number of available pivots is K, the
Level 3 kernel GEMM with internal dimension K is used. MA62 allows the user
to specify the minimum number of pivots that will be selected at any stage
(the default value is 16). Delaying performing eliminations until a block of
pivots is available increases the BLAS component of the factorization, albeit
at the cost of more floating-point operations, increased storage for the reals
in the factor, and, in general, an increase in the in-core storage required. Since
the symbolic factorization is cheap to perform, the user may want to examine
the effects of varying the minimum pivot block size before starting the
numerical factorization.

MA62 offers an option for solving for one or more right-hands side b or B at the
same time as the numerical factorization. In this case, the right-hand sides must
be entered in element form. There is also a separate solve routine for solving
for further right-hand sides. In this case, the user must enter assembled right-
hand side vectors. When solving for multiple right-hand sides, Level 3 BLAS
are used for the forward eliminations and back substitutions; otherwise, Level 2
BLAS are employed.
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As the elements are assembled, the size of the frontal matrix increases
whenever a variable appears for the first time and decreases whenever it is
eliminated. Thus for the efficiency of the code, the user’s element assembly
order is critical. The elements need to be ordered to keep the size of the frontal
matrices as small as possible. In HSL, we offer a separate element ordering
routine MC63 [Scott 1999] that the user is advised to call prior to using MA62. For
large problems, the cost of ordering the elements is generally small compared
with the factorization cost. Thus, in our experiments, we run both the direct and
indirect element ordering algorithms offered by MC63, and we run each of these
with and without supplying a spectral ordering computed using MC73 (i.e., we
compute four different element orderings and choose the one with the smallest
root-mean-squared wavefront as the assembly order for MA62). The “analyze”
time for MA62 reported in our numerical experiments is the total time taken to
order the elements plus the time for the symbolic factorization phases described
above.

2.7 MA67

Like MA47, MA67 is primarily designed for symmetric indefinite problems and,
in particular, for augmented systems. The code uses 1 x 1 and 2 x 2 pivots.
Advantage is taken of the extra sparsity available within 2 x 2 pivots when
either one or both the diagonal entries are of value zero (tile and oxo pivots).
Unlike the other codes discussed in this section, MA67 does not have separate
analyze and factorize phases. Instead, the numerical values of the entries
are taken into account during the selection of pivots and thus there is a
single analyze-factorize routine. The aim is to avoid the problems that have
been observed with MA47 when pivots chosen during the analyze phase are
subsequently found to be numerically unsuitable during the factorize phase.
This can lead to the MA47 factorization being significantly more costly than was
anticipated by the analyze phase.

MA67 chooses its pivot sequence using the Markowitz criterion to preserve
sparsity. For efficiency, supervariables are exploited and use is made of Level 3
BLAS. MA67 is not a multifrontal code. Instead, it follows the sparsity pattern
of the matrix at each stage of the elimination. It bases its blocking on rows
with identical sparsity patterns and merges blocks whenever fill-ins make the
sparsity patterns of two block rows identical. Each block is held separately, with
links to allow rapid access to the blocks of a block row. Only one copy of each
pair of corresponding off-diagonal blocks is held.

The solve phase uses the factors from the analyze-factorize routine to solve a
system of equations either by loading the appropriate parts of the vectors into
a local array and using full matrix code or by indirect addressing at each stage.
By default, block pivots with more than 4 rows use direct-addressing.

2.8 Summary of the Key Features of the HSL Symmetric Solvers

Table II summarizes the key features of the HSL symmetric sparse solvers
discussed above. The year in which each code was first included within the
HSL library is also given.
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Table II. Summary of the Key Features of the HSL Symmetric Sparse Direct-Solvers

Out-of Separate

Fortran | Positive Element -core analyze + | Multiple
Code version | definite | Indefinite entry option factorize rhs
MA27 (1982)x 77 v v X X Vv x
MA47 (1993)* 77 X 4 X X 4 X
MAS5 (1999) 90 v X X v J WV
MA57 (2000) 77/90 v v X X J Vv
MA62 (1997) 77 v x v v J J
MA67 (2001) 77 X 4 X X X x

A x indicates the code is part of HSL Archive; the remaining codes are in HSL 2002.

Although each of the codes may be used to solve positive-definite problems,
some have an option that allows the user to indicate that the matrix is positive
definite and, in this case, the code follows a logically simpler path. A ‘\/’ in
the column headed ‘Positive definite’ indicates that the code either has such an
option or is designed specifically for positive-definite systems. Note that MA55
and MA62 perform no numerical pivoting and so are generally unsuitable for the
solution of indefinite problems.

We observe that only the positive-definite solvers MA55 and MA62 offer the
option of holding the matrix factor out-of-core. We anticipate that this facility
will allow the solution of problems that are too large for the other codes to
successfully solve with the memory available in our test environment. Note
also that MA62 is only designed for the solution of finite-element problems
in unassembled form. The HSL routine MC37 may be used to split a sparse
symmetric matrix in assembled form into a (nonunique) set of element matrices
that, if assembled, would yield the same matrix. We use MC37 to enable MA62 to
be run on the complete positive-definite test set.

3. THE TEST ENVIRONMENT

3.1 The Test Set

Our aim in this study is to test the solvers on a wide range of test problems
from as many different application areas as possible. In collecting test data, we
imposed only two conditions:

—The matrix must be of order greater than 10,000.
—The data must be available to other users.

The first condition was imposed because our interest is in large problems. The
second condition was to ensure that our tests could be repeated by other users
and, furthermore, it enables other software developers to test their codes on
the same set of examples and thus to make comparisons with HSL solvers.
Provided the above conditions are satisfied, we have included all square real
symmetric matrices of order exceeding 10,000 from Matrix Market (math.nist.
gov/MatrixMarket/), the Harwell-Boeing Collection [Duff et al. 1989],
and the University of Florida Sparse Matrix Collection (www.cise.ufl.edu/
~davis/sparse/). The test set comprises 88 positive-definite problems and
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61 numerically indefinite problems. Of these matrices, those of order 50,000
or more are further classed as being in the subset of larger examples (there
are 43 positive-definite and 30 indefinite examples in this category). Any
matrix for which we only have the sparsity pattern available is included in the
positive-definite set, and appropriate numerical values have been generated
(see Section 3.6). Application areas represented by our test set include linear
programming, structural engineering, computational fluid dynamics, acoustics,
and financial modelling. A full list of the test problems together with a brief
description of each is given in Gould and Scott [2003]. The problems are all
available from ftp://ftp.numerical.rl.ac.uk/pub/matrices/symmetric.

3.2 The Performance Profile

Benchmark results are generated by running a solver on a set 7 of problems
and recording information of interest such as the computing time and memory
used. In this study, we use a performance profile as a means to evaluate and
compare the performance of our HSL solvers on our test set 7.

Let A represent the set of solvers that we wish to compare. Suppose that a
given solver i € A reports a statistic s;; > 0 when run on example j from the
test set 7, and that the smaller this statistic the better the solver is considered
to be. For example, s;; might be the CPU time required to solve problem j using
solver i. For all problems j € 7, we want to compare the performance of solver
i with the performance of the best solver in the set A.

For j € 7, let §; = min{s;j;i € A}. Then for « > 1 and each i € A we define
R 1 if Sij < as J
ks, 87, @) = 0 otherwise.

The performance profile (see Dolan and Moré [2002]) of solver i is then given
by the function

D jer ks 8, )
7] ’
Thus, p;(1) gives the fraction of the examples for which solver i is the most
effective (according to the statistic s;;), p;(2) gives the fraction for which solver:
is within a factor of 2 of the best, and lim,,_, ., p;(«) gives the fraction for which

the solver succeeded.
In this study, the statistics used are:

a>1.

pila) =

—The CPU times required to perform the analyze, factorize, and solve phases.
—The number of nonzero entries in the matrix factor.
—The total memory used by the solver.

3.3 Computing Platform

The numerical results were obtained on a Compaq DS20 Alpha server with a
pair of EV6 CPUs; in our experiments only a single processor with 3.6 GBytes
of RAM was used. We compiled the Fortran 77 and Fortran 90 codes with full
optimisation; the vendor-supplied BLAS were used. All CPU reported times are
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in seconds and, where appropriate, include all /o costs involved in holding the
factors in direct-access files. A CPU limit of 2 hours was imposed for each code
on each problem; any code that had not completed after this time was recorded
as having failed.

In all the experiments, double precision reals were used. Thus storage for
a real was 8 bytes and for an integer was 4 bytes. The reported statistics for
memory are all in Mbytes.

3.4 Control Parameters

Each of the HSL sparse solvers used in our numerical experiments has a
number of control parameters that are assigned default values through a call
to an initialisation subroutine. Unless otherwise stated, we use these defaults
in each case, even if different codes sometimes choose a different value for
essentially the same parameter. The exceptions are the blocking parameters
that control the use of high level BLAS (note that MA27 is the only code that
does not employ Level 3 BLAS) and the stability threshold parameter w.

We performed a number of preliminary experiments to determine a suitable
choice for the blocking parameters in our test environment and, based on our
findings, in our reported numerical experiments these parameters are always
set to 16.

When testing the solvers on positive-definite problems the threshold
parameter u is set to zero. This results in no numerical pivoting being
performed. For our tests on numerically indefinite problems, we run both with
the code’s default u value and with u set to 1071, Such a value is frequently used
in optimization applications [Saunders 1994; Gould and Toint 2002], where
speed is of the essence, and any instability is countered either by iterative
refinement or ultimately by refactorization with a larger value of u.

The codes MA27 and MA67 use the default © = 0.1 while MA57 and MA47 use
v = 0.01 and u = 0.001, respectively.

We remark that MA47 has a control parameter ICNTL (4) which, if set to a value
greater than one, limits the search for a pivot to ICNTL (4) rows. If ICNTL (4) is set
to zero, the number of rows searched is unrestricted (the Markowitz criterion
is used). Previously, the default value was zero. However, experimentation
has shown that restricting the pivot search to a small number of rows can
substantially reduce the analyze time (possibly at the cost of a modest increase
in the number of entries in the factors). As a result, the default value is now
10, and this value was used in our tests.

3.5 Use of Direct-Access Files

As already mentioned, the option of holding the matrix factor using direct-
access files available in MA55 and MA62 can add a significant i/0 overhead,
particularly to the solve phase. We illustrate this with test problem tsy1201.
For this example, the MA62 factorization and solve times for a single right-hand
side without using direct-access files are 11.7 and 0.27 seconds, respectively. If
files are used, the corresponding times are 12.5 and 1.1 seconds. Thus, in our
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tests, we only use direct-access files if there is insufficient memory for the code
to run in memory.

For MA55, the user can optionally specify the number of real values to be
output in each direct-access record. In our tests, we use the default value of
2 x n (where n is the order of A). MA62 requires the user to specify the number
of reals and integers to be output in each direct access record. We use values
of 500,000 (or if the number of reals and integers required to hold the matrix
factor are found by the analyze phase to be less than this, the values from the
analyze phase are used). MA62 requires integer and real workspaces that are
at least the length of a single record in the direct-access file. Thus, memory
requirements can be reduced by reducing the record length.

3.6 Numerical Values and Scaling

Some of our test examples are not supplied with numerical values (only the
sparsity pattern is available). For these cases, appropriate numerical values
are generated. Reproducible pseudo-random off-diagonal entries in the range
(0, 1) are generated using the HSL routine FA14, while the ith diagonal entry
is set to max(100, 10p;), where p; is the number of off-diagonal entries in row i
of the matrix, thus ensuring that the generated matrix is numerically positive
definite.

In all our tests, right-hand side vectors b are computed so that the exact
solution x (of the unscaled system)isx = (1,1,..., 1T.

If the input matrix has entries differing widely in magnitude, then an
inaccurate solution may be obtained in the indefinite case and the accuracy
may be difficult to assess in all cases. We advise HSL users to first employ MC30
to obtain scaling factors for the matrix and then explicitly scale the matrix
prior to calling their chosen solver. To examine the effects of scaling on our
test examples, for each value of the threshold parameter u used in the tests,
we run both with and without scaling of the matrix A and the corresponding
right-hand side b. For our positive-definite problems, scaling was found to make
an insignificant difference and hence we report on the effects of scaling only for
the indefinite examples.

3.7 Residuals and lterative Refinement

A number of HSL solvers (including MA57) include routines for automatically
performing iterative refinement. We have not used these routines in this study.
Instead, once we have computed the approximate solution x, we perform one
step of iterative refinement by computing the residual r = Ax — b and then
recalling the solve routine to solve Asx = r for the correction 8x.

For each right-hand side b and corresponding solution x, we compute the
norm of the scaled residual

16— Ax|l/(IAll + [1BID.

A check is made after one step of iterative refinement that this residual is
sufficiently small (in our tests, a residual greater than 0.0001 causes an error
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message to be returned). Note that the residual of the unscaled system is
computed.

4. RESULTS

The full results are available as an internal technical report [Gould and Scott
2003]. Since some of the solvers we are examining are specifically designed for
positive-definite problems (and may be unreliable, or even fail, on indefinite
ones), we will discuss the positive-definite and indefinite cases separately.

4.1 Positive-Definite Examples

4.1.1 General Considerations. The reliability of all six solvers in the
positive-definite case was generally high. Only audikw was not solved by any
code, this example being one of the two largest—it is of order roughly 950
thousand, and involves some 39 million nonzeros; no solver was able to allocate
sufficient memory. Additionally, three of the other large problems, in_line, Idoor
and TROLL, were not solved by MA55, either because the CPU time limit was
exceeded or there was a memory allocation error (which could not be avoided
through the use of files for the factors). MA62 exceeded the CPU time limit for the
three gupta examples and for problems audikw and in_line there was insufficient
memory to preprocess the matrix (i.e., to split the problem into elements using
MC37). The CPU time limit was exceeded by MA27, MAS5, and MA67 for the gupta2
problem.

We present the performance profile for the CPU time for the complete
solution (i.e., the CPU time for analysing, factorising and solving for a single
right-hand side, with no iterative refinement) for the six solvers in Figure 1.

It is immediately apparent how much better MA57 is than its rivals, being
best in 90% of the cases, and within a factor of 2 of the best in every case. Of
the other solvers, MA47 is within a factor of 2 of the best in roughly 60% of the
cases, while MA67 and MA27 achieve the same level in around 50% of the cases.
The out-of-core solvers perform less well but, as already noted, these codes are
designed to solve special classes of problems (MAS5 is for banded systems and
MA62 for finite-element applications); they compare unfavourably with the other
solvers in terms of CPU time when run on our general test set.

MA62 performed poorly on problems that were artificially splitinto elements—
it appears that using MC37 generates a large number of very small elements. If
we assemble FE problems and then split into elements with MC37, MA62 performs
less well than if run on the original element data. Furthermore, for the largest
problems the memory available was insufficient to run MC37. The number of
problems for which the out-of-core solvers MA55 and MA62 used files to store
their factors was relatively small (one and eight, respectively).

For the subset of large problems, Figure 2 reinforces the apparent superiority
of MA57. Notice now that MA47 and MA67 outperform the older solver MA27,this
being almost entirely due to the former using high-level BLAS.

A close examination of the separate analyze, factorize and solve times for
the different solvers (see Gould and Scott [2003]) shows that the potentially
less-expensive AMD analysis ordering used by MA57 is indeed faster than the
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analyze phases of MA27 and MA47. Perhaps more surprisingly, the factorization
time gains are even more pronounced. This might be attributable to the use of
Level 3 BLAS, although the same advantages should then be shared by MA47
and MA67—the latter codes do actually perform better than the BLAS-free MA27,
but the improvement is only significant for the large problems. Thus, one can
only surmise that MA57 must be performing less work, and that this is likely
because the MA57 factors are actually sparser. This is confirmed in Figure 3.
Given the factorizations, the solution times for the solvers is less significantly
different, although MA57 and MA27 are slightly faster than their competitors.
When it comes to overall memory use, Figure 4 indicates that MA27 is generally
the most frugal, although MA57 and MA47 are not far behind. However, note that
the memory used by MA55 and MA62 is dependent upon the choice of the length
of the in-core work arrays; reducing these so that more problems are solved
using files for the factors would make MA55 and MA62 much more competitive
in terms of memory. This is seen by considering the minimum memory used.
If minimum memory is the overriding concern, Figure 5 shows that out-of-
core solvers and, in particular MA62, are preferable—note here that data on the
minimum memory needed is not available for the older solvers (MA27 and MA47).

4.1.2 Improved Orderings for MA57. Since the figures presented in the
previous section strongly suggest that MA57 is the best general-purpose HSL
solver for positive-definite problems (at least in terms of CPU times required),
it is of interest to see if we can further improve its performance. One way to
do this might be to replace the AMD ordering generated in the analyze phase.
With this in mind, we have considered three alternatives.
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The first possibility is to use the multilevel graph partitioning ordering
generated by the METIS package [Karypis and Kumar 1999]. In particular,
we use routine METIS NodeND, which aims to compute fill-reducing orderings for
sparse matrices using a multilevel nested dissection algorithm. The package is
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written in C; we compiled it with full optimization and used the facility offered
by MA57 which allows the code to accept externally supplied pivot orderings. We
denote this option MA57 METIS.

Second, we consider the minimum degree ordering computed by the analyze
phase of MA27. This is provided as an option within MA57 itself. We denote this
option MA57 MA27.

Finally, we have tried a special version of the AMD ordering (soon to be
released in HSL as MC50, see Duff [2002]), in which precautions are taken
to ensure that (close to) dense rows do not dominate the local search for the
approximate minimum degree. We refer to this as MA57_MC50. Currently, MC50
is supplied as a private subpackage of MA57, and called directly as an option by
the latter.

We show the performance profiles for MA57 resulting from these four different
ordering strategies in Figures 6 and 7.

For the complete test set, there is little to choose between the default
MA57 ordering and the MA57_METIS and MA57_MC50 alternatives. Only MA57 MA27
seems to perform poorly. This seems odd since one naively might expect that
the minimum degree ordering should produce a better ordering than the
cheaper, but less thorough, AMD alternative. However, this trend has already
been reported on by, for example, Amestoy et al. [1996]. Certainly, detailed
examination of the data in Gould and Scott [2003] reveals that both the number
of nonzeros in the factors and the total memory required for the solution are
significantly lower with the AMD ordering.
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For the subset of large problems, the nested-dissection METIS ordering is
superior. There is still little to choose between the default MA57 and MA57 _MC50
orderings, with MA57_MA27 running a poor last. This strongly suggests that a
nest-dissection ordering should be provided as an option within any future
evolution of the MA57 package.

4.2 Indefinite Examples

4.2.1 General Considerations. We now turn to the indefinite test suite. Of
course, pivoting must now be performed for stability as well as for sparsity
reasons. Since MA55 and MA62 were not designed for indefinite problems, they
were omitted from these tests.

The overall reliability in the indefinite case was not as high as for the
positive-definite one. All of the codes either exceeded the available memory or
the two-hour CPU time limit for problems BOYD1, BOYD2, NCVXQP3, NCVXQP5,
NCVXQP7 and SPARSINE; further experimentation indicated that, had the time
limit not been exceeded, the memory would ultimately have been exhausted.
Although BOYD2 is the largest indefinite matrix in our set, the remainder
are not particularly large, and it appears that the difficulty is simply that
numerical pivoting during the factorization leads to significant fill-in, even
when a reasonable ordering on sparsity grounds has been found during the
analyze phase. Problem BLOWEYA was solved only by MA67, and even here the
CPU time was large. MA57 appeared to struggle with the singular examples
AUG2D and AUG2DC, which were easily solved by the remaining packages,
particularly MA47 and MA67. The other singular example, DTOC defeated both
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Fig. 8. Performance profile, p(e): CPU time (seconds) for the complete solution (indefinite
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MA27 and MA57. Other problems that were not solved by individual packages
were BRATU3D, CONT-201 and NCVXQP1 (MA47), CONT-300 (MA47 and MA67, the
latter failing to produce an accurate answer for the unscaled problem without
iterative refinement), and c-62, ¢c-68 and ¢-71 (MA67).

We present the performance profile for the overall CPU times for the full
test set and the subset of large problems in Figures 8 and 9. These are
for the default settings and without scaling. Once again MA57 appears to
be the most effective solver when it succeeds but, as suggested above, the
package is far from foolproof. Many of the examples in the test set are from
(constrained) optimization or partial differential equation applications, so have
the “augmented matrix” structure. Thus, one would hope that MA47 and MA67
would be particularly appropriate here. Unfortunately, this really does not
appear to be the case. It appears that once again, the good sparsity ordering
found by the analyze phase of MA47 is severely compromised by stability needs
during the factorization, the resulting factors being generally denser than for
MA57 (see Figure 10). Likewise, the attempt to combine the analyze and factorize
phases to overcome this deficiency in MA67 does not seem to pay off, this package
being the least effective in general, especially for the largest problems.

The total memory used by the solvers is illustrated in Figure 11. MA27, MA4A7
and MA57 appear to have broadly similar memory requirements, but MA67 seems
to require significantly more memory.

4.2.2 Improved Orderings for MA57. Once again, we believe that MA57 is
the best general-purpose HSL solver in the indefinite—definite case (at least in
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terms of CPU times required), and so we consider the effects of the alternative
ordering strategies described in Section 4.1.2. We illustrate the effects of the
four alternatives employed in Figures 12 and 13.

By contrast to the positive—definite case, the METIS nested dissection
ordering does not seem to be the best in the indefinite case—it actually gives the
greatest complete solution times overall. We conjecture that this is yet another
example of a good sparsity ordering being overruled by stability considerations.
The default ordering is often the fastest, but there is little to choose between it
and the MA57_MC50 option.

4.2.3 Other Improvements. As we have seen, stability considerations are
paramount in the indefinite case. We now examine if we are being unduly
cautious with our pivoting strategy.

We consider four variants of threshold pivoting (see Duff et al. [1986],
Section 5.4). The first (default) is with the threshold parameter, u, set by the
solver (this is u = 0.1 for MA27 and MA67, u = 0.01 for MA57, and u = 0.001 for
MA47). The second is to use a tiny threshold parameter u = 10~1°. This has the
potential to allow the code to adhere more closely to the ordering suggested by
the analyze phase, but also allows the possibility of large growth. The third and
fourth strategies are to pre-scale the matrix (using MC30) to try to equilibrate the
entries prior to factorization, and then to use threshold pivoting (with default
u and u = 101, respectively) on the resulting scaled system. In Figure 14-16,
we illustrate the effect of the last three of these strategies on our four solvers.

Comparing the profile Figure 14 with that in Figure 8, we see that (with
no scaling) using a tiny pivot tolerance reduces the total number of failures.

ACM Transactions on Mathematical Software, Vol. 30, No. 3, September 2004.



320 . N. I. M. Gould and J. A. Scott

p(a)

0.8 _

0.3}

0.2 B

—— MA57 (10 failed)

01 +++ MA57 Metis ordering (6 failed) M

+=+ MAS57 MA27 ordering (7 failed)

MAS57 MC50 ordering (9 failed)
T T

1 1.5 2 25 3 3.5 4 4.5 5

«

Fig. 12. Performance profile, p(«): CPU time (seconds) for the complete solution for MA57 with
different analysis orderings (indefinite problems).

p(a)

09 _

0.8

- MAS57 (6 failed)

0.1} +++ MA57 Metis ordering (5 failed) M

+ =+ MA57 MA27 ordering (5 failed)

MAS57 MC50 ordering (5 failed)
T T

0 L 1 L 1 T
1 1.5 2 25 3 3.5 4 4.5 5

«@

Fig. 13. Performance profile, p(«): CPU time (seconds) for the complete solution for MA57 with
different analysis orderings (large indefinite subset problems).

ACM Transactions on Mathematical Software, Vol. 30, No. 3, September 2004.



A Numerical Evaluation of HSL Packages . 321

p(a) 1 T T T T T T T
o9l
+ ol
08l 4
U
07F P i
......... - !c
i
06} - .
.
= I
05} K g
]
0.4 o -
r
-
N
0.3 - 4
- .
.l '
o2l g
o = MA27 (7 failed)
01p o MA47 (7 failed) H
o —— MAS7 (9 failed)
: MA67 (5 failed)
0 1 1 1 1 1 1 I
1 15 2 25 3 35 4 45 5

[e3

Fig. 14. Performance profile, p(«): CPU time (seconds) for the complete solution using the tiny
threshold pivoting parameter z = 10~1? (indefinite problems).

p(a)

0.4 ; p -

T
03F ..F - R
e _——
J. ..
0.2 i .
!

an "= MA27 (5 failed)
0.1 hl 0 MA47 (8 failed)

_ ! —— MAS57 (5 failed)

MAB7 (10 failed)

0 1 1 1 1 1 I

1 1.5 2 25 3 35 4 45 5
@

Fig. 15. Performance profile, p(«): CPU time (seconds) for the complete solution after MC30 scaling
(indefinite problems).

ACM Transactions on Mathematical Software, Vol. 30, No. 3, September 2004.



322 . N. I. M. Gould and J. A. Scott

p(a) ' T T T T T T
0.9f
J
I =
08l S e 3
I - o
J R |
f -
{ svreremdiiins
0.7F S i
o
0.6 ; I .
0.5F N ]
v
0.4f _r ]
;
v
0.3F o |
o
02F ;. |
R B
P =+ MA27 (6 failed)
01F MAA47 (6 failed) H
| —— MA57 (8 failed)
MAG67 (4 failed)
0 1 1 1 1 1 1 T
1 15 2 25 3 35 4 45 5

«

Fig. 16. Performance profile, p(a): CPU time (seconds) for the complete solution after MC30 scaling
and using the tiny threshold pivoting parameter z = 10~10 (indefinite problems).

However, closer examination reveals that for a few problems, the solvers fail
with a tiny u because the residuals are too large. For tiny u, MA57 is again the
fastest code overall (albeit with the largest number of failures) but there is
little to differentiate the other solvers. For given u, scaling the problems also
reduces the number of failures (and there are now no failures resulting from the
residuals being too large). When scaling is combined with a tiny pivot tolerance
the most reliable code (i.e., the code with the least number of failures) is MA67.

Finally, in Figures 17 and 18 we compare all four pivoting options using our
leading solver MA57.

We expressed concern in Section 3.7 over the potential for instability when
using small pivot tolerances. Our runs with small u show that this is an issue for
a small number of our test examples, although reliability is improved by scaling.
This reinforces the findings of Duff [2002]. We note also that practitioners
in optimization frequently find iterative refinement both beneficial and
occasionally essential (see, e.g., Gould and Toint [2002]). As a result, we believe
that, at the very least, residuals should always be computed. If large residuals
cannot be cured simply through refinement, remedial action should be taken,
such as increasing the pivot tolerance and refactorizing the matrix.

5. COMMENTS AND CONCLUSIONS

We summarize our conclusions as follows:

—MA57 is usually the fastest HSL package for solving a system of symmetric
linear equations in both the positive-definite and indefinite cases. This
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conclusion is pronounced for matrices of very large order. The use of Level 3
BLAS clearly pays dividends, and the approximate minimum-degree (AMD)
ordering in preference to the traditional minimum-degree one proves to be
more effective.

—For large, positive-definite problems, it is advantageous to use MA57 with the
nested dissection METIS ordering, rather than a minimum-degree ordering.
We believe that this should be an option in any future evolution of the
package.

—For indefinite problems, the METIS ordering is not as effective as the default
AMD ordering, nor as the MC50 variant of AMD. The MC50 variant offers more
protection against significantly dense rows.

—The out-of-core solver MA62 uses the least memory, but the current out-of-
core solvers are not competitive with the in-core ones with respect to CPU
time. Given the success of the in-core version of MA57, we believe that the
development of an out-of-core version of this solver should be a high priority,
especially for very large (possibly indefinite) systems.

—For indefinite problems, a tiny pivot tolerance is often better than the
default. In addition, scaling using MC30 offers significant improvements. We
suggest that the default pivot tolerance should be significantly smaller than
it currently is in MA57.

—The robustness of solvers in the large, indefinite case is still a concern. Four
of our 61 test problems were not solved by any HSL code.

Our next task will be to compare MA57 with direct solvers from other sources.
Tests in this direction are currently underway, and this will be the subject of a
future report.

ACKNOWLEDGMENTS

We would like to thank our colleagues Iain Duff and John Reid at the
Rutherford Appleton Laboratory for answering our queries on their codes and
for commenting on a draft of this article. We are also grateful to Yifan Hu of
Wolfram Research for providing us with a C code to measure the memory used
by the solvers. Our thanks also to those who supplied test problems, including
Mario Arioli, Christian Damhaug, Tim Davis, Anshul Gupta, Alison Ramage,
Olaf Schenk, Miroslav Tuma, and Andy Wathen.

REFERENCES

AwmEsToy, P., Davis, T., aND DUFE, I. 1996. An approximate minimum degree ordering algorithm.
SIAM J. Matrix Anal. and Appl. 17, 886-905.

Arior1, M., DEMMEL, J., AND DUFF, I. 1989. Solving sparse linear systems with sparse backward
error. SIAM J. Mat Anal. Appl. 10, 165-190.

Doran, E., AND MorE, J. 2002. Benchmarking optimization software with performance profiles.
Mathe. Prog. 91, 2, 201-213.

DONGARRA, J., DuCRoz, J., DUFF, 1., AND HAMMARLING, S.  1990. A set of Level 3 basic linear algebra
subprograms. ACM Trans. Math. Softw. 16, 1, 1-117.

Durr, I. 1984. Design features of a frontal code for solving sparse unsymmetric linear systems
out-of-core. SIAM J. Sci. Stat. Comput. 5, 270-280.

ACM Transactions on Mathematical Software, Vol. 30, No. 3, September 2004.



A Numerical Evaluation of HSL Packages . 325

Durr, I. 2002. MA57—A new code for the solution of sparse symmetric definite and indefinite
systems. Technical Report RAL-TR-2002-024, Rutherford Appleton Laboratory.

Durr, L., Erisman, A., aND RE, J. 1986. Direct Methods for Sparse Matrices. Oxford University
Press, Oxford, England.

Durr, 1., Gourp, N., REm, J., ScorT, J., AND TURNER, K. 1991. Factorization of sparse symmetric
indefinite matrices. IMA J. Numer. Anal. 11, 181-2044.

Durr, 1., GRivEs, R., anD LEwis, J.  1989. Sparse matrix test problems. ACM Trans. Math. Softw. 15,
1-14.

Durr, I. anp REm, J. 1983. The multifrontal solution of indefinite sparse symmetric linear
systems. ACM Trans. Math. Softw. 9, 302—-325.

Durr, I. anp REm, J.  1995. MAA47, a fortran code for direct solution of indefinite sparse symmetric
linear systems. Report RAL-95-001, Rutherford Appleton Laboratory.

Durr, I. anp RED, J. 1996. Exploiting zeros on the diagonal in the direct solution of indefinite
sparse symmetric linear systems. ACM Trans. Math. Softw. 22, 2, 227-2517.

Durr, 1. anp Scort, J. 1999. A frontal code for the solution of sparse positive-definite symmetric
systems arising from finite-element applications. ACM Trans. Math. Softw. 25, 404—424.

Gourp, N. anp Scort, J. 2003. Complete results for a numerical evaluation of HSL
packages for the direct solution of large sparse, symmetric linear systems of equations.
Numerical Analysis Internal Report 2003-2, Rutherford Appleton Laboratory. Available from
www.numerical.rl.ac.uk/reports/reports.shtml.

Gourp, N. anp Toint, P. 2002. An iterative working-set method for large-scale non-convex
quadratic programming. Appl. Numer. Math. 43, 1-2, 109-128.

Gupta, A. 2002. Recent advances in direct methods or solving unsymmetric sparse systems of
linear equations. ACM Trans. Math. Softw. 28, 3, 301-324.

Hoop, P. 1976. Frontal solution program for unsymmetric matrices. Int. J. Numer. Meth. Eng. 10,
379-400.

HSL. 2002. A collection of Fortran codes for large-scale scientific computation. See
http://hsl.rl.ac.uk/.

Irons, B. 1970. A frontal solution program for finite-element analysis. Int. J. Numer. Meth. Eng. 2,
5-32.

Karyris, G. aND Kumar, V. 1999. A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM J. Sci. Comput. 20, 359-392.

Liy, J. 1992. The multifrontal method for sparse matrix solution: theory and practice. SIAM
Rev. 34, 82-109.

REm, J. AND Scott, J. 1999. Ordering symmetric sparse matrices for small profile and wavefront.
Inter. J Num. Meth. Eng. 45, 1737-1755.

SauNDERS, M. 1994. Sparse matrices in optimization. Presented at Sparse Days at
St Girons, International meeting on Sparse Matrix Methods, St Girons, France. See
http://www.stanford.edu/group/SOL/talks/saunders-stgirons.ps.

Scort,J. 1999. On ordering elements for a frontal solver. Commun. Num. Meth. Eng. 15, 309-323.

Received September 2003; accepted March 2004

ACM Transactions on Mathematical Software, Vol. 30, No. 3, September 2004.



